src/share/vm/runtime/sharedRuntime.cpp

Tue, 27 Nov 2012 10:13:20 +0100

author
stefank
date
Tue, 27 Nov 2012 10:13:20 +0100
changeset 4298
d0aa87f04bd5
parent 4278
070d523b96a7
child 4318
cd3d6a6b95d9
permissions
-rw-r--r--

8003720: NPG: Method in interpreter stack frame can be deallocated
Summary: Pass down a closure during root scanning to keep the class of the method alive.
Reviewed-by: coleenp, jcoomes

duke@435 1 /*
never@3499 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
bobv@2508 71 #ifdef TARGET_ARCH_arm
bobv@2508 72 # include "nativeInst_arm.hpp"
bobv@2508 73 # include "vmreg_arm.inline.hpp"
bobv@2508 74 #endif
bobv@2508 75 #ifdef TARGET_ARCH_ppc
bobv@2508 76 # include "nativeInst_ppc.hpp"
bobv@2508 77 # include "vmreg_ppc.inline.hpp"
bobv@2508 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82
never@2950 83 // Shared stub locations
never@2950 84 RuntimeStub* SharedRuntime::_wrong_method_blob;
never@2950 85 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 88 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 89
never@2950 90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
kvn@4103 91 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
never@2950 92 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 93 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 94
never@2950 95 #ifdef COMPILER2
never@2950 96 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 97 #endif // COMPILER2
never@2950 98
never@2950 99
never@2950 100 //----------------------------generate_stubs-----------------------------------
never@2950 101 void SharedRuntime::generate_stubs() {
never@2950 102 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
never@2950 103 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
never@2950 104 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
never@2950 105 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
never@2950 106 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 107
kvn@4103 108 #ifdef COMPILER2
kvn@4103 109 // Vectors are generated only by C2.
kvn@4103 110 if (is_wide_vector(MaxVectorSize)) {
kvn@4103 111 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
kvn@4103 112 }
kvn@4103 113 #endif // COMPILER2
kvn@4103 114 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
kvn@4103 115 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
never@2950 116
never@2950 117 generate_deopt_blob();
never@2950 118
never@2950 119 #ifdef COMPILER2
never@2950 120 generate_uncommon_trap_blob();
never@2950 121 #endif // COMPILER2
never@2950 122 }
never@2950 123
duke@435 124 #include <math.h>
duke@435 125
dcubed@3202 126 #ifndef USDT2
duke@435 127 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 128 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 129 char*, int, char*, int, char*, int);
duke@435 130 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 131 char*, int, char*, int, char*, int);
dcubed@3202 132 #endif /* !USDT2 */
duke@435 133
duke@435 134 // Implementation of SharedRuntime
duke@435 135
duke@435 136 #ifndef PRODUCT
duke@435 137 // For statistics
duke@435 138 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 139 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 140 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 141 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 143 int SharedRuntime::_implicit_null_throws = 0;
duke@435 144 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 145 int SharedRuntime::_throw_null_ctr = 0;
duke@435 146
duke@435 147 int SharedRuntime::_nof_normal_calls = 0;
duke@435 148 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 149 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 150 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 151 int SharedRuntime::_nof_static_calls = 0;
duke@435 152 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 153 int SharedRuntime::_nof_interface_calls = 0;
duke@435 154 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 155 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 157 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 158
duke@435 159 int SharedRuntime::_new_instance_ctr=0;
duke@435 160 int SharedRuntime::_new_array_ctr=0;
duke@435 161 int SharedRuntime::_multi1_ctr=0;
duke@435 162 int SharedRuntime::_multi2_ctr=0;
duke@435 163 int SharedRuntime::_multi3_ctr=0;
duke@435 164 int SharedRuntime::_multi4_ctr=0;
duke@435 165 int SharedRuntime::_multi5_ctr=0;
duke@435 166 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 167 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 168 int SharedRuntime::_mon_enter_ctr=0;
duke@435 169 int SharedRuntime::_mon_exit_ctr=0;
duke@435 170 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 171 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 172 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 173 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 174 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 175 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 176 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 177 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 178 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 179 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 180 int SharedRuntime::_find_handler_ctr=0;
duke@435 181 int SharedRuntime::_rethrow_ctr=0;
duke@435 182
duke@435 183 int SharedRuntime::_ICmiss_index = 0;
duke@435 184 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 186
never@2950 187
duke@435 188 void SharedRuntime::trace_ic_miss(address at) {
duke@435 189 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 190 if (_ICmiss_at[i] == at) {
duke@435 191 _ICmiss_count[i]++;
duke@435 192 return;
duke@435 193 }
duke@435 194 }
duke@435 195 int index = _ICmiss_index++;
duke@435 196 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 197 _ICmiss_at[index] = at;
duke@435 198 _ICmiss_count[index] = 1;
duke@435 199 }
duke@435 200
duke@435 201 void SharedRuntime::print_ic_miss_histogram() {
duke@435 202 if (ICMissHistogram) {
duke@435 203 tty->print_cr ("IC Miss Histogram:");
duke@435 204 int tot_misses = 0;
duke@435 205 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 206 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 207 tot_misses += _ICmiss_count[i];
duke@435 208 }
duke@435 209 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 210 }
duke@435 211 }
duke@435 212 #endif // PRODUCT
duke@435 213
ysr@777 214 #ifndef SERIALGC
ysr@777 215
ysr@777 216 // G1 write-barrier pre: executed before a pointer store.
ysr@777 217 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 218 if (orig == NULL) {
ysr@777 219 assert(false, "should be optimized out");
ysr@777 220 return;
ysr@777 221 }
ysr@1280 222 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 223 // store the original value that was in the field reference
ysr@777 224 thread->satb_mark_queue().enqueue(orig);
ysr@777 225 JRT_END
ysr@777 226
ysr@777 227 // G1 write-barrier post: executed after a pointer store.
