src/cpu/x86/vm/stubGenerator_x86_32.cpp

Mon, 13 Sep 2010 23:24:30 -0700

author
jrose
date
Mon, 13 Sep 2010 23:24:30 -0700
changeset 2148
d257356e35f0
parent 2118
d6f45b55c972
child 2314
f95d63e2154a
permissions
-rw-r--r--

6939224: MethodHandle.invokeGeneric needs to perform the correct set of conversions
Reviewed-by: never

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_32.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
never@739 33 #define a__ ((Assembler*)_masm)->
duke@435 34
duke@435 35 #ifdef PRODUCT
duke@435 36 #define BLOCK_COMMENT(str) /* nothing */
duke@435 37 #else
duke@435 38 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 39 #endif
duke@435 40
duke@435 41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 42
duke@435 43 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
duke@435 45
duke@435 46 // -------------------------------------------------------------------------------------------------------------------------
duke@435 47 // Stub Code definitions
duke@435 48
duke@435 49 static address handle_unsafe_access() {
duke@435 50 JavaThread* thread = JavaThread::current();
duke@435 51 address pc = thread->saved_exception_pc();
duke@435 52 // pc is the instruction which we must emulate
duke@435 53 // doing a no-op is fine: return garbage from the load
duke@435 54 // therefore, compute npc
duke@435 55 address npc = Assembler::locate_next_instruction(pc);
duke@435 56
duke@435 57 // request an async exception
duke@435 58 thread->set_pending_unsafe_access_error();
duke@435 59
duke@435 60 // return address of next instruction to execute
duke@435 61 return npc;
duke@435 62 }
duke@435 63
duke@435 64 class StubGenerator: public StubCodeGenerator {
duke@435 65 private:
duke@435 66
duke@435 67 #ifdef PRODUCT
duke@435 68 #define inc_counter_np(counter) (0)
duke@435 69 #else
duke@435 70 void inc_counter_np_(int& counter) {
never@739 71 __ incrementl(ExternalAddress((address)&counter));
duke@435 72 }
duke@435 73 #define inc_counter_np(counter) \
duke@435 74 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 75 inc_counter_np_(counter);
duke@435 76 #endif //PRODUCT
duke@435 77
duke@435 78 void inc_copy_counter_np(BasicType t) {
duke@435 79 #ifndef PRODUCT
duke@435 80 switch (t) {
duke@435 81 case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
duke@435 82 case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
duke@435 83 case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
duke@435 84 case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
duke@435 85 case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
duke@435 86 }
duke@435 87 ShouldNotReachHere();
duke@435 88 #endif //PRODUCT
duke@435 89 }
duke@435 90
duke@435 91 //------------------------------------------------------------------------------------------------------------------------
duke@435 92 // Call stubs are used to call Java from C
duke@435 93 //
duke@435 94 // [ return_from_Java ] <--- rsp
duke@435 95 // [ argument word n ]
duke@435 96 // ...
duke@435 97 // -N [ argument word 1 ]
duke@435 98 // -7 [ Possible padding for stack alignment ]
duke@435 99 // -6 [ Possible padding for stack alignment ]
duke@435 100 // -5 [ Possible padding for stack alignment ]
duke@435 101 // -4 [ mxcsr save ] <--- rsp_after_call
duke@435 102 // -3 [ saved rbx, ]
duke@435 103 // -2 [ saved rsi ]
duke@435 104 // -1 [ saved rdi ]
duke@435 105 // 0 [ saved rbp, ] <--- rbp,
duke@435 106 // 1 [ return address ]
duke@435 107 // 2 [ ptr. to call wrapper ]
duke@435 108 // 3 [ result ]
duke@435 109 // 4 [ result_type ]
duke@435 110 // 5 [ method ]
duke@435 111 // 6 [ entry_point ]
duke@435 112 // 7 [ parameters ]
duke@435 113 // 8 [ parameter_size ]
duke@435 114 // 9 [ thread ]
duke@435 115
duke@435 116
duke@435 117 address generate_call_stub(address& return_address) {
duke@435 118 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 119 address start = __ pc();
duke@435 120
duke@435 121 // stub code parameters / addresses
duke@435 122 assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
duke@435 123 bool sse_save = false;
duke@435 124 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
duke@435 125 const int locals_count_in_bytes (4*wordSize);
duke@435 126 const Address mxcsr_save (rbp, -4 * wordSize);
duke@435 127 const Address saved_rbx (rbp, -3 * wordSize);
duke@435 128 const Address saved_rsi (rbp, -2 * wordSize);
duke@435 129 const Address saved_rdi (rbp, -1 * wordSize);
duke@435 130 const Address result (rbp, 3 * wordSize);
duke@435 131 const Address result_type (rbp, 4 * wordSize);
duke@435 132 const Address method (rbp, 5 * wordSize);
duke@435 133 const Address entry_point (rbp, 6 * wordSize);
duke@435 134 const Address parameters (rbp, 7 * wordSize);
duke@435 135 const Address parameter_size(rbp, 8 * wordSize);
duke@435 136 const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
duke@435 137 sse_save = UseSSE > 0;
duke@435 138
duke@435 139 // stub code
duke@435 140 __ enter();
never@739 141 __ movptr(rcx, parameter_size); // parameter counter
twisti@1861 142 __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
never@739 143 __ addptr(rcx, locals_count_in_bytes); // reserve space for register saves
never@739 144 __ subptr(rsp, rcx);
never@739 145 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 146
duke@435 147 // save rdi, rsi, & rbx, according to C calling conventions
never@739 148 __ movptr(saved_rdi, rdi);
never@739 149 __ movptr(saved_rsi, rsi);
never@739 150 __ movptr(saved_rbx, rbx);
duke@435 151 // save and initialize %mxcsr
duke@435 152 if (sse_save) {
duke@435 153 Label skip_ldmx;
duke@435 154 __ stmxcsr(mxcsr_save);
duke@435 155 __ movl(rax, mxcsr_save);
duke@435 156 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 157 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 158 __ cmp32(rax, mxcsr_std);
duke@435 159 __ jcc(Assembler::equal, skip_ldmx);
duke@435 160 __ ldmxcsr(mxcsr_std);
duke@435 161 __ bind(skip_ldmx);
duke@435 162 }
duke@435 163
duke@435 164 // make sure the control word is correct.
duke@435 165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 166
duke@435 167 #ifdef ASSERT
duke@435 168 // make sure we have no pending exceptions
duke@435 169 { Label L;
never@739 170 __ movptr(rcx, thread);
never@739 171 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 172 __ jcc(Assembler::equal, L);
duke@435 173 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 174 __ bind(L);
duke@435 175 }
duke@435 176 #endif
duke@435 177
duke@435 178 // pass parameters if any
duke@435 179 BLOCK_COMMENT("pass parameters if any");
duke@435 180 Label parameters_done;
duke@435 181 __ movl(rcx, parameter_size); // parameter counter
duke@435 182 __ testl(rcx, rcx);
duke@435 183 __ jcc(Assembler::zero, parameters_done);
duke@435 184
duke@435 185 // parameter passing loop
duke@435 186
duke@435 187 Label loop;
duke@435 188 // Copy Java parameters in reverse order (receiver last)
duke@435 189 // Note that the argument order is inverted in the process
duke@435 190 // source is rdx[rcx: N-1..0]
duke@435 191 // dest is rsp[rbx: 0..N-1]
duke@435 192
never@739 193 __ movptr(rdx, parameters); // parameter pointer
never@739 194 __ xorptr(rbx, rbx);
duke@435 195
duke@435 196 __ BIND(loop);
duke@435 197
duke@435 198 // get parameter
never@739 199 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
never@739 200 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 201 Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
duke@435 202 __ increment(rbx);
duke@435 203 __ decrement(rcx);
duke@435 204 __ jcc(Assembler::notZero, loop);
duke@435 205
duke@435 206 // call Java function
duke@435 207 __ BIND(parameters_done);
never@739 208 __ movptr(rbx, method); // get methodOop
never@739 209 __ movptr(rax, entry_point); // get entry_point
never@739 210 __ mov(rsi, rsp); // set sender sp
duke@435 211 BLOCK_COMMENT("call Java function");
duke@435 212 __ call(rax);
duke@435 213
duke@435 214 BLOCK_COMMENT("call_stub_return_address:");
duke@435 215 return_address = __ pc();
duke@435 216
duke@435 217 Label common_return;
duke@435 218
duke@435 219 __ BIND(common_return);
duke@435 220
duke@435 221 // store result depending on type
duke@435 222 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 223 __ movptr(rdi, result);
duke@435 224 Label is_long, is_float, is_double, exit;
duke@435 225 __ movl(rsi, result_type);
duke@435 226 __ cmpl(rsi, T_LONG);
duke@435 227 __ jcc(Assembler::equal, is_long);
duke@435 228 __ cmpl(rsi, T_FLOAT);
duke@435 229 __ jcc(Assembler::equal, is_float);
duke@435 230 __ cmpl(rsi, T_DOUBLE);
duke@435 231 __ jcc(Assembler::equal, is_double);
duke@435 232
duke@435 233 // handle T_INT case
duke@435 234 __ movl(Address(rdi, 0), rax);
duke@435 235 __ BIND(exit);
duke@435 236
duke@435 237 // check that FPU stack is empty
duke@435 238 __ verify_FPU(0, "generate_call_stub");
duke@435 239
duke@435 240 // pop parameters
never@739 241 __ lea(rsp, rsp_after_call);
duke@435 242
duke@435 243 // restore %mxcsr
duke@435 244 if (sse_save) {
duke@435 245 __ ldmxcsr(mxcsr_save);
duke@435 246 }
duke@435 247
duke@435 248 // restore rdi, rsi and rbx,
never@739 249 __ movptr(rbx, saved_rbx);
never@739 250 __ movptr(rsi, saved_rsi);
never@739 251 __ movptr(rdi, saved_rdi);
never@739 252 __ addptr(rsp, 4*wordSize);
duke@435 253
duke@435 254 // return
never@739 255 __ pop(rbp);
duke@435 256 __ ret(0);
duke@435 257
duke@435 258 // handle return types different from T_INT
duke@435 259 __ BIND(is_long);
duke@435 260 __ movl(Address(rdi, 0 * wordSize), rax);
duke@435 261 __ movl(Address(rdi, 1 * wordSize), rdx);
duke@435 262 __ jmp(exit);
duke@435 263
duke@435 264 __ BIND(is_float);
duke@435 265 // interpreter uses xmm0 for return values
duke@435 266 if (UseSSE >= 1) {
duke@435 267 __ movflt(Address(rdi, 0), xmm0);
duke@435 268 } else {
duke@435 269 __ fstp_s(Address(rdi, 0));
duke@435 270 }
duke@435 271 __ jmp(exit);
duke@435 272
duke@435 273 __ BIND(is_double);
duke@435 274 // interpreter uses xmm0 for return values
duke@435 275 if (UseSSE >= 2) {
duke@435 276 __ movdbl(Address(rdi, 0), xmm0);
duke@435 277 } else {
duke@435 278 __ fstp_d(Address(rdi, 0));
duke@435 279 }
duke@435 280 __ jmp(exit);
duke@435 281
duke@435 282 // If we call compiled code directly from the call stub we will
duke@435 283 // need to adjust the return back to the call stub to a specialized
duke@435 284 // piece of code that can handle compiled results and cleaning the fpu
duke@435 285 // stack. compiled code will be set to return here instead of the
duke@435 286 // return above that handles interpreter returns.
duke@435 287
duke@435 288 BLOCK_COMMENT("call_stub_compiled_return:");
never@739 289 StubRoutines::x86::set_call_stub_compiled_return( __ pc());
duke@435 290
duke@435 291 #ifdef COMPILER2
duke@435 292 if (UseSSE >= 2) {
duke@435 293 __ verify_FPU(0, "call_stub_compiled_return");
duke@435 294 } else {
duke@435 295 for (int i = 1; i < 8; i++) {
duke@435 296 __ ffree(i);
duke@435 297 }
duke@435 298
duke@435 299 // UseSSE <= 1 so double result should be left on TOS
duke@435 300 __ movl(rsi, result_type);
duke@435 301 __ cmpl(rsi, T_DOUBLE);
duke@435 302 __ jcc(Assembler::equal, common_return);
duke@435 303 if (UseSSE == 0) {
duke@435 304 // UseSSE == 0 so float result should be left on TOS
duke@435 305 __ cmpl(rsi, T_FLOAT);
duke@435 306 __ jcc(Assembler::equal, common_return);
duke@435 307 }
duke@435 308 __ ffree(0);
duke@435 309 }
duke@435 310 #endif /* COMPILER2 */
duke@435 311 __ jmp(common_return);
duke@435 312
duke@435 313 return start;
duke@435 314 }
duke@435 315
duke@435 316
duke@435 317 //------------------------------------------------------------------------------------------------------------------------
duke@435 318 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 319 // The exception is caught and transformed into a pending exception stored in
duke@435 320 // JavaThread that can be tested from within the VM.
