src/cpu/sparc/vm/assembler_sparc.cpp

Wed, 02 Jul 2008 12:55:16 -0700

author
xdono
date
Wed, 02 Jul 2008 12:55:16 -0700
changeset 631
d1605aabd0a1
parent 614
1f809e010142
child 791
1ee8caae33af
permissions
-rw-r--r--

6719955: Update copyright year
Summary: Update copyright year for files that have been modified in 2008
Reviewed-by: ohair, tbell

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_sparc.cpp.incl"
duke@435 27
duke@435 28 // Implementation of Address
duke@435 29
duke@435 30 Address::Address( addr_type t, int which ) {
duke@435 31 switch (t) {
duke@435 32 case extra_in_argument:
duke@435 33 case extra_out_argument:
duke@435 34 _base = t == extra_in_argument ? FP : SP;
duke@435 35 _hi = 0;
duke@435 36 // Warning: In LP64 mode, _disp will occupy more than 10 bits.
duke@435 37 // This is inconsistent with the other constructors but op
duke@435 38 // codes such as ld or ldx, only access disp() to get their
duke@435 39 // simm13 argument.
duke@435 40 _disp = ((which - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
duke@435 41 break;
duke@435 42 default:
duke@435 43 ShouldNotReachHere();
duke@435 44 break;
duke@435 45 }
duke@435 46 }
duke@435 47
duke@435 48 static const char* argumentNames[][2] = {
duke@435 49 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 50 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 51 {"A(n>9)","P(n>9)"}
duke@435 52 };
duke@435 53
duke@435 54 const char* Argument::name() const {
duke@435 55 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 56 int num = number();
duke@435 57 if (num >= nofArgs) num = nofArgs - 1;
duke@435 58 return argumentNames[num][is_in() ? 1 : 0];
duke@435 59 }
duke@435 60
duke@435 61 void Assembler::print_instruction(int inst) {
duke@435 62 const char* s;
duke@435 63 switch (inv_op(inst)) {
duke@435 64 default: s = "????"; break;
duke@435 65 case call_op: s = "call"; break;
duke@435 66 case branch_op:
duke@435 67 switch (inv_op2(inst)) {
duke@435 68 case bpr_op2: s = "bpr"; break;
duke@435 69 case fb_op2: s = "fb"; break;
duke@435 70 case fbp_op2: s = "fbp"; break;
duke@435 71 case br_op2: s = "br"; break;
duke@435 72 case bp_op2: s = "bp"; break;
duke@435 73 case cb_op2: s = "cb"; break;
duke@435 74 default: s = "????"; break;
duke@435 75 }
duke@435 76 }
duke@435 77 ::tty->print("%s", s);
duke@435 78 }
duke@435 79
duke@435 80
duke@435 81 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 82 // and return the resulting instruction.
duke@435 83 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 84 // OK.
duke@435 85 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 86
duke@435 87 int m; // mask for displacement field
duke@435 88 int v; // new value for displacement field
duke@435 89 const int word_aligned_ones = -4;
duke@435 90 switch (inv_op(inst)) {
duke@435 91 default: ShouldNotReachHere();
duke@435 92 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 93 case branch_op:
duke@435 94 switch (inv_op2(inst)) {
duke@435 95 case bpr_op2: m = wdisp16(word_aligned_ones, 0); v = wdisp16(dest_pos, inst_pos); break;
duke@435 96 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 97 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 98 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 99 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 100 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 101 default: ShouldNotReachHere();
duke@435 102 }
duke@435 103 }
duke@435 104 return inst & ~m | v;
duke@435 105 }
duke@435 106
duke@435 107 // Return the offset of the branch destionation of instruction inst
duke@435 108 // at offset pos.
duke@435 109 // Should have pcs, but since all is relative, it works out.
duke@435 110 int Assembler::branch_destination(int inst, int pos) {
duke@435 111 int r;
duke@435 112 switch (inv_op(inst)) {
duke@435 113 default: ShouldNotReachHere();
duke@435 114 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 115 case branch_op:
duke@435 116 switch (inv_op2(inst)) {
duke@435 117 case bpr_op2: r = inv_wdisp16(inst, pos); break;
duke@435 118 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 119 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 120 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 121 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 122 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 123 default: ShouldNotReachHere();
duke@435 124 }
duke@435 125 }
duke@435 126 return r;
duke@435 127 }
duke@435 128
duke@435 129 int AbstractAssembler::code_fill_byte() {
duke@435 130 return 0x00; // illegal instruction 0x00000000
duke@435 131 }
duke@435 132
duke@435 133 // Generate a bunch 'o stuff (including v9's
duke@435 134 #ifndef PRODUCT
duke@435 135 void Assembler::test_v9() {
duke@435 136 add( G0, G1, G2 );
duke@435 137 add( G3, 0, G4 );
duke@435 138
duke@435 139 addcc( G5, G6, G7 );
duke@435 140 addcc( I0, 1, I1 );
duke@435 141 addc( I2, I3, I4 );
duke@435 142 addc( I5, -1, I6 );
duke@435 143 addccc( I7, L0, L1 );
duke@435 144 addccc( L2, (1 << 12) - 2, L3 );
duke@435 145
duke@435 146 Label lbl1, lbl2, lbl3;
duke@435 147
duke@435 148 bind(lbl1);
duke@435 149
duke@435 150 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 151 delayed()->nop();
duke@435 152 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 153 delayed()->nop();
duke@435 154
duke@435 155 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 156 delayed()->nop();
duke@435 157 fb( f_notEqual, false, lbl2 );
duke@435 158 delayed()->nop();
duke@435 159
duke@435 160 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 161 delayed()->nop();
duke@435 162 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 163 delayed()->nop();
duke@435 164
duke@435 165 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 166 delayed()->nop();
duke@435 167 br( lessEqual, false, lbl1 );
duke@435 168 delayed()->nop();
duke@435 169 br( never, false, lbl1 );
duke@435 170 delayed()->nop();
duke@435 171
duke@435 172 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 173 delayed()->nop();
duke@435 174 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 175 delayed()->nop();
duke@435 176
duke@435 177 call( pc(), relocInfo::none);
duke@435 178 delayed()->nop();
duke@435 179 call( lbl3 );
duke@435 180 delayed()->nop();
duke@435 181
duke@435 182
duke@435 183 casa( L6, L7, O0 );
duke@435 184 casxa( O1, O2, O3, 0 );
duke@435 185
duke@435 186 udiv( O4, O5, O7 );
duke@435 187 udiv( G0, (1 << 12) - 1, G1 );
duke@435 188 sdiv( G1, G2, G3 );
duke@435 189 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 190 udivcc( G6, G7, I0 );
duke@435 191 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 192 sdivcc( I3, I4, I5 );
duke@435 193 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 194
duke@435 195 done();
duke@435 196 retry();
duke@435 197
duke@435 198 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 199 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 200
duke@435 201 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 202 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 203
duke@435 204 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 205 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 206
duke@435 207 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 208
duke@435 209 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 210 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 211
duke@435 212 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 213 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 214 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 215
duke@435 216 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 217 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 218 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 219
duke@435 220 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 221
duke@435 222 flush( L0, L1 );
duke@435 223 flush( L2, -1 );
duke@435 224
duke@435 225 flushw();
duke@435 226
duke@435 227 illtrap( (1 << 22) - 2);
duke@435 228
duke@435 229 impdep1( 17, (1 << 19) - 1 );
duke@435 230 impdep2( 3, 0 );
duke@435 231
duke@435 232 jmpl( L3, L4, L5 );
duke@435 233 delayed()->nop();
duke@435 234 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 235 delayed()->nop();
duke@435 236
duke@435 237
duke@435 238 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 239 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 240
duke@435 241
duke@435 242 ldfsr( O3, O4 );
duke@435 243 ldfsr( O5, -1 );
duke@435 244 ldxfsr( O6, O7 );
duke@435 245 ldxfsr( I0, -1 );
duke@435 246
duke@435 247 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 248 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 249
duke@435 250 ldsb( I4, I5, I6 );
duke@435 251 ldsb( I7, -1, G0 );
duke@435 252 ldsh( G1, G3, G4 );
duke@435 253 ldsh( G5, -1, G6 );
duke@435 254 ldsw( G7, L0, L1 );
duke@435 255 ldsw( L2, -1, L3 );
duke@435 256 ldub( L4, L5, L6 );
duke@435 257 ldub( L7, -1, O0 );
duke@435 258 lduh( O1, O2, O3 );
duke@435 259 lduh( O4, -1, O5 );
duke@435 260 lduw( O6, O7, G0 );
duke@435 261 lduw( G1, -1, G2 );
duke@435 262 ldx( G3, G4, G5 );
duke@435 263 ldx( G6, -1, G7 );
duke@435 264 ldd( I0, I1, I2 );
duke@435 265 ldd( I3, -1, I4 );
duke@435 266
duke@435 267 ldsba( I5, I6, 2, I7 );
duke@435 268 ldsba( L0, -1, L1 );
duke@435 269 ldsha( L2, L3, 3, L4 );
duke@435 270 ldsha( L5, -1, L6 );
duke@435 271 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 272 ldswa( O2, -1, O3 );
duke@435 273 lduba( O4, O5, 0, O6 );
duke@435 274 lduba( O7, -1, I0 );
duke@435 275 lduha( I1, I2, 1, I3 );
duke@435 276 lduha( I4, -1, I5 );
duke@435 277 lduwa( I6, I7, 2, L0 );
duke@435 278 lduwa( L1, -1, L2 );
duke@435 279 ldxa( L3, L4, 3, L5 );
duke@435 280 ldxa( L6, -1, L7 );
duke@435 281 ldda( G0, G1, 4, G2 );
duke@435 282 ldda( G3, -1, G4 );
duke@435 283
duke@435 284 ldstub( G5, G6, G7 );
duke@435 285 ldstub( O0, -1, O1 );
duke@435 286
duke@435 287 ldstuba( O2, O3, 5, O4 );
duke@435 288 ldstuba( O5, -1, O6 );
duke@435 289
duke@435 290 and3( I0, L0, O0 );
duke@435 291 and3( G7, -1, O7 );
duke@435 292 andcc( L2, I2, G2 );
duke@435 293 andcc( L4, -1, G4 );
duke@435 294 andn( I5, I6, I7 );
duke@435 295 andn( I6, -1, I7 );
duke@435 296 andncc( I5, I6, I7 );
duke@435 297 andncc( I7, -1, I6 );
duke@435 298 or3( I5, I6, I7 );
duke@435 299 or3( I7, -1, I6 );
duke@435 300 orcc( I5, I6, I7 );
duke@435 301 orcc( I7, -1, I6 );
duke@435 302 orn( I5, I6, I7 );
duke@435 303 orn( I7, -1, I6 );
duke@435 304 orncc( I5, I6, I7 );
duke@435 305 orncc( I7, -1, I6 );
duke@435 306 xor3( I5, I6, I7 );
duke@435 307 xor3( I7, -1, I6 );
duke@435 308 xorcc( I5, I6, I7 );
duke@435 309 xorcc( I7, -1, I6 );
duke@435 310 xnor( I5, I6, I7 );
duke@435 311 xnor( I7, -1, I6 );
duke@435 312 xnorcc( I5, I6, I7 );
duke@435 313 xnorcc( I7, -1, I6 );
duke@435 314
duke@435 315 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 316 membar( StoreStore );
duke@435 317 membar( LoadStore );
duke@435 318 membar( StoreLoad );
duke@435 319 membar( LoadLoad );
duke@435 320 membar( Sync );
duke@435 321 membar( MemIssue );
duke@435 322 membar( Lookaside );
duke@435 323
duke@435 324 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 325 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 326
duke@435 327 movcc( overflowClear, false, icc, I6, L4 );
duke@435 328 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 329
duke@435 330 movr( rc_nz, I5, I6, I7 );
duke@435 331 movr( rc_gz, L1, -1, L2 );
duke@435 332
duke@435 333 mulx( I5, I6, I7 );
duke@435 334 mulx( I7, -1, I6 );
duke@435 335 sdivx( I5, I6, I7 );
duke@435 336 sdivx( I7, -1, I6 );
duke@435 337 udivx( I5, I6, I7 );
duke@435 338 udivx( I7, -1, I6 );
duke@435 339
duke@435 340 umul( I5, I6, I7 );
duke@435 341 umul( I7, -1, I6 );
duke@435 342 smul( I5, I6, I7 );
duke@435 343 smul( I7, -1, I6 );
duke@435 344 umulcc( I5, I6, I7 );
duke@435 345 umulcc( I7, -1, I6 );
duke@435 346 smulcc( I5, I6, I7 );
duke@435 347 smulcc( I7, -1, I6 );
duke@435 348
duke@435 349 mulscc( I5, I6, I7 );
duke@435 350 mulscc( I7, -1, I6 );
duke@435 351
duke@435 352 nop();
duke@435 353
duke@435 354
duke@435 355 popc( G0, G1);
duke@435 356 popc( -1, G2);
duke@435 357
duke@435 358 prefetch( L1, L2, severalReads );
duke@435 359 prefetch( L3, -1, oneRead );
duke@435 360 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 361 prefetcha( G2, -1, oneWrite );
duke@435 362
duke@435 363 rett( I7, I7);
duke@435 364 delayed()->nop();
duke@435 365 rett( G0, -1, relocInfo::none);
duke@435 366 delayed()->nop();
duke@435 367
duke@435 368 save( I5, I6, I7 );
duke@435 369 save( I7, -1, I6 );
duke@435 370 restore( I5, I6, I7 );
duke@435 371 restore( I7, -1, I6 );
duke@435 372
duke@435 373 saved();
duke@435 374 restored();
duke@435 375
duke@435 376 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 377
duke@435 378 sll( I5, I6, I7 );
duke@435 379 sll( I7, 31, I6 );
duke@435 380 srl( I5, I6, I7 );
duke@435 381 srl( I7, 0, I6 );
duke@435 382 sra( I5, I6, I7 );
duke@435 383 sra( I7, 30, I6 );
duke@435 384 sllx( I5, I6, I7 );
duke@435 385 sllx( I7, 63, I6 );
duke@435 386 srlx( I5, I6, I7 );
duke@435 387 srlx( I7, 0, I6 );
duke@435 388 srax( I5, I6, I7 );
duke@435 389 srax( I7, 62, I6 );
duke@435 390
duke@435 391 sir( -1 );
duke@435 392
duke@435 393 stbar();
duke@435 394
duke@435 395 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 396 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 397
duke@435 398 stfsr( L1, L2 );
duke@435 399 stfsr( I7, -1 );
duke@435 400 stxfsr( I6, I5 );
duke@435 401 stxfsr( L4, -1 );
duke@435 402
duke@435 403 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 404 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 405
duke@435 406 stb( L5, O2, I7 );
duke@435 407 stb( I7, I6, -1 );
duke@435 408 sth( L5, O2, I7 );
duke@435 409 sth( I7, I6, -1 );
duke@435 410 stw( L5, O2, I7 );
duke@435 411 stw( I7, I6, -1 );
duke@435 412 stx( L5, O2, I7 );
duke@435 413 stx( I7, I6, -1 );
duke@435 414 std( L5, O2, I7 );
duke@435 415 std( I7, I6, -1 );
duke@435 416
duke@435 417 stba( L5, O2, I7, 8 );
duke@435 418 stba( I7, I6, -1 );
duke@435 419 stha( L5, O2, I7, 9 );
duke@435 420 stha( I7, I6, -1 );
duke@435 421 stwa( L5, O2, I7, 0 );
duke@435 422 stwa( I7, I6, -1 );
duke@435 423 stxa( L5, O2, I7, 11 );
duke@435 424 stxa( I7, I6, -1 );
duke@435 425 stda( L5, O2, I7, 12 );
duke@435 426 stda( I7, I6, -1 );
duke@435 427
duke@435 428 sub( I5, I6, I7 );
duke@435 429 sub( I7, -1, I6 );
duke@435 430 subcc( I5, I6, I7 );
duke@435 431 subcc( I7, -1, I6 );
duke@435 432 subc( I5, I6, I7 );
duke@435 433 subc( I7, -1, I6 );
duke@435 434 subccc( I5, I6, I7 );
duke@435 435 subccc( I7, -1, I6 );
duke@435 436
duke@435 437 swap( I5, I6, I7 );
duke@435 438 swap( I7, -1, I6 );
duke@435 439
duke@435 440 swapa( G0, G1, 13, G2 );
duke@435 441 swapa( I7, -1, I6 );
duke@435 442
duke@435 443 taddcc( I5, I6, I7 );
duke@435 444 taddcc( I7, -1, I6 );
duke@435 445 taddcctv( I5, I6, I7 );
duke@435 446 taddcctv( I7, -1, I6 );
duke@435 447
duke@435 448 tsubcc( I5, I6, I7 );
duke@435 449 tsubcc( I7, -1, I6 );
duke@435 450 tsubcctv( I5, I6, I7 );
duke@435 451 tsubcctv( I7, -1, I6 );
duke@435 452
duke@435 453 trap( overflowClear, xcc, G0, G1 );
duke@435 454 trap( lessEqual, icc, I7, 17 );
duke@435 455
duke@435 456 bind(lbl2);
duke@435 457 bind(lbl3);
duke@435 458
duke@435 459 code()->decode();
duke@435 460 }
duke@435 461
duke@435 462 // Generate a bunch 'o stuff unique to V8
duke@435 463 void Assembler::test_v8_onlys() {
duke@435 464 Label lbl1;
duke@435 465
duke@435 466 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 467 delayed()->nop();
duke@435 468 cb( cp_never, true, lbl1);
duke@435 469 delayed()->nop();
duke@435 470
duke@435 471 cpop1(1, 2, 3, 4);
duke@435 472 cpop2(5, 6, 7, 8);
duke@435 473
duke@435 474 ldc( I0, I1, 31);
duke@435 475 ldc( I2, -1, 0);
duke@435 476
duke@435 477 lddc( I4, I4, 30);
duke@435 478 lddc( I6, 0, 1 );
duke@435 479
duke@435 480 ldcsr( L0, L1, 0);
duke@435 481 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 482
duke@435 483 stc( 31, L4, L5);
duke@435 484 stc( 30, L6, -(1 << 12) );
duke@435 485
duke@435 486 stdc( 0, L7, G0);
duke@435 487 stdc( 1, G1, 0 );
duke@435 488
duke@435 489 stcsr( 16, G2, G3);
duke@435 490 stcsr( 17, G4, 1 );
duke@435 491
duke@435 492 stdcq( 4, G5, G6);
duke@435 493 stdcq( 5, G7, -1 );
duke@435 494
duke@435 495 bind(lbl1);
duke@435 496
duke@435 497 code()->decode();
duke@435 498 }
duke@435 499 #endif
duke@435 500
duke@435 501 // Implementation of MacroAssembler
duke@435 502
duke@435 503 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 504 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 505 // provoke OS NULL exception if reg = NULL by
duke@435 506 // accessing M[reg] w/o changing any registers
duke@435 507 ld_ptr(reg, 0, G0);
duke@435 508 }
duke@435 509 else {
duke@435 510 // nothing to do, (later) access of M[reg + offset]
duke@435 511 // will provoke OS NULL exception if reg = NULL
duke@435 512 }
duke@435 513 }
duke@435 514
duke@435 515 // Ring buffer jumps
duke@435 516
duke@435 517 #ifndef PRODUCT
duke@435 518 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 519 mov(I7, O7); // traceable register
duke@435 520 JMP(O7, 2 * BytesPerInstWord);
duke@435 521 } else {
duke@435 522 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 523 }
duke@435 524 }
duke@435 525
duke@435 526 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 527 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 528 #endif /* PRODUCT */
duke@435 529
duke@435 530
duke@435 531 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 532 assert_not_delayed();
duke@435 533 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 534 if (TraceJumps) {
duke@435 535 #ifndef PRODUCT
duke@435 536 save_frame(0);
duke@435 537 verify_thread();
duke@435 538 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 539 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 540 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 541 add(O2, O1, O1);
duke@435 542
duke@435 543 add(r1->after_save(), r2->after_save(), O2);
duke@435 544 set((intptr_t)file, O3);
duke@435 545 set(line, O4);
duke@435 546 Label L;
duke@435 547 // get nearby pc, store jmp target
duke@435 548 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 549 delayed()->st(O2, O1, 0);
duke@435 550 bind(L);
duke@435 551
duke@435 552 // store nearby pc
duke@435 553 st(O7, O1, sizeof(intptr_t));
duke@435 554 // store file
duke@435 555 st(O3, O1, 2*sizeof(intptr_t));
duke@435 556 // store line
duke@435 557 st(O4, O1, 3*sizeof(intptr_t));
duke@435 558 add(O0, 1, O0);
duke@435 559 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 560 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 561 restore();
duke@435 562 #endif /* PRODUCT */
duke@435 563 }
duke@435 564 jmpl(r1, r2, G0);
duke@435 565 }
duke@435 566 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 567 assert_not_delayed();
duke@435 568 // This can only be traceable if r1 is visible after a window save
duke@435 569 if (TraceJumps) {
duke@435 570 #ifndef PRODUCT
duke@435 571 save_frame(0);
duke@435 572 verify_thread();
duke@435 573 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 574 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 575 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 576 add(O2, O1, O1);
duke@435 577
duke@435 578 add(r1->after_save(), offset, O2);
duke@435 579 set((intptr_t)file, O3);
duke@435 580 set(line, O4);
duke@435 581 Label L;
duke@435 582 // get nearby pc, store jmp target
duke@435 583 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 584 delayed()->st(O2, O1, 0);
duke@435 585 bind(L);
duke@435 586
duke@435 587 // store nearby pc
duke@435 588 st(O7, O1, sizeof(intptr_t));
duke@435 589 // store file
duke@435 590 st(O3, O1, 2*sizeof(intptr_t));
duke@435 591 // store line
duke@435 592 st(O4, O1, 3*sizeof(intptr_t));
duke@435 593 add(O0, 1, O0);
duke@435 594 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 595 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 596 restore();
duke@435 597 #endif /* PRODUCT */
duke@435 598 }
duke@435 599 jmp(r1, offset);
duke@435 600 }
duke@435 601
duke@435 602 // This code sequence is relocatable to any address, even on LP64.