ysr@777 228 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 229 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 230 JRT_END
ysr@777 231
ysr@777 232 #endif // !SERIALGC
ysr@777 233
duke@435 234
duke@435 235 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 236 return x * y;
duke@435 237 JRT_END
duke@435 238
duke@435 239
duke@435 240 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 241 if (x == min_jlong && y == CONST64(-1)) {
duke@435 242 return x;
duke@435 243 } else {
duke@435 244 return x / y;
duke@435 245 }
duke@435 246 JRT_END
duke@435 247
duke@435 248
duke@435 249 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 250 if (x == min_jlong && y == CONST64(-1)) {
duke@435 251 return 0;
duke@435 252 } else {
duke@435 253 return x % y;
duke@435 254 }
duke@435 255 JRT_END
duke@435 256
duke@435 257
duke@435 258 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 259 const juint float_infinity = 0x7F800000;
duke@435 260 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 261 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 262
duke@435 263 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 264 #ifdef _WIN64
duke@435 265 // 64-bit Windows on amd64 returns the wrong values for
duke@435 266 // infinity operands.
duke@435 267 union { jfloat f; juint i; } xbits, ybits;
duke@435 268 xbits.f = x;
duke@435 269 ybits.f = y;
duke@435 270 // x Mod Infinity == x unless x is infinity
duke@435 271 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 272 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 273 return x;
duke@435 274 }
duke@435 275 #endif
duke@435 276 return ((jfloat)fmod((double)x,(double)y));
duke@435 277 JRT_END
duke@435 278
duke@435 279
duke@435 280 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 281 #ifdef _WIN64
duke@435 282 union { jdouble d; julong l; } xbits, ybits;
duke@435 283 xbits.d = x;
duke@435 284 ybits.d = y;
duke@435 285 // x Mod Infinity == x unless x is infinity
duke@435 286 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 287 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 288 return x;
duke@435 289 }
duke@435 290 #endif
duke@435 291 return ((jdouble)fmod((double)x,(double)y));
duke@435 292 JRT_END
duke@435 293
bobv@2036 294 #ifdef __SOFTFP__
bobv@2036 295 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 296 return x + y;
bobv@2036 297 JRT_END
bobv@2036 298
bobv@2036 299 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 300 return x - y;
bobv@2036 301 JRT_END
bobv@2036 302
bobv@2036 303 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 304 return x * y;
bobv@2036 305 JRT_END
bobv@2036 306
bobv@2036 307 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 308 return x / y;
bobv@2036 309 JRT_END
bobv@2036 310
bobv@2036 311 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 312 return x + y;
bobv@2036 313 JRT_END
bobv@2036 314
bobv@2036 315 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 316 return x - y;
bobv@2036 317 JRT_END
bobv@2036 318
bobv@2036 319 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 320 return x * y;
bobv@2036 321 JRT_END
bobv@2036 322
bobv@2036 323 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 324 return x / y;
bobv@2036 325 JRT_END
bobv@2036 326
bobv@2036 327 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 328 return (jfloat)x;
bobv@2036 329 JRT_END
bobv@2036 330
bobv@2036 331 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 332 return (jdouble)x;
bobv@2036 333 JRT_END
bobv@2036 334
bobv@2036 335 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 336 return (jdouble)x;
bobv@2036 337 JRT_END
bobv@2036 338
bobv@2036 339 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 340 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 341 JRT_END
bobv@2036 342
bobv@2036 343 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 344 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 345 JRT_END
bobv@2036 346
bobv@2036 347 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 348 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 349 JRT_END
bobv@2036 350
bobv@2036 351 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 352 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 353 JRT_END
bobv@2036 354
bobv@2036 355 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 356 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 357 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 358 JRT_END
bobv@2036 359
bobv@2036 360 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 361 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 362 JRT_END
bobv@2036 363
bobv@2036 364 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 365 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 366 JRT_END
bobv@2036 367
bobv@2036 368 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 369 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 370 JRT_END
bobv@2036 371
bobv@2036 372 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 373 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 374 JRT_END
bobv@2036 375
bobv@2036 376 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 377 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 378 JRT_END
bobv@2036 379
bobv@2036 380 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 381 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 382 JRT_END
bobv@2036 383
bobv@2036 384 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 385 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 386 JRT_END
bobv@2036 387
bobv@2036 388 // Intrinsics make gcc generate code for these.
bobv@2036 389 float SharedRuntime::fneg(float f) {
bobv@2036 390 return -f;
bobv@2036 391 }
bobv@2036 392
bobv@2036 393 double SharedRuntime::dneg(double f) {
bobv@2036 394 return -f;
bobv@2036 395 }
bobv@2036 396
bobv@2036 397 #endif // __SOFTFP__
bobv@2036 398
bobv@2036 399 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 400 // Intrinsics make gcc generate code for these.
bobv@2036 401 double SharedRuntime::dabs(double f) {
bobv@2036 402 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 403 }
bobv@2036 404
bobv@2223 405 #endif
bobv@2223 406
bobv@2223 407 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 408 double SharedRuntime::dsqrt(double f) {
bobv@2036 409 return sqrt(f);
bobv@2036 410 }
bobv@2036 411 #endif
duke@435 412
duke@435 413 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 414 if (g_isnan(x))
kvn@943 415 return 0;
kvn@943 416 if (x >= (jfloat) max_jint)
kvn@943 417 return max_jint;
kvn@943 418 if (x <= (jfloat) min_jint)
kvn@943 419 return min_jint;
kvn@943 420 return (jint) x;
duke@435 421 JRT_END
duke@435 422
duke@435 423
duke@435 424 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 425 if (g_isnan(x))
kvn@943 426 return 0;
kvn@943 427 if (x >= (jfloat) max_jlong)
kvn@943 428 return max_jlong;
kvn@943 429 if (x <= (jfloat) min_jlong)
kvn@943 430 return min_jlong;
kvn@943 431 return (jlong) x;
duke@435 432 JRT_END
duke@435 433
duke@435 434
duke@435 435 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 436 if (g_isnan(x))
kvn@943 437 return 0;
kvn@943 438 if (x >= (jdouble) max_jint)
kvn@943 439 return max_jint;
kvn@943 440 if (x <= (jdouble) min_jint)
kvn@943 441 return min_jint;
kvn@943 442 return (jint) x;
duke@435 443 JRT_END
duke@435 444
duke@435 445
duke@435 446 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 447 if (g_isnan(x))
kvn@943 448 return 0;
kvn@943 449 if (x >= (jdouble) max_jlong)
kvn@943 450 return max_jlong;
kvn@943 451 if (x <= (jdouble) min_jlong)
kvn@943 452 return min_jlong;
kvn@943 453 return (jlong) x;
duke@435 454 JRT_END
duke@435 455
duke@435 456
duke@435 457 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 458 return (jfloat)x;
duke@435 459 JRT_END
duke@435 460
duke@435 461
duke@435 462 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 463 return (jfloat)x;
duke@435 464 JRT_END
duke@435 465
duke@435 466
duke@435 467 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 468 return (jdouble)x;
duke@435 469 JRT_END
duke@435 470
duke@435 471 // Exception handling accross interpreter/compiler boundaries
duke@435 472 //
duke@435 473 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 474 // The continuation address is the entry point of the exception handler of the
duke@435 475 // previous frame depending on the return address.