duke@435 321 //
duke@435 322 // Note: Usually the parameters are removed by the callee. In case of an exception
duke@435 323 // crossing an activation frame boundary, that is not the case if the callee
duke@435 324 // is compiled code => need to setup the rsp.
duke@435 325 //
duke@435 326 // rax,: exception oop
duke@435 327
duke@435 328 address generate_catch_exception() {
duke@435 329 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 330 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
duke@435 331 const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
duke@435 332 address start = __ pc();
duke@435 333
duke@435 334 // get thread directly
never@739 335 __ movptr(rcx, thread);
duke@435 336 #ifdef ASSERT
duke@435 337 // verify that threads correspond
duke@435 338 { Label L;
duke@435 339 __ get_thread(rbx);
never@739 340 __ cmpptr(rbx, rcx);
duke@435 341 __ jcc(Assembler::equal, L);
duke@435 342 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 343 __ bind(L);
duke@435 344 }
duke@435 345 #endif
duke@435 346 // set pending exception
duke@435 347 __ verify_oop(rax);
never@739 348 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax );
duke@435 349 __ lea(Address(rcx, Thread::exception_file_offset ()),
duke@435 350 ExternalAddress((address)__FILE__));
duke@435 351 __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
duke@435 352 // complete return to VM
duke@435 353 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
duke@435 354 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 355
duke@435 356 return start;
duke@435 357 }
duke@435 358
duke@435 359
duke@435 360 //------------------------------------------------------------------------------------------------------------------------
duke@435 361 // Continuation point for runtime calls returning with a pending exception.
duke@435 362 // The pending exception check happened in the runtime or native call stub.
duke@435 363 // The pending exception in Thread is converted into a Java-level exception.
duke@435 364 //
duke@435 365 // Contract with Java-level exception handlers:
twisti@1730 366 // rax: exception
duke@435 367 // rdx: throwing pc
duke@435 368 //
duke@435 369 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 370
duke@435 371 address generate_forward_exception() {
duke@435 372 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 373 address start = __ pc();
twisti@1730 374 const Register thread = rcx;
twisti@1730 375
twisti@1730 376 // other registers used in this stub
twisti@1730 377 const Register exception_oop = rax;
twisti@1730 378 const Register handler_addr = rbx;
twisti@1730 379 const Register exception_pc = rdx;
duke@435 380
duke@435 381 // Upon entry, the sp points to the return address returning into Java
duke@435 382 // (interpreted or compiled) code; i.e., the return address becomes the
duke@435 383 // throwing pc.
duke@435 384 //
duke@435 385 // Arguments pushed before the runtime call are still on the stack but
duke@435 386 // the exception handler will reset the stack pointer -> ignore them.
duke@435 387 // A potential result in registers can be ignored as well.
duke@435 388
duke@435 389 #ifdef ASSERT
duke@435 390 // make sure this code is only executed if there is a pending exception
duke@435 391 { Label L;
twisti@1730 392 __ get_thread(thread);
twisti@1730 393 __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 394 __ jcc(Assembler::notEqual, L);
duke@435 395 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 396 __ bind(L);
duke@435 397 }
duke@435 398 #endif
duke@435 399
duke@435 400 // compute exception handler into rbx,
twisti@1730 401 __ get_thread(thread);
twisti@1730 402 __ movptr(exception_pc, Address(rsp, 0));
duke@435 403 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 404 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
twisti@1730 405 __ mov(handler_addr, rax);
duke@435 406
twisti@1730 407 // setup rax & rdx, remove return address & clear pending exception
twisti@1730 408 __ get_thread(thread);
twisti@1730 409 __ pop(exception_pc);
twisti@1730 410 __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
twisti@1730 411 __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
duke@435 412
duke@435 413 #ifdef ASSERT
duke@435 414 // make sure exception is set
duke@435 415 { Label L;
twisti@1730 416 __ testptr(exception_oop, exception_oop);
duke@435 417 __ jcc(Assembler::notEqual, L);
duke@435 418 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 419 __ bind(L);
duke@435 420 }
duke@435 421 #endif
duke@435 422
twisti@1730 423 // Verify that there is really a valid exception in RAX.
twisti@1730 424 __ verify_oop(exception_oop);
twisti@1730 425
twisti@1730 426 // Restore SP from BP if the exception PC is a MethodHandle call site.
twisti@1803 427 __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
twisti@1730 428 __ cmovptr(Assembler::notEqual, rsp, rbp);
twisti@1730 429
duke@435 430 // continue at exception handler (return address removed)
twisti@1730 431 // rax: exception
twisti@1730 432 // rbx: exception handler
duke@435 433 // rdx: throwing pc
twisti@1730 434 __ jmp(handler_addr);
duke@435 435
duke@435 436 return start;
duke@435 437 }
duke@435 438
duke@435 439
duke@435 440 //----------------------------------------------------------------------------------------------------
duke@435 441 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 442 //
duke@435 443 // xchg exists as far back as 8086, lock needed for MP only
duke@435 444 // Stack layout immediately after call:
duke@435 445 //
duke@435 446 // 0 [ret addr ] <--- rsp
duke@435 447 // 1 [ ex ]
duke@435 448 // 2 [ dest ]
duke@435 449 //
duke@435 450 // Result: *dest <- ex, return (old *dest)
duke@435 451 //
duke@435 452 // Note: win32 does not currently use this code
duke@435 453
duke@435 454 address generate_atomic_xchg() {
duke@435 455 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 456 address start = __ pc();
duke@435 457
never@739 458 __ push(rdx);
duke@435 459 Address exchange(rsp, 2 * wordSize);
duke@435 460 Address dest_addr(rsp, 3 * wordSize);
duke@435 461 __ movl(rax, exchange);
never@739 462 __ movptr(rdx, dest_addr);
never@739 463 __ xchgl(rax, Address(rdx, 0));
never@739 464 __ pop(rdx);
duke@435 465 __ ret(0);
duke@435 466
duke@435 467 return start;
duke@435 468 }
duke@435 469
duke@435 470 //----------------------------------------------------------------------------------------------------
duke@435 471 // Support for void verify_mxcsr()
duke@435 472 //
duke@435 473 // This routine is used with -Xcheck:jni to verify that native
duke@435 474 // JNI code does not return to Java code without restoring the
duke@435 475 // MXCSR register to our expected state.
duke@435 476
duke@435 477
duke@435 478 address generate_verify_mxcsr() {
duke@435 479 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 480 address start = __ pc();
duke@435 481
duke@435 482 const Address mxcsr_save(rsp, 0);
duke@435 483
duke@435 484 if (CheckJNICalls && UseSSE > 0 ) {
duke@435 485 Label ok_ret;
duke@435 486 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
never@739 487 __ push(rax);
never@739 488 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 489 __ stmxcsr(mxcsr_save);
duke@435 490 __ movl(rax, mxcsr_save);
duke@435 491 __ andl(rax, MXCSR_MASK);
duke@435 492 __ cmp32(rax, mxcsr_std);
duke@435 493 __ jcc(Assembler::equal, ok_ret);
duke@435 494
duke@435 495 __ warn("MXCSR changed by native JNI code.");
duke@435 496
duke@435 497 __ ldmxcsr(mxcsr_std);
duke@435 498
duke@435 499 __ bind(ok_ret);
never@739 500 __ addptr(rsp, wordSize);
never@739 501 __ pop(rax);
duke@435 502 }
duke@435 503
duke@435 504 __ ret(0);
duke@435 505
duke@435 506 return start;
duke@435 507 }
duke@435 508
duke@435 509
duke@435 510 //---------------------------------------------------------------------------
duke@435 511 // Support for void verify_fpu_cntrl_wrd()
duke@435 512 //
duke@435 513 // This routine is used with -Xcheck:jni to verify that native
duke@435 514 // JNI code does not return to Java code without restoring the
duke@435 515 // FP control word to our expected state.
duke@435 516
duke@435 517 address generate_verify_fpu_cntrl_wrd() {
duke@435 518 StubCodeMark mark(this, "StubRoutines", "verify_spcw");
duke@435 519 address start = __ pc();
duke@435 520
duke@435 521 const Address fpu_cntrl_wrd_save(rsp, 0);
duke@435 522
duke@435 523 if (CheckJNICalls) {
duke@435 524 Label ok_ret;
never@739 525 __ push(rax);
never@739 526 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 527 __ fnstcw(fpu_cntrl_wrd_save);
duke@435 528 __ movl(rax, fpu_cntrl_wrd_save);
duke@435 529 __ andl(rax, FPU_CNTRL_WRD_MASK);
duke@435 530 ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 531 __ cmp32(rax, fpu_std);
duke@435 532 __ jcc(Assembler::equal, ok_ret);
duke@435 533
duke@435 534 __ warn("Floating point control word changed by native JNI code.");
duke@435 535
duke@435 536 __ fldcw(fpu_std);
duke@435 537
duke@435 538 __ bind(ok_ret);
never@739 539 __ addptr(rsp, wordSize);
never@739 540 __ pop(rax);
duke@435 541 }
duke@435 542
duke@435 543 __ ret(0);
duke@435 544
duke@435 545 return start;
duke@435 546 }
duke@435 547
duke@435 548 //---------------------------------------------------------------------------
duke@435 549 // Wrapper for slow-case handling of double-to-integer conversion
duke@435 550 // d2i or f2i fast case failed either because it is nan or because
duke@435 551 // of under/overflow.