duke@435 603 void MacroAssembler::jumpl( Address& a, Register d, int offset, const char* file, int line ) {
duke@435 604 assert_not_delayed();
duke@435 605 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 606 // variable length instruction streams.
duke@435 607 sethi(a, /*ForceRelocatable=*/ true);
duke@435 608 if (TraceJumps) {
duke@435 609 #ifndef PRODUCT
duke@435 610 // Must do the add here so relocation can find the remainder of the
duke@435 611 // value to be relocated.
duke@435 612 add(a.base(), a.disp() + offset, a.base(), a.rspec(offset));
duke@435 613 save_frame(0);
duke@435 614 verify_thread();
duke@435 615 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 616 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 617 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 618 add(O2, O1, O1);
duke@435 619
duke@435 620 set((intptr_t)file, O3);
duke@435 621 set(line, O4);
duke@435 622 Label L;
duke@435 623
duke@435 624 // get nearby pc, store jmp target
duke@435 625 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 626 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 627 bind(L);
duke@435 628
duke@435 629 // store nearby pc
duke@435 630 st(O7, O1, sizeof(intptr_t));
duke@435 631 // store file
duke@435 632 st(O3, O1, 2*sizeof(intptr_t));
duke@435 633 // store line
duke@435 634 st(O4, O1, 3*sizeof(intptr_t));
duke@435 635 add(O0, 1, O0);
duke@435 636 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 637 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 638 restore();
duke@435 639 jmpl(a.base(), G0, d);
duke@435 640 #else
duke@435 641 jmpl(a, d, offset);
duke@435 642 #endif /* PRODUCT */
duke@435 643 } else {
duke@435 644 jmpl(a, d, offset);
duke@435 645 }
duke@435 646 }
duke@435 647
duke@435 648 void MacroAssembler::jump( Address& a, int offset, const char* file, int line ) {
duke@435 649 jumpl( a, G0, offset, file, line );
duke@435 650 }
duke@435 651
duke@435 652
duke@435 653 // Convert to C varargs format
duke@435 654 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 655 // spill register-resident args to their memory slots
duke@435 656 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 657 // Note that the inArg might in fact be an outgoing argument,
duke@435 658 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 659 // This routine must work even though one of the saved arguments
duke@435 660 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 661 for (Argument savePtr = inArg;
duke@435 662 savePtr.is_register();
duke@435 663 savePtr = savePtr.successor()) {
duke@435 664 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 665 }
duke@435 666 // return the address of the first memory slot
duke@435 667 add(inArg.address_in_frame(), d);
duke@435 668 }
duke@435 669
duke@435 670 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 671 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 672 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 673 }
duke@435 674
duke@435 675 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 676 void MacroAssembler::breakpoint_trap() {
duke@435 677 trap(ST_RESERVED_FOR_USER_0);
duke@435 678 }
duke@435 679
duke@435 680 // flush windows (except current) using flushw instruction if avail.
duke@435 681 void MacroAssembler::flush_windows() {
duke@435 682 if (VM_Version::v9_instructions_work()) flushw();
duke@435 683 else flush_windows_trap();
duke@435 684 }
duke@435 685
duke@435 686 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 687 // We use the current thread pointer to calculate a thread specific
duke@435 688 // offset to write to within the page. This minimizes bus traffic
duke@435 689 // due to cache line collision.
duke@435 690 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 691 Address mem_serialize_page(tmp1, os::get_memory_serialize_page());
duke@435 692 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 693 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 694 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 695 }
duke@435 696 else {
duke@435 697 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 698 and3(tmp2, tmp1, tmp2);
duke@435 699 }
duke@435 700 load_address(mem_serialize_page);
duke@435 701 st(G0, tmp1, tmp2);
duke@435 702 }
duke@435 703
duke@435 704
duke@435 705
duke@435 706 void MacroAssembler::enter() {
duke@435 707 Unimplemented();
duke@435 708 }
duke@435 709
duke@435 710 void MacroAssembler::leave() {
duke@435 711 Unimplemented();
duke@435 712 }
duke@435 713
duke@435 714 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 715 if(VM_Version::v9_instructions_work()) {
duke@435 716 mulx (s1, s2, d);
duke@435 717 } else {
duke@435 718 smul (s1, s2, d);
duke@435 719 }
duke@435 720 }
duke@435 721
duke@435 722 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 723 if(VM_Version::v9_instructions_work()) {
duke@435 724 mulx (s1, simm13a, d);
duke@435 725 } else {
duke@435 726 smul (s1, simm13a, d);
duke@435 727 }
duke@435 728 }
duke@435 729
duke@435 730
duke@435 731 #ifdef ASSERT
duke@435 732 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 733 const Register s1 = G3_scratch;
duke@435 734 const Register s2 = G4_scratch;
duke@435 735 Label get_psr_test;
duke@435 736 // Get the condition codes the V8 way.
duke@435 737 read_ccr_trap(s1);
duke@435 738 mov(ccr_save, s2);
duke@435 739 // This is a test of V8 which has icc but not xcc
duke@435 740 // so mask off the xcc bits
duke@435 741 and3(s2, 0xf, s2);
duke@435 742 // Compare condition codes from the V8 and V9 ways.
duke@435 743 subcc(s2, s1, G0);
duke@435 744 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 745 delayed()->breakpoint_trap();
duke@435 746 bind(get_psr_test);
duke@435 747 }
duke@435 748
duke@435 749 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 750 const Register s1 = G3_scratch;
duke@435 751 const Register s2 = G4_scratch;
duke@435 752 Label set_psr_test;
duke@435 753 // Write out the saved condition codes the V8 way
duke@435 754 write_ccr_trap(ccr_save, s1, s2);
duke@435 755 // Read back the condition codes using the V9 instruction
duke@435 756 rdccr(s1);
duke@435 757 mov(ccr_save, s2);
duke@435 758 // This is a test of V8 which has icc but not xcc
duke@435 759 // so mask off the xcc bits
duke@435 760 and3(s2, 0xf, s2);
duke@435 761 and3(s1, 0xf, s1);
duke@435 762 // Compare the V8 way with the V9 way.
duke@435 763 subcc(s2, s1, G0);
duke@435 764 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 765 delayed()->breakpoint_trap();
duke@435 766 bind(set_psr_test);
duke@435 767 }
duke@435 768 #else
duke@435 769 #define read_ccr_v8_assert(x)
duke@435 770 #define write_ccr_v8_assert(x)
duke@435 771 #endif // ASSERT
duke@435 772
duke@435 773 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 774 if (VM_Version::v9_instructions_work()) {
duke@435 775 rdccr(ccr_save);
duke@435 776 // Test code sequence used on V8. Do not move above rdccr.
duke@435 777 read_ccr_v8_assert(ccr_save);
duke@435 778 } else {
duke@435 779 read_ccr_trap(ccr_save);
duke@435 780 }
duke@435 781 }
duke@435 782
duke@435 783 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 784 if (VM_Version::v9_instructions_work()) {
duke@435 785 // Test code sequence used on V8. Do not move below wrccr.
duke@435 786 write_ccr_v8_assert(ccr_save);
duke@435 787 wrccr(ccr_save);
duke@435 788 } else {
duke@435 789 const Register temp_reg1 = G3_scratch;
duke@435 790 const Register temp_reg2 = G4_scratch;
duke@435 791 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 792 }
duke@435 793 }
duke@435 794
duke@435 795
duke@435 796 // Calls to C land
duke@435 797
duke@435 798 #ifdef ASSERT
duke@435 799 // a hook for debugging
duke@435 800 static Thread* reinitialize_thread() {
duke@435 801 return ThreadLocalStorage::thread();
duke@435 802 }
duke@435 803 #else
duke@435 804 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 805 #endif
duke@435 806
duke@435 807 #ifdef ASSERT
duke@435 808 address last_get_thread = NULL;
duke@435 809 #endif
duke@435 810
duke@435 811 // call this when G2_thread is not known to be valid
duke@435 812 void MacroAssembler::get_thread() {
duke@435 813 save_frame(0); // to avoid clobbering O0
duke@435 814 mov(G1, L0); // avoid clobbering G1
duke@435 815 mov(G5_method, L1); // avoid clobbering G5
duke@435 816 mov(G3, L2); // avoid clobbering G3 also
duke@435 817 mov(G4, L5); // avoid clobbering G4
duke@435 818 #ifdef ASSERT
duke@435 819 Address last_get_thread_addr(L3, (address)&last_get_thread);
duke@435 820 sethi(last_get_thread_addr);
duke@435 821 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
duke@435 822 st_ptr(L4, last_get_thread_addr);
duke@435 823 #endif
duke@435 824 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 825 delayed()->nop();
duke@435 826 mov(L0, G1);
duke@435 827 mov(L1, G5_method);
duke@435 828 mov(L2, G3);
duke@435 829 mov(L5, G4);
duke@435 830 restore(O0, 0, G2_thread);
duke@435 831 }
duke@435 832
duke@435 833 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 834 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 835 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 836 return correct_value;
duke@435 837 }
duke@435 838
duke@435 839 void MacroAssembler::verify_thread() {
duke@435 840 if (VerifyThread) {
duke@435 841 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 842 #ifdef CC_INTERP
duke@435 843 save_frame(0);
duke@435 844 #else
duke@435 845 // make sure G2_thread contains the right value
duke@435 846 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 847 mov(G1, L1); // avoid clobbering G1
duke@435 848 // G2 saved below
duke@435 849 mov(G3, L3); // avoid clobbering G3
duke@435 850 mov(G4, L4); // avoid clobbering G4
duke@435 851 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 852 #endif /* CC_INTERP */
duke@435 853 #if defined(COMPILER2) && !defined(_LP64)
duke@435 854 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 855 srlx(G1,32,L0);
duke@435 856 srlx(G4,32,L6);
duke@435 857 #endif
duke@435 858 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 859 delayed()->mov(G2_thread, O0);
duke@435 860
duke@435 861 mov(L1, G1); // Restore G1
duke@435 862 // G2 restored below
duke@435 863 mov(L3, G3); // restore G3
duke@435 864 mov(L4, G4); // restore G4
duke@435 865 mov(L5, G5_method); // restore G5_method
duke@435 866 #if defined(COMPILER2) && !defined(_LP64)
duke@435 867 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 868 sllx(L0,32,G2); // Move old high G1 bits high in G2
duke@435 869 sllx(G1, 0,G1); // Clear current high G1 bits
duke@435 870 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 871 sllx(L6,32,G2); // Move old high G4 bits high in G2
duke@435 872 sllx(G4, 0,G4); // Clear current high G4 bits
duke@435 873 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 874 #endif
duke@435 875 restore(O0, 0, G2_thread);
duke@435 876 }
duke@435 877 }
duke@435 878
duke@435 879
duke@435 880 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 881 verify_thread();
duke@435 882 if (thread_cache->is_valid()) {
duke@435 883 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 884 mov(G2_thread, thread_cache);
duke@435 885 }
duke@435 886 if (VerifyThread) {
duke@435 887 // smash G2_thread, as if the VM were about to anyway
duke@435 888 set(0x67676767, G2_thread);
duke@435 889 }
duke@435 890 }
duke@435 891
duke@435 892
duke@435 893 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 894 if (thread_cache->is_valid()) {
duke@435 895 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 896 mov(thread_cache, G2_thread);
duke@435 897 verify_thread();
duke@435 898 } else {
duke@435 899 // do it the slow way
duke@435 900 get_thread();
duke@435 901 }
duke@435 902 }
duke@435 903
duke@435 904
duke@435 905 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 906 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 907 assert_not_delayed();
duke@435 908 Address flags(G2_thread,
duke@435 909 0,
duke@435 910 in_bytes(JavaThread::frame_anchor_offset()) +
duke@435 911 in_bytes(JavaFrameAnchor::flags_offset()));
duke@435 912 Address pc_addr(G2_thread,
duke@435 913 0,
duke@435 914 in_bytes(JavaThread::last_Java_pc_offset()));
duke@435 915
duke@435 916 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 917 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 918 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 919
duke@435 920 #ifdef ASSERT
duke@435 921 // Verify that flags was zeroed on return to Java
duke@435 922 Label PcOk;
duke@435 923 save_frame(0); // to avoid clobbering O0
duke@435 924 ld_ptr(pc_addr, L0);
duke@435 925 tst(L0);
duke@435 926 #ifdef _LP64
duke@435 927 brx(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 928 #else
duke@435 929 br(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 930 #endif // _LP64
duke@435 931 delayed() -> nop();
duke@435 932 stop("last_Java_pc not zeroed before leaving Java");
duke@435 933 bind(PcOk);
duke@435 934
duke@435 935 // Verify that flags was zeroed on return to Java
duke@435 936 Label FlagsOk;
duke@435 937 ld(flags, L0);
duke@435 938 tst(L0);
duke@435 939 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 940 delayed() -> restore();
duke@435 941 stop("flags not zeroed before leaving Java");
duke@435 942 bind(FlagsOk);
duke@435 943 #endif /* ASSERT */
duke@435 944 //
duke@435 945 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 946 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 947 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 948 // native call having a standard frame linkage where we can find the pc.
