src/share/vm/gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 548
ba764ed4b6f2
child 791
1ee8caae33af
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@435 1 /*
xdono@631 2 * Copyright 2001-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Classes in support of keeping track of promotions into a non-Contiguous
duke@435 26 // space, in this case a CompactibleFreeListSpace.
duke@435 27
duke@435 28 #define CFLS_LAB_REFILL_STATS 0
duke@435 29
duke@435 30 // Forward declarations
duke@435 31 class CompactibleFreeListSpace;
duke@435 32 class BlkClosure;
duke@435 33 class BlkClosureCareful;
duke@435 34 class UpwardsObjectClosure;
duke@435 35 class ObjectClosureCareful;
duke@435 36 class Klass;
duke@435 37
duke@435 38 class PromotedObject VALUE_OBJ_CLASS_SPEC {
duke@435 39 private:
duke@435 40 enum {
duke@435 41 promoted_mask = right_n_bits(2), // i.e. 0x3
duke@435 42 displaced_mark = nth_bit(2), // i.e. 0x4
duke@435 43 next_mask = ~(right_n_bits(3)) // i.e. ~(0x7)
duke@435 44 };
duke@435 45 intptr_t _next;
duke@435 46 public:
duke@435 47 inline PromotedObject* next() const {
duke@435 48 return (PromotedObject*)(_next & next_mask);
duke@435 49 }
duke@435 50 inline void setNext(PromotedObject* x) {
duke@435 51 assert(((intptr_t)x & ~next_mask) == 0,
duke@435 52 "Conflict in bit usage, "
duke@435 53 " or insufficient alignment of objects");
duke@435 54 _next |= (intptr_t)x;
duke@435 55 }
duke@435 56 inline void setPromotedMark() {
duke@435 57 _next |= promoted_mask;
duke@435 58 }
duke@435 59 inline bool hasPromotedMark() const {
duke@435 60 return (_next & promoted_mask) == promoted_mask;
duke@435 61 }
duke@435 62 inline void setDisplacedMark() {
duke@435 63 _next |= displaced_mark;
duke@435 64 }
duke@435 65 inline bool hasDisplacedMark() const {
duke@435 66 return (_next & displaced_mark) != 0;
duke@435 67 }
duke@435 68 inline void clearNext() { _next = 0; }
duke@435 69 debug_only(void *next_addr() { return (void *) &_next; })
duke@435 70 };
duke@435 71
duke@435 72 class SpoolBlock: public FreeChunk {
duke@435 73 friend class PromotionInfo;
duke@435 74 protected:
duke@435 75 SpoolBlock* nextSpoolBlock;
duke@435 76 size_t bufferSize; // number of usable words in this block
duke@435 77 markOop* displacedHdr; // the displaced headers start here
duke@435 78
duke@435 79 // Note about bufferSize: it denotes the number of entries available plus 1;
duke@435 80 // legal indices range from 1 through BufferSize - 1. See the verification
duke@435 81 // code verify() that counts the number of displaced headers spooled.
duke@435 82 size_t computeBufferSize() {
duke@435 83 return (size() * sizeof(HeapWord) - sizeof(*this)) / sizeof(markOop);
duke@435 84 }
duke@435 85
duke@435 86 public:
duke@435 87 void init() {
duke@435 88 bufferSize = computeBufferSize();
duke@435 89 displacedHdr = (markOop*)&displacedHdr;
duke@435 90 nextSpoolBlock = NULL;
duke@435 91 }
duke@435 92 };
duke@435 93
duke@435 94 class PromotionInfo VALUE_OBJ_CLASS_SPEC {
duke@435 95 bool _tracking; // set if tracking
duke@435 96 CompactibleFreeListSpace* _space; // the space to which this belongs
duke@435 97 PromotedObject* _promoHead; // head of list of promoted objects
duke@435 98 PromotedObject* _promoTail; // tail of list of promoted objects
duke@435 99 SpoolBlock* _spoolHead; // first spooling block
duke@435 100 SpoolBlock* _spoolTail; // last non-full spooling block or null
duke@435 101 SpoolBlock* _splice_point; // when _spoolTail is null, holds list tail
duke@435 102 SpoolBlock* _spareSpool; // free spool buffer
duke@435 103 size_t _firstIndex; // first active index in
duke@435 104 // first spooling block (_spoolHead)
duke@435 105 size_t _nextIndex; // last active index + 1 in last
duke@435 106 // spooling block (_spoolTail)
duke@435 107 private:
duke@435 108 // ensure that spooling space exists; return true if there is spooling space
duke@435 109 bool ensure_spooling_space_work();
duke@435 110
duke@435 111 public:
duke@435 112 PromotionInfo() :
duke@435 113 _tracking(0), _space(NULL),
duke@435 114 _promoHead(NULL), _promoTail(NULL),
duke@435 115 _spoolHead(NULL), _spoolTail(NULL),
duke@435 116 _spareSpool(NULL), _firstIndex(1),