duke@435 476
twisti@1730 477 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 478 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 479
twisti@2603 480 // Reset method handle flag.
twisti@1803 481 thread->set_is_method_handle_return(false);
twisti@1803 482
twisti@2603 483 // The fastest case first
duke@435 484 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 485 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 486 if (nm != NULL) {
twisti@2603 487 // Set flag if return address is a method handle call site.
twisti@2603 488 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 489 // native nmethods don't have exception handlers
twisti@2603 490 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 491 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 492 if (nm->is_deopt_pc(return_address)) {
duke@435 493 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 494 } else {
twisti@2603 495 return nm->exception_begin();
duke@435 496 }
duke@435 497 }
duke@435 498
duke@435 499 // Entry code
duke@435 500 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 501 return StubRoutines::catch_exception_entry();
duke@435 502 }
duke@435 503 // Interpreted code
duke@435 504 if (Interpreter::contains(return_address)) {
duke@435 505 return Interpreter::rethrow_exception_entry();
duke@435 506 }
duke@435 507
twisti@2603 508 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 509 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 510
duke@435 511 #ifndef PRODUCT
duke@435 512 { ResourceMark rm;
duke@435 513 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 514 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 515 tty->print_cr("b) other problem");
duke@435 516 }
duke@435 517 #endif // PRODUCT
twisti@2603 518
duke@435 519 ShouldNotReachHere();
duke@435 520 return NULL;
duke@435 521 }
duke@435 522
duke@435 523
twisti@1730 524 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 525 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 526 JRT_END
duke@435 527
twisti@1730 528
duke@435 529 address SharedRuntime::get_poll_stub(address pc) {
duke@435 530 address stub;
duke@435 531 // Look up the code blob
duke@435 532 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 533
duke@435 534 // Should be an nmethod
duke@435 535 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 536
duke@435 537 // Look up the relocation information
duke@435 538 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 539 "safepoint polling: type must be poll" );
duke@435 540
duke@435 541 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 542 "Only polling locations are used for safepoint");
duke@435 543
duke@435 544 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
kvn@4103 545 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
duke@435 546 if (at_poll_return) {
duke@435 547 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 548 "polling page return stub not created yet");
twisti@2103 549 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
kvn@4103 550 } else if (has_wide_vectors) {
kvn@4103 551 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
kvn@4103 552 "polling page vectors safepoint stub not created yet");
kvn@4103 553 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
duke@435 554 } else {
duke@435 555 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 556 "polling page safepoint stub not created yet");
twisti@2103 557 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 558 }
duke@435 559 #ifndef PRODUCT
duke@435 560 if( TraceSafepoint ) {
duke@435 561 char buf[256];
duke@435 562 jio_snprintf(buf, sizeof(buf),
duke@435 563 "... found polling page %s exception at pc = "
duke@435 564 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 565 at_poll_return ? "return" : "loop",
duke@435 566 (intptr_t)pc, (intptr_t)stub);
duke@435 567 tty->print_raw_cr(buf);
duke@435 568 }
duke@435 569 #endif // PRODUCT
duke@435 570 return stub;
duke@435 571 }
duke@435 572
duke@435 573
coleenp@2497 574 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 575 assert(caller.is_interpreted_frame(), "");
duke@435 576 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 577 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 578 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 579 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 580 return result;
duke@435 581 }
duke@435 582
duke@435 583
duke@435 584 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 585 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 586 vframeStream vfst(thread, true);
duke@435 587 methodHandle method = methodHandle(thread, vfst.method());
duke@435 588 address bcp = method()->bcp_from(vfst.bci());
duke@435 589 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 590 }
duke@435 591 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 592 }
duke@435 593
coleenp@2497 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 595 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 596 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 597 }
duke@435 598
dcubed@1045 599 // The interpreter code to call this tracing function is only
dcubed@1045 600 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 601 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 602 // to modify the compilers to generate calls to this function.
dcubed@1045 603 //
dcubed@1045 604 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
coleenp@4037 605 JavaThread* thread, Method* method))
dcubed@1045 606 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 607
dcubed@1045 608 if (method->is_obsolete()) {
dcubed@1045 609 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 610 // an error. Our method could have been redefined just after we
coleenp@4037 611 // fetched the Method* from the constant pool.
dcubed@1045 612
dcubed@1045 613 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 614 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 615 ("calling obsolete method '%s'",
dcubed@1045 616 method->name_and_sig_as_C_string()));
dcubed@1045 617 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 618 // this option is provided to debug calls to obsolete methods
dcubed@1045 619 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 620 }
dcubed@1045 621 }
dcubed@1045 622 return 0;
dcubed@1045 623 JRT_END
dcubed@1045 624
duke@435 625 // ret_pc points into caller; we are returning caller's exception handler
duke@435 626 // for given exception
duke@435 627 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 628 bool force_unwind, bool top_frame_only) {
duke@435 629 assert(nm != NULL, "must exist");
duke@435 630 ResourceMark rm;
duke@435 631
duke@435 632 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 633 // determine handler bci, if any
duke@435 634 EXCEPTION_MARK;
duke@435 635
duke@435 636 int handler_bci = -1;
duke@435 637 int scope_depth = 0;
duke@435 638 if (!force_unwind) {
duke@435 639 int bci = sd->bci();
kvn@3194 640 bool recursive_exception = false;
duke@435 641 do {
duke@435 642 bool skip_scope_increment = false;
duke@435 643 // exception handler lookup
duke@435 644 KlassHandle ek (THREAD, exception->klass());
duke@435 645 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 646 if (HAS_PENDING_EXCEPTION) {
kvn@3194 647 recursive_exception = true;
duke@435 648 // We threw an exception while trying to find the exception handler.