duke@435 949
duke@435 950 if (last_Java_pc->is_valid()) {
duke@435 951 st_ptr(last_Java_pc, pc_addr);
duke@435 952 }
duke@435 953
duke@435 954 #ifdef _LP64
duke@435 955 #ifdef ASSERT
duke@435 956 // Make sure that we have an odd stack
duke@435 957 Label StackOk;
duke@435 958 andcc(last_java_sp, 0x01, G0);
duke@435 959 br(Assembler::notZero, false, Assembler::pt, StackOk);
duke@435 960 delayed() -> nop();
duke@435 961 stop("Stack Not Biased in set_last_Java_frame");
duke@435 962 bind(StackOk);
duke@435 963 #endif // ASSERT
duke@435 964 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 965 add( last_java_sp, STACK_BIAS, G4_scratch );
duke@435 966 st_ptr(G4_scratch, Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
duke@435 967 #else
duke@435 968 st_ptr(last_java_sp, Address(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset())));
duke@435 969 #endif // _LP64
duke@435 970 }
duke@435 971
duke@435 972 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 973 assert_not_delayed();
duke@435 974
duke@435 975 Address sp_addr(G2_thread, 0, in_bytes(JavaThread::last_Java_sp_offset()));
duke@435 976 Address pc_addr(G2_thread,
duke@435 977 0,
duke@435 978 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
duke@435 979 Address flags(G2_thread,
duke@435 980 0,
duke@435 981 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
duke@435 982
duke@435 983 #ifdef ASSERT
duke@435 984 // check that it WAS previously set
duke@435 985 #ifdef CC_INTERP
duke@435 986 save_frame(0);
duke@435 987 #else
duke@435 988 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 989 #endif /* CC_INTERP */
duke@435 990 ld_ptr(sp_addr, L0);
duke@435 991 tst(L0);
duke@435 992 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 993 restore();
duke@435 994 #endif // ASSERT
duke@435 995
duke@435 996 st_ptr(G0, sp_addr);
duke@435 997 // Always return last_Java_pc to zero
duke@435 998 st_ptr(G0, pc_addr);
duke@435 999 // Always null flags after return to Java
duke@435 1000 st(G0, flags);
duke@435 1001 }
duke@435 1002
duke@435 1003
duke@435 1004 void MacroAssembler::call_VM_base(
duke@435 1005 Register oop_result,
duke@435 1006 Register thread_cache,
duke@435 1007 Register last_java_sp,
duke@435 1008 address entry_point,
duke@435 1009 int number_of_arguments,
duke@435 1010 bool check_exceptions)
duke@435 1011 {
duke@435 1012 assert_not_delayed();
duke@435 1013
duke@435 1014 // determine last_java_sp register
duke@435 1015 if (!last_java_sp->is_valid()) {
duke@435 1016 last_java_sp = SP;
duke@435 1017 }
duke@435 1018 // debugging support
duke@435 1019 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1020
duke@435 1021 // 64-bit last_java_sp is biased!
duke@435 1022 set_last_Java_frame(last_java_sp, noreg);
duke@435 1023 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1024 save_thread(thread_cache);
duke@435 1025 // do the call
duke@435 1026 call(entry_point, relocInfo::runtime_call_type);
duke@435 1027 if (!VerifyThread)
duke@435 1028 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1029 else
duke@435 1030 delayed()->nop(); // (thread already passed)
duke@435 1031 restore_thread(thread_cache);
duke@435 1032 reset_last_Java_frame();
duke@435 1033
duke@435 1034 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1035 if (check_exceptions) {
duke@435 1036 check_and_forward_exception(Gtemp);
duke@435 1037 }
duke@435 1038
duke@435 1039 // get oop result if there is one and reset the value in the thread
duke@435 1040 if (oop_result->is_valid()) {
duke@435 1041 get_vm_result(oop_result);
duke@435 1042 }
duke@435 1043 }
duke@435 1044
duke@435 1045 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1046 {
duke@435 1047 Label L;
duke@435 1048
duke@435 1049 check_and_handle_popframe(scratch_reg);
duke@435 1050 check_and_handle_earlyret(scratch_reg);
duke@435 1051
duke@435 1052 Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
duke@435 1053 ld_ptr(exception_addr, scratch_reg);
duke@435 1054 br_null(scratch_reg,false,pt,L);
duke@435 1055 delayed()->nop();
duke@435 1056 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1057 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1058 delayed()->nop();
duke@435 1059 bind(L);
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1064 }
duke@435 1065
duke@435 1066
duke@435 1067 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1068 }
duke@435 1069
duke@435 1070
duke@435 1071 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1072 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1073 }
duke@435 1074
duke@435 1075
duke@435 1076 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1077 // O0 is reserved for the thread
duke@435 1078 mov(arg_1, O1);
duke@435 1079 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1080 }
duke@435 1081
duke@435 1082
duke@435 1083 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1084 // O0 is reserved for the thread
duke@435 1085 mov(arg_1, O1);
duke@435 1086 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1087 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1088 }
duke@435 1089
duke@435 1090
duke@435 1091 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1092 // O0 is reserved for the thread
duke@435 1093 mov(arg_1, O1);
duke@435 1094 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1095 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1096 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1097 }
duke@435 1098
duke@435 1099
duke@435 1100
duke@435 1101 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1102 // has already been performed by a stub, and the last Java frame is
duke@435 1103 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1104 // instead of SP.
duke@435 1105
duke@435 1106
duke@435 1107 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1108 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1109 }
duke@435 1110
duke@435 1111
duke@435 1112 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1113 // O0 is reserved for the thread
duke@435 1114 mov(arg_1, O1);
duke@435 1115 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1120 // O0 is reserved for the thread
duke@435 1121 mov(arg_1, O1);
duke@435 1122 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1123 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1128 // O0 is reserved for the thread
duke@435 1129 mov(arg_1, O1);
duke@435 1130 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1131 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1132 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1133 }
duke@435 1134
duke@435 1135
duke@435 1136
duke@435 1137 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1138 assert_not_delayed();
duke@435 1139 save_thread(thread_cache);
duke@435 1140 // do the call
duke@435 1141 call(entry_point, relocInfo::runtime_call_type);
duke@435 1142 delayed()->nop();
duke@435 1143 restore_thread(thread_cache);
duke@435 1144 }
duke@435 1145
duke@435 1146
duke@435 1147 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1148 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1149 }
duke@435 1150
duke@435 1151
duke@435 1152 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1153 mov(arg_1, O0);
duke@435 1154 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1155 }
duke@435 1156
duke@435 1157
duke@435 1158 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1159 mov(arg_1, O0);
duke@435 1160 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1161 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1162 }
duke@435 1163
duke@435 1164
duke@435 1165 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1166 mov(arg_1, O0);
duke@435 1167 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1168 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1169 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1170 }
duke@435 1171
duke@435 1172
duke@435 1173 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1174 verify_thread();
duke@435 1175 Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
duke@435 1176 ld_ptr( vm_result_addr, oop_result);
duke@435 1177 st_ptr(G0, vm_result_addr);
duke@435 1178 verify_oop(oop_result);
duke@435 1179 }
duke@435 1180
duke@435 1181
duke@435 1182 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1183 verify_thread();
duke@435 1184 Address vm_result_addr_2(G2_thread, 0, in_bytes(JavaThread::vm_result_2_offset()));
duke@435 1185 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1186 st_ptr(G0, vm_result_addr_2);
duke@435 1187 verify_oop(oop_result);
duke@435 1188 }
duke@435 1189
duke@435 1190
duke@435 1191 // We require that C code which does not return a value in vm_result will
duke@435 1192 // leave it undisturbed.
duke@435 1193 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1194 verify_thread();
duke@435 1195 Address vm_result_addr(G2_thread, 0, in_bytes(JavaThread::vm_result_offset()));
duke@435 1196 verify_oop(oop_result);
duke@435 1197
duke@435 1198 # ifdef ASSERT
duke@435 1199 // Check that we are not overwriting any other oop.
duke@435 1200 #ifdef CC_INTERP
duke@435 1201 save_frame(0);
duke@435 1202 #else
duke@435 1203 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1204 #endif /* CC_INTERP */
duke@435 1205 ld_ptr(vm_result_addr, L0);
duke@435 1206 tst(L0);
duke@435 1207 restore();
duke@435 1208 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1209 // }
duke@435 1210 # endif
duke@435 1211
duke@435 1212 st_ptr(oop_result, vm_result_addr);
duke@435 1213 }
duke@435 1214
duke@435 1215
duke@435 1216 void MacroAssembler::store_check(Register tmp, Register obj) {
duke@435 1217 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1218
duke@435 1219 /* $$$ This stuff needs to go into one of the BarrierSet generator
duke@435 1220 functions. (The particular barrier sets will have to be friends of
duke@435 1221 MacroAssembler, I guess.) */
duke@435 1222 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1223 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
duke@435 1224 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1225 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1226 #ifdef _LP64
duke@435 1227 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1228 #else
duke@435 1229 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1230 #endif
duke@435 1231 assert( tmp != obj, "need separate temp reg");
duke@435 1232 Address rs(tmp, (address)ct->byte_map_base);
duke@435 1233 load_address(rs);
duke@435 1234 stb(G0, rs.base(), obj);
duke@435 1235 }
duke@435 1236
duke@435 1237 void MacroAssembler::store_check(Register tmp, Register obj, Register offset) {
duke@435 1238 store_check(tmp, obj);
duke@435 1239 }
duke@435 1240
duke@435 1241 // %%% Note: The following six instructions have been moved,
duke@435 1242 // unchanged, from assembler_sparc.inline.hpp.
duke@435 1243 // They will be refactored at a later date.
duke@435 1244
duke@435 1245 void MacroAssembler::sethi(intptr_t imm22a,
duke@435 1246 Register d,
duke@435 1247 bool ForceRelocatable,
duke@435 1248 RelocationHolder const& rspec) {
duke@435 1249 Address adr( d, (address)imm22a, rspec );
duke@435 1250 MacroAssembler::sethi( adr, ForceRelocatable );
duke@435 1251 }
duke@435 1252
duke@435 1253
duke@435 1254 void MacroAssembler::sethi(Address& a, bool ForceRelocatable) {
duke@435 1255 address save_pc;
duke@435 1256 int shiftcnt;
duke@435 1257 // if addr of local, do not need to load it
duke@435 1258 assert(a.base() != FP && a.base() != SP, "just use ld or st for locals");
duke@435 1259 #ifdef _LP64
duke@435 1260 # ifdef CHECK_DELAY
duke@435 1261 assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
duke@435 1262 # endif
duke@435 1263 v9_dep();
duke@435 1264 // ForceRelocatable = 1;
duke@435 1265 save_pc = pc();
duke@435 1266 if (a.hi32() == 0 && a.low32() >= 0) {
duke@435 1267 Assembler::sethi(a.low32(), a.base(), a.rspec());
duke@435 1268 }
duke@435 1269 else if (a.hi32() == -1) {
duke@435 1270 Assembler::sethi(~a.low32(), a.base(), a.rspec());
duke@435 1271 xor3(a.base(), ~low10(~0), a.base());
duke@435 1272 }
duke@435 1273 else {
duke@435 1274 Assembler::sethi(a.hi32(), a.base(), a.rspec() ); // 22
duke@435 1275 if ( a.hi32() & 0x3ff ) // Any bits?
duke@435 1276 or3( a.base(), a.hi32() & 0x3ff ,a.base() ); // High 32 bits are now in low 32
duke@435 1277 if ( a.low32() & 0xFFFFFC00 ) { // done?
duke@435 1278 if( (a.low32() >> 20) & 0xfff ) { // Any bits set?
duke@435 1279 sllx(a.base(), 12, a.base()); // Make room for next 12 bits
duke@435 1280 or3( a.base(), (a.low32() >> 20) & 0xfff,a.base() ); // Or in next 12
duke@435 1281 shiftcnt = 0; // We already shifted
duke@435 1282 }
duke@435 1283 else
duke@435 1284 shiftcnt = 12;
duke@435 1285 if( (a.low32() >> 10) & 0x3ff ) {
duke@435 1286 sllx(a.base(), shiftcnt+10, a.base());// Make room for last 10 bits
duke@435 1287 or3( a.base(), (a.low32() >> 10) & 0x3ff,a.base() ); // Or in next 10
duke@435 1288 shiftcnt = 0;
duke@435 1289 }
duke@435 1290 else
duke@435 1291 shiftcnt = 10;
duke@435 1292 sllx(a.base(), shiftcnt+10 , a.base()); // Shift leaving disp field 0'd
duke@435 1293 }
duke@435 1294 else
duke@435 1295 sllx( a.base(), 32, a.base() );
duke@435 1296 }
duke@435 1297 // Pad out the instruction sequence so it can be
duke@435 1298 // patched later.
duke@435 1299 if ( ForceRelocatable || (a.rtype() != relocInfo::none &&
duke@435 1300 a.rtype() != relocInfo::runtime_call_type) ) {
duke@435 1301 while ( pc() < (save_pc + (7 * BytesPerInstWord )) )
duke@435 1302 nop();
duke@435 1303 }
duke@435 1304 #else
duke@435 1305 Assembler::sethi(a.hi(), a.base(), a.rspec());
duke@435 1306 #endif
duke@435 1307
duke@435 1308 }
duke@435 1309
duke@435 1310 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
duke@435 1311 #ifdef _LP64
duke@435 1312 if (worst_case) return 7;
duke@435 1313 intptr_t iaddr = (intptr_t)a;
duke@435 1314 int hi32 = (int)(iaddr >> 32);
duke@435 1315 int lo32 = (int)(iaddr);
duke@435 1316 int inst_count;
duke@435 1317 if (hi32 == 0 && lo32 >= 0)
duke@435 1318 inst_count = 1;
duke@435 1319 else if (hi32 == -1)
duke@435 1320 inst_count = 2;
duke@435 1321 else {
duke@435 1322 inst_count = 2;
duke@435 1323 if ( hi32 & 0x3ff )
duke@435 1324 inst_count++;
duke@435 1325 if ( lo32 & 0xFFFFFC00 ) {
duke@435 1326 if( (lo32 >> 20) & 0xfff ) inst_count += 2;
duke@435 1327 if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
duke@435 1328 }
duke@435 1329 }
duke@435 1330 return BytesPerInstWord * inst_count;
duke@435 1331 #else
duke@435 1332 return BytesPerInstWord;
duke@435 1333 #endif
duke@435 1334 }
duke@435 1335
duke@435 1336 int MacroAssembler::worst_case_size_of_set() {
duke@435 1337 return size_of_sethi(NULL, true) + 1;
duke@435 1338 }
duke@435 1339
duke@435 1340 void MacroAssembler::set(intptr_t value, Register d,
duke@435 1341 RelocationHolder const& rspec) {
duke@435 1342 Address val( d, (address)value, rspec);
duke@435 1343
duke@435 1344 if ( rspec.type() == relocInfo::none ) {
duke@435 1345 // can optimize
duke@435 1346 if (-4096 <= value && value <= 4095) {
duke@435 1347 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1348 return;
duke@435 1349 }
duke@435 1350 if (inv_hi22(hi22(value)) == value) {
duke@435 1351 sethi(val);
duke@435 1352 return;
duke@435 1353 }
duke@435 1354 }
duke@435 1355 assert_not_delayed( (char *)"cannot put two instructions in delay slot" );
duke@435 1356 sethi( val );
duke@435 1357 if (rspec.type() != relocInfo::none || (value & 0x3ff) != 0) {
duke@435 1358 add( d, value & 0x3ff, d, rspec);
duke@435 1359 }
duke@435 1360 }
duke@435 1361
duke@435 1362 void MacroAssembler::setsw(int value, Register d,
duke@435 1363 RelocationHolder const& rspec) {
duke@435 1364 Address val( d, (address)value, rspec);
duke@435 1365 if ( rspec.type() == relocInfo::none ) {
duke@435 1366 // can optimize
duke@435 1367 if (-4096 <= value && value <= 4095) {
duke@435 1368 or3(G0, value, d);
duke@435 1369 return;
duke@435 1370 }
duke@435 1371 if (inv_hi22(hi22(value)) == value) {
duke@435 1372 sethi( val );
duke@435 1373 #ifndef _LP64
duke@435 1374 if ( value < 0 ) {
duke@435 1375 assert_not_delayed();
duke@435 1376 sra (d, G0, d);
duke@435 1377 }
duke@435 1378 #endif
duke@435 1379 return;
duke@435 1380 }
duke@435 1381 }
duke@435 1382 assert_not_delayed();
duke@435 1383 sethi( val );
duke@435 1384 add( d, value & 0x3ff, d, rspec);
duke@435 1385
duke@435 1386 // (A negative value could be loaded in 2 insns with sethi/xor,
duke@435 1387 // but it would take a more complex relocation.)