duke@435 117 _nextIndex(1) {}
duke@435 118
duke@435 119 bool noPromotions() const {
duke@435 120 assert(_promoHead != NULL || _promoTail == NULL, "list inconsistency");
duke@435 121 return _promoHead == NULL;
duke@435 122 }
duke@435 123 void startTrackingPromotions();
duke@435 124 void stopTrackingPromotions();
duke@435 125 bool tracking() const { return _tracking; }
duke@435 126 void track(PromotedObject* trackOop); // keep track of a promoted oop
duke@435 127 // The following variant must be used when trackOop is not fully
duke@435 128 // initialized and has a NULL klass:
duke@435 129 void track(PromotedObject* trackOop, klassOop klassOfOop); // keep track of a promoted oop
duke@435 130 void setSpace(CompactibleFreeListSpace* sp) { _space = sp; }
duke@435 131 CompactibleFreeListSpace* space() const { return _space; }
duke@435 132 markOop nextDisplacedHeader(); // get next header & forward spool pointer
duke@435 133 void saveDisplacedHeader(markOop hdr);
duke@435 134 // save header and forward spool
duke@435 135
duke@435 136 inline size_t refillSize() const;
duke@435 137
duke@435 138 SpoolBlock* getSpoolBlock(); // return a free spooling block
duke@435 139 inline bool has_spooling_space() {
duke@435 140 return _spoolTail != NULL && _spoolTail->bufferSize > _nextIndex;
duke@435 141 }
duke@435 142 // ensure that spooling space exists
duke@435 143 bool ensure_spooling_space() {
duke@435 144 return has_spooling_space() || ensure_spooling_space_work();
duke@435 145 }
duke@435 146 #define PROMOTED_OOPS_ITERATE_DECL(OopClosureType, nv_suffix) \
duke@435 147 void promoted_oops_iterate##nv_suffix(OopClosureType* cl);
duke@435 148 ALL_SINCE_SAVE_MARKS_CLOSURES(PROMOTED_OOPS_ITERATE_DECL)
duke@435 149 #undef PROMOTED_OOPS_ITERATE_DECL
duke@435 150 void promoted_oops_iterate(OopsInGenClosure* cl) {
duke@435 151 promoted_oops_iterate_v(cl);
duke@435 152 }
duke@435 153 void verify() const;
duke@435 154 void reset() {
duke@435 155 _promoHead = NULL;
duke@435 156 _promoTail = NULL;
duke@435 157 _spoolHead = NULL;
duke@435 158 _spoolTail = NULL;
duke@435 159 _spareSpool = NULL;
duke@435 160 _firstIndex = 0;
duke@435 161 _nextIndex = 0;
duke@435 162
duke@435 163 }
duke@435 164 };
duke@435 165
duke@435 166 class LinearAllocBlock VALUE_OBJ_CLASS_SPEC {
duke@435 167 public:
duke@435 168 LinearAllocBlock() : _ptr(0), _word_size(0), _refillSize(0),
duke@435 169 _allocation_size_limit(0) {}
duke@435 170 void set(HeapWord* ptr, size_t word_size, size_t refill_size,
duke@435 171 size_t allocation_size_limit) {
duke@435 172 _ptr = ptr;
duke@435 173 _word_size = word_size;
duke@435 174 _refillSize = refill_size;
duke@435 175 _allocation_size_limit = allocation_size_limit;
duke@435 176 }
duke@435 177 HeapWord* _ptr;
duke@435 178 size_t _word_size;
duke@435 179 size_t _refillSize;
duke@435 180 size_t _allocation_size_limit; // largest size that will be allocated
duke@435 181 };
duke@435 182
duke@435 183 // Concrete subclass of CompactibleSpace that implements
duke@435 184 // a free list space, such as used in the concurrent mark sweep
duke@435 185 // generation.
duke@435 186
duke@435 187 class CompactibleFreeListSpace: public CompactibleSpace {
duke@435 188 friend class VMStructs;
duke@435 189 friend class ConcurrentMarkSweepGeneration;
duke@435 190 friend class ASConcurrentMarkSweepGeneration;
duke@435 191 friend class CMSCollector;
duke@435 192 friend class CMSPermGenGen;
duke@435 193 // Local alloc buffer for promotion into this space.
duke@435 194 friend class CFLS_LAB;
duke@435 195
duke@435 196 // "Size" of chunks of work (executed during parallel remark phases
duke@435 197 // of CMS collection); this probably belongs in CMSCollector, although
duke@435 198 // it's cached here because it's used in
duke@435 199 // initialize_sequential_subtasks_for_rescan() which modifies
duke@435 200 // par_seq_tasks which also lives in Space. XXX
duke@435 201 const size_t _rescan_task_size;
duke@435 202 const size_t _marking_task_size;
duke@435 203
duke@435 204 // Yet another sequential tasks done structure. This supports
duke@435 205 // CMS GC, where we have threads dynamically
duke@435 206 // claiming sub-tasks from a larger parallel task.