duke@435 552 // Input: FPU TOS: float value
duke@435 553 // Output: rax, (rdx): integer (long) result
duke@435 554
duke@435 555 address generate_d2i_wrapper(BasicType t, address fcn) {
duke@435 556 StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
duke@435 557 address start = __ pc();
duke@435 558
duke@435 559 // Capture info about frame layout
duke@435 560 enum layout { FPUState_off = 0,
duke@435 561 rbp_off = FPUStateSizeInWords,
duke@435 562 rdi_off,
duke@435 563 rsi_off,
duke@435 564 rcx_off,
duke@435 565 rbx_off,
duke@435 566 saved_argument_off,
duke@435 567 saved_argument_off2, // 2nd half of double
duke@435 568 framesize
duke@435 569 };
duke@435 570
duke@435 571 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 572
duke@435 573 // Save outgoing argument to stack across push_FPU_state()
never@739 574 __ subptr(rsp, wordSize * 2);
duke@435 575 __ fstp_d(Address(rsp, 0));
duke@435 576
duke@435 577 // Save CPU & FPU state
never@739 578 __ push(rbx);
never@739 579 __ push(rcx);
never@739 580 __ push(rsi);
never@739 581 __ push(rdi);
never@739 582 __ push(rbp);
duke@435 583 __ push_FPU_state();
duke@435 584
duke@435 585 // push_FPU_state() resets the FP top of stack
duke@435 586 // Load original double into FP top of stack
duke@435 587 __ fld_d(Address(rsp, saved_argument_off * wordSize));
duke@435 588 // Store double into stack as outgoing argument
never@739 589 __ subptr(rsp, wordSize*2);
duke@435 590 __ fst_d(Address(rsp, 0));
duke@435 591
duke@435 592 // Prepare FPU for doing math in C-land
duke@435 593 __ empty_FPU_stack();
duke@435 594 // Call the C code to massage the double. Result in EAX
duke@435 595 if (t == T_INT)
duke@435 596 { BLOCK_COMMENT("SharedRuntime::d2i"); }
duke@435 597 else if (t == T_LONG)
duke@435 598 { BLOCK_COMMENT("SharedRuntime::d2l"); }
duke@435 599 __ call_VM_leaf( fcn, 2 );
duke@435 600
duke@435 601 // Restore CPU & FPU state
duke@435 602 __ pop_FPU_state();
never@739 603 __ pop(rbp);
never@739 604 __ pop(rdi);
never@739 605 __ pop(rsi);
never@739 606 __ pop(rcx);
never@739 607 __ pop(rbx);
never@739 608 __ addptr(rsp, wordSize * 2);
duke@435 609
duke@435 610 __ ret(0);
duke@435 611
duke@435 612 return start;
duke@435 613 }
duke@435 614
duke@435 615
duke@435 616 //---------------------------------------------------------------------------
duke@435 617 // The following routine generates a subroutine to throw an asynchronous
duke@435 618 // UnknownError when an unsafe access gets a fault that could not be
duke@435 619 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 620 address generate_handler_for_unsafe_access() {
duke@435 621 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 622 address start = __ pc();
duke@435 623
never@739 624 __ push(0); // hole for return address-to-be
never@739 625 __ pusha(); // push registers
duke@435 626 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 627 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 628 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 629 __ movptr(next_pc, rax); // stuff next address
never@739 630 __ popa();
duke@435 631 __ ret(0); // jump to next address
duke@435 632
duke@435 633 return start;
duke@435 634 }
duke@435 635
duke@435 636
duke@435 637 //----------------------------------------------------------------------------------------------------
duke@435 638 // Non-destructive plausibility checks for oops
duke@435 639
duke@435 640 address generate_verify_oop() {
duke@435 641 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 642 address start = __ pc();
duke@435 643
duke@435 644 // Incoming arguments on stack after saving rax,:
duke@435 645 //
duke@435 646 // [tos ]: saved rdx
duke@435 647 // [tos + 1]: saved EFLAGS
duke@435 648 // [tos + 2]: return address
duke@435 649 // [tos + 3]: char* error message
duke@435 650 // [tos + 4]: oop object to verify
duke@435 651 // [tos + 5]: saved rax, - saved by caller and bashed
duke@435 652
duke@435 653 Label exit, error;
never@739 654 __ pushf();
never@739 655 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
never@739 656 __ push(rdx); // save rdx
duke@435 657 // make sure object is 'reasonable'
never@739 658 __ movptr(rax, Address(rsp, 4 * wordSize)); // get object
never@739 659 __ testptr(rax, rax);
duke@435 660 __ jcc(Assembler::zero, exit); // if obj is NULL it is ok
duke@435 661
duke@435 662 // Check if the oop is in the right area of memory
duke@435 663 const int oop_mask = Universe::verify_oop_mask();
duke@435 664 const int oop_bits = Universe::verify_oop_bits();
never@739 665 __ mov(rdx, rax);
never@739 666 __ andptr(rdx, oop_mask);
never@739 667 __ cmpptr(rdx, oop_bits);
duke@435 668 __ jcc(Assembler::notZero, error);
duke@435 669
duke@435 670 // make sure klass is 'reasonable'
never@739 671 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
never@739 672 __ testptr(rax, rax);
duke@435 673 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 674
duke@435 675 // Check if the klass is in the right area of memory
duke@435 676 const int klass_mask = Universe::verify_klass_mask();
duke@435 677 const int klass_bits = Universe::verify_klass_bits();
never@739 678 __ mov(rdx, rax);
never@739 679 __ andptr(rdx, klass_mask);
never@739 680 __ cmpptr(rdx, klass_bits);
duke@435 681 __ jcc(Assembler::notZero, error);
duke@435 682
duke@435 683 // make sure klass' klass is 'reasonable'
never@739 684 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
never@739 685 __ testptr(rax, rax);
duke@435 686 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 687
never@739 688 __ mov(rdx, rax);
never@739 689 __ andptr(rdx, klass_mask);
never@739 690 __ cmpptr(rdx, klass_bits);
duke@435 691 __ jcc(Assembler::notZero, error); // if klass not in right area
duke@435 692 // of memory it is broken too.
duke@435 693
duke@435 694 // return if everything seems ok
duke@435 695 __ bind(exit);
never@739 696 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 697 __ pop(rdx); // restore rdx
never@739 698 __ popf(); // restore EFLAGS
duke@435 699 __ ret(3 * wordSize); // pop arguments
duke@435 700
duke@435 701 // handle errors
duke@435 702 __ bind(error);
never@739 703 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 704 __ pop(rdx); // get saved rdx back
never@739 705 __ popf(); // get saved EFLAGS off stack -- will be ignored
never@739 706 __ pusha(); // push registers (eip = return address & msg are already pushed)
duke@435 707 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 708 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
never@739 709 __ popa();
duke@435 710 __ ret(3 * wordSize); // pop arguments
duke@435 711 return start;
duke@435 712 }
duke@435 713
duke@435 714 //
duke@435 715 // Generate pre-barrier for array stores
duke@435 716 //
duke@435 717 // Input:
duke@435 718 // start - starting address
ysr@1280 719 // count - element count
duke@435 720 void gen_write_ref_array_pre_barrier(Register start, Register count) {
duke@435 721 assert_different_registers(start, count);
duke@435 722 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 723 switch (bs->kind()) {
duke@435 724 case BarrierSet::G1SATBCT:
duke@435 725 case BarrierSet::G1SATBCTLogging:
duke@435 726 {
never@739 727 __ pusha(); // push registers
apetrusenko@1627 728 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
apetrusenko@1627 729 start, count);
never@739 730 __ popa();
duke@435 731 }
duke@435 732 break;
duke@435 733 case BarrierSet::CardTableModRef:
duke@435 734 case BarrierSet::CardTableExtension:
duke@435 735 case BarrierSet::ModRef:
duke@435 736 break;
duke@435 737 default :
duke@435 738 ShouldNotReachHere();
duke@435 739
duke@435 740 }
duke@435 741 }
duke@435 742
duke@435 743
duke@435 744 //
duke@435 745 // Generate a post-barrier for an array store
duke@435 746 //
duke@435 747 // start - starting address
duke@435 748 // count - element count
duke@435 749 //
duke@435 750 // The two input registers are overwritten.
duke@435 751 //
duke@435 752 void gen_write_ref_array_post_barrier(Register start, Register count) {
duke@435 753 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 754 assert_different_registers(start, count);
duke@435 755 switch (bs->kind()) {
duke@435 756 case BarrierSet::G1SATBCT:
duke@435 757 case BarrierSet::G1SATBCTLogging:
duke@435 758 {
never@739 759 __ pusha(); // push registers
apetrusenko@1627 760 __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
apetrusenko@1627 761 start, count);
never@739 762 __ popa();
duke@435 763 }
duke@435 764 break;
duke@435 765
duke@435 766 case BarrierSet::CardTableModRef:
duke@435 767 case BarrierSet::CardTableExtension:
duke@435 768 {
duke@435 769 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 770 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 771
duke@435 772 Label L_loop;
duke@435 773 const Register end = count; // elements count; end == start+count-1
duke@435 774 assert_different_registers(start, end);
duke@435 775
never@739 776 __ lea(end, Address(start, count, Address::times_ptr, -wordSize));
never@739 777 __ shrptr(start, CardTableModRefBS::card_shift);
never@739 778 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 779 __ subptr(end, start); // end --> count
duke@435 780 __ BIND(L_loop);
never@684 781 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 782 Address cardtable(start, count, Address::times_1, disp);
never@684 783 __ movb(cardtable, 0);
duke@435 784 __ decrement(count);
duke@435 785 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 786 }
duke@435 787 break;
duke@435 788 case BarrierSet::ModRef:
duke@435 789 break;
duke@435 790 default :
duke@435 791 ShouldNotReachHere();
duke@435 792
duke@435 793 }
duke@435 794 }
duke@435 795
kvn@840 796
kvn@840 797 // Copy 64 bytes chunks
kvn@840 798 //
kvn@840 799 // Inputs:
kvn@840 800 // from - source array address
kvn@840 801 // to_from - destination array address - from
kvn@840 802 // qword_count - 8-bytes element count, negative
kvn@840 803 //
kvn@840 804 void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 805 assert( UseSSE >= 2, "supported cpu only" );
kvn@840 806 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
kvn@840 807 // Copy 64-byte chunks
kvn@840 808 __ jmpb(L_copy_64_bytes);
kvn@1800 809 __ align(OptoLoopAlignment);
kvn@840 810 __ BIND(L_copy_64_bytes_loop);
kvn@840 811
kvn@840 812 if(UseUnalignedLoadStores) {
kvn@840 813 __ movdqu(xmm0, Address(from, 0));
kvn@840 814 __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 815 __ movdqu(xmm1, Address(from, 16));
kvn@840 816 __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
kvn@840 817 __ movdqu(xmm2, Address(from, 32));
kvn@840 818 __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
kvn@840 819 __ movdqu(xmm3, Address(from, 48));
kvn@840 820 __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
kvn@840 821
kvn@840 822 } else {
kvn@840 823 __ movq(xmm0, Address(from, 0));
kvn@840 824 __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 825 __ movq(xmm1, Address(from, 8));
kvn@840 826 __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
kvn@840 827 __ movq(xmm2, Address(from, 16));
kvn@840 828 __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
kvn@840 829 __ movq(xmm3, Address(from, 24));
kvn@840 830 __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
kvn@840 831 __ movq(xmm4, Address(from, 32));
kvn@840 832 __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
kvn@840 833 __ movq(xmm5, Address(from, 40));
kvn@840 834 __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
kvn@840 835 __ movq(xmm6, Address(from, 48));
kvn@840 836 __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
kvn@840 837 __ movq(xmm7, Address(from, 56));
kvn@840 838 __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
kvn@840 839 }
kvn@840 840
kvn@840 841 __ addl(from, 64);
kvn@840 842 __ BIND(L_copy_64_bytes);
kvn@840 843 __ subl(qword_count, 8);
kvn@840 844 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
kvn@840 845 __ addl(qword_count, 8);
kvn@840 846 __ jccb(Assembler::zero, L_exit);
kvn@840 847 //
kvn@840 848 // length is too short, just copy qwords
kvn@840 849 //
kvn@840 850 __ BIND(L_copy_8_bytes);
kvn@840 851 __ movq(xmm0, Address(from, 0));
kvn@840 852 __ movq(Address(from, to_from, Address::times_1), xmm0);
kvn@840 853 __ addl(from, 8);
kvn@840 854 __ decrement(qword_count);
kvn@840 855 __ jcc(Assembler::greater, L_copy_8_bytes);
kvn@840 856 __ BIND(L_exit);
kvn@840 857 }
kvn@840 858
duke@435 859 // Copy 64 bytes chunks
duke@435 860 //
duke@435 861 // Inputs:
duke@435 862 // from - source array address
duke@435 863 // to_from - destination array address - from
duke@435 864 // qword_count - 8-bytes element count, negative
duke@435 865 //
duke@435 866 void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 867 assert( VM_Version::supports_mmx(), "supported cpu only" );
duke@435 868 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
duke@435 869 // Copy 64-byte chunks
duke@435 870 __ jmpb(L_copy_64_bytes);
kvn@1800 871 __ align(OptoLoopAlignment);
duke@435 872 __ BIND(L_copy_64_bytes_loop);
duke@435 873 __ movq(mmx0, Address(from, 0));