duke@435 1388 #ifndef _LP64
duke@435 1389 if ( value < 0)
duke@435 1390 sra(d, G0, d);
duke@435 1391 #endif
duke@435 1392 }
duke@435 1393
duke@435 1394 // %%% End of moved six set instructions.
duke@435 1395
duke@435 1396
duke@435 1397 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1398 assert_not_delayed();
duke@435 1399 v9_dep();
duke@435 1400
duke@435 1401 int hi = (int)(value >> 32);
duke@435 1402 int lo = (int)(value & ~0);
duke@435 1403 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1404 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1405 or3(G0, lo, d);
duke@435 1406 } else if (hi == 0) {
duke@435 1407 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1408 if (low10(lo) != 0)
duke@435 1409 or3(d, low10(lo), d);
duke@435 1410 }
duke@435 1411 else if (hi == -1) {
duke@435 1412 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1413 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1414 }
duke@435 1415 else if (lo == 0) {
duke@435 1416 if (Assembler::is_simm13(hi)) {
duke@435 1417 or3(G0, hi, d);
duke@435 1418 } else {
duke@435 1419 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1420 if (low10(hi) != 0)
duke@435 1421 or3(d, low10(hi), d);
duke@435 1422 }
duke@435 1423 sllx(d, 32, d);
duke@435 1424 }
duke@435 1425 else {
duke@435 1426 Assembler::sethi(hi, tmp);
duke@435 1427 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1428 if (low10(hi) != 0)
duke@435 1429 or3 (tmp, low10(hi), tmp);
duke@435 1430 if (low10(lo) != 0)
duke@435 1431 or3 ( d, low10(lo), d);
duke@435 1432 sllx(tmp, 32, tmp);
duke@435 1433 or3 (d, tmp, d);
duke@435 1434 }
duke@435 1435 }
duke@435 1436
duke@435 1437 // compute size in bytes of sparc frame, given
duke@435 1438 // number of extraWords
duke@435 1439 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1440
duke@435 1441 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1442
duke@435 1443 nWords += extraWords;
duke@435 1444
duke@435 1445 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1446
duke@435 1447 return nWords * BytesPerWord;
duke@435 1448 }
duke@435 1449
duke@435 1450
duke@435 1451 // save_frame: given number of "extra" words in frame,
duke@435 1452 // issue approp. save instruction (p 200, v8 manual)
duke@435 1453
duke@435 1454 void MacroAssembler::save_frame(int extraWords = 0) {
duke@435 1455 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1456 if (is_simm13(delta)) {
duke@435 1457 save(SP, delta, SP);
duke@435 1458 } else {
duke@435 1459 set(delta, G3_scratch);
duke@435 1460 save(SP, G3_scratch, SP);
duke@435 1461 }
duke@435 1462 }
duke@435 1463
duke@435 1464
duke@435 1465 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1466 if (is_simm13(-size_in_bytes)) {
duke@435 1467 save(SP, -size_in_bytes, SP);
duke@435 1468 } else {
duke@435 1469 set(-size_in_bytes, G3_scratch);
duke@435 1470 save(SP, G3_scratch, SP);
duke@435 1471 }
duke@435 1472 }
duke@435 1473
duke@435 1474
duke@435 1475 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1476 Register s1, Register d1,
duke@435 1477 Register s2, Register d2) {
duke@435 1478 assert_not_delayed();
duke@435 1479
duke@435 1480 // The trick here is to use precisely the same memory word
duke@435 1481 // that trap handlers also use to save the register.
duke@435 1482 // This word cannot be used for any other purpose, but
duke@435 1483 // it works fine to save the register's value, whether or not
duke@435 1484 // an interrupt flushes register windows at any given moment!
duke@435 1485 Address s1_addr;
duke@435 1486 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1487 s1_addr = s1->address_in_saved_window();
duke@435 1488 st_ptr(s1, s1_addr);
duke@435 1489 }
duke@435 1490
duke@435 1491 Address s2_addr;
duke@435 1492 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1493 s2_addr = s2->address_in_saved_window();
duke@435 1494 st_ptr(s2, s2_addr);
duke@435 1495 }
duke@435 1496
duke@435 1497 save_frame(extraWords);
duke@435 1498
duke@435 1499 if (s1_addr.base() == SP) {
duke@435 1500 ld_ptr(s1_addr.after_save(), d1);
duke@435 1501 } else if (s1->is_valid()) {
duke@435 1502 mov(s1->after_save(), d1);
duke@435 1503 }
duke@435 1504
duke@435 1505 if (s2_addr.base() == SP) {
duke@435 1506 ld_ptr(s2_addr.after_save(), d2);
duke@435 1507 } else if (s2->is_valid()) {
duke@435 1508 mov(s2->after_save(), d2);
duke@435 1509 }
duke@435 1510 }
duke@435 1511
duke@435 1512
duke@435 1513 Address MacroAssembler::allocate_oop_address(jobject obj, Register d) {
duke@435 1514 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1515 int oop_index = oop_recorder()->allocate_index(obj);
duke@435 1516 return Address(d, address(obj), oop_Relocation::spec(oop_index));
duke@435 1517 }
duke@435 1518
duke@435 1519
duke@435 1520 Address MacroAssembler::constant_oop_address(jobject obj, Register d) {
duke@435 1521 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1522 int oop_index = oop_recorder()->find_index(obj);
duke@435 1523 return Address(d, address(obj), oop_Relocation::spec(oop_index));
duke@435 1524 }
duke@435 1525
kvn@599 1526 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1527 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1528 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1529 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1530
kvn@599 1531 assert_not_delayed();
kvn@599 1532 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1533 relocate(rspec, 1);
kvn@599 1534 // Assembler::sethi(0x3fffff, d);
kvn@599 1535 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1536 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1537 add(d, 0x3ff, d);
kvn@599 1538
kvn@599 1539 }
kvn@599 1540
duke@435 1541
duke@435 1542 void MacroAssembler::align(int modulus) {
duke@435 1543 while (offset() % modulus != 0) nop();
duke@435 1544 }
duke@435 1545
duke@435 1546
duke@435 1547 void MacroAssembler::safepoint() {
duke@435 1548 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1549 }
duke@435 1550
duke@435 1551
duke@435 1552 void RegistersForDebugging::print(outputStream* s) {
duke@435 1553 int j;
duke@435 1554 for ( j = 0; j < 8; ++j )
duke@435 1555 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1556 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1557 s->cr();
duke@435 1558
duke@435 1559 for ( j = 0; j < 8; ++j )
duke@435 1560 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1561 s->cr();
duke@435 1562
duke@435 1563 for ( j = 0; j < 8; ++j )
duke@435 1564 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1565 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1566 s->cr();
duke@435 1567
duke@435 1568 for ( j = 0; j < 8; ++j )
duke@435 1569 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1570 s->cr();
duke@435 1571
duke@435 1572 // print out floats with compression
duke@435 1573 for (j = 0; j < 32; ) {
duke@435 1574 jfloat val = f[j];
duke@435 1575 int last = j;
duke@435 1576 for ( ; last+1 < 32; ++last ) {
duke@435 1577 char b1[1024], b2[1024];
duke@435 1578 sprintf(b1, "%f", val);
duke@435 1579 sprintf(b2, "%f", f[last+1]);
duke@435 1580 if (strcmp(b1, b2))
duke@435 1581 break;
duke@435 1582 }
duke@435 1583 s->print("f%d", j);
duke@435 1584 if ( j != last ) s->print(" - f%d", last);
duke@435 1585 s->print(" = %f", val);
duke@435 1586 s->fill_to(25);
duke@435 1587 s->print_cr(" (0x%x)", val);
duke@435 1588 j = last + 1;
duke@435 1589 }
duke@435 1590 s->cr();
duke@435 1591
duke@435 1592 // and doubles (evens only)
duke@435 1593 for (j = 0; j < 32; ) {
duke@435 1594 jdouble val = d[j];
duke@435 1595 int last = j;
duke@435 1596 for ( ; last+1 < 32; ++last ) {
duke@435 1597 char b1[1024], b2[1024];
duke@435 1598 sprintf(b1, "%f", val);
duke@435 1599 sprintf(b2, "%f", d[last+1]);
duke@435 1600 if (strcmp(b1, b2))
duke@435 1601 break;
duke@435 1602 }
duke@435 1603 s->print("d%d", 2 * j);
duke@435 1604 if ( j != last ) s->print(" - d%d", last);
duke@435 1605 s->print(" = %f", val);
duke@435 1606 s->fill_to(30);
duke@435 1607 s->print("(0x%x)", *(int*)&val);
duke@435 1608 s->fill_to(42);
duke@435 1609 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1610 j = last + 1;
duke@435 1611 }
duke@435 1612 s->cr();
duke@435 1613 }
duke@435 1614
duke@435 1615 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1616 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1617 a->flush_windows();
duke@435 1618 int i;
duke@435 1619 for (i = 0; i < 8; ++i) {
duke@435 1620 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1621 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1622 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1623 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1624 }
duke@435 1625 for (i = 0; i < 32; ++i) {
duke@435 1626 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1627 }
duke@435 1628 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1629 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1630 }
duke@435 1631 }
duke@435 1632
duke@435 1633 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1634 for (int i = 1; i < 8; ++i) {
duke@435 1635 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1636 }
duke@435 1637 for (int j = 0; j < 32; ++j) {
duke@435 1638 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1639 }
duke@435 1640 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1641 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1642 }
duke@435 1643 }
duke@435 1644
duke@435 1645
duke@435 1646 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1647 void MacroAssembler::push_fTOS() {
duke@435 1648 // %%%%%% need to implement this
duke@435 1649 }
duke@435 1650
duke@435 1651 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1652 void MacroAssembler::pop_fTOS() {
duke@435 1653 // %%%%%% need to implement this
duke@435 1654 }
duke@435 1655
duke@435 1656 void MacroAssembler::empty_FPU_stack() {
duke@435 1657 // %%%%%% need to implement this
duke@435 1658 }
duke@435 1659
duke@435 1660 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1661 // plausibility check for oops
duke@435 1662 if (!VerifyOops) return;
duke@435 1663
duke@435 1664 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1665
duke@435 1666 char buffer[16];
duke@435 1667 sprintf(buffer, "%d", line);
duke@435 1668 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1669 char * real_msg = new char[len];
duke@435 1670 sprintf(real_msg, "%s (%s:%d)", msg, file, line);
duke@435 1671
duke@435 1672 // Call indirectly to solve generation ordering problem
duke@435 1673 Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1674
duke@435 1675 // Make some space on stack above the current register window.
duke@435 1676 // Enough to hold 8 64-bit registers.
duke@435 1677 add(SP,-8*8,SP);
duke@435 1678
duke@435 1679 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1680 // of 64-bit longs in the 32-bit build.
duke@435 1681 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1682 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1683 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1684 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1685
duke@435 1686 set((intptr_t)real_msg, O1);
duke@435 1687 // Load address to call to into O7
duke@435 1688 load_ptr_contents(a, O7);
duke@435 1689 // Register call to verify_oop_subroutine
duke@435 1690 callr(O7, G0);
duke@435 1691 delayed()->nop();
duke@435 1692 // recover frame size
duke@435 1693 add(SP, 8*8,SP);
duke@435 1694 }
duke@435 1695
duke@435 1696 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1697 // plausibility check for oops
duke@435 1698 if (!VerifyOops) return;
duke@435 1699
duke@435 1700 char buffer[64];
duke@435 1701 sprintf(buffer, "%d", line);
duke@435 1702 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1703 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1704 len += strlen(buffer);
duke@435 1705 char * real_msg = new char[len];
duke@435 1706 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1707
duke@435 1708 // Call indirectly to solve generation ordering problem
duke@435 1709 Address a(O7, (address)StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1710
duke@435 1711 // Make some space on stack above the current register window.
duke@435 1712 // Enough to hold 8 64-bit registers.
duke@435 1713 add(SP,-8*8,SP);
duke@435 1714
duke@435 1715 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1716 // of 64-bit longs in the 32-bit build.
duke@435 1717 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1718 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1719 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1720 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1721
duke@435 1722 set((intptr_t)real_msg, O1);
duke@435 1723 // Load address to call to into O7
duke@435 1724 load_ptr_contents(a, O7);
duke@435 1725 // Register call to verify_oop_subroutine
duke@435 1726 callr(O7, G0);
duke@435 1727 delayed()->nop();
duke@435 1728 // recover frame size
duke@435 1729 add(SP, 8*8,SP);
duke@435 1730 }
duke@435 1731
duke@435 1732 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1733 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1734
duke@435 1735 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1736 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1737 // registers, including flags. May not use a register 'save', as this blows
duke@435 1738 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1739 // call.
duke@435 1740 void MacroAssembler::verify_oop_subroutine() {
duke@435 1741 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1742
duke@435 1743 // Leaf call; no frame.
duke@435 1744 Label succeed, fail, null_or_fail;
duke@435 1745
duke@435 1746 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1747 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1748 Register O0_obj = O0;
duke@435 1749
duke@435 1750 // Save some more registers for temps.
duke@435 1751 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1752 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1753 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1754 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1755
duke@435 1756 // Save flags
duke@435 1757 Register O5_save_flags = O5;
duke@435 1758 rdccr( O5_save_flags );
duke@435 1759
duke@435 1760 { // count number of verifies
duke@435 1761 Register O2_adr = O2;
duke@435 1762 Register O3_accum = O3;
duke@435 1763 Address count_addr( O2_adr, (address) StubRoutines::verify_oop_count_addr() );
duke@435 1764 sethi(count_addr);
duke@435 1765 ld(count_addr, O3_accum);
duke@435 1766 inc(O3_accum);
duke@435 1767 st(O3_accum, count_addr);
duke@435 1768 }
duke@435 1769
duke@435 1770 Register O2_mask = O2;
duke@435 1771 Register O3_bits = O3;
duke@435 1772 Register O4_temp = O4;
duke@435 1773
duke@435 1774 // mark lower end of faulting range
duke@435 1775 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1776 _verify_oop_implicit_branch[0] = pc();
duke@435 1777
duke@435 1778 // We can't check the mark oop because it could be in the process of
duke@435 1779 // locking or unlocking while this is running.
duke@435 1780 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1781 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1782
duke@435 1783 // assert((obj & oop_mask) == oop_bits);
duke@435 1784 and3(O0_obj, O2_mask, O4_temp);
duke@435 1785 cmp(O4_temp, O3_bits);
duke@435 1786 brx(notEqual, false, pn, null_or_fail);
duke@435 1787 delayed()->nop();
duke@435 1788
duke@435 1789 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1790 // the null_or_fail case is useless; must test for null separately
duke@435 1791 br_null(O0_obj, false, pn, succeed);
duke@435 1792 delayed()->nop();
duke@435 1793 }
duke@435 1794
duke@435 1795 // Check the klassOop of this object for being in the right area of memory.
duke@435 1796 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1797 load_klass(O0_obj, O0_obj);
duke@435 1798 // assert((klass & klass_mask) == klass_bits);
duke@435 1799 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1800 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1801 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1802 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1803 and3(O0_obj, O2_mask, O4_temp);
duke@435 1804 cmp(O4_temp, O3_bits);
duke@435 1805 brx(notEqual, false, pn, fail);
coleenp@548 1806 delayed()->nop();
duke@435 1807 // Check the klass's klass
coleenp@548 1808 load_klass(O0_obj, O0_obj);
duke@435 1809 and3(O0_obj, O2_mask, O4_temp);
duke@435 1810 cmp(O4_temp, O3_bits);
duke@435 1811 brx(notEqual, false, pn, fail);
duke@435 1812 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1813
duke@435 1814 // mark upper end of faulting range
duke@435 1815 _verify_oop_implicit_branch[1] = pc();
duke@435 1816
duke@435 1817 //-----------------------
duke@435 1818 // all tests pass
duke@435 1819 bind(succeed);
duke@435 1820
duke@435 1821 // Restore prior 64-bit registers
duke@435 1822 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1823 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1824 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1825 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1826 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1827 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1828
duke@435 1829 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1830 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1831
duke@435 1832 //-----------------------
duke@435 1833 bind(null_or_fail); // nulls are less common but OK
duke@435 1834 br_null(O0_obj, false, pt, succeed);
duke@435 1835 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1836
duke@435 1837 //-----------------------
duke@435 1838 // report failure:
duke@435 1839 bind(fail);
duke@435 1840 _verify_oop_implicit_branch[2] = pc();
duke@435 1841
duke@435 1842 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1843
duke@435 1844 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1845
duke@435 1846 // stop_subroutine expects message pointer in I1.
duke@435 1847 mov(I1, O1);
duke@435 1848
duke@435 1849 // Restore prior 64-bit registers
duke@435 1850 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1851 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1852 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1853 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1854 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1855 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1856
duke@435 1857 // factor long stop-sequence into subroutine to save space
duke@435 1858 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1859
duke@435 1860 // call indirectly to solve generation ordering problem
duke@435 1861 Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1862 load_ptr_contents(a, O5);
duke@435 1863 jmpl(O5, 0, O7);
duke@435 1864 delayed()->nop();
duke@435 1865 }
duke@435 1866
duke@435 1867
duke@435 1868 void MacroAssembler::stop(const char* msg) {
duke@435 1869 // save frame first to get O7 for return address
duke@435 1870 // add one word to size in case struct is odd number of words long
duke@435 1871 // It must be doubleword-aligned for storing doubles into it.
duke@435 1872
duke@435 1873 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1874
duke@435 1875 // stop_subroutine expects message pointer in I1.