duke@435 207 SequentialSubTasksDone _conc_par_seq_tasks;
duke@435 208
duke@435 209 BlockOffsetArrayNonContigSpace _bt;
duke@435 210
duke@435 211 CMSCollector* _collector;
duke@435 212 ConcurrentMarkSweepGeneration* _gen;
duke@435 213
duke@435 214 // Data structures for free blocks (used during allocation/sweeping)
duke@435 215
duke@435 216 // Allocation is done linearly from two different blocks depending on
duke@435 217 // whether the request is small or large, in an effort to reduce
duke@435 218 // fragmentation. We assume that any locking for allocation is done
duke@435 219 // by the containing generation. Thus, none of the methods in this
duke@435 220 // space are re-entrant.
duke@435 221 enum SomeConstants {
duke@435 222 SmallForLinearAlloc = 16, // size < this then use _sLAB
duke@435 223 SmallForDictionary = 257, // size < this then use _indexedFreeList
duke@435 224 IndexSetSize = SmallForDictionary, // keep this odd-sized
duke@435 225 IndexSetStart = MinObjAlignment,
duke@435 226 IndexSetStride = MinObjAlignment
duke@435 227 };
duke@435 228
duke@435 229 private:
duke@435 230 enum FitStrategyOptions {
duke@435 231 FreeBlockStrategyNone = 0,
duke@435 232 FreeBlockBestFitFirst
duke@435 233 };
duke@435 234
duke@435 235 PromotionInfo _promoInfo;
duke@435 236
duke@435 237 // helps to impose a global total order on freelistLock ranks;
duke@435 238 // assumes that CFLSpace's are allocated in global total order
duke@435 239 static int _lockRank;
duke@435 240
duke@435 241 // a lock protecting the free lists and free blocks;
duke@435 242 // mutable because of ubiquity of locking even for otherwise const methods
duke@435 243 mutable Mutex _freelistLock;
duke@435 244 // locking verifier convenience function
duke@435 245 void assert_locked() const PRODUCT_RETURN;
duke@435 246
duke@435 247 // Linear allocation blocks
duke@435 248 LinearAllocBlock _smallLinearAllocBlock;
duke@435 249
duke@435 250 FreeBlockDictionary::DictionaryChoice _dictionaryChoice;
duke@435 251 FreeBlockDictionary* _dictionary; // ptr to dictionary for large size blocks
duke@435 252
duke@435 253 FreeList _indexedFreeList[IndexSetSize];
duke@435 254 // indexed array for small size blocks
duke@435 255 // allocation stategy
duke@435 256 bool _fitStrategy; // Use best fit strategy.
duke@435 257 bool _adaptive_freelists; // Use adaptive freelists
duke@435 258
duke@435 259 // This is an address close to the largest free chunk in the heap.
duke@435 260 // It is currently assumed to be at the end of the heap. Free
duke@435 261 // chunks with addresses greater than nearLargestChunk are coalesced
duke@435 262 // in an effort to maintain a large chunk at the end of the heap.
duke@435 263 HeapWord* _nearLargestChunk;
duke@435 264
duke@435 265 // Used to keep track of limit of sweep for the space
duke@435 266 HeapWord* _sweep_limit;
duke@435 267
duke@435 268 // Support for compacting cms
duke@435 269 HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
duke@435 270 HeapWord* forward(oop q, size_t size, CompactPoint* cp, HeapWord* compact_top);
duke@435 271
duke@435 272 // Initialization helpers.
duke@435 273 void initializeIndexedFreeListArray();
duke@435 274
duke@435 275 // Extra stuff to manage promotion parallelism.
duke@435 276
duke@435 277 // a lock protecting the dictionary during par promotion allocation.
duke@435 278 mutable Mutex _parDictionaryAllocLock;
duke@435 279 Mutex* parDictionaryAllocLock() const { return &_parDictionaryAllocLock; }
duke@435 280
duke@435 281 // Locks protecting the exact lists during par promotion allocation.
duke@435 282 Mutex* _indexedFreeListParLocks[IndexSetSize];
duke@435 283
duke@435 284 #if CFLS_LAB_REFILL_STATS
duke@435 285 // Some statistics.
duke@435 286 jint _par_get_chunk_from_small;
duke@435 287 jint _par_get_chunk_from_large;
duke@435 288 #endif
duke@435 289
duke@435 290
duke@435 291 // Attempt to obtain up to "n" blocks of the size "word_sz" (which is
duke@435 292 // required to be smaller than "IndexSetSize".) If successful,
duke@435 293 // adds them to "fl", which is required to be an empty free list.
duke@435 294 // If the count of "fl" is negative, it's absolute value indicates a
duke@435 295 // number of free chunks that had been previously "borrowed" from global
duke@435 296 // list of size "word_sz", and must now be decremented.
duke@435 297 void par_get_chunk_of_blocks(size_t word_sz, size_t n, FreeList* fl);
duke@435 298
duke@435 299 // Allocation helper functions
duke@435 300 // Allocate using a strategy that takes from the indexed free lists
duke@435 301 // first. This allocation strategy assumes a companion sweeping
duke@435 302 // strategy that attempts to keep the needed number of chunks in each
duke@435 303 // indexed free lists.