duke@435 874 __ movq(mmx1, Address(from, 8));
duke@435 875 __ movq(mmx2, Address(from, 16));
duke@435 876 __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
duke@435 877 __ movq(mmx3, Address(from, 24));
duke@435 878 __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
duke@435 879 __ movq(mmx4, Address(from, 32));
duke@435 880 __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
duke@435 881 __ movq(mmx5, Address(from, 40));
duke@435 882 __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
duke@435 883 __ movq(mmx6, Address(from, 48));
duke@435 884 __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
duke@435 885 __ movq(mmx7, Address(from, 56));
duke@435 886 __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
duke@435 887 __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
duke@435 888 __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
never@739 889 __ addptr(from, 64);
duke@435 890 __ BIND(L_copy_64_bytes);
duke@435 891 __ subl(qword_count, 8);
duke@435 892 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
duke@435 893 __ addl(qword_count, 8);
duke@435 894 __ jccb(Assembler::zero, L_exit);
duke@435 895 //
duke@435 896 // length is too short, just copy qwords
duke@435 897 //
duke@435 898 __ BIND(L_copy_8_bytes);
duke@435 899 __ movq(mmx0, Address(from, 0));
duke@435 900 __ movq(Address(from, to_from, Address::times_1), mmx0);
never@739 901 __ addptr(from, 8);
duke@435 902 __ decrement(qword_count);
duke@435 903 __ jcc(Assembler::greater, L_copy_8_bytes);
duke@435 904 __ BIND(L_exit);
duke@435 905 __ emms();
duke@435 906 }
duke@435 907
duke@435 908 address generate_disjoint_copy(BasicType t, bool aligned,
duke@435 909 Address::ScaleFactor sf,
duke@435 910 address* entry, const char *name) {
duke@435 911 __ align(CodeEntryAlignment);
duke@435 912 StubCodeMark mark(this, "StubRoutines", name);
duke@435 913 address start = __ pc();
duke@435 914
duke@435 915 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 916 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
duke@435 917
never@739 918 int shift = Address::times_ptr - sf;
duke@435 919
duke@435 920 const Register from = rsi; // source array address
duke@435 921 const Register to = rdi; // destination array address
duke@435 922 const Register count = rcx; // elements count
duke@435 923 const Register to_from = to; // (to - from)
duke@435 924 const Register saved_to = rdx; // saved destination array address
duke@435 925
duke@435 926 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 927 __ push(rsi);
never@739 928 __ push(rdi);
never@739 929 __ movptr(from , Address(rsp, 12+ 4));
never@739 930 __ movptr(to , Address(rsp, 12+ 8));
duke@435 931 __ movl(count, Address(rsp, 12+ 12));
duke@435 932 if (t == T_OBJECT) {
duke@435 933 __ testl(count, count);
duke@435 934 __ jcc(Assembler::zero, L_0_count);
duke@435 935 gen_write_ref_array_pre_barrier(to, count);
never@739 936 __ mov(saved_to, to); // save 'to'
duke@435 937 }
duke@435 938
duke@435 939 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 940 BLOCK_COMMENT("Entry:");
duke@435 941
never@739 942 __ subptr(to, from); // to --> to_from
duke@435 943 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 944 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
kvn@840 945 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
duke@435 946 // align source address at 4 bytes address boundary
duke@435 947 if (t == T_BYTE) {
duke@435 948 // One byte misalignment happens only for byte arrays
duke@435 949 __ testl(from, 1);
duke@435 950 __ jccb(Assembler::zero, L_skip_align1);
duke@435 951 __ movb(rax, Address(from, 0));
duke@435 952 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 953 __ increment(from);
duke@435 954 __ decrement(count);
duke@435 955 __ BIND(L_skip_align1);
duke@435 956 }
duke@435 957 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 958 __ testl(from, 2);
duke@435 959 __ jccb(Assembler::zero, L_skip_align2);
duke@435 960 __ movw(rax, Address(from, 0));
duke@435 961 __ movw(Address(from, to_from, Address::times_1, 0), rax);
never@739 962 __ addptr(from, 2);
duke@435 963 __ subl(count, 1<<(shift-1));
duke@435 964 __ BIND(L_skip_align2);
duke@435 965 }
duke@435 966 if (!VM_Version::supports_mmx()) {
never@739 967 __ mov(rax, count); // save 'count'
never@739 968 __ shrl(count, shift); // bytes count
never@739 969 __ addptr(to_from, from);// restore 'to'
never@739 970 __ rep_mov();
never@739 971 __ subptr(to_from, from);// restore 'to_from'
never@739 972 __ mov(count, rax); // restore 'count'
duke@435 973 __ jmpb(L_copy_2_bytes); // all dwords were copied
duke@435 974 } else {
kvn@840 975 if (!UseUnalignedLoadStores) {
kvn@840 976 // align to 8 bytes, we know we are 4 byte aligned to start
kvn@840 977 __ testptr(from, 4);
kvn@840 978 __ jccb(Assembler::zero, L_copy_64_bytes);
kvn@840 979 __ movl(rax, Address(from, 0));
kvn@840 980 __ movl(Address(from, to_from, Address::times_1, 0), rax);
kvn@840 981 __ addptr(from, 4);
kvn@840 982 __ subl(count, 1<<shift);
kvn@840 983 }
duke@435 984 __ BIND(L_copy_64_bytes);
never@739 985 __ mov(rax, count);
duke@435 986 __ shrl(rax, shift+1); // 8 bytes chunk count
duke@435 987 //
duke@435 988 // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
duke@435 989 //
kvn@840 990 if (UseXMMForArrayCopy) {
kvn@840 991 xmm_copy_forward(from, to_from, rax);
kvn@840 992 } else {
kvn@840 993 mmx_copy_forward(from, to_from, rax);
kvn@840 994 }
duke@435 995 }
duke@435 996 // copy tailing dword
duke@435 997 __ BIND(L_copy_4_bytes);
duke@435 998 __ testl(count, 1<<shift);
duke@435 999 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1000 __ movl(rax, Address(from, 0));
duke@435 1001 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1002 if (t == T_BYTE || t == T_SHORT) {
never@739 1003 __ addptr(from, 4);
duke@435 1004 __ BIND(L_copy_2_bytes);
duke@435 1005 // copy tailing word
duke@435 1006 __ testl(count, 1<<(shift-1));
duke@435 1007 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1008 __ movw(rax, Address(from, 0));
duke@435 1009 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1010 if (t == T_BYTE) {
never@739 1011 __ addptr(from, 2);
duke@435 1012 __ BIND(L_copy_byte);
duke@435 1013 // copy tailing byte
duke@435 1014 __ testl(count, 1);
duke@435 1015 __ jccb(Assembler::zero, L_exit);
duke@435 1016 __ movb(rax, Address(from, 0));
duke@435 1017 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1018 __ BIND(L_exit);
duke@435 1019 } else {
duke@435 1020 __ BIND(L_copy_byte);
duke@435 1021 }
duke@435 1022 } else {
duke@435 1023 __ BIND(L_copy_2_bytes);
duke@435 1024 }
duke@435 1025
duke@435 1026 if (t == T_OBJECT) {
duke@435 1027 __ movl(count, Address(rsp, 12+12)); // reread 'count'
never@739 1028 __ mov(to, saved_to); // restore 'to'
duke@435 1029 gen_write_ref_array_post_barrier(to, count);
duke@435 1030 __ BIND(L_0_count);
duke@435 1031 }
duke@435 1032 inc_copy_counter_np(t);
never@739 1033 __ pop(rdi);
never@739 1034 __ pop(rsi);
duke@435 1035 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1036 __ xorptr(rax, rax); // return 0
duke@435 1037 __ ret(0);
duke@435 1038 return start;
duke@435 1039 }
duke@435 1040
duke@435 1041
never@2118 1042 address generate_fill(BasicType t, bool aligned, const char *name) {
never@2118 1043 __ align(CodeEntryAlignment);
never@2118 1044 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1045 address start = __ pc();
never@2118 1046
never@2118 1047 BLOCK_COMMENT("Entry:");
never@2118 1048
never@2118 1049 const Register to = rdi; // source array address
never@2118 1050 const Register value = rdx; // value
never@2118 1051 const Register count = rsi; // elements count
never@2118 1052
never@2118 1053 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@2118 1054 __ push(rsi);
never@2118 1055 __ push(rdi);
never@2118 1056 __ movptr(to , Address(rsp, 12+ 4));
never@2118 1057 __ movl(value, Address(rsp, 12+ 8));
never@2118 1058 __ movl(count, Address(rsp, 12+ 12));
never@2118 1059
never@2118 1060 __ generate_fill(t, aligned, to, value, count, rax, xmm0);
never@2118 1061
never@2118 1062 __ pop(rdi);
never@2118 1063 __ pop(rsi);
never@2118 1064 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@2118 1065 __ ret(0);
never@2118 1066 return start;
never@2118 1067 }
never@2118 1068
duke@435 1069 address generate_conjoint_copy(BasicType t, bool aligned,
duke@435 1070 Address::ScaleFactor sf,
duke@435 1071 address nooverlap_target,
duke@435 1072 address* entry, const char *name) {
duke@435 1073 __ align(CodeEntryAlignment);
duke@435 1074 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1075 address start = __ pc();
duke@435 1076
duke@435 1077 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 1078 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1079
never@739 1080 int shift = Address::times_ptr - sf;
duke@435 1081
duke@435 1082 const Register src = rax; // source array address
duke@435 1083 const Register dst = rdx; // destination array address
duke@435 1084 const Register from = rsi; // source array address
duke@435 1085 const Register to = rdi; // destination array address
duke@435 1086 const Register count = rcx; // elements count
duke@435 1087 const Register end = rax; // array end address
duke@435 1088
duke@435 1089 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1090 __ push(rsi);
never@739 1091 __ push(rdi);
never@739 1092 __ movptr(src , Address(rsp, 12+ 4)); // from
never@739 1093 __ movptr(dst , Address(rsp, 12+ 8)); // to
never@739 1094 __ movl2ptr(count, Address(rsp, 12+12)); // count
duke@435 1095 if (t == T_OBJECT) {
duke@435 1096 gen_write_ref_array_pre_barrier(dst, count);
duke@435 1097 }
duke@435 1098
duke@435 1099 if (entry != NULL) {
duke@435 1100 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1101 BLOCK_COMMENT("Entry:");
duke@435 1102 }
duke@435 1103
duke@435 1104 if (t == T_OBJECT) {
duke@435 1105 __ testl(count, count);
duke@435 1106 __ jcc(Assembler::zero, L_0_count);
duke@435 1107 }
never@739 1108 __ mov(from, src);
never@739 1109 __ mov(to , dst);
duke@435 1110
duke@435 1111 // arrays overlap test
duke@435 1112 RuntimeAddress nooverlap(nooverlap_target);
never@739 1113 __ cmpptr(dst, src);
never@739 1114 __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
duke@435 1115 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1116 __ cmpptr(dst, end);
duke@435 1117 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1118
duke@435 1119 // copy from high to low
duke@435 1120 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1121 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 1122 if (t == T_BYTE || t == T_SHORT) {
duke@435 1123 // Align the end of destination array at 4 bytes address boundary
never@739 1124 __ lea(end, Address(dst, count, sf, 0));
duke@435 1125 if (t == T_BYTE) {
duke@435 1126 // One byte misalignment happens only for byte arrays
duke@435 1127 __ testl(end, 1);
duke@435 1128 __ jccb(Assembler::zero, L_skip_align1);
duke@435 1129 __ decrement(count);
duke@435 1130 __ movb(rdx, Address(from, count, sf, 0));
duke@435 1131 __ movb(Address(to, count, sf, 0), rdx);
duke@435 1132 __ BIND(L_skip_align1);
duke@435 1133 }
duke@435 1134 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 1135 __ testl(end, 2);
duke@435 1136 __ jccb(Assembler::zero, L_skip_align2);
never@739 1137 __ subptr(count, 1<<(shift-1));
duke@435 1138 __ movw(rdx, Address(from, count, sf, 0));
duke@435 1139 __ movw(Address(to, count, sf, 0), rdx);
duke@435 1140 __ BIND(L_skip_align2);
duke@435 1141 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1142 __ jcc(Assembler::below, L_copy_4_bytes);
duke@435 1143 }
duke@435 1144
duke@435 1145 if (!VM_Version::supports_mmx()) {
duke@435 1146 __ std();
never@739 1147 __ mov(rax, count); // Save 'count'
never@739 1148 __ mov(rdx, to); // Save 'to'
never@739 1149 __ lea(rsi, Address(from, count, sf, -4));
never@739 1150 __ lea(rdi, Address(to , count, sf, -4));
never@739 1151 __ shrptr(count, shift); // bytes count
never@739 1152 __ rep_mov();
duke@435 1153 __ cld();
never@739 1154 __ mov(count, rax); // restore 'count'
duke@435 1155 __ andl(count, (1<<shift)-1); // mask the number of rest elements
never@739 1156 __ movptr(from, Address(rsp, 12+4)); // reread 'from'
never@739 1157 __ mov(to, rdx); // restore 'to'
duke@435 1158 __ jmpb(L_copy_2_bytes); // all dword were copied
duke@435 1159 } else {
duke@435 1160 // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
never@739 1161 __ testptr(end, 4);
duke@435 1162 __ jccb(Assembler::zero, L_copy_8_bytes);
duke@435 1163 __ subl(count, 1<<shift);
duke@435 1164 __ movl(rdx, Address(from, count, sf, 0));
duke@435 1165 __ movl(Address(to, count, sf, 0), rdx);
duke@435 1166 __ jmpb(L_copy_8_bytes);
duke@435 1167
kvn@1800 1168 __ align(OptoLoopAlignment);
duke@435 1169 // Move 8 bytes
duke@435 1170 __ BIND(L_copy_8_bytes_loop);
kvn@840 1171 if (UseXMMForArrayCopy) {
kvn@840 1172 __ movq(xmm0, Address(from, count, sf, 0));
kvn@840 1173 __ movq(Address(to, count, sf, 0), xmm0);
kvn@840 1174 } else {
kvn@840 1175 __ movq(mmx0, Address(from, count, sf, 0));