duke@435 649 // Transfer the new exception to the exception handle which will
duke@435 650 // be set into thread local storage, and do another lookup for an
duke@435 651 // exception handler for this exception, this time starting at the
duke@435 652 // BCI of the exception handler which caused the exception to be
duke@435 653 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 654 // argument to ensure that the correct exception is thrown (4870175).
duke@435 655 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 656 CLEAR_PENDING_EXCEPTION;
duke@435 657 if (handler_bci >= 0) {
duke@435 658 bci = handler_bci;
duke@435 659 handler_bci = -1;
duke@435 660 skip_scope_increment = true;
duke@435 661 }
duke@435 662 }
kvn@3194 663 else {
kvn@3194 664 recursive_exception = false;
kvn@3194 665 }
duke@435 666 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 667 sd = sd->sender();
duke@435 668 if (sd != NULL) {
duke@435 669 bci = sd->bci();
duke@435 670 }
duke@435 671 ++scope_depth;
duke@435 672 }
kvn@3194 673 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
duke@435 674 }
duke@435 675
duke@435 676 // found handling method => lookup exception handler
twisti@2103 677 int catch_pco = ret_pc - nm->code_begin();
duke@435 678
duke@435 679 ExceptionHandlerTable table(nm);
duke@435 680 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 681 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 682 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 683 // to materialize its exceptions without committing to the exact
duke@435 684 // routing of exceptions. In particular this is needed for adding
duke@435 685 // a synthethic handler to unlock monitors when inlining
duke@435 686 // synchonized methods since the unlock path isn't represented in
duke@435 687 // the bytecodes.
duke@435 688 t = table.entry_for(catch_pco, -1, 0);
duke@435 689 }
duke@435 690
never@1813 691 #ifdef COMPILER1
never@1813 692 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 693 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 694 return nm->unwind_handler_begin();
never@1813 695 }
never@1813 696 #endif
never@1813 697
duke@435 698 if (t == NULL) {
duke@435 699 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 700 tty->print_cr(" Exception:");
duke@435 701 exception->print();
duke@435 702 tty->cr();
duke@435 703 tty->print_cr(" Compiled exception table :");
duke@435 704 table.print();
duke@435 705 nm->print_code();
duke@435 706 guarantee(false, "missing exception handler");
duke@435 707 return NULL;
duke@435 708 }
duke@435 709
twisti@2103 710 return nm->code_begin() + t->pco();
duke@435 711 }
duke@435 712
duke@435 713 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 714 // These errors occur only at call sites
duke@435 715 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 716 JRT_END
duke@435 717
dcubed@451 718 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 719 // These errors occur only at call sites
dcubed@451 720 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 721 JRT_END
dcubed@451 722
duke@435 723 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 724 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 725 JRT_END
duke@435 726
duke@435 727 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 728 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 729 JRT_END
duke@435 730
duke@435 731 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 732 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 733 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 734 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 735 JRT_END
duke@435 736
duke@435 737 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 738 // We avoid using the normal exception construction in this case because
duke@435 739 // it performs an upcall to Java, and we're already out of stack space.
coleenp@4037 740 Klass* k = SystemDictionary::StackOverflowError_klass();
coleenp@4037 741 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 742 Handle exception (thread, exception_oop);
duke@435 743 if (StackTraceInThrowable) {
duke@435 744 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 745 }
duke@435 746 throw_and_post_jvmti_exception(thread, exception);
duke@435 747 JRT_END
duke@435 748
duke@435 749 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 750 address pc,
duke@435 751 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 752 {
duke@435 753 address target_pc = NULL;
duke@435 754
duke@435 755 if (Interpreter::contains(pc)) {
duke@435 756 #ifdef CC_INTERP
duke@435 757 // C++ interpreter doesn't throw implicit exceptions
duke@435 758 ShouldNotReachHere();
duke@435 759 #else
duke@435 760 switch (exception_kind) {
duke@435 761 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 762 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 763 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 764 default: ShouldNotReachHere();
duke@435 765 }
duke@435 766 #endif // !CC_INTERP
duke@435 767 } else {
duke@435 768 switch (exception_kind) {
duke@435 769 case STACK_OVERFLOW: {
duke@435 770 // Stack overflow only occurs upon frame setup; the callee is
duke@435 771 // going to be unwound. Dispatch to a shared runtime stub
duke@435 772 // which will cause the StackOverflowError to be fabricated
duke@435 773 // and processed.
duke@435 774 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 775 if (thread->deopt_mark() != NULL) {
duke@435 776 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 777 }
never@3571 778 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
duke@435 779 return StubRoutines::throw_StackOverflowError_entry();
duke@435 780 }
duke@435 781
duke@435 782 case IMPLICIT_NULL: {
duke@435 783 if (VtableStubs::contains(pc)) {
duke@435 784 // We haven't yet entered the callee frame. Fabricate an
duke@435 785 // exception and begin dispatching it in the caller. Since
duke@435 786 // the caller was at a call site, it's safe to destroy all
duke@435 787 // caller-saved registers, as these entry points do.
duke@435 788 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 789
poonam@900 790 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 791 if (vt_stub == NULL) return NULL;
poonam@900 792
duke@435 793 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 794 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
never@3571 795 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
duke@435 796 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 797 } else {
never@3571 798 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
duke@435 799 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 800 }
duke@435 801 } else {
duke@435 802 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 803
poonam@900 804 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 805 if (cb == NULL) return NULL;
duke@435 806
duke@435 807 // Exception happened in CodeCache. Must be either:
duke@435 808 // 1. Inline-cache check in C2I handler blob,
duke@435 809 // 2. Inline-cache check in nmethod, or
duke@435 810 // 3. Implict null exception in nmethod
duke@435 811
duke@435 812 if (!cb->is_nmethod()) {
twisti@1734 813 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 814 "exception happened outside interpreter, nmethods and vtable stubs (1)");
never@3571 815 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
duke@435 816 // There is no handler here, so we will simply unwind.