duke@435 304 HeapWord* allocate_adaptive_freelists(size_t size);
duke@435 305 // Allocate from the linear allocation buffers first. This allocation
duke@435 306 // strategy assumes maximal coalescing can maintain chunks large enough
duke@435 307 // to be used as linear allocation buffers.
duke@435 308 HeapWord* allocate_non_adaptive_freelists(size_t size);
duke@435 309
duke@435 310 // Gets a chunk from the linear allocation block (LinAB). If there
duke@435 311 // is not enough space in the LinAB, refills it.
duke@435 312 HeapWord* getChunkFromLinearAllocBlock(LinearAllocBlock* blk, size_t size);
duke@435 313 HeapWord* getChunkFromSmallLinearAllocBlock(size_t size);
duke@435 314 // Get a chunk from the space remaining in the linear allocation block. Do
duke@435 315 // not attempt to refill if the space is not available, return NULL. Do the
duke@435 316 // repairs on the linear allocation block as appropriate.
duke@435 317 HeapWord* getChunkFromLinearAllocBlockRemainder(LinearAllocBlock* blk, size_t size);
duke@435 318 inline HeapWord* getChunkFromSmallLinearAllocBlockRemainder(size_t size);
duke@435 319
duke@435 320 // Helper function for getChunkFromIndexedFreeList.
duke@435 321 // Replenish the indexed free list for this "size". Do not take from an
duke@435 322 // underpopulated size.
duke@435 323 FreeChunk* getChunkFromIndexedFreeListHelper(size_t size);
duke@435 324
duke@435 325 // Get a chunk from the indexed free list. If the indexed free list
duke@435 326 // does not have a free chunk, try to replenish the indexed free list
duke@435 327 // then get the free chunk from the replenished indexed free list.
duke@435 328 inline FreeChunk* getChunkFromIndexedFreeList(size_t size);
duke@435 329
duke@435 330 // The returned chunk may be larger than requested (or null).
duke@435 331 FreeChunk* getChunkFromDictionary(size_t size);
duke@435 332 // The returned chunk is the exact size requested (or null).
duke@435 333 FreeChunk* getChunkFromDictionaryExact(size_t size);
duke@435 334
duke@435 335 // Find a chunk in the indexed free list that is the best
duke@435 336 // fit for size "numWords".
duke@435 337 FreeChunk* bestFitSmall(size_t numWords);
duke@435 338 // For free list "fl" of chunks of size > numWords,
duke@435 339 // remove a chunk, split off a chunk of size numWords
duke@435 340 // and return it. The split off remainder is returned to
duke@435 341 // the free lists. The old name for getFromListGreater
duke@435 342 // was lookInListGreater.
duke@435 343 FreeChunk* getFromListGreater(FreeList* fl, size_t numWords);
duke@435 344 // Get a chunk in the indexed free list or dictionary,
duke@435 345 // by considering a larger chunk and splitting it.
duke@435 346 FreeChunk* getChunkFromGreater(size_t numWords);
duke@435 347 // Verify that the given chunk is in the indexed free lists.
duke@435 348 bool verifyChunkInIndexedFreeLists(FreeChunk* fc) const;
duke@435 349 // Remove the specified chunk from the indexed free lists.
duke@435 350 void removeChunkFromIndexedFreeList(FreeChunk* fc);
duke@435 351 // Remove the specified chunk from the dictionary.
duke@435 352 void removeChunkFromDictionary(FreeChunk* fc);
duke@435 353 // Split a free chunk into a smaller free chunk of size "new_size".
duke@435 354 // Return the smaller free chunk and return the remainder to the
duke@435 355 // free lists.
duke@435 356 FreeChunk* splitChunkAndReturnRemainder(FreeChunk* chunk, size_t new_size);
duke@435 357 // Add a chunk to the free lists.
duke@435 358 void addChunkToFreeLists(HeapWord* chunk, size_t size);
duke@435 359 // Add a chunk to the free lists, preferring to suffix it
duke@435 360 // to the last free chunk at end of space if possible, and
duke@435 361 // updating the block census stats as well as block offset table.
duke@435 362 // Take any locks as appropriate if we are multithreaded.
duke@435 363 void addChunkToFreeListsAtEndRecordingStats(HeapWord* chunk, size_t size);
duke@435 364 // Add a free chunk to the indexed free lists.
duke@435 365 void returnChunkToFreeList(FreeChunk* chunk);
duke@435 366 // Add a free chunk to the dictionary.
duke@435 367 void returnChunkToDictionary(FreeChunk* chunk);
duke@435 368
duke@435 369 // Functions for maintaining the linear allocation buffers (LinAB).
duke@435 370 // Repairing a linear allocation block refers to operations
duke@435 371 // performed on the remainder of a LinAB after an allocation
duke@435 372 // has been made from it.