duke@435 1876 set((intptr_t)msg, O1);
duke@435 1877
duke@435 1878 // factor long stop-sequence into subroutine to save space
duke@435 1879 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1880
duke@435 1881 // call indirectly to solve generation ordering problem
duke@435 1882 Address a(O5, (address)StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1883 load_ptr_contents(a, O5);
duke@435 1884 jmpl(O5, 0, O7);
duke@435 1885 delayed()->nop();
duke@435 1886
duke@435 1887 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1888 // unnoticeable results in the output files.
duke@435 1889
duke@435 1890 // restore(); done in callee to save space!
duke@435 1891 }
duke@435 1892
duke@435 1893
duke@435 1894 void MacroAssembler::warn(const char* msg) {
duke@435 1895 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1896 RegistersForDebugging::save_registers(this);
duke@435 1897 mov(O0, L0);
duke@435 1898 set((intptr_t)msg, O0);
duke@435 1899 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 1900 delayed()->nop();
duke@435 1901 // ret();
duke@435 1902 // delayed()->restore();
duke@435 1903 RegistersForDebugging::restore_registers(this, L0);
duke@435 1904 restore();
duke@435 1905 }
duke@435 1906
duke@435 1907
duke@435 1908 void MacroAssembler::untested(const char* what) {
duke@435 1909 // We must be able to turn interactive prompting off
duke@435 1910 // in order to run automated test scripts on the VM
duke@435 1911 // Use the flag ShowMessageBoxOnError
duke@435 1912
duke@435 1913 char* b = new char[1024];
duke@435 1914 sprintf(b, "untested: %s", what);
duke@435 1915
duke@435 1916 if ( ShowMessageBoxOnError ) stop(b);
duke@435 1917 else warn(b);
duke@435 1918 }
duke@435 1919
duke@435 1920
duke@435 1921 void MacroAssembler::stop_subroutine() {
duke@435 1922 RegistersForDebugging::save_registers(this);
duke@435 1923
duke@435 1924 // for the sake of the debugger, stick a PC on the current frame
duke@435 1925 // (this assumes that the caller has performed an extra "save")
duke@435 1926 mov(I7, L7);
duke@435 1927 add(O7, -7 * BytesPerInt, I7);
duke@435 1928
duke@435 1929 save_frame(); // one more save to free up another O7 register
duke@435 1930 mov(I0, O1); // addr of reg save area
duke@435 1931
duke@435 1932 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 1933 mov(I1, O0); // get msg
duke@435 1934 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 1935 delayed()->nop();
duke@435 1936
duke@435 1937 restore();
duke@435 1938
duke@435 1939 RegistersForDebugging::restore_registers(this, O0);
duke@435 1940
duke@435 1941 save_frame(0);
duke@435 1942 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 1943 delayed()->nop();
duke@435 1944 restore();
duke@435 1945
duke@435 1946 mov(L7, I7);
duke@435 1947 retl();
duke@435 1948 delayed()->restore(); // see stop above
duke@435 1949 }
duke@435 1950
duke@435 1951
duke@435 1952 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 1953 if ( ShowMessageBoxOnError ) {
duke@435 1954 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 1955 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 1956 {
duke@435 1957 // In order to get locks work, we need to fake a in_VM state
duke@435 1958 ttyLocker ttyl;
duke@435 1959 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 1960 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 1961 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 1962 }
duke@435 1963 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 1964 regs->print(::tty);
duke@435 1965 }
duke@435 1966 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 1967 }
duke@435 1968 else
duke@435 1969 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
duke@435 1970 assert(false, "error");
duke@435 1971 }
duke@435 1972
duke@435 1973
duke@435 1974 #ifndef PRODUCT
duke@435 1975 void MacroAssembler::test() {
duke@435 1976 ResourceMark rm;
duke@435 1977
duke@435 1978 CodeBuffer cb("test", 10000, 10000);
duke@435 1979 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 1980 VM_Version::allow_all();
duke@435 1981 a->test_v9();
duke@435 1982 a->test_v8_onlys();
duke@435 1983 VM_Version::revert();
duke@435 1984
duke@435 1985 StubRoutines::Sparc::test_stop_entry()();
duke@435 1986 }
duke@435 1987 #endif
duke@435 1988
duke@435 1989
duke@435 1990 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 1991 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 1992 Label no_extras;
duke@435 1993 br( negative, true, pt, no_extras ); // if neg, clear reg
duke@435 1994 delayed()->set( 0, Rresult); // annuled, so only if taken
duke@435 1995 bind( no_extras );
duke@435 1996 }
duke@435 1997
duke@435 1998
duke@435 1999 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 2000 #ifdef _LP64
duke@435 2001 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2002 #else
duke@435 2003 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2004 #endif
duke@435 2005 bclr(1, Rresult);
duke@435 2006 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2007 }
duke@435 2008
duke@435 2009
duke@435 2010 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2011 calc_frame_size(Rextra_words, Rresult);
duke@435 2012 neg(Rresult);
duke@435 2013 save(SP, Rresult, SP);
duke@435 2014 }
duke@435 2015
duke@435 2016
duke@435 2017 // ---------------------------------------------------------
duke@435 2018 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2019 switch (c) {
duke@435 2020 /*case zero: */
duke@435 2021 case Assembler::equal: return Assembler::rc_z;
duke@435 2022 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2023 case Assembler::less: return Assembler::rc_lz;
duke@435 2024 /*case notZero:*/
duke@435 2025 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2026 case Assembler::greater: return Assembler::rc_gz;
duke@435 2027 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2028 }
duke@435 2029 ShouldNotReachHere();
duke@435 2030 return Assembler::rc_z;
duke@435 2031 }
duke@435 2032
duke@435 2033 // compares register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
duke@435 2034 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
duke@435 2035 tst(s1);
duke@435 2036 br (c, a, p, L);
duke@435 2037 }
duke@435 2038
duke@435 2039
duke@435 2040 // Compares a pointer register with zero and branches on null.
duke@435 2041 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2042 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2043 assert_not_delayed();
duke@435 2044 #ifdef _LP64
duke@435 2045 bpr( rc_z, a, p, s1, L );
duke@435 2046 #else
duke@435 2047 tst(s1);
duke@435 2048 br ( zero, a, p, L );
duke@435 2049 #endif
duke@435 2050 }
duke@435 2051
duke@435 2052 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2053 assert_not_delayed();
duke@435 2054 #ifdef _LP64
duke@435 2055 bpr( rc_nz, a, p, s1, L );
duke@435 2056 #else
duke@435 2057 tst(s1);
duke@435 2058 br ( notZero, a, p, L );
duke@435 2059 #endif
duke@435 2060 }
duke@435 2061
duke@435 2062
duke@435 2063 // instruction sequences factored across compiler & interpreter
duke@435 2064
duke@435 2065
duke@435 2066 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2067 Register Rb_hi, Register Rb_low,
duke@435 2068 Register Rresult) {
duke@435 2069
duke@435 2070 Label check_low_parts, done;
duke@435 2071
duke@435 2072 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2073 br(equal, true, pt, check_low_parts);
duke@435 2074 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2075
duke@435 2076 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2077 // are negative or not.
duke@435 2078 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2079 // The second one is bigger (unsignedly).
duke@435 2080
duke@435 2081 // Other notes: The first move in each triplet can be unconditional
duke@435 2082 // (and therefore probably prefetchable).
duke@435 2083 // And the equals case for the high part does not need testing,
duke@435 2084 // since that triplet is reached only after finding the high halves differ.
duke@435 2085
duke@435 2086 if (VM_Version::v9_instructions_work()) {
duke@435 2087
duke@435 2088 mov ( -1, Rresult);
duke@435 2089 ba( false, done ); delayed()-> movcc(greater, false, icc, 1, Rresult);
duke@435 2090 }
duke@435 2091 else {
duke@435 2092 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2093 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2094 }
duke@435 2095
duke@435 2096 bind( check_low_parts );
duke@435 2097
duke@435 2098 if (VM_Version::v9_instructions_work()) {
duke@435 2099 mov( -1, Rresult);
duke@435 2100 movcc(equal, false, icc, 0, Rresult);
duke@435 2101 movcc(greaterUnsigned, false, icc, 1, Rresult);
duke@435 2102 }
duke@435 2103 else {
duke@435 2104 set(-1, Rresult);
duke@435 2105 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2106 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2107 }
duke@435 2108 bind( done );
duke@435 2109 }
duke@435 2110
duke@435 2111 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2112 subcc( G0, Rlow, Rlow );
duke@435 2113 subc( G0, Rhi, Rhi );
duke@435 2114 }
duke@435 2115
duke@435 2116 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2117 Register Rcount,
duke@435 2118 Register Rout_high, Register Rout_low,
duke@435 2119 Register Rtemp ) {
duke@435 2120
duke@435 2121
duke@435 2122 Register Ralt_count = Rtemp;
duke@435 2123 Register Rxfer_bits = Rtemp;
duke@435 2124
duke@435 2125 assert( Ralt_count != Rin_high
duke@435 2126 && Ralt_count != Rin_low
duke@435 2127 && Ralt_count != Rcount
duke@435 2128 && Rxfer_bits != Rin_low
duke@435 2129 && Rxfer_bits != Rin_high
duke@435 2130 && Rxfer_bits != Rcount
duke@435 2131 && Rxfer_bits != Rout_low
duke@435 2132 && Rout_low != Rin_high,
duke@435 2133 "register alias checks");
duke@435 2134
duke@435 2135 Label big_shift, done;
duke@435 2136
duke@435 2137 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2138 // Here we use the 32 bit shifts.
duke@435 2139
duke@435 2140 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2141 subcc(Rcount, 31, Ralt_count);
duke@435 2142 br(greater, true, pn, big_shift);
duke@435 2143 delayed()->
duke@435 2144 dec(Ralt_count);
duke@435 2145
duke@435 2146 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2147
duke@435 2148 // We get the transfer bits by shifting right by 32-count the low
duke@435 2149 // register. This is done by shifting right by 31-count and then by one
duke@435 2150 // more to take care of the special (rare) case where count is zero
duke@435 2151 // (shifting by 32 would not work).
duke@435 2152
duke@435 2153 neg( Ralt_count );
duke@435 2154
duke@435 2155 // The order of the next two instructions is critical in the case where
duke@435 2156 // Rin and Rout are the same and should not be reversed.
duke@435 2157
duke@435 2158 srl( Rin_low, Ralt_count, Rxfer_bits ); // shift right by 31-count
duke@435 2159 if (Rcount != Rout_low) {
duke@435 2160 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2161 }
duke@435 2162 sll( Rin_high, Rcount, Rout_high );
duke@435 2163 if (Rcount == Rout_low) {
duke@435 2164 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2165 }
duke@435 2166 srl( Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
duke@435 2167 ba (false, done);
duke@435 2168 delayed()->
duke@435 2169 or3( Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2170
duke@435 2171 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2172 bind(big_shift);
duke@435 2173 sll( Rin_low, Ralt_count, Rout_high );
duke@435 2174 clr( Rout_low );
duke@435 2175
duke@435 2176 bind(done);
duke@435 2177 }
duke@435 2178
duke@435 2179
duke@435 2180 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2181 Register Rcount,
duke@435 2182 Register Rout_high, Register Rout_low,
duke@435 2183 Register Rtemp ) {
duke@435 2184
duke@435 2185 Register Ralt_count = Rtemp;
duke@435 2186 Register Rxfer_bits = Rtemp;
duke@435 2187
duke@435 2188 assert( Ralt_count != Rin_high
duke@435 2189 && Ralt_count != Rin_low
duke@435 2190 && Ralt_count != Rcount
duke@435 2191 && Rxfer_bits != Rin_low
duke@435 2192 && Rxfer_bits != Rin_high
duke@435 2193 && Rxfer_bits != Rcount
duke@435 2194 && Rxfer_bits != Rout_high
duke@435 2195 && Rout_high != Rin_low,
duke@435 2196 "register alias checks");
duke@435 2197
duke@435 2198 Label big_shift, done;
duke@435 2199
duke@435 2200 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2201 // Here we use the 32 bit shifts.
duke@435 2202
duke@435 2203 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2204 subcc(Rcount, 31, Ralt_count);
duke@435 2205 br(greater, true, pn, big_shift);
duke@435 2206 delayed()->dec(Ralt_count);
duke@435 2207
duke@435 2208 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2209
duke@435 2210 // We get the transfer bits by shifting left by 32-count the high
duke@435 2211 // register. This is done by shifting left by 31-count and then by one
duke@435 2212 // more to take care of the special (rare) case where count is zero
duke@435 2213 // (shifting by 32 would not work).
duke@435 2214
duke@435 2215 neg( Ralt_count );
duke@435 2216 if (Rcount != Rout_low) {
duke@435 2217 srl( Rin_low, Rcount, Rout_low );
duke@435 2218 }
duke@435 2219
duke@435 2220 // The order of the next two instructions is critical in the case where
duke@435 2221 // Rin and Rout are the same and should not be reversed.
duke@435 2222
duke@435 2223 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2224 sra( Rin_high, Rcount, Rout_high ); // high half
duke@435 2225 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2226 if (Rcount == Rout_low) {
duke@435 2227 srl( Rin_low, Rcount, Rout_low );
duke@435 2228 }
duke@435 2229 ba (false, done);
duke@435 2230 delayed()->
duke@435 2231 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2232
duke@435 2233 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2234 bind(big_shift);
duke@435 2235
duke@435 2236 sra( Rin_high, Ralt_count, Rout_low );
duke@435 2237 sra( Rin_high, 31, Rout_high ); // sign into hi
duke@435 2238
duke@435 2239 bind( done );
duke@435 2240 }
duke@435 2241
duke@435 2242
duke@435 2243
duke@435 2244 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2245 Register Rcount,
duke@435 2246 Register Rout_high, Register Rout_low,
duke@435 2247 Register Rtemp ) {
duke@435 2248
duke@435 2249 Register Ralt_count = Rtemp;
duke@435 2250 Register Rxfer_bits = Rtemp;
duke@435 2251
duke@435 2252 assert( Ralt_count != Rin_high
duke@435 2253 && Ralt_count != Rin_low
duke@435 2254 && Ralt_count != Rcount
duke@435 2255 && Rxfer_bits != Rin_low
duke@435 2256 && Rxfer_bits != Rin_high
duke@435 2257 && Rxfer_bits != Rcount
duke@435 2258 && Rxfer_bits != Rout_high
duke@435 2259 && Rout_high != Rin_low,
duke@435 2260 "register alias checks");
duke@435 2261
duke@435 2262 Label big_shift, done;
duke@435 2263
duke@435 2264 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2265 // Here we use the 32 bit shifts.
duke@435 2266
duke@435 2267 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2268 subcc(Rcount, 31, Ralt_count);
duke@435 2269 br(greater, true, pn, big_shift);
duke@435 2270 delayed()->dec(Ralt_count);
duke@435 2271
duke@435 2272 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2273
duke@435 2274 // We get the transfer bits by shifting left by 32-count the high
duke@435 2275 // register. This is done by shifting left by 31-count and then by one
duke@435 2276 // more to take care of the special (rare) case where count is zero
duke@435 2277 // (shifting by 32 would not work).
duke@435 2278
duke@435 2279 neg( Ralt_count );
duke@435 2280 if (Rcount != Rout_low) {
duke@435 2281 srl( Rin_low, Rcount, Rout_low );
duke@435 2282 }
duke@435 2283
duke@435 2284 // The order of the next two instructions is critical in the case where
duke@435 2285 // Rin and Rout are the same and should not be reversed.
duke@435 2286
duke@435 2287 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2288 srl( Rin_high, Rcount, Rout_high ); // high half
duke@435 2289 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2290 if (Rcount == Rout_low) {
duke@435 2291 srl( Rin_low, Rcount, Rout_low );
duke@435 2292 }
duke@435 2293 ba (false, done);
duke@435 2294 delayed()->
duke@435 2295 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2296
duke@435 2297 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2298 bind(big_shift);
duke@435 2299
duke@435 2300 srl( Rin_high, Ralt_count, Rout_low );
duke@435 2301 clr( Rout_high );
duke@435 2302
duke@435 2303 bind( done );
duke@435 2304 }
duke@435 2305
duke@435 2306 #ifdef _LP64
duke@435 2307 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2308 cmp(Ra, Rb);
duke@435 2309 mov( -1, Rresult);
duke@435 2310 movcc(equal, false, xcc, 0, Rresult);
duke@435 2311 movcc(greater, false, xcc, 1, Rresult);
duke@435 2312 }
duke@435 2313 #endif
duke@435 2314
duke@435 2315
duke@435 2316 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2317 FloatRegister Fa, FloatRegister Fb,
duke@435 2318 Register Rresult) {
duke@435 2319
duke@435 2320 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2321
duke@435 2322 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2323 Condition eq = f_equal;
duke@435 2324 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2325
duke@435 2326 if (VM_Version::v9_instructions_work()) {
duke@435 2327
duke@435 2328 mov( -1, Rresult );
duke@435 2329 movcc( eq, true, fcc0, 0, Rresult );
duke@435 2330 movcc( gt, true, fcc0, 1, Rresult );
duke@435 2331
duke@435 2332 } else {
duke@435 2333 Label done;
duke@435 2334
duke@435 2335 set( -1, Rresult );
duke@435 2336 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2337 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2338 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2339
duke@435 2340 bind (done);
duke@435 2341 }
duke@435 2342 }
duke@435 2343
duke@435 2344
duke@435 2345 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2346 {
duke@435 2347 if (VM_Version::v9_instructions_work()) {
duke@435 2348 Assembler::fneg(w, s, d);
duke@435 2349 } else {
duke@435 2350 if (w == FloatRegisterImpl::S) {
duke@435 2351 Assembler::fneg(w, s, d);
duke@435 2352 } else if (w == FloatRegisterImpl::D) {
duke@435 2353 // number() does a sanity check on the alignment.