duke@435 817 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 818 }
duke@435 819
duke@435 820 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 821 nmethod* nm = (nmethod*)cb;
duke@435 822 if (nm->inlinecache_check_contains(pc)) {
duke@435 823 // exception happened inside inline-cache check code
duke@435 824 // => the nmethod is not yet active (i.e., the frame
duke@435 825 // is not set up yet) => use return address pushed by
duke@435 826 // caller => don't push another return address
never@3571 827 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
duke@435 828 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 829 }
duke@435 830
twisti@3969 831 if (nm->method()->is_method_handle_intrinsic()) {
twisti@3969 832 // exception happened inside MH dispatch code, similar to a vtable stub
twisti@3969 833 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
twisti@3969 834 return StubRoutines::throw_NullPointerException_at_call_entry();
twisti@3969 835 }
twisti@3969 836
duke@435 837 #ifndef PRODUCT
duke@435 838 _implicit_null_throws++;
duke@435 839 #endif
duke@435 840 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 841 // If there's an unexpected fault, target_pc might be NULL,
never@1685 842 // in which case we want to fall through into the normal
never@1685 843 // error handling code.
duke@435 844 }
duke@435 845
duke@435 846 break; // fall through
duke@435 847 }
duke@435 848
duke@435 849
duke@435 850 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 851 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 852 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 853 #ifndef PRODUCT
duke@435 854 _implicit_div0_throws++;
duke@435 855 #endif
duke@435 856 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 857 // If there's an unexpected fault, target_pc might be NULL,
never@1685 858 // in which case we want to fall through into the normal
never@1685 859 // error handling code.
duke@435 860 break; // fall through
duke@435 861 }
duke@435 862
duke@435 863 default: ShouldNotReachHere();
duke@435 864 }
duke@435 865
duke@435 866 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 867
duke@435 868 // for AbortVMOnException flag
duke@435 869 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 870 if (exception_kind == IMPLICIT_NULL) {
never@3499 871 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 872 } else {
never@3499 873 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 874 }
duke@435 875 return target_pc;
duke@435 876 }
duke@435 877
duke@435 878 ShouldNotReachHere();
duke@435 879 return NULL;
duke@435 880 }
duke@435 881
duke@435 882
duke@435 883 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 884 {
duke@435 885 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 886 }
duke@435 887 JNI_END
duke@435 888
twisti@3974 889 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
twisti@3974 890 {
twisti@3974 891 THROW(vmSymbols::java_lang_UnsupportedOperationException());
twisti@3974 892 }
twisti@3974 893 JNI_END
duke@435 894
duke@435 895 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 896 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 897 }
duke@435 898
twisti@3974 899 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
twisti@3974 900 return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
twisti@3974 901 }
twisti@3974 902
duke@435 903
duke@435 904 #ifndef PRODUCT
duke@435 905 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 906 const frame f = thread->last_frame();
duke@435 907 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 908 #ifndef PRODUCT
duke@435 909 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 910 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 911 #endif // !PRODUCT
duke@435 912 return preserve_this_value;
duke@435 913 JRT_END
duke@435 914 #endif // !PRODUCT
duke@435 915
duke@435 916
duke@435 917 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 918 os::yield_all(attempts);
duke@435 919 JRT_END
duke@435 920
duke@435 921
duke@435 922 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 923 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 924 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 925 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 926 JRT_END
duke@435 927
duke@435 928
duke@435 929 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 930 if (thread != NULL) {
duke@435 931 if (thread->is_Java_thread()) {
duke@435 932 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 933 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 934 }
duke@435 935 }
duke@435 936 return 0;
duke@435 937 }
duke@435 938
duke@435 939 /**
duke@435 940 * This function ought to be a void function, but cannot be because
duke@435 941 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 942 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 943 */
duke@435 944 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 945 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 946 }
duke@435 947
duke@435 948 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 949 assert(DTraceAllocProbes, "wrong call");
coleenp@4037 950 Klass* klass = o->klass();
duke@435 951 int size = o->size();
coleenp@2497 952 Symbol* name = klass->name();
dcubed@3202 953 #ifndef USDT2
duke@435 954 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 955 name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 956 #else /* USDT2 */
dcubed@3202 957 HOTSPOT_OBJECT_ALLOC(
dcubed@3202 958 get_java_tid(thread),
dcubed@3202 959 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 960 #endif /* USDT2 */
duke@435 961 return 0;
duke@435 962 }
duke@435 963
duke@435 964 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
coleenp@4037 965 JavaThread* thread, Method* method))
duke@435 966 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 967 Symbol* kname = method->klass_name();
coleenp@2497 968 Symbol* name = method->name();
coleenp@2497 969 Symbol* sig = method->signature();
dcubed@3202 970 #ifndef USDT2
duke@435 971 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 972 kname->bytes(), kname->utf8_length(),
duke@435 973 name->bytes(), name->utf8_length(),
duke@435 974 sig->bytes(), sig->utf8_length());
dcubed@3202 975 #else /* USDT2 */
dcubed@3202 976 HOTSPOT_METHOD_ENTRY(
dcubed@3202 977 get_java_tid(thread),
dcubed@3202 978 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 979 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 980 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 981 #endif /* USDT2 */
duke@435 982 return 0;
duke@435 983 JRT_END
duke@435 984
duke@435 985 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
coleenp@4037 986 JavaThread* thread, Method* method))
duke@435 987 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 988 Symbol* kname = method->klass_name();
coleenp@2497 989 Symbol* name = method->name();
coleenp@2497 990 Symbol* sig = method->signature();
dcubed@3202 991 #ifndef USDT2
duke@435 992 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 993 kname->bytes(), kname->utf8_length(),
duke@435 994 name->bytes(), name->utf8_length(),
duke@435 995 sig->bytes(), sig->utf8_length());
dcubed@3202 996 #else /* USDT2 */
dcubed@3202 997 HOTSPOT_METHOD_RETURN(
dcubed@3202 998 get_java_tid(thread),
dcubed@3202 999 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 1000 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 1001 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 1002 #endif /* USDT2 */
duke@435 1003 return 0;
duke@435 1004 JRT_END
duke@435 1005
duke@435 1006
duke@435 1007 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 1008 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1009 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 1010 // vtable updates, etc. Caller frame must be compiled.