duke@435 373 void repairLinearAllocationBlocks();
duke@435 374 void repairLinearAllocBlock(LinearAllocBlock* blk);
duke@435 375 void refillLinearAllocBlock(LinearAllocBlock* blk);
duke@435 376 void refillLinearAllocBlockIfNeeded(LinearAllocBlock* blk);
duke@435 377 void refillLinearAllocBlocksIfNeeded();
duke@435 378
duke@435 379 void verify_objects_initialized() const;
duke@435 380
duke@435 381 // Statistics reporting helper functions
duke@435 382 void reportFreeListStatistics() const;
duke@435 383 void reportIndexedFreeListStatistics() const;
duke@435 384 size_t maxChunkSizeInIndexedFreeLists() const;
duke@435 385 size_t numFreeBlocksInIndexedFreeLists() const;
duke@435 386 // Accessor
duke@435 387 HeapWord* unallocated_block() const {
duke@435 388 HeapWord* ub = _bt.unallocated_block();
duke@435 389 assert(ub >= bottom() &&
duke@435 390 ub <= end(), "space invariant");
duke@435 391 return ub;
duke@435 392 }
duke@435 393 void freed(HeapWord* start, size_t size) {
duke@435 394 _bt.freed(start, size);
duke@435 395 }
duke@435 396
duke@435 397 protected:
duke@435 398 // reset the indexed free list to its initial empty condition.
duke@435 399 void resetIndexedFreeListArray();
duke@435 400 // reset to an initial state with a single free block described
duke@435 401 // by the MemRegion parameter.
duke@435 402 void reset(MemRegion mr);
duke@435 403 // Return the total number of words in the indexed free lists.
duke@435 404 size_t totalSizeInIndexedFreeLists() const;
duke@435 405
duke@435 406 public:
duke@435 407 // Constructor...
duke@435 408 CompactibleFreeListSpace(BlockOffsetSharedArray* bs, MemRegion mr,
duke@435 409 bool use_adaptive_freelists,
duke@435 410 FreeBlockDictionary::DictionaryChoice);
duke@435 411 // accessors
duke@435 412 bool bestFitFirst() { return _fitStrategy == FreeBlockBestFitFirst; }
duke@435 413 FreeBlockDictionary* dictionary() const { return _dictionary; }
duke@435 414 HeapWord* nearLargestChunk() const { return _nearLargestChunk; }
duke@435 415 void set_nearLargestChunk(HeapWord* v) { _nearLargestChunk = v; }
duke@435 416
duke@435 417 // Return the free chunk at the end of the space. If no such
duke@435 418 // chunk exists, return NULL.
duke@435 419 FreeChunk* find_chunk_at_end();
duke@435 420
ysr@447 421 bool adaptive_freelists() const { return _adaptive_freelists; }
duke@435 422
duke@435 423 void set_collector(CMSCollector* collector) { _collector = collector; }
duke@435 424
duke@435 425 // Support for parallelization of rescan and marking
duke@435 426 const size_t rescan_task_size() const { return _rescan_task_size; }
duke@435 427 const size_t marking_task_size() const { return _marking_task_size; }
duke@435 428 SequentialSubTasksDone* conc_par_seq_tasks() {return &_conc_par_seq_tasks; }
duke@435 429 void initialize_sequential_subtasks_for_rescan(int n_threads);
duke@435 430 void initialize_sequential_subtasks_for_marking(int n_threads,
duke@435 431 HeapWord* low = NULL);
duke@435 432
duke@435 433 #if CFLS_LAB_REFILL_STATS
duke@435 434 void print_par_alloc_stats();
duke@435 435 #endif
duke@435 436
duke@435 437 // Space enquiries
duke@435 438 size_t used() const;
duke@435 439 size_t free() const;
duke@435 440 size_t max_alloc_in_words() const;
duke@435 441 // XXX: should have a less conservative used_region() than that of
duke@435 442 // Space; we could consider keeping track of highest allocated
duke@435 443 // address and correcting that at each sweep, as the sweeper
duke@435 444 // goes through the entire allocated part of the generation. We
duke@435 445 // could also use that information to keep the sweeper from
duke@435 446 // sweeping more than is necessary. The allocator and sweeper will
duke@435 447 // of course need to synchronize on this, since the sweeper will
duke@435 448 // try to bump down the address and the allocator will try to bump it up.
duke@435 449 // For now, however, we'll just use the default used_region()
duke@435 450 // which overestimates the region by returning the entire
duke@435 451 // committed region (this is safe, but inefficient).
duke@435 452
duke@435 453 // Returns a subregion of the space containing all the objects in
duke@435 454 // the space.
duke@435 455 MemRegion used_region() const {
duke@435 456 return MemRegion(bottom(),
duke@435 457 BlockOffsetArrayUseUnallocatedBlock ?
duke@435 458 unallocated_block() : end());
duke@435 459 }
duke@435 460
duke@435 461 // This is needed because the default implementation uses block_start()
duke@435 462 // which can;t be used at certain times (for example phase 3 of mark-sweep).