duke@435 2354 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2355 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2356
duke@435 2357 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2358 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2359 } else {
duke@435 2360 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2361
duke@435 2362 // number() does a sanity check on the alignment.
duke@435 2363 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2364 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2365
duke@435 2366 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2367 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2368 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2369 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2370 }
duke@435 2371 }
duke@435 2372 }
duke@435 2373
duke@435 2374 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2375 {
duke@435 2376 if (VM_Version::v9_instructions_work()) {
duke@435 2377 Assembler::fmov(w, s, d);
duke@435 2378 } else {
duke@435 2379 if (w == FloatRegisterImpl::S) {
duke@435 2380 Assembler::fmov(w, s, d);
duke@435 2381 } else if (w == FloatRegisterImpl::D) {
duke@435 2382 // number() does a sanity check on the alignment.
duke@435 2383 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2384 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2385
duke@435 2386 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2387 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2388 } else {
duke@435 2389 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2390
duke@435 2391 // number() does a sanity check on the alignment.
duke@435 2392 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2393 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2394
duke@435 2395 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2396 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2397 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2398 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2399 }
duke@435 2400 }
duke@435 2401 }
duke@435 2402
duke@435 2403 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2404 {
duke@435 2405 if (VM_Version::v9_instructions_work()) {
duke@435 2406 Assembler::fabs(w, s, d);
duke@435 2407 } else {
duke@435 2408 if (w == FloatRegisterImpl::S) {
duke@435 2409 Assembler::fabs(w, s, d);
duke@435 2410 } else if (w == FloatRegisterImpl::D) {
duke@435 2411 // number() does a sanity check on the alignment.
duke@435 2412 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2413 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2414
duke@435 2415 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2416 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2417 } else {
duke@435 2418 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2419
duke@435 2420 // number() does a sanity check on the alignment.
duke@435 2421 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2422 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2423
duke@435 2424 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2425 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2426 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2427 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2428 }
duke@435 2429 }
duke@435 2430 }
duke@435 2431
duke@435 2432 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2433 mov(G1,L1);
duke@435 2434 mov(G2,L2);
duke@435 2435 mov(G3,L3);
duke@435 2436 mov(G4,L4);
duke@435 2437 mov(G5,L5);
duke@435 2438 mov(G6,L6);
duke@435 2439 mov(G7,L7);
duke@435 2440 }
duke@435 2441
duke@435 2442 void MacroAssembler::restore_globals_from_locals() {
duke@435 2443 mov(L1,G1);
duke@435 2444 mov(L2,G2);
duke@435 2445 mov(L3,G3);
duke@435 2446 mov(L4,G4);
duke@435 2447 mov(L5,G5);
duke@435 2448 mov(L6,G6);
duke@435 2449 mov(L7,G7);
duke@435 2450 }
duke@435 2451
duke@435 2452 // Use for 64 bit operation.
duke@435 2453 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2454 {
duke@435 2455 // store ptr_reg as the new top value
duke@435 2456 #ifdef _LP64
duke@435 2457 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2458 #else
duke@435 2459 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2460 #endif // _LP64
duke@435 2461 }
duke@435 2462
duke@435 2463 // [RGV] This routine does not handle 64 bit operations.
duke@435 2464 // use casx_under_lock() or casx directly!!!
duke@435 2465 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2466 {
duke@435 2467 // store ptr_reg as the new top value
duke@435 2468 if (VM_Version::v9_instructions_work()) {
duke@435 2469 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2470 } else {
duke@435 2471
duke@435 2472 // If the register is not an out nor global, it is not visible
duke@435 2473 // after the save. Allocate a register for it, save its
duke@435 2474 // value in the register save area (the save may not flush
duke@435 2475 // registers to the save area).
duke@435 2476
duke@435 2477 Register top_ptr_reg_after_save;
duke@435 2478 Register top_reg_after_save;
duke@435 2479 Register ptr_reg_after_save;
duke@435 2480
duke@435 2481 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2482 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2483 } else {
duke@435 2484 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2485 top_ptr_reg_after_save = L0;
duke@435 2486 st(top_ptr_reg, reg_save_addr);
duke@435 2487 }
duke@435 2488
duke@435 2489 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2490 top_reg_after_save = top_reg->after_save();
duke@435 2491 } else {
duke@435 2492 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2493 top_reg_after_save = L1;
duke@435 2494 st(top_reg, reg_save_addr);
duke@435 2495 }
duke@435 2496
duke@435 2497 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2498 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2499 } else {
duke@435 2500 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2501 ptr_reg_after_save = L2;
duke@435 2502 st(ptr_reg, reg_save_addr);
duke@435 2503 }
duke@435 2504
duke@435 2505 const Register& lock_reg = L3;
duke@435 2506 const Register& lock_ptr_reg = L4;
duke@435 2507 const Register& value_reg = L5;
duke@435 2508 const Register& yield_reg = L6;
duke@435 2509 const Register& yieldall_reg = L7;
duke@435 2510
duke@435 2511 save_frame();
duke@435 2512
duke@435 2513 if (top_ptr_reg_after_save == L0) {
duke@435 2514 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2515 }
duke@435 2516
duke@435 2517 if (top_reg_after_save == L1) {
duke@435 2518 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2519 }
duke@435 2520
duke@435 2521 if (ptr_reg_after_save == L2) {
duke@435 2522 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2523 }
duke@435 2524
duke@435 2525 Label(retry_get_lock);
duke@435 2526 Label(not_same);
duke@435 2527 Label(dont_yield);
duke@435 2528
duke@435 2529 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2530 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2531 // Initialize yield counter
duke@435 2532 mov(G0,yield_reg);
duke@435 2533 mov(G0, yieldall_reg);
duke@435 2534 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2535
duke@435 2536 bind(retry_get_lock);
duke@435 2537 cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 2538 br(Assembler::less, false, Assembler::pt, dont_yield);
duke@435 2539 delayed()->nop();
duke@435 2540
duke@435 2541 if(use_call_vm) {
duke@435 2542 Untested("Need to verify global reg consistancy");
duke@435 2543 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2544 } else {
duke@435 2545 // Save the regs and make space for a C call
duke@435 2546 save(SP, -96, SP);
duke@435 2547 save_all_globals_into_locals();
duke@435 2548 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2549 delayed()->mov(yieldall_reg, O0);
duke@435 2550 restore_globals_from_locals();
duke@435 2551 restore();
duke@435 2552 }
duke@435 2553
duke@435 2554 // reset the counter
duke@435 2555 mov(G0,yield_reg);
duke@435 2556 add(yieldall_reg, 1, yieldall_reg);
duke@435 2557
duke@435 2558 bind(dont_yield);
duke@435 2559 // try to get lock
duke@435 2560 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2561
duke@435 2562 // did we get the lock?
duke@435 2563 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2564 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2565 delayed()->add(yield_reg,1,yield_reg);
duke@435 2566
duke@435 2567 // yes, got lock. do we have the same top?
duke@435 2568 ld(top_ptr_reg_after_save, 0, value_reg);
duke@435 2569 cmp(value_reg, top_reg_after_save);
duke@435 2570 br(Assembler::notEqual, false, Assembler::pn, not_same);
duke@435 2571 delayed()->nop();
duke@435 2572
duke@435 2573 // yes, same top.
duke@435 2574 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2575 membar(Assembler::StoreStore);
duke@435 2576
duke@435 2577 bind(not_same);
duke@435 2578 mov(value_reg, ptr_reg_after_save);
duke@435 2579 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2580
duke@435 2581 restore();
duke@435 2582 }
duke@435 2583 }
duke@435 2584
duke@435 2585 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
duke@435 2586 Label& done, Label* slow_case,
duke@435 2587 BiasedLockingCounters* counters) {
duke@435 2588 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 2589
duke@435 2590 if (PrintBiasedLockingStatistics) {
duke@435 2591 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 2592 if (counters == NULL)
duke@435 2593 counters = BiasedLocking::counters();
duke@435 2594 }
duke@435 2595
duke@435 2596 Label cas_label;
duke@435 2597
duke@435 2598 // Biased locking
duke@435 2599 // See whether the lock is currently biased toward our thread and
duke@435 2600 // whether the epoch is still valid
duke@435 2601 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 2602 // pointers to allow age to be placed into low bits
duke@435 2603 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 2604 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 2605 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 2606 brx(Assembler::notEqual, false, Assembler::pn, cas_label);
coleenp@548 2607 delayed()->nop();
coleenp@548 2608
coleenp@548 2609 load_klass(obj_reg, temp_reg);
duke@435 2610 ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 2611 or3(G2_thread, temp_reg, temp_reg);
duke@435 2612 xor3(mark_reg, temp_reg, temp_reg);
duke@435 2613 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 2614 if (counters != NULL) {
duke@435 2615 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 2616 // Reload mark_reg as we may need it later
duke@435 2617 ld_ptr(Address(obj_reg, 0, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 2618 }
duke@435 2619 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 2620 delayed()->nop();
duke@435 2621
duke@435 2622 Label try_revoke_bias;
duke@435 2623 Label try_rebias;
duke@435 2624 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
duke@435 2625 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 2626
duke@435 2627 // At this point we know that the header has the bias pattern and
duke@435 2628 // that we are not the bias owner in the current epoch. We need to
duke@435 2629 // figure out more details about the state of the header in order to
duke@435 2630 // know what operations can be legally performed on the object's
duke@435 2631 // header.
duke@435 2632
duke@435 2633 // If the low three bits in the xor result aren't clear, that means
duke@435 2634 // the prototype header is no longer biased and we have to revoke
duke@435 2635 // the bias on this object.
duke@435 2636 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 2637 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 2638
duke@435 2639 // Biasing is still enabled for this data type. See whether the
duke@435 2640 // epoch of the current bias is still valid, meaning that the epoch
duke@435 2641 // bits of the mark word are equal to the epoch bits of the
duke@435 2642 // prototype header. (Note that the prototype header's epoch bits
duke@435 2643 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 2644 // toward the current thread. Note that we must be absolutely sure
duke@435 2645 // that the current epoch is invalid in order to do this because
duke@435 2646 // otherwise the manipulations it performs on the mark word are
duke@435 2647 // illegal.
duke@435 2648 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 2649 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 2650
duke@435 2651 // The epoch of the current bias is still valid but we know nothing
duke@435 2652 // about the owner; it might be set or it might be clear. Try to
duke@435 2653 // acquire the bias of the object using an atomic operation. If this
duke@435 2654 // fails we will go in to the runtime to revoke the object's bias.
duke@435 2655 // Note that we first construct the presumed unbiased header so we
duke@435 2656 // don't accidentally blow away another thread's valid bias.
duke@435 2657 delayed()->and3(mark_reg,
duke@435 2658 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 2659 mark_reg);
duke@435 2660 or3(G2_thread, mark_reg, temp_reg);
duke@435 2661 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 2662 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 2663 // If the biasing toward our thread failed, this means that
duke@435 2664 // another thread succeeded in biasing it toward itself and we
duke@435 2665 // need to revoke that bias. The revocation will occur in the
duke@435 2666 // interpreter runtime in the slow case.
duke@435 2667 cmp(mark_reg, temp_reg);
duke@435 2668 if (counters != NULL) {
duke@435 2669 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 2670 }
duke@435 2671 if (slow_case != NULL) {
duke@435 2672 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 2673 delayed()->nop();
duke@435 2674 }
duke@435 2675 br(Assembler::always, false, Assembler::pt, done);
duke@435 2676 delayed()->nop();
duke@435 2677
duke@435 2678 bind(try_rebias);
duke@435 2679 // At this point we know the epoch has expired, meaning that the
duke@435 2680 // current "bias owner", if any, is actually invalid. Under these
duke@435 2681 // circumstances _only_, we are allowed to use the current header's
duke@435 2682 // value as the comparison value when doing the cas to acquire the
duke@435 2683 // bias in the current epoch. In other words, we allow transfer of
duke@435 2684 // the bias from one thread to another directly in this situation.
duke@435 2685 //
duke@435 2686 // FIXME: due to a lack of registers we currently blow away the age
duke@435 2687 // bits in this situation. Should attempt to preserve them.
coleenp@548 2688 load_klass(obj_reg, temp_reg);
duke@435 2689 ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 2690 or3(G2_thread, temp_reg, temp_reg);
duke@435 2691 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 2692 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 2693 // If the biasing toward our thread failed, this means that
duke@435 2694 // another thread succeeded in biasing it toward itself and we
duke@435 2695 // need to revoke that bias. The revocation will occur in the
duke@435 2696 // interpreter runtime in the slow case.
duke@435 2697 cmp(mark_reg, temp_reg);
duke@435 2698 if (counters != NULL) {
duke@435 2699 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 2700 }
duke@435 2701 if (slow_case != NULL) {
duke@435 2702 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 2703 delayed()->nop();
duke@435 2704 }
duke@435 2705 br(Assembler::always, false, Assembler::pt, done);
duke@435 2706 delayed()->nop();
duke@435 2707
duke@435 2708 bind(try_revoke_bias);
duke@435 2709 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 2710 // more, indicating that objects of this data type are not supposed
duke@435 2711 // to be biased any more. We are going to try to reset the mark of
duke@435 2712 // this object to the prototype value and fall through to the
duke@435 2713 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 2714 // that another thread raced us for the privilege of revoking the
duke@435 2715 // bias of this particular object, so it's okay to continue in the
duke@435 2716 // normal locking code.
duke@435 2717 //
duke@435 2718 // FIXME: due to a lack of registers we currently blow away the age
duke@435 2719 // bits in this situation. Should attempt to preserve them.
coleenp@548 2720 load_klass(obj_reg, temp_reg);
duke@435 2721 ld_ptr(Address(temp_reg, 0, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 2722 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 2723 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 2724 // Fall through to the normal CAS-based lock, because no matter what
duke@435 2725 // the result of the above CAS, some thread must have succeeded in
duke@435 2726 // removing the bias bit from the object's header.
duke@435 2727 if (counters != NULL) {
duke@435 2728 cmp(mark_reg, temp_reg);
duke@435 2729 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 2730 }
duke@435 2731
duke@435 2732 bind(cas_label);
duke@435 2733 }
duke@435 2734
duke@435 2735 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 2736 bool allow_delay_slot_filling) {
duke@435 2737 // Check for biased locking unlock case, which is a no-op
duke@435 2738 // Note: we do not have to check the thread ID for two reasons.
duke@435 2739 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 2740 // a higher level. Second, if the bias was revoked while we held the
duke@435 2741 // lock, the object could not be rebiased toward another thread, so
duke@435 2742 // the bias bit would be clear.
duke@435 2743 ld_ptr(mark_addr, temp_reg);
duke@435 2744 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 2745 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 2746 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 2747 delayed();
duke@435 2748 if (!allow_delay_slot_filling) {
duke@435 2749 nop();
duke@435 2750 }
duke@435 2751 }
duke@435 2752
duke@435 2753
duke@435 2754 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 2755 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 2756
duke@435 2757 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
duke@435 2758 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
duke@435 2759 }
duke@435 2760
duke@435 2761
duke@435 2762
duke@435 2763 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 2764 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 2765 // The code could be tightened up considerably.
duke@435 2766 //
duke@435 2767 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 2768 // - Successful inflated lock: box->dhw != 0.
duke@435 2769 // Any non-zero value suffices.
duke@435 2770 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 2771 // - Successful Stack-lock: box->dhw == mark.
duke@435 2772 // box->dhw must contain the displaced mark word value
duke@435 2773 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 2774 // The slow-path fast_enter() and slow_enter() operators
duke@435 2775 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 2776 // - Biased: box->dhw is undefined
duke@435 2777 //
duke@435 2778 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 2779 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 2780 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 2781 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 2782 // effect).
duke@435 2783
duke@435 2784
duke@435 2785 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
duke@435 2786 BiasedLockingCounters* counters) {
duke@435 2787 Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
duke@435 2788
duke@435 2789 verify_oop(Roop);
duke@435 2790 Label done ;
duke@435 2791
duke@435 2792 if (counters != NULL) {
duke@435 2793 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 2794 }
duke@435 2795
duke@435 2796 if (EmitSync & 1) {
duke@435 2797 mov (3, Rscratch) ;
duke@435 2798 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2799 cmp (SP, G0) ;
duke@435 2800 return ;
duke@435 2801 }
duke@435 2802
duke@435 2803 if (EmitSync & 2) {
duke@435 2804
duke@435 2805 // Fetch object's markword
duke@435 2806 ld_ptr(mark_addr, Rmark);
duke@435 2807
duke@435 2808 if (UseBiasedLocking) {
duke@435 2809 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 2810 }
duke@435 2811
duke@435 2812 // Save Rbox in Rscratch to be used for the cas operation
duke@435 2813 mov(Rbox, Rscratch);
duke@435 2814
duke@435 2815 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 2816 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 2817
duke@435 2818 // Initialize the box. (Must happen before we update the object mark!)