duke@435 1011 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 1012 ResourceMark rm(THREAD);
duke@435 1013
duke@435 1014 // last java frame on stack (which includes native call frames)
duke@435 1015 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 1016
duke@435 1017 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 1018 }
duke@435 1019
duke@435 1020
duke@435 1021 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 1022 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1023 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 1024 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1025 vframeStream& vfst,
duke@435 1026 Bytecodes::Code& bc,
duke@435 1027 CallInfo& callinfo, TRAPS) {
duke@435 1028 Handle receiver;
duke@435 1029 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1030
duke@435 1031 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1032
duke@435 1033 // Find caller and bci from vframe
twisti@3969 1034 methodHandle caller(THREAD, vfst.method());
twisti@3969 1035 int bci = vfst.bci();
duke@435 1036
duke@435 1037 // Find bytecode
never@2462 1038 Bytecode_invoke bytecode(caller, bci);
twisti@3969 1039 bc = bytecode.invoke_code();
never@2462 1040 int bytecode_index = bytecode.index();
duke@435 1041
duke@435 1042 // Find receiver for non-static call
twisti@3969 1043 if (bc != Bytecodes::_invokestatic &&
twisti@3969 1044 bc != Bytecodes::_invokedynamic) {
duke@435 1045 // This register map must be update since we need to find the receiver for
duke@435 1046 // compiled frames. The receiver might be in a register.
duke@435 1047 RegisterMap reg_map2(thread);
duke@435 1048 frame stubFrame = thread->last_frame();
duke@435 1049 // Caller-frame is a compiled frame
duke@435 1050 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1051
never@2462 1052 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1053 if (callee.is_null()) {
duke@435 1054 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1055 }
duke@435 1056 // Retrieve from a compiled argument list
duke@435 1057 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1058
duke@435 1059 if (receiver.is_null()) {
duke@435 1060 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1061 }
duke@435 1062 }
duke@435 1063
duke@435 1064 // Resolve method. This is parameterized by bytecode.
twisti@3969 1065 constantPoolHandle constants(THREAD, caller->constants());
twisti@3969 1066 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1067 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1068
duke@435 1069 #ifdef ASSERT
duke@435 1070 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 1071 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 1072 assert(receiver.not_null(), "should have thrown exception");
twisti@3969 1073 KlassHandle receiver_klass(THREAD, receiver->klass());
coleenp@4037 1074 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1075 // klass is already loaded
twisti@3969 1076 KlassHandle static_receiver_klass(THREAD, rk);
twisti@3969 1077 // Method handle invokes might have been optimized to a direct call
twisti@3969 1078 // so don't check for the receiver class.
twisti@3969 1079 // FIXME this weakens the assert too much
twisti@3969 1080 methodHandle callee = callinfo.selected_method();
twisti@3969 1081 assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
twisti@3969 1082 callee->is_method_handle_intrinsic() ||
twisti@3969 1083 callee->is_compiled_lambda_form(),
twisti@3969 1084 "actual receiver must be subclass of static receiver klass");
duke@435 1085 if (receiver_klass->oop_is_instance()) {
coleenp@4037 1086 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1087 tty->print_cr("ERROR: Klass not yet initialized!!");
coleenp@4037 1088 receiver_klass()->print();
duke@435 1089 }
coleenp@4037 1090 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1091 }
duke@435 1092 }
duke@435 1093 #endif
duke@435 1094
duke@435 1095 return receiver;
duke@435 1096 }
duke@435 1097
duke@435 1098 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1099 ResourceMark rm(THREAD);
duke@435 1100 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1101 // exist on the stack since last JavaCall. If not, we need
duke@435 1102 // to get the target method from the JavaCall wrapper.
duke@435 1103 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1104 methodHandle callee_method;
duke@435 1105 if (vfst.at_end()) {
duke@435 1106 // No Java frames were found on stack since we did the JavaCall.
duke@435 1107 // Hence the stack can only contain an entry_frame. We need to
duke@435 1108 // find the target method from the stub frame.
duke@435 1109 RegisterMap reg_map(thread, false);
duke@435 1110 frame fr = thread->last_frame();
duke@435 1111 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1112 fr = fr.sender(&reg_map);
duke@435 1113 assert(fr.is_entry_frame(), "must be");
duke@435 1114 // fr is now pointing to the entry frame.
duke@435 1115 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1116 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1117 } else {
duke@435 1118 Bytecodes::Code bc;
duke@435 1119 CallInfo callinfo;
duke@435 1120 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1121 callee_method = callinfo.selected_method();
duke@435 1122 }
duke@435 1123 assert(callee_method()->is_method(), "must be");
duke@435 1124 return callee_method;
duke@435 1125 }
duke@435 1126
duke@435 1127 // Resolves a call.
duke@435 1128 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1129 bool is_virtual,
duke@435 1130 bool is_optimized, TRAPS) {
duke@435 1131 methodHandle callee_method;
duke@435 1132 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1133 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1134 int retry_count = 0;
duke@435 1135 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1136 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1137 // If has a pending exception then there is no need to re-try to
duke@435 1138 // resolve this method.
duke@435 1139 // If the method has been redefined, we need to try again.
duke@435 1140 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1141 // require that java.lang.Object has been updated.
duke@435 1142
duke@435 1143 // It is very unlikely that method is redefined more than 100 times
duke@435 1144 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1145 // means then there could be a bug here.
duke@435 1146 guarantee((retry_count++ < 100),
duke@435 1147 "Could not resolve to latest version of redefined method");
duke@435 1148 // method is redefined in the middle of resolve so re-try.
duke@435 1149 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1150 }
duke@435 1151 }
duke@435 1152 return callee_method;
duke@435 1153 }
duke@435 1154
duke@435 1155 // Resolves a call. The compilers generate code for calls that go here
duke@435 1156 // and are patched with the real destination of the call.
duke@435 1157 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1158 bool is_virtual,
duke@435 1159 bool is_optimized, TRAPS) {
duke@435 1160
duke@435 1161 ResourceMark rm(thread);
duke@435 1162 RegisterMap cbl_map(thread, false);
duke@435 1163 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1164
twisti@1730 1165 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1166 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1167 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1168 // make sure caller is not getting deoptimized
duke@435 1169 // and removed before we are done with it.