kvn@840 1176 __ movq(Address(to, count, sf, 0), mmx0);
kvn@840 1177 }
duke@435 1178 __ BIND(L_copy_8_bytes);
duke@435 1179 __ subl(count, 2<<shift);
duke@435 1180 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1181 __ addl(count, 2<<shift);
kvn@840 1182 if (!UseXMMForArrayCopy) {
kvn@840 1183 __ emms();
kvn@840 1184 }
duke@435 1185 }
duke@435 1186 __ BIND(L_copy_4_bytes);
duke@435 1187 // copy prefix qword
duke@435 1188 __ testl(count, 1<<shift);
duke@435 1189 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1190 __ movl(rdx, Address(from, count, sf, -4));
duke@435 1191 __ movl(Address(to, count, sf, -4), rdx);
duke@435 1192
duke@435 1193 if (t == T_BYTE || t == T_SHORT) {
duke@435 1194 __ subl(count, (1<<shift));
duke@435 1195 __ BIND(L_copy_2_bytes);
duke@435 1196 // copy prefix dword
duke@435 1197 __ testl(count, 1<<(shift-1));
duke@435 1198 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1199 __ movw(rdx, Address(from, count, sf, -2));
duke@435 1200 __ movw(Address(to, count, sf, -2), rdx);
duke@435 1201 if (t == T_BYTE) {
duke@435 1202 __ subl(count, 1<<(shift-1));
duke@435 1203 __ BIND(L_copy_byte);
duke@435 1204 // copy prefix byte
duke@435 1205 __ testl(count, 1);
duke@435 1206 __ jccb(Assembler::zero, L_exit);
duke@435 1207 __ movb(rdx, Address(from, 0));
duke@435 1208 __ movb(Address(to, 0), rdx);
duke@435 1209 __ BIND(L_exit);
duke@435 1210 } else {
duke@435 1211 __ BIND(L_copy_byte);
duke@435 1212 }
duke@435 1213 } else {
duke@435 1214 __ BIND(L_copy_2_bytes);
duke@435 1215 }
duke@435 1216 if (t == T_OBJECT) {
never@739 1217 __ movl2ptr(count, Address(rsp, 12+12)); // reread count
duke@435 1218 gen_write_ref_array_post_barrier(to, count);
duke@435 1219 __ BIND(L_0_count);
duke@435 1220 }
duke@435 1221 inc_copy_counter_np(t);
never@739 1222 __ pop(rdi);
never@739 1223 __ pop(rsi);
duke@435 1224 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1225 __ xorptr(rax, rax); // return 0
duke@435 1226 __ ret(0);
duke@435 1227 return start;
duke@435 1228 }
duke@435 1229
duke@435 1230
duke@435 1231 address generate_disjoint_long_copy(address* entry, const char *name) {
duke@435 1232 __ align(CodeEntryAlignment);
duke@435 1233 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1234 address start = __ pc();
duke@435 1235
duke@435 1236 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1237 const Register from = rax; // source array address
duke@435 1238 const Register to = rdx; // destination array address
duke@435 1239 const Register count = rcx; // elements count
duke@435 1240 const Register to_from = rdx; // (to - from)
duke@435 1241
duke@435 1242 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1243 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1244 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1245 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1246
duke@435 1247 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 1248 BLOCK_COMMENT("Entry:");
duke@435 1249
never@739 1250 __ subptr(to, from); // to --> to_from
duke@435 1251 if (VM_Version::supports_mmx()) {
kvn@840 1252 if (UseXMMForArrayCopy) {
kvn@840 1253 xmm_copy_forward(from, to_from, count);
kvn@840 1254 } else {
kvn@840 1255 mmx_copy_forward(from, to_from, count);
kvn@840 1256 }
duke@435 1257 } else {
duke@435 1258 __ jmpb(L_copy_8_bytes);
kvn@1800 1259 __ align(OptoLoopAlignment);
duke@435 1260 __ BIND(L_copy_8_bytes_loop);
duke@435 1261 __ fild_d(Address(from, 0));
duke@435 1262 __ fistp_d(Address(from, to_from, Address::times_1));
never@739 1263 __ addptr(from, 8);
duke@435 1264 __ BIND(L_copy_8_bytes);
duke@435 1265 __ decrement(count);
duke@435 1266 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1267 }
duke@435 1268 inc_copy_counter_np(T_LONG);
duke@435 1269 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1270 __ xorptr(rax, rax); // return 0
duke@435 1271 __ ret(0);
duke@435 1272 return start;
duke@435 1273 }
duke@435 1274
duke@435 1275 address generate_conjoint_long_copy(address nooverlap_target,
duke@435 1276 address* entry, const char *name) {
duke@435 1277 __ align(CodeEntryAlignment);
duke@435 1278 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1279 address start = __ pc();
duke@435 1280
duke@435 1281 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1282 const Register from = rax; // source array address
duke@435 1283 const Register to = rdx; // destination array address
duke@435 1284 const Register count = rcx; // elements count
duke@435 1285 const Register end_from = rax; // source array end address
duke@435 1286
duke@435 1287 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1288 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1289 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1290 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1291
duke@435 1292 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1293 BLOCK_COMMENT("Entry:");
duke@435 1294
duke@435 1295 // arrays overlap test
never@739 1296 __ cmpptr(to, from);
duke@435 1297 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1298 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1299 __ lea(end_from, Address(from, count, Address::times_8, 0));
never@739 1300 __ cmpptr(to, end_from);
never@739 1301 __ movptr(from, Address(rsp, 8)); // from
duke@435 1302 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1303
duke@435 1304 __ jmpb(L_copy_8_bytes);
duke@435 1305
kvn@1800 1306 __ align(OptoLoopAlignment);
duke@435 1307 __ BIND(L_copy_8_bytes_loop);
duke@435 1308 if (VM_Version::supports_mmx()) {
kvn@840 1309 if (UseXMMForArrayCopy) {
kvn@840 1310 __ movq(xmm0, Address(from, count, Address::times_8));
kvn@840 1311 __ movq(Address(to, count, Address::times_8), xmm0);
kvn@840 1312 } else {
kvn@840 1313 __ movq(mmx0, Address(from, count, Address::times_8));
kvn@840 1314 __ movq(Address(to, count, Address::times_8), mmx0);
kvn@840 1315 }
duke@435 1316 } else {
duke@435 1317 __ fild_d(Address(from, count, Address::times_8));
duke@435 1318 __ fistp_d(Address(to, count, Address::times_8));
duke@435 1319 }
duke@435 1320 __ BIND(L_copy_8_bytes);
duke@435 1321 __ decrement(count);
duke@435 1322 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1323
kvn@840 1324 if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
duke@435 1325 __ emms();
duke@435 1326 }
duke@435 1327 inc_copy_counter_np(T_LONG);
duke@435 1328 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1329 __ xorptr(rax, rax); // return 0
duke@435 1330 __ ret(0);
duke@435 1331 return start;
duke@435 1332 }
duke@435 1333
duke@435 1334
duke@435 1335 // Helper for generating a dynamic type check.
duke@435 1336 // The sub_klass must be one of {rbx, rdx, rsi}.
duke@435 1337 // The temp is killed.
duke@435 1338 void generate_type_check(Register sub_klass,
duke@435 1339 Address& super_check_offset_addr,
duke@435 1340 Address& super_klass_addr,
duke@435 1341 Register temp,
jrose@1079 1342 Label* L_success, Label* L_failure) {
duke@435 1343 BLOCK_COMMENT("type_check:");
duke@435 1344
duke@435 1345 Label L_fallthrough;
jrose@1079 1346 #define LOCAL_JCC(assembler_con, label_ptr) \
jrose@1079 1347 if (label_ptr != NULL) __ jcc(assembler_con, *(label_ptr)); \
jrose@1079 1348 else __ jcc(assembler_con, L_fallthrough) /*omit semi*/
duke@435 1349
jrose@1079 1350 // The following is a strange variation of the fast path which requires
jrose@1079 1351 // one less register, because needed values are on the argument stack.
jrose@1079 1352 // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
jrose@1079 1353 // L_success, L_failure, NULL);
duke@435 1354 assert_different_registers(sub_klass, temp);
duke@435 1355
duke@435 1356 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1357 Klass::secondary_super_cache_offset_in_bytes());
duke@435 1358
duke@435 1359 // if the pointers are equal, we are done (e.g., String[] elements)
never@739 1360 __ cmpptr(sub_klass, super_klass_addr);
jrose@1079 1361 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1362
duke@435 1363 // check the supertype display:
never@739 1364 __ movl2ptr(temp, super_check_offset_addr);
duke@435 1365 Address super_check_addr(sub_klass, temp, Address::times_1, 0);
never@739 1366 __ movptr(temp, super_check_addr); // load displayed supertype
never@739 1367 __ cmpptr(temp, super_klass_addr); // test the super type
jrose@1079 1368 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1369
duke@435 1370 // if it was a primary super, we can just fail immediately
duke@435 1371 __ cmpl(super_check_offset_addr, sc_offset);
jrose@1079 1372 LOCAL_JCC(Assembler::notEqual, L_failure);
duke@435 1373
jrose@1079 1374 // The repne_scan instruction uses fixed registers, which will get spilled.
jrose@1079 1375 // We happen to know this works best when super_klass is in rax.
jrose@1079 1376 Register super_klass = temp;
jrose@1079 1377 __ movptr(super_klass, super_klass_addr);
jrose@1079 1378 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
jrose@1079 1379 L_success, L_failure);
duke@435 1380
jrose@1079 1381 __ bind(L_fallthrough);
duke@435 1382
jrose@1079 1383 if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
jrose@1079 1384 if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
duke@435 1385
jrose@1079 1386 #undef LOCAL_JCC
duke@435 1387 }
duke@435 1388
duke@435 1389 //
duke@435 1390 // Generate checkcasting array copy stub
duke@435 1391 //
duke@435 1392 // Input:
duke@435 1393 // 4(rsp) - source array address
duke@435 1394 // 8(rsp) - destination array address
duke@435 1395 // 12(rsp) - element count, can be zero
duke@435 1396 // 16(rsp) - size_t ckoff (super_check_offset)
duke@435 1397 // 20(rsp) - oop ckval (super_klass)
duke@435 1398 //
duke@435 1399 // Output:
duke@435 1400 // rax, == 0 - success
duke@435 1401 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1402 //
duke@435 1403 address generate_checkcast_copy(const char *name, address* entry) {
duke@435 1404 __ align(CodeEntryAlignment);
duke@435 1405 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1406 address start = __ pc();
duke@435 1407
duke@435 1408 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 1409
duke@435 1410 // register use:
duke@435 1411 // rax, rdx, rcx -- loop control (end_from, end_to, count)
duke@435 1412 // rdi, rsi -- element access (oop, klass)
duke@435 1413 // rbx, -- temp
duke@435 1414 const Register from = rax; // source array address
duke@435 1415 const Register to = rdx; // destination array address
duke@435 1416 const Register length = rcx; // elements count
duke@435 1417 const Register elem = rdi; // each oop copied
duke@435 1418 const Register elem_klass = rsi; // each elem._klass (sub_klass)
duke@435 1419 const Register temp = rbx; // lone remaining temp
duke@435 1420
duke@435 1421 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1422
never@739 1423 __ push(rsi);
never@739 1424 __ push(rdi);
never@739 1425 __ push(rbx);
duke@435 1426
duke@435 1427 Address from_arg(rsp, 16+ 4); // from
duke@435 1428 Address to_arg(rsp, 16+ 8); // to
duke@435 1429 Address length_arg(rsp, 16+12); // elements count
duke@435 1430 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1431 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1432
duke@435 1433 // Load up:
never@739 1434 __ movptr(from, from_arg);
never@739 1435 __ movptr(to, to_arg);
never@739 1436 __ movl2ptr(length, length_arg);
duke@435 1437
duke@435 1438 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1439 BLOCK_COMMENT("Entry:");
duke@435 1440
duke@435 1441 //---------------------------------------------------------------
duke@435 1442 // Assembler stub will be used for this call to arraycopy
duke@435 1443 // if the two arrays are subtypes of Object[] but the
duke@435 1444 // destination array type is not equal to or a supertype
duke@435 1445 // of the source type. Each element must be separately
duke@435 1446 // checked.
duke@435 1447
duke@435 1448 // Loop-invariant addresses. They are exclusive end pointers.
never@739 1449 Address end_from_addr(from, length, Address::times_ptr, 0);
never@739 1450 Address end_to_addr(to, length, Address::times_ptr, 0);
duke@435 1451
duke@435 1452 Register end_from = from; // re-use
duke@435 1453 Register end_to = to; // re-use
duke@435 1454 Register count = length; // re-use
duke@435 1455
duke@435 1456 // Loop-variant addresses. They assume post-incremented count < 0.
never@739 1457 Address from_element_addr(end_from, count, Address::times_ptr, 0);
never@739 1458 Address to_element_addr(end_to, count, Address::times_ptr, 0);
duke@435 1459 Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
duke@435 1460
duke@435 1461 // Copy from low to high addresses, indexed from the end of each array.
ysr@777 1462 gen_write_ref_array_pre_barrier(to, count);
never@739 1463 __ lea(end_from, end_from_addr);
never@739 1464 __ lea(end_to, end_to_addr);
duke@435 1465 assert(length == count, ""); // else fix next line:
never@739 1466 __ negptr(count); // negate and test the length
duke@435 1467 __ jccb(Assembler::notZero, L_load_element);
duke@435 1468
duke@435 1469 // Empty array: Nothing to do.