duke@435 2819 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2820
duke@435 2821 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 2822 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 2823 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 2824 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 2825
duke@435 2826 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 2827 // hence we are done
duke@435 2828 cmp(Rmark, Rscratch);
duke@435 2829 #ifdef _LP64
duke@435 2830 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 2831 #endif
duke@435 2832 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 2833 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 2834
duke@435 2835 // we did not find an unlocked object so see if this is a recursive case
duke@435 2836 // sub(Rscratch, SP, Rscratch);
duke@435 2837 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 2838 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 2839 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2840 bind (done) ;
duke@435 2841 return ;
duke@435 2842 }
duke@435 2843
duke@435 2844 Label Egress ;
duke@435 2845
duke@435 2846 if (EmitSync & 256) {
duke@435 2847 Label IsInflated ;
duke@435 2848
duke@435 2849 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 2850 // Triage: biased, stack-locked, neutral, inflated
duke@435 2851 if (UseBiasedLocking) {
duke@435 2852 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 2853 // Invariant: if control reaches this point in the emitted stream
duke@435 2854 // then Rmark has not been modified.
duke@435 2855 }
duke@435 2856
duke@435 2857 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 2858 // Critically, this must happen before the CAS
duke@435 2859 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
duke@435 2860 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2861 andcc (Rmark, 2, G0) ;
duke@435 2862 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 2863 delayed() ->
duke@435 2864
duke@435 2865 // Try stack-lock acquisition.
duke@435 2866 // Beware: the 1st instruction is in a delay slot
duke@435 2867 mov (Rbox, Rscratch);
duke@435 2868 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 2869 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 2870 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 2871 cmp (Rmark, Rscratch);
duke@435 2872 brx (Assembler::equal, false, Assembler::pt, done);
duke@435 2873 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 2874
duke@435 2875 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 2876 // See the comments below about how we might remove this case.
duke@435 2877 #ifdef _LP64
duke@435 2878 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 2879 #endif
duke@435 2880 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 2881 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 2882 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 2883 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2884
duke@435 2885 bind (IsInflated) ;
duke@435 2886 if (EmitSync & 64) {
duke@435 2887 // If m->owner != null goto IsLocked
duke@435 2888 // Pessimistic form: Test-and-CAS vs CAS
duke@435 2889 // The optimistic form avoids RTS->RTO cache line upgrades.
duke@435 2890 ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
duke@435 2891 andcc (Rscratch, Rscratch, G0) ;
duke@435 2892 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 2893 delayed()->nop() ;
duke@435 2894 // m->owner == null : it's unlocked.
duke@435 2895 }
duke@435 2896
duke@435 2897 // Try to CAS m->owner from null to Self
duke@435 2898 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 2899 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 2900 mov (G2_thread, Rscratch) ;
duke@435 2901 casn (Rmark, G0, Rscratch) ;
duke@435 2902 cmp (Rscratch, G0) ;
duke@435 2903 // Intentional fall-through into done
duke@435 2904 } else {
duke@435 2905 // Aggressively avoid the Store-before-CAS penalty
duke@435 2906 // Defer the store into box->dhw until after the CAS
duke@435 2907 Label IsInflated, Recursive ;
duke@435 2908
duke@435 2909 // Anticipate CAS -- Avoid RTS->RTO upgrade
duke@435 2910 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 2911
duke@435 2912 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 2913 // Triage: biased, stack-locked, neutral, inflated
duke@435 2914
duke@435 2915 if (UseBiasedLocking) {
duke@435 2916 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 2917 // Invariant: if control reaches this point in the emitted stream
duke@435 2918 // then Rmark has not been modified.
duke@435 2919 }
duke@435 2920 andcc (Rmark, 2, G0) ;
duke@435 2921 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 2922 delayed()-> // Beware - dangling delay-slot
duke@435 2923
duke@435 2924 // Try stack-lock acquisition.
duke@435 2925 // Transiently install BUSY (0) encoding in the mark word.
duke@435 2926 // if the CAS of 0 into the mark was successful then we execute:
duke@435 2927 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 2928 // ST obj->mark = box -- overwrite transient 0 value
duke@435 2929 // This presumes TSO, of course.
duke@435 2930
duke@435 2931 mov (0, Rscratch) ;
duke@435 2932 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 2933 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 2934 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 2935 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 2936 cmp (Rscratch, Rmark) ;
duke@435 2937 brx (Assembler::notZero, false, Assembler::pn, Recursive) ;
duke@435 2938 delayed() ->
duke@435 2939 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2940 if (counters != NULL) {
duke@435 2941 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 2942 }
duke@435 2943 br (Assembler::always, false, Assembler::pt, done);
duke@435 2944 delayed() ->
duke@435 2945 st_ptr (Rbox, mark_addr) ;
duke@435 2946
duke@435 2947 bind (Recursive) ;
duke@435 2948 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 2949 // Tests show that we can remove the recursive case with no impact
duke@435 2950 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 2951 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 2952 // candidate.
duke@435 2953 //
duke@435 2954 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 2955 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 2956 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 2957 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 2958 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 2959 // the fast-path stack-lock code from the interpreter and always passed
duke@435 2960 // control to the "slow" operators in synchronizer.cpp.
duke@435 2961
duke@435 2962 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 2963 #ifdef _LP64
duke@435 2964 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 2965 #endif
duke@435 2966 sub(Rscratch, SP, Rscratch);
duke@435 2967 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 2968 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 2969 if (counters != NULL) {
duke@435 2970 // Accounting needs the Rscratch register
duke@435 2971 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2972 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 2973 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 2974 delayed()->nop() ;
duke@435 2975 } else {
duke@435 2976 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 2977 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 2978 }
duke@435 2979
duke@435 2980 bind (IsInflated) ;
duke@435 2981 if (EmitSync & 64) {
duke@435 2982 // If m->owner != null goto IsLocked
duke@435 2983 // Test-and-CAS vs CAS
duke@435 2984 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 2985 // The optimistic form avoids RTS->RTO cache line upgrades.
duke@435 2986 ld_ptr (Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
duke@435 2987 andcc (Rscratch, Rscratch, G0) ;
duke@435 2988 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 2989 delayed()->nop() ;
duke@435 2990 // m->owner == null : it's unlocked.
duke@435 2991 }
duke@435 2992
duke@435 2993 // Try to CAS m->owner from null to Self
duke@435 2994 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 2995 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 2996 mov (G2_thread, Rscratch) ;
duke@435 2997 casn (Rmark, G0, Rscratch) ;
duke@435 2998 cmp (Rscratch, G0) ;
duke@435 2999 // ST box->displaced_header = NonZero.
duke@435 3000 // Any non-zero value suffices:
duke@435 3001 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
duke@435 3002 st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3003 // Intentional fall-through into done
duke@435 3004 }
duke@435 3005
duke@435 3006 bind (done) ;
duke@435 3007 }
duke@435 3008
duke@435 3009 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch) {
duke@435 3010 Address mark_addr(Roop, 0, oopDesc::mark_offset_in_bytes());
duke@435 3011
duke@435 3012 Label done ;
duke@435 3013
duke@435 3014 if (EmitSync & 4) {
duke@435 3015 cmp (SP, G0) ;
duke@435 3016 return ;
duke@435 3017 }
duke@435 3018
duke@435 3019 if (EmitSync & 8) {
duke@435 3020 if (UseBiasedLocking) {
duke@435 3021 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3022 }
duke@435 3023
duke@435 3024 // Test first if it is a fast recursive unlock
duke@435 3025 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
duke@435 3026 cmp(Rmark, G0);
duke@435 3027 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3028 delayed()->nop();
duke@435 3029
duke@435 3030 // Check if it is still a light weight lock, this is is true if we see
duke@435 3031 // the stack address of the basicLock in the markOop of the object
duke@435 3032 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3033 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3034 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3035 br (Assembler::always, false, Assembler::pt, done);
duke@435 3036 delayed()->cmp(Rbox, Rmark);
duke@435 3037 bind (done) ;
duke@435 3038 return ;
duke@435 3039 }
duke@435 3040
duke@435 3041 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3042 // is too large performance rolls abruptly off a cliff.
duke@435 3043 // This could be related to inlining policies, code cache management, or
duke@435 3044 // I$ effects.
duke@435 3045 Label LStacked ;
duke@435 3046
duke@435 3047 if (UseBiasedLocking) {
duke@435 3048 // TODO: eliminate redundant LDs of obj->mark
duke@435 3049 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3050 }
duke@435 3051
duke@435 3052 ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
duke@435 3053 ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
duke@435 3054 andcc (Rscratch, Rscratch, G0);
duke@435 3055 brx (Assembler::zero, false, Assembler::pn, done);
duke@435 3056 delayed()-> nop() ; // consider: relocate fetch of mark, above, into this DS
duke@435 3057 andcc (Rmark, 2, G0) ;
duke@435 3058 brx (Assembler::zero, false, Assembler::pt, LStacked) ;
duke@435 3059 delayed()-> nop() ;
duke@435 3060
duke@435 3061 // It's inflated
duke@435 3062 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3063 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3064 // and stores within the critical section from reordering (floating)
duke@435 3065 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3066 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3067 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3068 // close the resultant (and rare) race by having contented threads in
duke@435 3069 // monitorenter periodically poll _owner.
duke@435 3070 ld_ptr (Address(Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2), Rscratch) ;
duke@435 3071 ld_ptr (Address(Rmark, 0, ObjectMonitor::recursions_offset_in_bytes()-2), Rbox) ;
duke@435 3072 xor3 (Rscratch, G2_thread, Rscratch) ;
duke@435 3073 orcc (Rbox, Rscratch, Rbox) ;
duke@435 3074 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3075 delayed()->
duke@435 3076 ld_ptr (Address (Rmark, 0, ObjectMonitor::EntryList_offset_in_bytes()-2), Rscratch) ;
duke@435 3077 ld_ptr (Address (Rmark, 0, ObjectMonitor::cxq_offset_in_bytes()-2), Rbox) ;
duke@435 3078 orcc (Rbox, Rscratch, G0) ;
duke@435 3079 if (EmitSync & 65536) {
duke@435 3080 Label LSucc ;
duke@435 3081 brx (Assembler::notZero, false, Assembler::pn, LSucc) ;
duke@435 3082 delayed()->nop() ;
duke@435 3083 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3084 delayed()->
duke@435 3085 st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
duke@435 3086
duke@435 3087 bind (LSucc) ;
duke@435 3088 st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
duke@435 3089 if (os::is_MP()) { membar (StoreLoad) ; }
duke@435 3090 ld_ptr (Address (Rmark, 0, ObjectMonitor::succ_offset_in_bytes()-2), Rscratch) ;
duke@435 3091 andcc (Rscratch, Rscratch, G0) ;
duke@435 3092 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3093 delayed()-> andcc (G0, G0, G0) ;
duke@435 3094 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3095 mov (G2_thread, Rscratch) ;
duke@435 3096 casn (Rmark, G0, Rscratch) ;
duke@435 3097 cmp (Rscratch, G0) ;
duke@435 3098 // invert icc.zf and goto done
duke@435 3099 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3100 delayed() -> cmp (G0, G0) ;
duke@435 3101 br (Assembler::always, false, Assembler::pt, done);
duke@435 3102 delayed() -> cmp (G0, 1) ;
duke@435 3103 } else {
duke@435 3104 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3105 delayed()->nop() ;
duke@435 3106 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3107 delayed()->
duke@435 3108 st_ptr (G0, Address (Rmark, 0, ObjectMonitor::owner_offset_in_bytes()-2)) ;
duke@435 3109 }
duke@435 3110
duke@435 3111 bind (LStacked) ;
duke@435 3112 // Consider: we could replace the expensive CAS in the exit
duke@435 3113 // path with a simple ST of the displaced mark value fetched from
duke@435 3114 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3115 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3116 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3117 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3118 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3119 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3120 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3121 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3122 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3123 // In addition the monitor scavenger, which performs deflation,
duke@435 3124 // would also need to check for orpan monitors and stranded threads.
duke@435 3125 //
duke@435 3126 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3127 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3128 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3129 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3130 // that hashCode generation is idempotent between copying GCs.
duke@435 3131 // For example we could compute the hashCode of an object O as
duke@435 3132 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3133 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3134 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3135 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3136 //
duke@435 3137 // A prototype implementation showed excellent results, although
duke@435 3138 // the scavenger and timeout code was rather involved.
duke@435 3139
duke@435 3140 casn (mark_addr.base(), Rbox, Rscratch) ;
duke@435 3141 cmp (Rbox, Rscratch);
duke@435 3142 // Intentional fall through into done ...
duke@435 3143
duke@435 3144 bind (done) ;
duke@435 3145 }
duke@435 3146
duke@435 3147
duke@435 3148
duke@435 3149 void MacroAssembler::print_CPU_state() {
duke@435 3150 // %%%%% need to implement this
duke@435 3151 }
duke@435 3152
duke@435 3153 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3154 // %%%%% need to implement this
duke@435 3155 }
duke@435 3156
duke@435 3157 void MacroAssembler::push_IU_state() {
duke@435 3158 // %%%%% need to implement this
duke@435 3159 }
duke@435 3160
duke@435 3161
duke@435 3162 void MacroAssembler::pop_IU_state() {
duke@435 3163 // %%%%% need to implement this
duke@435 3164 }
duke@435 3165
duke@435 3166
duke@435 3167 void MacroAssembler::push_FPU_state() {
duke@435 3168 // %%%%% need to implement this
duke@435 3169 }
duke@435 3170
duke@435 3171
duke@435 3172 void MacroAssembler::pop_FPU_state() {
duke@435 3173 // %%%%% need to implement this
duke@435 3174 }
duke@435 3175
duke@435 3176
duke@435 3177 void MacroAssembler::push_CPU_state() {
duke@435 3178 // %%%%% need to implement this
duke@435 3179 }
duke@435 3180
duke@435 3181
duke@435 3182 void MacroAssembler::pop_CPU_state() {
duke@435 3183 // %%%%% need to implement this
duke@435 3184 }
duke@435 3185
duke@435 3186
duke@435 3187
duke@435 3188 void MacroAssembler::verify_tlab() {
duke@435 3189 #ifdef ASSERT
duke@435 3190 if (UseTLAB && VerifyOops) {
duke@435 3191 Label next, next2, ok;
duke@435 3192 Register t1 = L0;
duke@435 3193 Register t2 = L1;
duke@435 3194 Register t3 = L2;
duke@435 3195
duke@435 3196 save_frame(0);
duke@435 3197 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3198 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3199 or3(t1, t2, t3);
duke@435 3200 cmp(t1, t2);
duke@435 3201 br(Assembler::greaterEqual, false, Assembler::pn, next);
duke@435 3202 delayed()->nop();
duke@435 3203 stop("assert(top >= start)");
duke@435 3204 should_not_reach_here();
duke@435 3205
duke@435 3206 bind(next);
duke@435 3207 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3208 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3209 or3(t3, t2, t3);
duke@435 3210 cmp(t1, t2);
duke@435 3211 br(Assembler::lessEqual, false, Assembler::pn, next2);
duke@435 3212 delayed()->nop();
duke@435 3213 stop("assert(top <= end)");
duke@435 3214 should_not_reach_here();
duke@435 3215
duke@435 3216 bind(next2);
duke@435 3217 and3(t3, MinObjAlignmentInBytesMask, t3);
duke@435 3218 cmp(t3, 0);
duke@435 3219 br(Assembler::lessEqual, false, Assembler::pn, ok);
duke@435 3220 delayed()->nop();
duke@435 3221 stop("assert(aligned)");
duke@435 3222 should_not_reach_here();
duke@435 3223
duke@435 3224 bind(ok);
duke@435 3225 restore();
duke@435 3226 }
duke@435 3227 #endif
duke@435 3228 }
duke@435 3229
duke@435 3230
duke@435 3231 void MacroAssembler::eden_allocate(
duke@435 3232 Register obj, // result: pointer to object after successful allocation
duke@435 3233 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3234 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3235 Register t1, // temp register
duke@435 3236 Register t2, // temp register
duke@435 3237 Label& slow_case // continuation point if fast allocation fails
duke@435 3238 ){
duke@435 3239 // make sure arguments make sense
duke@435 3240 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3241 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3242 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3243
duke@435 3244 // get eden boundaries
duke@435 3245 // note: we need both top & top_addr!
duke@435 3246 const Register top_addr = t1;
duke@435 3247 const Register end = t2;
duke@435 3248
duke@435 3249 CollectedHeap* ch = Universe::heap();
duke@435 3250 set((intx)ch->top_addr(), top_addr);
duke@435 3251 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
duke@435 3252 ld_ptr(top_addr, delta, end);
duke@435 3253 ld_ptr(top_addr, 0, obj);
duke@435 3254
duke@435 3255 // try to allocate
duke@435 3256 Label retry;
duke@435 3257 bind(retry);
duke@435 3258 #ifdef ASSERT
duke@435 3259 // make sure eden top is properly aligned
duke@435 3260 {
duke@435 3261 Label L;
duke@435 3262 btst(MinObjAlignmentInBytesMask, obj);
duke@435 3263 br(Assembler::zero, false, Assembler::pt, L);
duke@435 3264 delayed()->nop();
duke@435 3265 stop("eden top is not properly aligned");
duke@435 3266 bind(L);
duke@435 3267 }
duke@435 3268 #endif // ASSERT
duke@435 3269 const Register free = end;
duke@435 3270 sub(end, obj, free); // compute amount of free space
duke@435 3271 if (var_size_in_bytes->is_valid()) {
duke@435 3272 // size is unknown at compile time
duke@435 3273 cmp(free, var_size_in_bytes);
duke@435 3274 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
duke@435 3275 delayed()->add(obj, var_size_in_bytes, end);
duke@435 3276 } else {
duke@435 3277 // size is known at compile time
duke@435 3278 cmp(free, con_size_in_bytes);
duke@435 3279 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
duke@435 3280 delayed()->add(obj, con_size_in_bytes, end);
duke@435 3281 }
duke@435 3282 // Compare obj with the value at top_addr; if still equal, swap the value of
duke@435 3283 // end with the value at top_addr. If not equal, read the value at top_addr
duke@435 3284 // into end.