duke@435 1170 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1171 nmethodLocker caller_lock(caller_nm);
duke@435 1172
duke@435 1173
duke@435 1174 // determine call info & receiver
duke@435 1175 // note: a) receiver is NULL for static calls
duke@435 1176 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1177 CallInfo call_info;
duke@435 1178 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1179 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1180 call_info, CHECK_(methodHandle()));
duke@435 1181 methodHandle callee_method = call_info.selected_method();
duke@435 1182
twisti@3969 1183 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
twisti@3969 1184 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
twisti@3969 1185 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
twisti@3969 1186 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
duke@435 1187
duke@435 1188 #ifndef PRODUCT
duke@435 1189 // tracing/debugging/statistics
duke@435 1190 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1191 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1192 (&_resolve_static_ctr);
duke@435 1193 Atomic::inc(addr);
duke@435 1194
duke@435 1195 if (TraceCallFixup) {
duke@435 1196 ResourceMark rm(thread);
duke@435 1197 tty->print("resolving %s%s (%s) call to",
duke@435 1198 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1199 Bytecodes::name(invoke_code));
duke@435 1200 callee_method->print_short_name(tty);
twisti@3969 1201 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
duke@435 1202 }
duke@435 1203 #endif
duke@435 1204
twisti@3969 1205 // JSR 292 key invariant:
twisti@1730 1206 // If the resolved method is a MethodHandle invoke target the call
twisti@3969 1207 // site must be a MethodHandle call site, because the lambda form might tail-call
twisti@3969 1208 // leaving the stack in a state unknown to either caller or callee
twisti@3969 1209 // TODO detune for now but we might need it again
twisti@3969 1210 // assert(!callee_method->is_compiled_lambda_form() ||
twisti@3969 1211 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1212
duke@435 1213 // Compute entry points. This might require generation of C2I converter
duke@435 1214 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1215 // computation of the entry points is independent of patching the call. We
duke@435 1216 // always return the entry-point, but we only patch the stub if the call has
duke@435 1217 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1218 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1219 // virtual this is just a destination address.
duke@435 1220
duke@435 1221 StaticCallInfo static_call_info;
duke@435 1222 CompiledICInfo virtual_call_info;
duke@435 1223
duke@435 1224 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1225 // we are done patching the code.
twisti@1730 1226 nmethod* callee_nm = callee_method->code();
twisti@1730 1227 nmethodLocker nl_callee(callee_nm);
duke@435 1228 #ifdef ASSERT
twisti@1730 1229 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1230 #endif
duke@435 1231
duke@435 1232 if (is_virtual) {
duke@435 1233 assert(receiver.not_null(), "sanity check");
duke@435 1234 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1235 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1236 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1237 is_optimized, static_bound, virtual_call_info,
duke@435 1238 CHECK_(methodHandle()));
duke@435 1239 } else {
duke@435 1240 // static call
duke@435 1241 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1242 }
duke@435 1243
duke@435 1244 // grab lock, check for deoptimization and potentially patch caller
duke@435 1245 {
duke@435 1246 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1247
coleenp@4037 1248 // Now that we are ready to patch if the Method* was redefined then
duke@435 1249 // don't update call site and let the caller retry.
duke@435 1250
duke@435 1251 if (!callee_method->is_old()) {
duke@435 1252 #ifdef ASSERT
duke@435 1253 // We must not try to patch to jump to an already unloaded method.
duke@435 1254 if (dest_entry_point != 0) {
duke@435 1255 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1256 "should not unload nmethod while locked");
duke@435 1257 }
duke@435 1258 #endif
duke@435 1259 if (is_virtual) {
coleenp@4037 1260 nmethod* nm = callee_nm;
coleenp@4037 1261 if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
coleenp@4037 1262 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
duke@435 1263 if (inline_cache->is_clean()) {
duke@435 1264 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1265 }
duke@435 1266 } else {
duke@435 1267 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1268 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1269 }
duke@435 1270 }
duke@435 1271
duke@435 1272 } // unlock CompiledIC_lock
duke@435 1273
duke@435 1274 return callee_method;
duke@435 1275 }
duke@435 1276
duke@435 1277
duke@435 1278 // Inline caches exist only in compiled code
duke@435 1279 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1280 #ifdef ASSERT
duke@435 1281 RegisterMap reg_map(thread, false);
duke@435 1282 frame stub_frame = thread->last_frame();
duke@435 1283 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1284 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1285 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1286 #endif /* ASSERT */
duke@435 1287
duke@435 1288 methodHandle callee_method;
duke@435 1289 JRT_BLOCK
duke@435 1290 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
coleenp@4037 1291 // Return Method* through TLS
coleenp@4037 1292 thread->set_vm_result_2(callee_method());
duke@435 1293 JRT_BLOCK_END
duke@435 1294 // return compiled code entry point after potential safepoints
duke@435 1295 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1296 return callee_method->verified_code_entry();
duke@435 1297 JRT_END
duke@435 1298
duke@435 1299
duke@435 1300 // Handle call site that has been made non-entrant
duke@435 1301 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1302 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1303 // as we race to call it. We don't want to take a safepoint if
duke@435 1304 // the caller was interpreted because the caller frame will look
duke@435 1305 // interpreted to the stack walkers and arguments are now
duke@435 1306 // "compiled" so it is much better to make this transition
duke@435 1307 // invisible to the stack walking code. The i2c path will
duke@435 1308 // place the callee method in the callee_target. It is stashed
duke@435 1309 // there because if we try and find the callee by normal means a
duke@435 1310 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1311 RegisterMap reg_map(thread, false);
duke@435 1312 frame stub_frame = thread->last_frame();
duke@435 1313 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1314 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1315
twisti@1570 1316 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1317 // simply redispatch to the callee_target.