never@739 1470 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 1471 __ jmp(L_done);
duke@435 1472
duke@435 1473 // ======== begin loop ========
duke@435 1474 // (Loop is rotated; its entry is L_load_element.)
duke@435 1475 // Loop control:
duke@435 1476 // for (count = -count; count != 0; count++)
duke@435 1477 // Base pointers src, dst are biased by 8*count,to last element.
kvn@1800 1478 __ align(OptoLoopAlignment);
duke@435 1479
duke@435 1480 __ BIND(L_store_element);
never@739 1481 __ movptr(to_element_addr, elem); // store the oop
duke@435 1482 __ increment(count); // increment the count toward zero
duke@435 1483 __ jccb(Assembler::zero, L_do_card_marks);
duke@435 1484
duke@435 1485 // ======== loop entry is here ========
duke@435 1486 __ BIND(L_load_element);
never@739 1487 __ movptr(elem, from_element_addr); // load the oop
never@739 1488 __ testptr(elem, elem);
duke@435 1489 __ jccb(Assembler::zero, L_store_element);
duke@435 1490
duke@435 1491 // (Could do a trick here: Remember last successful non-null
duke@435 1492 // element stored and make a quick oop equality check on it.)
duke@435 1493
never@739 1494 __ movptr(elem_klass, elem_klass_addr); // query the object klass
duke@435 1495 generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
duke@435 1496 &L_store_element, NULL);
duke@435 1497 // (On fall-through, we have failed the element type check.)
duke@435 1498 // ======== end loop ========
duke@435 1499
duke@435 1500 // It was a real error; we must depend on the caller to finish the job.
rasbold@454 1501 // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
rasbold@454 1502 // Emit GC store barriers for the oops we have copied (length_arg + count),
duke@435 1503 // and report their number to the caller.
duke@435 1504 __ addl(count, length_arg); // transfers = (length - remaining)
never@739 1505 __ movl2ptr(rax, count); // save the value
never@739 1506 __ notptr(rax); // report (-1^K) to caller
never@739 1507 __ movptr(to, to_arg); // reload
duke@435 1508 assert_different_registers(to, count, rax);
duke@435 1509 gen_write_ref_array_post_barrier(to, count);
duke@435 1510 __ jmpb(L_done);
duke@435 1511
duke@435 1512 // Come here on success only.
duke@435 1513 __ BIND(L_do_card_marks);
never@739 1514 __ movl2ptr(count, length_arg);
never@739 1515 __ movptr(to, to_arg); // reload
duke@435 1516 gen_write_ref_array_post_barrier(to, count);
never@739 1517 __ xorptr(rax, rax); // return 0 on success
duke@435 1518
duke@435 1519 // Common exit point (success or failure).
duke@435 1520 __ BIND(L_done);
never@739 1521 __ pop(rbx);
never@739 1522 __ pop(rdi);
never@739 1523 __ pop(rsi);
duke@435 1524 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 1525 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1526 __ ret(0);
duke@435 1527
duke@435 1528 return start;
duke@435 1529 }
duke@435 1530
duke@435 1531 //
duke@435 1532 // Generate 'unsafe' array copy stub
duke@435 1533 // Though just as safe as the other stubs, it takes an unscaled
duke@435 1534 // size_t argument instead of an element count.
duke@435 1535 //
duke@435 1536 // Input:
duke@435 1537 // 4(rsp) - source array address
duke@435 1538 // 8(rsp) - destination array address
duke@435 1539 // 12(rsp) - byte count, can be zero
duke@435 1540 //
duke@435 1541 // Output:
duke@435 1542 // rax, == 0 - success
duke@435 1543 // rax, == -1 - need to call System.arraycopy
duke@435 1544 //
duke@435 1545 // Examines the alignment of the operands and dispatches
duke@435 1546 // to a long, int, short, or byte copy loop.
duke@435 1547 //
duke@435 1548 address generate_unsafe_copy(const char *name,
duke@435 1549 address byte_copy_entry,
duke@435 1550 address short_copy_entry,
duke@435 1551 address int_copy_entry,
duke@435 1552 address long_copy_entry) {
duke@435 1553
duke@435 1554 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 1555
duke@435 1556 __ align(CodeEntryAlignment);
duke@435 1557 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1558 address start = __ pc();
duke@435 1559
duke@435 1560 const Register from = rax; // source array address
duke@435 1561 const Register to = rdx; // destination array address
duke@435 1562 const Register count = rcx; // elements count
duke@435 1563
duke@435 1564 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1565 __ push(rsi);
never@739 1566 __ push(rdi);
duke@435 1567 Address from_arg(rsp, 12+ 4); // from
duke@435 1568 Address to_arg(rsp, 12+ 8); // to
duke@435 1569 Address count_arg(rsp, 12+12); // byte count
duke@435 1570
duke@435 1571 // Load up:
never@739 1572 __ movptr(from , from_arg);
never@739 1573 __ movptr(to , to_arg);
never@739 1574 __ movl2ptr(count, count_arg);
duke@435 1575
duke@435 1576 // bump this on entry, not on exit:
duke@435 1577 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 1578
duke@435 1579 const Register bits = rsi;
never@739 1580 __ mov(bits, from);
never@739 1581 __ orptr(bits, to);
never@739 1582 __ orptr(bits, count);
duke@435 1583
duke@435 1584 __ testl(bits, BytesPerLong-1);
duke@435 1585 __ jccb(Assembler::zero, L_long_aligned);
duke@435 1586
duke@435 1587 __ testl(bits, BytesPerInt-1);
duke@435 1588 __ jccb(Assembler::zero, L_int_aligned);
duke@435 1589
duke@435 1590 __ testl(bits, BytesPerShort-1);
duke@435 1591 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 1592
duke@435 1593 __ BIND(L_short_aligned);
never@739 1594 __ shrptr(count, LogBytesPerShort); // size => short_count
duke@435 1595 __ movl(count_arg, count); // update 'count'
duke@435 1596 __ jump(RuntimeAddress(short_copy_entry));
duke@435 1597
duke@435 1598 __ BIND(L_int_aligned);
never@739 1599 __ shrptr(count, LogBytesPerInt); // size => int_count
duke@435 1600 __ movl(count_arg, count); // update 'count'
duke@435 1601 __ jump(RuntimeAddress(int_copy_entry));
duke@435 1602
duke@435 1603 __ BIND(L_long_aligned);
never@739 1604 __ shrptr(count, LogBytesPerLong); // size => qword_count
duke@435 1605 __ movl(count_arg, count); // update 'count'
never@739 1606 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1607 __ pop(rsi);
duke@435 1608 __ jump(RuntimeAddress(long_copy_entry));
duke@435 1609
duke@435 1610 return start;
duke@435 1611 }
duke@435 1612
duke@435 1613
duke@435 1614 // Perform range checks on the proposed arraycopy.
duke@435 1615 // Smashes src_pos and dst_pos. (Uses them up for temps.)
duke@435 1616 void arraycopy_range_checks(Register src,
duke@435 1617 Register src_pos,
duke@435 1618 Register dst,
duke@435 1619 Register dst_pos,
duke@435 1620 Address& length,
duke@435 1621 Label& L_failed) {
duke@435 1622 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 1623 const Register src_end = src_pos; // source array end position
duke@435 1624 const Register dst_end = dst_pos; // destination array end position
duke@435 1625 __ addl(src_end, length); // src_pos + length
duke@435 1626 __ addl(dst_end, length); // dst_pos + length
duke@435 1627
duke@435 1628 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 1629 __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 1630 __ jcc(Assembler::above, L_failed);
duke@435 1631
duke@435 1632 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 1633 __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 1634 __ jcc(Assembler::above, L_failed);
duke@435 1635
duke@435 1636 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 1637 }
duke@435 1638
duke@435 1639
duke@435 1640 //
duke@435 1641 // Generate generic array copy stubs
duke@435 1642 //
duke@435 1643 // Input:
duke@435 1644 // 4(rsp) - src oop
duke@435 1645 // 8(rsp) - src_pos
duke@435 1646 // 12(rsp) - dst oop
duke@435 1647 // 16(rsp) - dst_pos
duke@435 1648 // 20(rsp) - element count
duke@435 1649 //
duke@435 1650 // Output:
duke@435 1651 // rax, == 0 - success
duke@435 1652 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1653 //
duke@435 1654 address generate_generic_copy(const char *name,
duke@435 1655 address entry_jbyte_arraycopy,
duke@435 1656 address entry_jshort_arraycopy,
duke@435 1657 address entry_jint_arraycopy,
duke@435 1658 address entry_oop_arraycopy,
duke@435 1659 address entry_jlong_arraycopy,
duke@435 1660 address entry_checkcast_arraycopy) {
duke@435 1661 Label L_failed, L_failed_0, L_objArray;
duke@435 1662
duke@435 1663 { int modulus = CodeEntryAlignment;
duke@435 1664 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 1665 int advance = target - (__ offset() % modulus);
duke@435 1666 if (advance < 0) advance += modulus;
duke@435 1667 if (advance > 0) __ nop(advance);
duke@435 1668 }
duke@435 1669 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1670
duke@435 1671 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 1672 __ BIND(L_failed_0);
duke@435 1673 __ jmp(L_failed);
duke@435 1674 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 1675
duke@435 1676 __ align(CodeEntryAlignment);
duke@435 1677 address start = __ pc();
duke@435 1678
duke@435 1679 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1680 __ push(rsi);
never@739 1681 __ push(rdi);
duke@435 1682
duke@435 1683 // bump this on entry, not on exit:
duke@435 1684 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 1685
duke@435 1686 // Input values
duke@435 1687 Address SRC (rsp, 12+ 4);
duke@435 1688 Address SRC_POS (rsp, 12+ 8);
duke@435 1689 Address DST (rsp, 12+12);
duke@435 1690 Address DST_POS (rsp, 12+16);
duke@435 1691 Address LENGTH (rsp, 12+20);
duke@435 1692
duke@435 1693 //-----------------------------------------------------------------------
duke@435 1694 // Assembler stub will be used for this call to arraycopy
duke@435 1695 // if the following conditions are met:
duke@435 1696 //
duke@435 1697 // (1) src and dst must not be null.
duke@435 1698 // (2) src_pos must not be negative.
duke@435 1699 // (3) dst_pos must not be negative.
duke@435 1700 // (4) length must not be negative.
duke@435 1701 // (5) src klass and dst klass should be the same and not NULL.
duke@435 1702 // (6) src and dst should be arrays.
duke@435 1703 // (7) src_pos + length must not exceed length of src.
duke@435 1704 // (8) dst_pos + length must not exceed length of dst.
duke@435 1705 //
duke@435 1706
duke@435 1707 const Register src = rax; // source array oop
duke@435 1708 const Register src_pos = rsi;
duke@435 1709 const Register dst = rdx; // destination array oop
duke@435 1710 const Register dst_pos = rdi;
duke@435 1711 const Register length = rcx; // transfer count
duke@435 1712
duke@435 1713 // if (src == NULL) return -1;
never@739 1714 __ movptr(src, SRC); // src oop
never@739 1715 __ testptr(src, src);
duke@435 1716 __ jccb(Assembler::zero, L_failed_0);
duke@435 1717
duke@435 1718 // if (src_pos < 0) return -1;
never@739 1719 __ movl2ptr(src_pos, SRC_POS); // src_pos
duke@435 1720 __ testl(src_pos, src_pos);
duke@435 1721 __ jccb(Assembler::negative, L_failed_0);
duke@435 1722
duke@435 1723 // if (dst == NULL) return -1;
never@739 1724 __ movptr(dst, DST); // dst oop
never@739 1725 __ testptr(dst, dst);
duke@435 1726 __ jccb(Assembler::zero, L_failed_0);
duke@435 1727
duke@435 1728 // if (dst_pos < 0) return -1;
never@739 1729 __ movl2ptr(dst_pos, DST_POS); // dst_pos
duke@435 1730 __ testl(dst_pos, dst_pos);
duke@435 1731 __ jccb(Assembler::negative, L_failed_0);
duke@435 1732
duke@435 1733 // if (length < 0) return -1;
never@739 1734 __ movl2ptr(length, LENGTH); // length
duke@435 1735 __ testl(length, length);
duke@435 1736 __ jccb(Assembler::negative, L_failed_0);
duke@435 1737
duke@435 1738 // if (src->klass() == NULL) return -1;
duke@435 1739 Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
duke@435 1740 Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
duke@435 1741 const Register rcx_src_klass = rcx; // array klass
never@739 1742 __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
duke@435 1743
duke@435 1744 #ifdef ASSERT
duke@435 1745 // assert(src->klass() != NULL);
duke@435 1746 BLOCK_COMMENT("assert klasses not null");
duke@435 1747 { Label L1, L2;
never@739 1748 __ testptr(rcx_src_klass, rcx_src_klass);
duke@435 1749 __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 1750 __ bind(L1);
duke@435 1751 __ stop("broken null klass");
duke@435 1752 __ bind(L2);
never@739 1753 __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
duke@435 1754 __ jccb(Assembler::equal, L1); // this would be broken also
duke@435 1755 BLOCK_COMMENT("assert done");
duke@435 1756 }
duke@435 1757 #endif //ASSERT
duke@435 1758
duke@435 1759 // Load layout helper (32-bits)
duke@435 1760 //
duke@435 1761 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 1762 // 32 30 24 16 8 2 0
duke@435 1763 //
duke@435 1764 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 1765 //
duke@435 1766
duke@435 1767 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 1768 Klass::layout_helper_offset_in_bytes();
duke@435 1769 Address src_klass_lh_addr(rcx_src_klass, lh_offset);
duke@435 1770
duke@435 1771 // Handle objArrays completely differently...