duke@435 3285 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3286 // if someone beat us on the allocation, try again, otherwise continue
duke@435 3287 cmp(obj, end);
duke@435 3288 brx(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 3289 delayed()->mov(end, obj); // nop if successfull since obj == end
duke@435 3290
duke@435 3291 #ifdef ASSERT
duke@435 3292 // make sure eden top is properly aligned
duke@435 3293 {
duke@435 3294 Label L;
duke@435 3295 const Register top_addr = t1;
duke@435 3296
duke@435 3297 set((intx)ch->top_addr(), top_addr);
duke@435 3298 ld_ptr(top_addr, 0, top_addr);
duke@435 3299 btst(MinObjAlignmentInBytesMask, top_addr);
duke@435 3300 br(Assembler::zero, false, Assembler::pt, L);
duke@435 3301 delayed()->nop();
duke@435 3302 stop("eden top is not properly aligned");
duke@435 3303 bind(L);
duke@435 3304 }
duke@435 3305 #endif // ASSERT
duke@435 3306 }
duke@435 3307
duke@435 3308
duke@435 3309 void MacroAssembler::tlab_allocate(
duke@435 3310 Register obj, // result: pointer to object after successful allocation
duke@435 3311 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3312 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3313 Register t1, // temp register
duke@435 3314 Label& slow_case // continuation point if fast allocation fails
duke@435 3315 ){
duke@435 3316 // make sure arguments make sense
duke@435 3317 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 3318 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3319 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3320
duke@435 3321 const Register free = t1;
duke@435 3322
duke@435 3323 verify_tlab();
duke@435 3324
duke@435 3325 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 3326
duke@435 3327 // calculate amount of free space
duke@435 3328 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 3329 sub(free, obj, free);
duke@435 3330
duke@435 3331 Label done;
duke@435 3332 if (var_size_in_bytes == noreg) {
duke@435 3333 cmp(free, con_size_in_bytes);
duke@435 3334 } else {
duke@435 3335 cmp(free, var_size_in_bytes);
duke@435 3336 }
duke@435 3337 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 3338 // calculate the new top pointer
duke@435 3339 if (var_size_in_bytes == noreg) {
duke@435 3340 delayed()->add(obj, con_size_in_bytes, free);
duke@435 3341 } else {
duke@435 3342 delayed()->add(obj, var_size_in_bytes, free);
duke@435 3343 }
duke@435 3344
duke@435 3345 bind(done);
duke@435 3346
duke@435 3347 #ifdef ASSERT
duke@435 3348 // make sure new free pointer is properly aligned
duke@435 3349 {
duke@435 3350 Label L;
duke@435 3351 btst(MinObjAlignmentInBytesMask, free);
duke@435 3352 br(Assembler::zero, false, Assembler::pt, L);
duke@435 3353 delayed()->nop();
duke@435 3354 stop("updated TLAB free is not properly aligned");
duke@435 3355 bind(L);
duke@435 3356 }
duke@435 3357 #endif // ASSERT
duke@435 3358
duke@435 3359 // update the tlab top pointer
duke@435 3360 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 3361 verify_tlab();
duke@435 3362 }
duke@435 3363
duke@435 3364
duke@435 3365 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 3366 Register top = O0;
duke@435 3367 Register t1 = G1;
duke@435 3368 Register t2 = G3;
duke@435 3369 Register t3 = O1;
duke@435 3370 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 3371 Label do_refill, discard_tlab;
duke@435 3372
duke@435 3373 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 3374 // No allocation in the shared eden.
duke@435 3375 br(Assembler::always, false, Assembler::pt, slow_case);
duke@435 3376 delayed()->nop();
duke@435 3377 }
duke@435 3378
duke@435 3379 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 3380 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 3381 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 3382
duke@435 3383 // calculate amount of free space
duke@435 3384 sub(t1, top, t1);
duke@435 3385 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 3386
duke@435 3387 // Retain tlab and allocate object in shared space if
duke@435 3388 // the amount free in the tlab is too large to discard.
duke@435 3389 cmp(t1, t2);
duke@435 3390 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 3391
duke@435 3392 // increment waste limit to prevent getting stuck on this slow path
duke@435 3393 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 3394 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 3395 if (TLABStats) {
duke@435 3396 // increment number of slow_allocations
duke@435 3397 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 3398 add(t2, 1, t2);
duke@435 3399 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 3400 }
duke@435 3401 br(Assembler::always, false, Assembler::pt, try_eden);
duke@435 3402 delayed()->nop();
duke@435 3403
duke@435 3404 bind(discard_tlab);
duke@435 3405 if (TLABStats) {
duke@435 3406 // increment number of refills
duke@435 3407 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 3408 add(t2, 1, t2);
duke@435 3409 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 3410 // accumulate wastage
duke@435 3411 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 3412 add(t2, t1, t2);
duke@435 3413 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 3414 }
duke@435 3415
duke@435 3416 // if tlab is currently allocated (top or end != null) then
duke@435 3417 // fill [top, end + alignment_reserve) with array object
duke@435 3418 br_null(top, false, Assembler::pn, do_refill);
duke@435 3419 delayed()->nop();
duke@435 3420
duke@435 3421 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 3422 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 3423 // set klass to intArrayKlass
duke@435 3424 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 3425 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 3426 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 3427 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 3428 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 3429 ld_ptr(t2, 0, t2);
coleenp@602 3430 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 3431 // klass field is not null.
coleenp@602 3432 store_klass(t2, top);
duke@435 3433 verify_oop(top);
duke@435 3434
duke@435 3435 // refill the tlab with an eden allocation
duke@435 3436 bind(do_refill);
duke@435 3437 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 3438 sll_ptr(t1, LogHeapWordSize, t1);
duke@435 3439 // add object_size ??
duke@435 3440 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 3441
duke@435 3442 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 3443 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 3444 #ifdef ASSERT
duke@435 3445 // check that tlab_size (t1) is still valid
duke@435 3446 {
duke@435 3447 Label ok;
duke@435 3448 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 3449 sll_ptr(t2, LogHeapWordSize, t2);
duke@435 3450 cmp(t1, t2);
duke@435 3451 br(Assembler::equal, false, Assembler::pt, ok);
duke@435 3452 delayed()->nop();
duke@435 3453 stop("assert(t1 == tlab_size)");
duke@435 3454 should_not_reach_here();
duke@435 3455
duke@435 3456 bind(ok);
duke@435 3457 }
duke@435 3458 #endif // ASSERT
duke@435 3459 add(top, t1, top); // t1 is tlab_size
duke@435 3460 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 3461 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 3462 verify_tlab();
duke@435 3463 br(Assembler::always, false, Assembler::pt, retry);
duke@435 3464 delayed()->nop();
duke@435 3465 }
duke@435 3466
duke@435 3467 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 3468 switch (cond) {
duke@435 3469 // Note some conditions are synonyms for others
duke@435 3470 case Assembler::never: return Assembler::always;
duke@435 3471 case Assembler::zero: return Assembler::notZero;
duke@435 3472 case Assembler::lessEqual: return Assembler::greater;
duke@435 3473 case Assembler::less: return Assembler::greaterEqual;
duke@435 3474 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 3475 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 3476 case Assembler::negative: return Assembler::positive;
duke@435 3477 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 3478 case Assembler::always: return Assembler::never;
duke@435 3479 case Assembler::notZero: return Assembler::zero;
duke@435 3480 case Assembler::greater: return Assembler::lessEqual;
duke@435 3481 case Assembler::greaterEqual: return Assembler::less;
duke@435 3482 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 3483 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 3484 case Assembler::positive: return Assembler::negative;
duke@435 3485 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 3486 }
duke@435 3487
duke@435 3488 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 3489 }
duke@435 3490
duke@435 3491 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 3492 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 3493 Condition negated_cond = negate_condition(cond);
duke@435 3494 Label L;
duke@435 3495 brx(negated_cond, false, Assembler::pt, L);
duke@435 3496 delayed()->nop();
duke@435 3497 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 3498 bind(L);
duke@435 3499 }
duke@435 3500
duke@435 3501 void MacroAssembler::inc_counter(address counter_ptr, Register Rtmp1, Register Rtmp2) {
duke@435 3502 Address counter_addr(Rtmp1, counter_ptr);
duke@435 3503 load_contents(counter_addr, Rtmp2);
duke@435 3504 inc(Rtmp2);
duke@435 3505 store_contents(Rtmp2, counter_addr);
duke@435 3506 }
duke@435 3507
duke@435 3508 SkipIfEqual::SkipIfEqual(
duke@435 3509 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 3510 Assembler::Condition condition) {
duke@435 3511 _masm = masm;
duke@435 3512 Address flag(temp, (address)flag_addr, relocInfo::none);
duke@435 3513 _masm->sethi(flag);
duke@435 3514 _masm->ldub(flag, temp);
duke@435 3515 _masm->tst(temp);
duke@435 3516 _masm->br(condition, false, Assembler::pt, _label);
duke@435 3517 _masm->delayed()->nop();
duke@435 3518 }
duke@435 3519
duke@435 3520 SkipIfEqual::~SkipIfEqual() {
duke@435 3521 _masm->bind(_label);
duke@435 3522 }
duke@435 3523
duke@435 3524
duke@435 3525 // Writes to stack successive pages until offset reached to check for
duke@435 3526 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 3527 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 3528 Register Rscratch) {
duke@435 3529 // Use stack pointer in temp stack pointer
duke@435 3530 mov(SP, Rtsp);
duke@435 3531
duke@435 3532 // Bang stack for total size given plus stack shadow page size.
duke@435 3533 // Bang one page at a time because a large size can overflow yellow and
duke@435 3534 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 3535 // it was a stack overflow bang vs a regular segv).
duke@435 3536 int offset = os::vm_page_size();
duke@435 3537 Register Roffset = Rscratch;
duke@435 3538
duke@435 3539 Label loop;
duke@435 3540 bind(loop);
duke@435 3541 set((-offset)+STACK_BIAS, Rscratch);
duke@435 3542 st(G0, Rtsp, Rscratch);
duke@435 3543 set(offset, Roffset);
duke@435 3544 sub(Rsize, Roffset, Rsize);
duke@435 3545 cmp(Rsize, G0);
duke@435 3546 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 3547 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 3548
duke@435 3549 // Bang down shadow pages too.
duke@435 3550 // The -1 because we already subtracted 1 page.
duke@435 3551 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 3552 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 3553 st(G0, Rtsp, Rscratch);
duke@435 3554 }
duke@435 3555 }
coleenp@548 3556
kvn@599 3557 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 3558 // The number of bytes in this code is used by
coleenp@548 3559 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 3560 // if this changes, change that.
coleenp@548 3561 if (UseCompressedOops) {
kvn@599 3562 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 3563 decode_heap_oop_not_null(klass);
coleenp@548 3564 } else {
kvn@599 3565 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 3566 }
coleenp@548 3567 }
coleenp@548 3568
kvn@599 3569 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 3570 if (UseCompressedOops) {
kvn@599 3571 assert(dst_oop != klass, "not enough registers");
kvn@599 3572 encode_heap_oop_not_null(klass);
coleenp@602 3573 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 3574 } else {
kvn@599 3575 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 3576 }
kvn@559 3577 }
kvn@559 3578
coleenp@602 3579 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 3580 if (UseCompressedOops) {
coleenp@602 3581 assert(s != d, "not enough registers");
coleenp@602 3582 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 3583 }
coleenp@548 3584 }
coleenp@548 3585
coleenp@548 3586 void MacroAssembler::load_heap_oop(const Address& s, Register d, int offset) {
coleenp@548 3587 if (UseCompressedOops) {
coleenp@548 3588 lduw(s, d, offset);
coleenp@548 3589 decode_heap_oop(d);
coleenp@548 3590 } else {
coleenp@548 3591 ld_ptr(s, d, offset);
coleenp@548 3592 }
coleenp@548 3593 }
coleenp@548 3594
coleenp@548 3595 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 3596 if (UseCompressedOops) {
coleenp@548 3597 lduw(s1, s2, d);
coleenp@548 3598 decode_heap_oop(d, d);
coleenp@548 3599 } else {
coleenp@548 3600 ld_ptr(s1, s2, d);
coleenp@548 3601 }
coleenp@548 3602 }
coleenp@548 3603
coleenp@548 3604 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 3605 if (UseCompressedOops) {
coleenp@548 3606 lduw(s1, simm13a, d);
coleenp@548 3607 decode_heap_oop(d, d);
coleenp@548 3608 } else {
coleenp@548 3609 ld_ptr(s1, simm13a, d);
coleenp@548 3610 }
coleenp@548 3611 }
coleenp@548 3612
coleenp@548 3613 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 3614 if (UseCompressedOops) {
coleenp@548 3615 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 3616 encode_heap_oop(d);
coleenp@548 3617 st(d, s1, s2);
coleenp@548 3618 } else {
coleenp@548 3619 st_ptr(d, s1, s2);
coleenp@548 3620 }
coleenp@548 3621 }
coleenp@548 3622
coleenp@548 3623 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 3624 if (UseCompressedOops) {
coleenp@548 3625 assert(s1 != d, "not enough registers");
coleenp@548 3626 encode_heap_oop(d);
coleenp@548 3627 st(d, s1, simm13a);
coleenp@548 3628 } else {
coleenp@548 3629 st_ptr(d, s1, simm13a);
coleenp@548 3630 }
coleenp@548 3631 }
coleenp@548 3632
coleenp@548 3633 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 3634 if (UseCompressedOops) {
coleenp@548 3635 assert(a.base() != d, "not enough registers");
coleenp@548 3636 encode_heap_oop(d);
coleenp@548 3637 st(d, a, offset);
coleenp@548 3638 } else {
coleenp@548 3639 st_ptr(d, a, offset);
coleenp@548 3640 }
coleenp@548 3641 }
coleenp@548 3642
coleenp@548 3643
coleenp@548 3644 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 3645 assert (UseCompressedOops, "must be compressed");
coleenp@613 3646 verify_oop(src);
coleenp@548 3647 Label done;
coleenp@548 3648 if (src == dst) {
coleenp@548 3649 // optimize for frequent case src == dst
coleenp@548 3650 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 3651 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 3652 bind(done);
coleenp@548 3653 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 3654 } else {
coleenp@548 3655 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 3656 delayed() -> mov(G0, dst);
coleenp@548 3657 // could be moved before branch, and annulate delay,
coleenp@548 3658 // but may add some unneeded work decoding null
coleenp@548 3659 sub(src, G6_heapbase, dst);
coleenp@548 3660 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 3661 bind(done);
coleenp@548 3662 }
coleenp@548 3663 }
coleenp@548 3664
coleenp@548 3665
coleenp@548 3666 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 3667 assert (UseCompressedOops, "must be compressed");
coleenp@613 3668 verify_oop(r);
coleenp@548 3669 sub(r, G6_heapbase, r);
coleenp@548 3670 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 3671 }
coleenp@548 3672
kvn@559 3673 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 3674 assert (UseCompressedOops, "must be compressed");
coleenp@613 3675 verify_oop(src);
kvn@559 3676 sub(src, G6_heapbase, dst);
kvn@559 3677 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@559 3678 }
kvn@559 3679
coleenp@548 3680 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 3681 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 3682 assert (UseCompressedOops, "must be compressed");
coleenp@548 3683 Label done;
coleenp@548 3684 sllx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 3685 bpr(rc_nz, true, Assembler::pt, dst, done);
coleenp@548 3686 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
coleenp@548 3687 bind(done);
coleenp@613 3688 verify_oop(dst);
coleenp@548 3689 }
coleenp@548 3690
coleenp@548 3691 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 3692 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 3693 // pd_code_size_limit.
coleenp@613 3694 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 3695 assert (UseCompressedOops, "must be compressed");
coleenp@548 3696 sllx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 3697 add(r, G6_heapbase, r);
coleenp@548 3698 }
coleenp@548 3699
kvn@559 3700 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 3701 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 3702 // pd_code_size_limit.
coleenp@613 3703 // Also do not verify_oop as this is called by verify_oop.
kvn@559 3704 assert (UseCompressedOops, "must be compressed");
kvn@559 3705 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@559 3706 add(dst, G6_heapbase, dst);
kvn@559 3707 }
kvn@559 3708
coleenp@548 3709 void MacroAssembler::reinit_heapbase() {
coleenp@548 3710 if (UseCompressedOops) {
coleenp@548 3711 // call indirectly to solve generation ordering problem
coleenp@548 3712 Address base(G6_heapbase, (address)Universe::heap_base_addr());
coleenp@548 3713 load_ptr_contents(base, G6_heapbase);
coleenp@548 3714 }
coleenp@548 3715 }

mercurial