duke@435 463 // A better fix is to change the assertions in phase 3 of mark-sweep to
duke@435 464 // use is_in_reserved(), but that is deferred since the is_in() assertions
duke@435 465 // are buried through several layers of callers and are used elsewhere
duke@435 466 // as well.
duke@435 467 bool is_in(const void* p) const {
duke@435 468 return used_region().contains(p);
duke@435 469 }
duke@435 470
duke@435 471 virtual bool is_free_block(const HeapWord* p) const;
duke@435 472
duke@435 473 // Resizing support
duke@435 474 void set_end(HeapWord* value); // override
duke@435 475
duke@435 476 // mutual exclusion support
duke@435 477 Mutex* freelistLock() const { return &_freelistLock; }
duke@435 478
duke@435 479 // Iteration support
duke@435 480 void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 481 void oop_iterate(OopClosure* cl);
duke@435 482
duke@435 483 void object_iterate(ObjectClosure* blk);
duke@435 484 void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
duke@435 485
duke@435 486 // Requires that "mr" be entirely within the space.
duke@435 487 // Apply "cl->do_object" to all objects that intersect with "mr".
duke@435 488 // If the iteration encounters an unparseable portion of the region,
duke@435 489 // terminate the iteration and return the address of the start of the
duke@435 490 // subregion that isn't done. Return of "NULL" indicates that the
duke@435 491 // interation completed.
duke@435 492 virtual HeapWord*
duke@435 493 object_iterate_careful_m(MemRegion mr,
duke@435 494 ObjectClosureCareful* cl);
duke@435 495 virtual HeapWord*
duke@435 496 object_iterate_careful(ObjectClosureCareful* cl);
duke@435 497
duke@435 498 // Override: provides a DCTO_CL specific to this kind of space.
duke@435 499 DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
duke@435 500 CardTableModRefBS::PrecisionStyle precision,
duke@435 501 HeapWord* boundary);
duke@435 502
duke@435 503 void blk_iterate(BlkClosure* cl);
duke@435 504 void blk_iterate_careful(BlkClosureCareful* cl);
duke@435 505 HeapWord* block_start(const void* p) const;
duke@435 506 HeapWord* block_start_careful(const void* p) const;
duke@435 507 size_t block_size(const HeapWord* p) const;
duke@435 508 size_t block_size_no_stall(HeapWord* p, const CMSCollector* c) const;
duke@435 509 bool block_is_obj(const HeapWord* p) const;
duke@435 510 bool obj_is_alive(const HeapWord* p) const;
duke@435 511 size_t block_size_nopar(const HeapWord* p) const;
duke@435 512 bool block_is_obj_nopar(const HeapWord* p) const;
duke@435 513
duke@435 514 // iteration support for promotion
duke@435 515 void save_marks();
duke@435 516 bool no_allocs_since_save_marks();
duke@435 517 void object_iterate_since_last_GC(ObjectClosure* cl);
duke@435 518
duke@435 519 // iteration support for sweeping
duke@435 520 void save_sweep_limit() {
duke@435 521 _sweep_limit = BlockOffsetArrayUseUnallocatedBlock ?
duke@435 522 unallocated_block() : end();
duke@435 523 }
duke@435 524 NOT_PRODUCT(
duke@435 525 void clear_sweep_limit() { _sweep_limit = NULL; }
duke@435 526 )
duke@435 527 HeapWord* sweep_limit() { return _sweep_limit; }
duke@435 528
duke@435 529 // Apply "blk->do_oop" to the addresses of all reference fields in objects
duke@435 530 // promoted into this generation since the most recent save_marks() call.
duke@435 531 // Fields in objects allocated by applications of the closure
duke@435 532 // *are* included in the iteration. Thus, when the iteration completes
duke@435 533 // there should be no further such objects remaining.
duke@435 534 #define CFLS_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 535 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
duke@435 536 ALL_SINCE_SAVE_MARKS_CLOSURES(CFLS_OOP_SINCE_SAVE_MARKS_DECL)
duke@435 537 #undef CFLS_OOP_SINCE_SAVE_MARKS_DECL
duke@435 538
duke@435 539 // Allocation support
duke@435 540 HeapWord* allocate(size_t size);
duke@435 541 HeapWord* par_allocate(size_t size);
duke@435 542
coleenp@548 543 oop promote(oop obj, size_t obj_size);
duke@435 544 void gc_prologue();
duke@435 545 void gc_epilogue();
duke@435 546
duke@435 547 // This call is used by a containing CMS generation / collector
duke@435 548 // to inform the CFLS space that a sweep has been completed
duke@435 549 // and that the space can do any related house-keeping functions.
duke@435 550 void sweep_completed();
duke@435 551
duke@435 552 // For an object in this space, the mark-word's two
duke@435 553 // LSB's having the value [11] indicates that it has been
duke@435 554 // promoted since the most recent call to save_marks() on
duke@435 555 // this generation and has not subsequently been iterated
duke@435 556 // over (using oop_since_save_marks_iterate() above).