duke@435 1772 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 1773 __ cmpl(src_klass_lh_addr, objArray_lh);
duke@435 1774 __ jcc(Assembler::equal, L_objArray);
duke@435 1775
duke@435 1776 // if (src->klass() != dst->klass()) return -1;
never@739 1777 __ cmpptr(rcx_src_klass, dst_klass_addr);
duke@435 1778 __ jccb(Assembler::notEqual, L_failed_0);
duke@435 1779
duke@435 1780 const Register rcx_lh = rcx; // layout helper
duke@435 1781 assert(rcx_lh == rcx_src_klass, "known alias");
duke@435 1782 __ movl(rcx_lh, src_klass_lh_addr);
duke@435 1783
duke@435 1784 // if (!src->is_Array()) return -1;
duke@435 1785 __ cmpl(rcx_lh, Klass::_lh_neutral_value);
duke@435 1786 __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
duke@435 1787
duke@435 1788 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 1789 #ifdef ASSERT
duke@435 1790 { Label L;
duke@435 1791 __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 1792 __ jcc(Assembler::greaterEqual, L); // signed cmp
duke@435 1793 __ stop("must be a primitive array");
duke@435 1794 __ bind(L);
duke@435 1795 }
duke@435 1796 #endif
duke@435 1797
duke@435 1798 assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
duke@435 1799 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1800
duke@435 1801 // typeArrayKlass
duke@435 1802 //
duke@435 1803 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 1804 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 1805 //
duke@435 1806 const Register rsi_offset = rsi; // array offset
duke@435 1807 const Register src_array = src; // src array offset
duke@435 1808 const Register dst_array = dst; // dst array offset
duke@435 1809 const Register rdi_elsize = rdi; // log2 element size
duke@435 1810
never@739 1811 __ mov(rsi_offset, rcx_lh);
never@739 1812 __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
never@739 1813 __ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset
never@739 1814 __ addptr(src_array, rsi_offset); // src array offset
never@739 1815 __ addptr(dst_array, rsi_offset); // dst array offset
never@739 1816 __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
duke@435 1817
duke@435 1818 // next registers should be set before the jump to corresponding stub
duke@435 1819 const Register from = src; // source array address
duke@435 1820 const Register to = dst; // destination array address
duke@435 1821 const Register count = rcx; // elements count
duke@435 1822 // some of them should be duplicated on stack
duke@435 1823 #define FROM Address(rsp, 12+ 4)
duke@435 1824 #define TO Address(rsp, 12+ 8) // Not used now
duke@435 1825 #define COUNT Address(rsp, 12+12) // Only for oop arraycopy
duke@435 1826
duke@435 1827 BLOCK_COMMENT("scale indexes to element size");
never@739 1828 __ movl2ptr(rsi, SRC_POS); // src_pos
never@739 1829 __ shlptr(rsi); // src_pos << rcx (log2 elsize)
duke@435 1830 assert(src_array == from, "");
never@739 1831 __ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize
never@739 1832 __ movl2ptr(rdi, DST_POS); // dst_pos
never@739 1833 __ shlptr(rdi); // dst_pos << rcx (log2 elsize)
duke@435 1834 assert(dst_array == to, "");
never@739 1835 __ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize
never@739 1836 __ movptr(FROM, from); // src_addr
never@739 1837 __ mov(rdi_elsize, rcx_lh); // log2 elsize
never@739 1838 __ movl2ptr(count, LENGTH); // elements count
duke@435 1839
duke@435 1840 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 1841 __ cmpl(rdi_elsize, 0);
duke@435 1842
duke@435 1843 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
duke@435 1844 __ cmpl(rdi_elsize, LogBytesPerShort);
duke@435 1845 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
duke@435 1846 __ cmpl(rdi_elsize, LogBytesPerInt);
duke@435 1847 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
duke@435 1848 #ifdef ASSERT
duke@435 1849 __ cmpl(rdi_elsize, LogBytesPerLong);
duke@435 1850 __ jccb(Assembler::notEqual, L_failed);
duke@435 1851 #endif
never@739 1852 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1853 __ pop(rsi);
duke@435 1854 __ jump(RuntimeAddress(entry_jlong_arraycopy));
duke@435 1855
duke@435 1856 __ BIND(L_failed);
never@739 1857 __ xorptr(rax, rax);
never@739 1858 __ notptr(rax); // return -1
never@739 1859 __ pop(rdi);
never@739 1860 __ pop(rsi);
duke@435 1861 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1862 __ ret(0);
duke@435 1863
duke@435 1864 // objArrayKlass
duke@435 1865 __ BIND(L_objArray);
duke@435 1866 // live at this point: rcx_src_klass, src[_pos], dst[_pos]
duke@435 1867
duke@435 1868 Label L_plain_copy, L_checkcast_copy;
duke@435 1869 // test array classes for subtyping
never@739 1870 __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
duke@435 1871 __ jccb(Assembler::notEqual, L_checkcast_copy);
duke@435 1872
duke@435 1873 // Identically typed arrays can be copied without element-wise checks.
duke@435 1874 assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
duke@435 1875 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1876
duke@435 1877 __ BIND(L_plain_copy);
never@739 1878 __ movl2ptr(count, LENGTH); // elements count
never@739 1879 __ movl2ptr(src_pos, SRC_POS); // reload src_pos
never@739 1880 __ lea(from, Address(src, src_pos, Address::times_ptr,
never@739 1881 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 1882 __ movl2ptr(dst_pos, DST_POS); // reload dst_pos
never@739 1883 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
never@739 1884 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 1885 __ movptr(FROM, from); // src_addr
never@739 1886 __ movptr(TO, to); // dst_addr
duke@435 1887 __ movl(COUNT, count); // count
duke@435 1888 __ jump(RuntimeAddress(entry_oop_arraycopy));
duke@435 1889
duke@435 1890 __ BIND(L_checkcast_copy);
duke@435 1891 // live at this point: rcx_src_klass, dst[_pos], src[_pos]
duke@435 1892 {
duke@435 1893 // Handy offsets:
duke@435 1894 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1895 objArrayKlass::element_klass_offset_in_bytes());
duke@435 1896 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1897 Klass::super_check_offset_offset_in_bytes());
duke@435 1898
duke@435 1899 Register rsi_dst_klass = rsi;
duke@435 1900 Register rdi_temp = rdi;
duke@435 1901 assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
duke@435 1902 assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
duke@435 1903 Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
duke@435 1904
duke@435 1905 // Before looking at dst.length, make sure dst is also an objArray.
never@739 1906 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1907 __ cmpl(dst_klass_lh_addr, objArray_lh);
duke@435 1908 __ jccb(Assembler::notEqual, L_failed);
duke@435 1909
duke@435 1910 // It is safe to examine both src.length and dst.length.
never@739 1911 __ movl2ptr(src_pos, SRC_POS); // reload rsi
duke@435 1912 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1913 // (Now src_pos and dst_pos are killed, but not src and dst.)
duke@435 1914
duke@435 1915 // We'll need this temp (don't forget to pop it after the type check).
never@739 1916 __ push(rbx);
duke@435 1917 Register rbx_src_klass = rbx;
duke@435 1918
never@739 1919 __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
never@739 1920 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1921 Address super_check_offset_addr(rsi_dst_klass, sco_offset);
duke@435 1922 Label L_fail_array_check;
duke@435 1923 generate_type_check(rbx_src_klass,
duke@435 1924 super_check_offset_addr, dst_klass_addr,
duke@435 1925 rdi_temp, NULL, &L_fail_array_check);
duke@435 1926 // (On fall-through, we have passed the array type check.)
never@739 1927 __ pop(rbx);
duke@435 1928 __ jmp(L_plain_copy);
duke@435 1929
duke@435 1930 __ BIND(L_fail_array_check);
duke@435 1931 // Reshuffle arguments so we can call checkcast_arraycopy:
duke@435 1932
duke@435 1933 // match initial saves for checkcast_arraycopy
never@739 1934 // push(rsi); // already done; see above
never@739 1935 // push(rdi); // already done; see above
never@739 1936 // push(rbx); // already done; see above
duke@435 1937
duke@435 1938 // Marshal outgoing arguments now, freeing registers.
duke@435 1939 Address from_arg(rsp, 16+ 4); // from
duke@435 1940 Address to_arg(rsp, 16+ 8); // to
duke@435 1941 Address length_arg(rsp, 16+12); // elements count
duke@435 1942 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1943 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1944
duke@435 1945 Address SRC_POS_arg(rsp, 16+ 8);
duke@435 1946 Address DST_POS_arg(rsp, 16+16);
duke@435 1947 Address LENGTH_arg(rsp, 16+20);
duke@435 1948 // push rbx, changed the incoming offsets (why not just use rbp,??)
duke@435 1949 // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
duke@435 1950
never@739 1951 __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
never@739 1952 __ movl2ptr(length, LENGTH_arg); // reload elements count
never@739 1953 __ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos
never@739 1954 __ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos
duke@435 1955
never@739 1956 __ movptr(ckval_arg, rbx); // destination element type
duke@435 1957 __ movl(rbx, Address(rbx, sco_offset));
duke@435 1958 __ movl(ckoff_arg, rbx); // corresponding class check offset
duke@435 1959
duke@435 1960 __ movl(length_arg, length); // outgoing length argument
duke@435 1961
never@739 1962 __ lea(from, Address(src, src_pos, Address::times_ptr,
duke@435 1963 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1964 __ movptr(from_arg, from);
duke@435 1965
never@739 1966 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
duke@435 1967 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1968 __ movptr(to_arg, to);
duke@435 1969 __ jump(RuntimeAddress(entry_checkcast_arraycopy));
duke@435 1970 }
duke@435 1971
duke@435 1972 return start;
duke@435 1973 }
duke@435 1974
duke@435 1975 void generate_arraycopy_stubs() {
duke@435 1976 address entry;
duke@435 1977 address entry_jbyte_arraycopy;
duke@435 1978 address entry_jshort_arraycopy;
duke@435 1979 address entry_jint_arraycopy;
duke@435 1980 address entry_oop_arraycopy;
duke@435 1981 address entry_jlong_arraycopy;
duke@435 1982 address entry_checkcast_arraycopy;
duke@435 1983
duke@435 1984 StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
duke@435 1985 generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
duke@435 1986 "arrayof_jbyte_disjoint_arraycopy");
duke@435 1987 StubRoutines::_arrayof_jbyte_arraycopy =
duke@435 1988 generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
duke@435 1989 NULL, "arrayof_jbyte_arraycopy");
duke@435 1990 StubRoutines::_jbyte_disjoint_arraycopy =
duke@435 1991 generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
duke@435 1992 "jbyte_disjoint_arraycopy");
duke@435 1993 StubRoutines::_jbyte_arraycopy =
duke@435 1994 generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
duke@435 1995 &entry_jbyte_arraycopy, "jbyte_arraycopy");
duke@435 1996
duke@435 1997 StubRoutines::_arrayof_jshort_disjoint_arraycopy =
duke@435 1998 generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
duke@435 1999 "arrayof_jshort_disjoint_arraycopy");
duke@435 2000 StubRoutines::_arrayof_jshort_arraycopy =
duke@435 2001 generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
duke@435 2002 NULL, "arrayof_jshort_arraycopy");
duke@435 2003 StubRoutines::_jshort_disjoint_arraycopy =
duke@435 2004 generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
duke@435 2005 "jshort_disjoint_arraycopy");
duke@435 2006 StubRoutines::_jshort_arraycopy =
duke@435 2007 generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
duke@435 2008 &entry_jshort_arraycopy, "jshort_arraycopy");
duke@435 2009
duke@435 2010 // Next arrays are always aligned on 4 bytes at least.