duke@435 557 bool obj_allocated_since_save_marks(const oop obj) const {
duke@435 558 assert(is_in_reserved(obj), "Wrong space?");
duke@435 559 return ((PromotedObject*)obj)->hasPromotedMark();
duke@435 560 }
duke@435 561
duke@435 562 // A worst-case estimate of the space required (in HeapWords) to expand the
duke@435 563 // heap when promoting an obj of size obj_size.
duke@435 564 size_t expansionSpaceRequired(size_t obj_size) const;
duke@435 565
duke@435 566 FreeChunk* allocateScratch(size_t size);
duke@435 567
duke@435 568 // returns true if either the small or large linear allocation buffer is empty.
ysr@447 569 bool linearAllocationWouldFail() const;
duke@435 570
duke@435 571 // Adjust the chunk for the minimum size. This version is called in
duke@435 572 // most cases in CompactibleFreeListSpace methods.
duke@435 573 inline static size_t adjustObjectSize(size_t size) {
duke@435 574 return (size_t) align_object_size(MAX2(size, (size_t)MinChunkSize));
duke@435 575 }
duke@435 576 // This is a virtual version of adjustObjectSize() that is called
duke@435 577 // only occasionally when the compaction space changes and the type
duke@435 578 // of the new compaction space is is only known to be CompactibleSpace.
duke@435 579 size_t adjust_object_size_v(size_t size) const {
duke@435 580 return adjustObjectSize(size);
duke@435 581 }
duke@435 582 // Minimum size of a free block.
duke@435 583 virtual size_t minimum_free_block_size() const { return MinChunkSize; }
duke@435 584 void removeFreeChunkFromFreeLists(FreeChunk* chunk);
duke@435 585 void addChunkAndRepairOffsetTable(HeapWord* chunk, size_t size,
duke@435 586 bool coalesced);
duke@435 587
ysr@447 588 // Support for decisions regarding concurrent collection policy
ysr@447 589 bool should_concurrent_collect() const;
ysr@447 590
duke@435 591 // Support for compaction
duke@435 592 void prepare_for_compaction(CompactPoint* cp);
duke@435 593 void adjust_pointers();
duke@435 594 void compact();
duke@435 595 // reset the space to reflect the fact that a compaction of the
duke@435 596 // space has been done.
duke@435 597 virtual void reset_after_compaction();
duke@435 598
duke@435 599 // Debugging support
duke@435 600 void print() const;
duke@435 601 void prepare_for_verify();
duke@435 602 void verify(bool allow_dirty) const;
duke@435 603 void verifyFreeLists() const PRODUCT_RETURN;
duke@435 604 void verifyIndexedFreeLists() const;
duke@435 605 void verifyIndexedFreeList(size_t size) const;
duke@435 606 // verify that the given chunk is in the free lists.
duke@435 607 bool verifyChunkInFreeLists(FreeChunk* fc) const;
duke@435 608 // Do some basic checks on the the free lists.
duke@435 609 void checkFreeListConsistency() const PRODUCT_RETURN;
duke@435 610
duke@435 611 NOT_PRODUCT (
duke@435 612 void initializeIndexedFreeListArrayReturnedBytes();
duke@435 613 size_t sumIndexedFreeListArrayReturnedBytes();
duke@435 614 // Return the total number of chunks in the indexed free lists.
duke@435 615 size_t totalCountInIndexedFreeLists() const;
duke@435 616 // Return the total numberof chunks in the space.
duke@435 617 size_t totalCount();
duke@435 618 )
duke@435 619
duke@435 620 // The census consists of counts of the quantities such as
duke@435 621 // the current count of the free chunks, number of chunks
duke@435 622 // created as a result of the split of a larger chunk or
duke@435 623 // coalescing of smaller chucks, etc. The counts in the
duke@435 624 // census is used to make decisions on splitting and
duke@435 625 // coalescing of chunks during the sweep of garbage.
duke@435 626
duke@435 627 // Print the statistics for the free lists.
ysr@447 628 void printFLCensus(size_t sweep_count) const;
duke@435 629
duke@435 630 // Statistics functions
duke@435 631 // Initialize census for lists before the sweep.
duke@435 632 void beginSweepFLCensus(float sweep_current,
duke@435 633 float sweep_estimate);
duke@435 634 // Set the surplus for each of the free lists.
duke@435 635 void setFLSurplus();
duke@435 636 // Set the hint for each of the free lists.
duke@435 637 void setFLHints();
duke@435 638 // Clear the census for each of the free lists.
duke@435 639 void clearFLCensus();
duke@435 640 // Perform functions for the census after the end of the sweep.
ysr@447 641 void endSweepFLCensus(size_t sweep_count);
duke@435 642 // Return true if the count of free chunks is greater
duke@435 643 // than the desired number of free chunks.
duke@435 644 bool coalOverPopulated(size_t size);
duke@435 645
duke@435 646 // Record (for each size):
duke@435 647 //
duke@435 648 // split-births = #chunks added due to splits in (prev-sweep-end,
duke@435 649 // this-sweep-start)
duke@435 650 // split-deaths = #chunks removed for splits in (prev-sweep-end,
duke@435 651 // this-sweep-start)
duke@435 652 // num-curr = #chunks at start of this sweep
duke@435 653 // num-prev = #chunks at end of previous sweep
duke@435 654 //
duke@435 655 // The above are quantities that are measured. Now define:
duke@435 656 //
duke@435 657 // num-desired := num-prev + split-births - split-deaths - num-curr
duke@435 658 //
duke@435 659 // Roughly, num-prev + split-births is the supply,
duke@435 660 // split-deaths is demand due to other sizes
duke@435 661 // and num-curr is what we have left.
duke@435 662 //
duke@435 663 // Thus, num-desired is roughly speaking the "legitimate demand"
duke@435 664 // for blocks of this size and what we are striving to reach at the
duke@435 665 // end of the current sweep.
duke@435 666 //
duke@435 667 // For a given list, let num-len be its current population.
duke@435 668 // Define, for a free list of a given size:
duke@435 669 //
duke@435 670 // coal-overpopulated := num-len >= num-desired * coal-surplus
duke@435 671 // (coal-surplus is set to 1.05, i.e. we allow a little slop when
duke@435 672 // coalescing -- we do not coalesce unless we think that the current
duke@435 673 // supply has exceeded the estimated demand by more than 5%).
duke@435 674 //
duke@435 675 // For the set of sizes in the binary tree, which is neither dense nor
duke@435 676 // closed, it may be the case that for a particular size we have never
duke@435 677 // had, or do not now have, or did not have at the previous sweep,
duke@435 678 // chunks of that size. We need to extend the definition of
duke@435 679 // coal-overpopulated to such sizes as well:
duke@435 680 //
duke@435 681 // For a chunk in/not in the binary tree, extend coal-overpopulated
duke@435 682 // defined above to include all sizes as follows:
duke@435 683 //
duke@435 684 // . a size that is non-existent is coal-overpopulated
duke@435 685 // . a size that has a num-desired <= 0 as defined above is
duke@435 686 // coal-overpopulated.
duke@435 687 //
duke@435 688 // Also define, for a chunk heap-offset C and mountain heap-offset M:
duke@435 689 //
duke@435 690 // close-to-mountain := C >= 0.99 * M
duke@435 691 //
duke@435 692 // Now, the coalescing strategy is:
duke@435 693 //
duke@435 694 // Coalesce left-hand chunk with right-hand chunk if and
duke@435 695 // only if:
duke@435 696 //
duke@435 697 // EITHER
duke@435 698 // . left-hand chunk is of a size that is coal-overpopulated
duke@435 699 // OR
duke@435 700 // . right-hand chunk is close-to-mountain
duke@435 701 void smallCoalBirth(size_t size);
duke@435 702 void smallCoalDeath(size_t size);
duke@435 703 void coalBirth(size_t size);
duke@435 704 void coalDeath(size_t size);
duke@435 705 void smallSplitBirth(size_t size);
duke@435 706 void smallSplitDeath(size_t size);
duke@435 707 void splitBirth(size_t size);
duke@435 708 void splitDeath(size_t size);
duke@435 709 void split(size_t from, size_t to1);
duke@435 710
duke@435 711 double flsFrag() const;
duke@435 712 };
duke@435 713
duke@435 714 // A parallel-GC-thread-local allocation buffer for allocation into a
duke@435 715 // CompactibleFreeListSpace.
duke@435 716 class CFLS_LAB : public CHeapObj {
duke@435 717 // The space that this buffer allocates into.
duke@435 718 CompactibleFreeListSpace* _cfls;
duke@435 719
duke@435 720 // Our local free lists.
duke@435 721 FreeList _indexedFreeList[CompactibleFreeListSpace::IndexSetSize];
duke@435 722
duke@435 723 // Initialized from a command-line arg.
duke@435 724 size_t _blocks_to_claim;
duke@435 725
duke@435 726 #if CFLS_LAB_REFILL_STATS
duke@435 727 // Some statistics.
duke@435 728 int _refills;
duke@435 729 int _blocksTaken;
duke@435 730 static int _tot_refills;
duke@435 731 static int _tot_blocksTaken;
duke@435 732 static int _next_threshold;
duke@435 733 #endif
duke@435 734
duke@435 735 public:
duke@435 736 CFLS_LAB(CompactibleFreeListSpace* cfls);
duke@435 737
duke@435 738 // Allocate and return a block of the given size, or else return NULL.
duke@435 739 HeapWord* alloc(size_t word_sz);
duke@435 740
duke@435 741 // Return any unused portions of the buffer to the global pool.
duke@435 742 void retire();
duke@435 743 };
duke@435 744
duke@435 745 size_t PromotionInfo::refillSize() const {
duke@435 746 const size_t CMSSpoolBlockSize = 256;
duke@435 747 const size_t sz = heap_word_size(sizeof(SpoolBlock) + sizeof(markOop)
duke@435 748 * CMSSpoolBlockSize);
duke@435 749 return CompactibleFreeListSpace::adjustObjectSize(sz);
duke@435 750 }

mercurial