duke@435 2011 StubRoutines::_jint_disjoint_arraycopy =
duke@435 2012 generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
duke@435 2013 "jint_disjoint_arraycopy");
duke@435 2014 StubRoutines::_jint_arraycopy =
duke@435 2015 generate_conjoint_copy(T_INT, true, Address::times_4, entry,
duke@435 2016 &entry_jint_arraycopy, "jint_arraycopy");
duke@435 2017
duke@435 2018 StubRoutines::_oop_disjoint_arraycopy =
never@739 2019 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
duke@435 2020 "oop_disjoint_arraycopy");
duke@435 2021 StubRoutines::_oop_arraycopy =
never@739 2022 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
duke@435 2023 &entry_oop_arraycopy, "oop_arraycopy");
duke@435 2024
duke@435 2025 StubRoutines::_jlong_disjoint_arraycopy =
duke@435 2026 generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
duke@435 2027 StubRoutines::_jlong_arraycopy =
duke@435 2028 generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
duke@435 2029 "jlong_arraycopy");
duke@435 2030
never@2118 2031 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 2032 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 2033 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 2034 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 2035 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 2036 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
never@2118 2037
duke@435 2038 StubRoutines::_arrayof_jint_disjoint_arraycopy =
duke@435 2039 StubRoutines::_jint_disjoint_arraycopy;
duke@435 2040 StubRoutines::_arrayof_oop_disjoint_arraycopy =
duke@435 2041 StubRoutines::_oop_disjoint_arraycopy;
duke@435 2042 StubRoutines::_arrayof_jlong_disjoint_arraycopy =
duke@435 2043 StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2044
duke@435 2045 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2046 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2047 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2048
duke@435 2049 StubRoutines::_checkcast_arraycopy =
duke@435 2050 generate_checkcast_copy("checkcast_arraycopy",
duke@435 2051 &entry_checkcast_arraycopy);
duke@435 2052
duke@435 2053 StubRoutines::_unsafe_arraycopy =
duke@435 2054 generate_unsafe_copy("unsafe_arraycopy",
duke@435 2055 entry_jbyte_arraycopy,
duke@435 2056 entry_jshort_arraycopy,
duke@435 2057 entry_jint_arraycopy,
duke@435 2058 entry_jlong_arraycopy);
duke@435 2059
duke@435 2060 StubRoutines::_generic_arraycopy =
duke@435 2061 generate_generic_copy("generic_arraycopy",
duke@435 2062 entry_jbyte_arraycopy,
duke@435 2063 entry_jshort_arraycopy,
duke@435 2064 entry_jint_arraycopy,
duke@435 2065 entry_oop_arraycopy,
duke@435 2066 entry_jlong_arraycopy,
duke@435 2067 entry_checkcast_arraycopy);
duke@435 2068 }
duke@435 2069
never@1609 2070 void generate_math_stubs() {
never@1609 2071 {
never@1609 2072 StubCodeMark mark(this, "StubRoutines", "log");
never@1609 2073 StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
never@1609 2074
never@1609 2075 __ fld_d(Address(rsp, 4));
never@1609 2076 __ flog();
never@1609 2077 __ ret(0);
never@1609 2078 }
never@1609 2079 {
never@1609 2080 StubCodeMark mark(this, "StubRoutines", "log10");
never@1609 2081 StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
never@1609 2082
never@1609 2083 __ fld_d(Address(rsp, 4));
never@1609 2084 __ flog10();
never@1609 2085 __ ret(0);
never@1609 2086 }
never@1609 2087 {
never@1609 2088 StubCodeMark mark(this, "StubRoutines", "sin");
never@1609 2089 StubRoutines::_intrinsic_sin = (double (*)(double)) __ pc();
never@1609 2090
never@1609 2091 __ fld_d(Address(rsp, 4));
never@1609 2092 __ trigfunc('s');
never@1609 2093 __ ret(0);
never@1609 2094 }
never@1609 2095 {
never@1609 2096 StubCodeMark mark(this, "StubRoutines", "cos");
never@1609 2097 StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
never@1609 2098
never@1609 2099 __ fld_d(Address(rsp, 4));
never@1609 2100 __ trigfunc('c');
never@1609 2101 __ ret(0);
never@1609 2102 }
never@1609 2103 {
never@1609 2104 StubCodeMark mark(this, "StubRoutines", "tan");
never@1609 2105 StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
never@1609 2106
never@1609 2107 __ fld_d(Address(rsp, 4));
never@1609 2108 __ trigfunc('t');
never@1609 2109 __ ret(0);
never@1609 2110 }
never@1609 2111
never@1609 2112 // The intrinsic version of these seem to return the same value as
never@1609 2113 // the strict version.
never@1609 2114 StubRoutines::_intrinsic_exp = SharedRuntime::dexp;
never@1609 2115 StubRoutines::_intrinsic_pow = SharedRuntime::dpow;
never@1609 2116 }
never@1609 2117
duke@435 2118 public:
duke@435 2119 // Information about frame layout at time of blocking runtime call.
duke@435 2120 // Note that we only have to preserve callee-saved registers since
duke@435 2121 // the compilers are responsible for supplying a continuation point
duke@435 2122 // if they expect all registers to be preserved.
duke@435 2123 enum layout {
duke@435 2124 thread_off, // last_java_sp
duke@435 2125 rbp_off, // callee saved register
duke@435 2126 ret_pc,
duke@435 2127 framesize
duke@435 2128 };
duke@435 2129
duke@435 2130 private:
duke@435 2131
duke@435 2132 #undef __
duke@435 2133 #define __ masm->
duke@435 2134
duke@435 2135 //------------------------------------------------------------------------------------------------------------------------
duke@435 2136 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 2137 // the current activation. Fabricates an exception oop and initiates normal
duke@435 2138 // exception dispatching in this frame.
duke@435 2139 //
duke@435 2140 // Previously the compiler (c2) allowed for callee save registers on Java calls.
duke@435 2141 // This is no longer true after adapter frames were removed but could possibly
duke@435 2142 // be brought back in the future if the interpreter code was reworked and it
duke@435 2143 // was deemed worthwhile. The comment below was left to describe what must
duke@435 2144 // happen here if callee saves were resurrected. As it stands now this stub
duke@435 2145 // could actually be a vanilla BufferBlob and have now oopMap at all.
duke@435 2146 // Since it doesn't make much difference we've chosen to leave it the
duke@435 2147 // way it was in the callee save days and keep the comment.
duke@435 2148
duke@435 2149 // If we need to preserve callee-saved values we need a callee-saved oop map and
duke@435 2150 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
duke@435 2151 // If the compiler needs all registers to be preserved between the fault
duke@435 2152 // point and the exception handler then it must assume responsibility for that in
duke@435 2153 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2154 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 2155 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 2156 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 2157 // so caller saved registers were assumed volatile in the compiler.
duke@435 2158 address generate_throw_exception(const char* name, address runtime_entry,
duke@435 2159 bool restore_saved_exception_pc) {
duke@435 2160
duke@435 2161 int insts_size = 256;
duke@435 2162 int locs_size = 32;
duke@435 2163
duke@435 2164 CodeBuffer code(name, insts_size, locs_size);
duke@435 2165 OopMapSet* oop_maps = new OopMapSet();
duke@435 2166 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2167
duke@435 2168 address start = __ pc();
duke@435 2169
duke@435 2170 // This is an inlined and slightly modified version of call_VM
duke@435 2171 // which has the ability to fetch the return PC out of
duke@435 2172 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2173 // differently than the real call_VM
duke@435 2174 Register java_thread = rbx;
duke@435 2175 __ get_thread(java_thread);
duke@435 2176 if (restore_saved_exception_pc) {
never@739 2177 __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2178 __ push(rax);
duke@435 2179 }
duke@435 2180
duke@435 2181 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2182
duke@435 2183 // pc and rbp, already pushed
never@739 2184 __ subptr(rsp, (framesize-2) * wordSize); // prolog
duke@435 2185
duke@435 2186 // Frame is now completed as far as size and linkage.
duke@435 2187
duke@435 2188 int frame_complete = __ pc() - start;
duke@435 2189
duke@435 2190 // push java thread (becomes first argument of C function)
never@739 2191 __ movptr(Address(rsp, thread_off * wordSize), java_thread);
duke@435 2192
duke@435 2193 // Set up last_Java_sp and last_Java_fp
duke@435 2194 __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
duke@435 2195
duke@435 2196 // Call runtime
duke@435 2197 BLOCK_COMMENT("call runtime_entry");
duke@435 2198 __ call(RuntimeAddress(runtime_entry));
duke@435 2199 // Generate oop map
duke@435 2200 OopMap* map = new OopMap(framesize, 0);
duke@435 2201 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2202
duke@435 2203 // restore the thread (cannot use the pushed argument since arguments
duke@435 2204 // may be overwritten by C code generated by an optimizing compiler);
duke@435 2205 // however can use the register value directly if it is callee saved.
duke@435 2206 __ get_thread(java_thread);
duke@435 2207
duke@435 2208 __ reset_last_Java_frame(java_thread, true, false);
duke@435 2209
duke@435 2210 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2211
duke@435 2212 // check for pending exceptions
duke@435 2213 #ifdef ASSERT
duke@435 2214 Label L;
never@739 2215 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2216 __ jcc(Assembler::notEqual, L);
duke@435 2217 __ should_not_reach_here();
duke@435 2218 __ bind(L);
duke@435 2219 #endif /* ASSERT */
duke@435 2220 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2221
duke@435 2222
duke@435 2223 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
duke@435 2224 return stub->entry_point();
duke@435 2225 }
duke@435 2226
duke@435 2227
duke@435 2228 void create_control_words() {
duke@435 2229 // Round to nearest, 53-bit mode, exceptions masked
duke@435 2230 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
duke@435 2231 // Round to zero, 53-bit mode, exception mased
duke@435 2232 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
duke@435 2233 // Round to nearest, 24-bit mode, exceptions masked
duke@435 2234 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
duke@435 2235 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2236 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
duke@435 2237 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2238 StubRoutines::_mxcsr_std = 0x1F80;
duke@435 2239 // Note: the following two constants are 80-bit values
duke@435 2240 // layout is critical for correct loading by FPU.
duke@435 2241 // Bias for strict fp multiply/divide
duke@435 2242 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
duke@435 2243 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
duke@435 2244 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
duke@435 2245 // Un-Bias for strict fp multiply/divide
duke@435 2246 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
duke@435 2247 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
duke@435 2248 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
duke@435 2249 }
duke@435 2250
duke@435 2251 //---------------------------------------------------------------------------
duke@435 2252 // Initialization
duke@435 2253
duke@435 2254 void generate_initial() {
duke@435 2255 // Generates all stubs and initializes the entry points
duke@435 2256
duke@435 2257 //------------------------------------------------------------------------------------------------------------------------
duke@435 2258 // entry points that exist in all platforms
duke@435 2259 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2260 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2261 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2262
duke@435 2263 StubRoutines::_call_stub_entry =
duke@435 2264 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2265 // is referenced by megamorphic call
duke@435 2266 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2267
duke@435 2268 // These are currently used by Solaris/Intel
duke@435 2269 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2270
duke@435 2271 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2272 generate_handler_for_unsafe_access();
duke@435 2273
duke@435 2274 // platform dependent
duke@435 2275 create_control_words();
duke@435 2276
never@739 2277 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@739 2278 StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
duke@435 2279 StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
duke@435 2280 CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
duke@435 2281 StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
duke@435 2282 CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
duke@435 2283 }
duke@435 2284
duke@435 2285
duke@435 2286 void generate_all() {
duke@435 2287 // Generates all stubs and initializes the entry points
duke@435 2288
duke@435 2289 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2290 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
duke@435 2291 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2292 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2293 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2294 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2295 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2296 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2297
duke@435 2298 //------------------------------------------------------------------------------------------------------------------------
duke@435 2299 // entry points that are platform specific
duke@435 2300
duke@435 2301 // support for verify_oop (must happen after universe_init)
duke@435 2302 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2303
duke@435 2304 // arraycopy stubs used by compilers
duke@435 2305 generate_arraycopy_stubs();
jrose@1145 2306
never@1609 2307 generate_math_stubs();
duke@435 2308 }
duke@435 2309
duke@435 2310
duke@435 2311 public:
duke@435 2312 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2313 if (all) {
duke@435 2314 generate_all();
duke@435 2315 } else {
duke@435 2316 generate_initial();
duke@435 2317 }
duke@435 2318 }
duke@435 2319 }; // end class declaration
duke@435 2320
duke@435 2321
duke@435 2322 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2323 StubGenerator g(code, all);
duke@435 2324 }

mercurial