twisti@1570 1318 address sender_pc = caller_frame.pc();
twisti@1570 1319 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1320 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1570 1321
twisti@1570 1322 if (caller_frame.is_interpreted_frame() ||
twisti@3969 1323 caller_frame.is_entry_frame()) {
coleenp@4037 1324 Method* callee = thread->callee_target();
duke@435 1325 guarantee(callee != NULL && callee->is_method(), "bad handshake");
coleenp@4037 1326 thread->set_vm_result_2(callee);
duke@435 1327 thread->set_callee_target(NULL);
duke@435 1328 return callee->get_c2i_entry();
duke@435 1329 }
duke@435 1330
duke@435 1331 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1332 methodHandle callee_method;
duke@435 1333 JRT_BLOCK
duke@435 1334 // Force resolving of caller (if we called from compiled frame)
duke@435 1335 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
coleenp@4037 1336 thread->set_vm_result_2(callee_method());
duke@435 1337 JRT_BLOCK_END
duke@435 1338 // return compiled code entry point after potential safepoints
duke@435 1339 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1340 return callee_method->verified_code_entry();
duke@435 1341 JRT_END
duke@435 1342
duke@435 1343
duke@435 1344 // resolve a static call and patch code
duke@435 1345 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1346 methodHandle callee_method;
duke@435 1347 JRT_BLOCK
duke@435 1348 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
coleenp@4037 1349 thread->set_vm_result_2(callee_method());
duke@435 1350 JRT_BLOCK_END
duke@435 1351 // return compiled code entry point after potential safepoints
duke@435 1352 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1353 return callee_method->verified_code_entry();
duke@435 1354 JRT_END
duke@435 1355
duke@435 1356
duke@435 1357 // resolve virtual call and update inline cache to monomorphic
duke@435 1358 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1359 methodHandle callee_method;
duke@435 1360 JRT_BLOCK
duke@435 1361 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
coleenp@4037 1362 thread->set_vm_result_2(callee_method());
duke@435 1363 JRT_BLOCK_END
duke@435 1364 // return compiled code entry point after potential safepoints
duke@435 1365 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1366 return callee_method->verified_code_entry();
duke@435 1367 JRT_END
duke@435 1368
duke@435 1369
duke@435 1370 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1371 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1372 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1373 methodHandle callee_method;
duke@435 1374 JRT_BLOCK
duke@435 1375 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
coleenp@4037 1376 thread->set_vm_result_2(callee_method());
duke@435 1377 JRT_BLOCK_END
duke@435 1378 // return compiled code entry point after potential safepoints
duke@435 1379 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1380 return callee_method->verified_code_entry();
duke@435 1381 JRT_END
duke@435 1382
duke@435 1383
duke@435 1384
duke@435 1385
duke@435 1386
duke@435 1387 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1388 ResourceMark rm(thread);
duke@435 1389 CallInfo call_info;
duke@435 1390 Bytecodes::Code bc;
duke@435 1391
duke@435 1392 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1393 // receivers for non-static calls
duke@435 1394 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1395 CHECK_(methodHandle()));
duke@435 1396 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1397 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1398 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1399 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1400 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1401 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1402 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1403 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1404 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1405 //
duke@435 1406 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1407 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1408 if (TraceCallFixup) {
duke@435 1409 RegisterMap reg_map(thread, false);
duke@435 1410 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1411 ResourceMark rm(thread);
duke@435 1412 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1413 callee_method->print_short_name(tty);
duke@435 1414 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1415 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1416 }
duke@435 1417 return callee_method;
duke@435 1418 }
duke@435 1419
duke@435 1420 methodHandle callee_method = call_info.selected_method();
duke@435 1421
duke@435 1422 bool should_be_mono = false;
duke@435 1423
duke@435 1424 #ifndef PRODUCT
duke@435 1425 Atomic::inc(&_ic_miss_ctr);
duke@435 1426
duke@435 1427 // Statistics & Tracing
duke@435 1428 if (TraceCallFixup) {
duke@435 1429 ResourceMark rm(thread);
duke@435 1430 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1431 callee_method->print_short_name(tty);
duke@435 1432 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1433 }
duke@435 1434
duke@435 1435 if (ICMissHistogram) {
duke@435 1436 MutexLocker m(VMStatistic_lock);
duke@435 1437 RegisterMap reg_map(thread, false);
duke@435 1438 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1439 // produce statistics under the lock
duke@435 1440 trace_ic_miss(f.pc());
duke@435 1441 }
duke@435 1442 #endif
duke@435 1443
duke@435 1444 // install an event collector so that when a vtable stub is created the
duke@435 1445 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1446 // event can't be posted when the stub is created as locks are held
duke@435 1447 // - instead the event will be deferred until the event collector goes
duke@435 1448 // out of scope.
duke@435 1449 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1450
duke@435 1451 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1452 // made non-entrant or we are called from interpreted.
duke@435 1453 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1454 RegisterMap reg_map(thread, false);
duke@435 1455 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1456 CodeBlob* cb = caller_frame.cb();
duke@435 1457 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1458 // Not a non-entrant nmethod, so find inline_cache
coleenp@4037 1459 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
duke@435 1460 bool should_be_mono = false;
duke@435 1461 if (inline_cache->is_optimized()) {
duke@435 1462 if (TraceCallFixup) {
duke@435 1463 ResourceMark rm(thread);
duke@435 1464 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1465 callee_method->print_short_name(tty);
duke@435 1466 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1467 }
duke@435 1468 should_be_mono = true;
coleenp@4037 1469 } else if (inline_cache->is_icholder_call()) {
coleenp@4037 1470 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
coleenp@4037 1471 if ( ic_oop != NULL) {
duke@435 1472
duke@435 1473 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1474 // This isn't a real miss. We must have seen that compiled code
duke@435 1475 // is now available and we want the call site converted to a
duke@435 1476 // monomorphic compiled call site.
duke@435 1477 // We can't assert for callee_method->code() != NULL because it
duke@435 1478 // could have been deoptimized in the meantime
duke@435 1479 if (TraceCallFixup) {
duke@435 1480 ResourceMark rm(thread);
duke@435 1481 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1482 callee_method->print_short_name(tty);
duke@435 1483 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1484 }
duke@435 1485 should_be_mono = true;
duke@435 1486 }
duke@435 1487 }
duke@435 1488 }
duke@435 1489
duke@435 1490 if (should_be_mono) {
duke@435 1491
duke@435 1492 // We have a path that was monomorphic but was going interpreted
duke@435 1493 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1494 // by using a new icBuffer.
duke@435 1495 CompiledICInfo info;
duke@435 1496 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1497 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1498 receiver_klass,
duke@435 1499 inline_cache->is_optimized(),
duke@435 1500 false,
duke@435 1501 info, CHECK_(methodHandle()));
duke@435 1502 inline_cache->set_to_monomorphic(info);
duke@435 1503 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1504 // Change to megamorphic
duke@435 1505 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1506 } else {
duke@435 1507 // Either clean or megamorphic
duke@435 1508 }
duke@435 1509 }
duke@435 1510 } // Release CompiledIC_lock
duke@435 1511
duke@435 1512 return callee_method;
duke@435 1513 }
duke@435 1514
duke@435 1515 //
duke@435 1516 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1517 // This routines handles both virtual call sites, optimized virtual call
duke@435 1518 // sites, and static call sites. Typically used to change a call sites
duke@435 1519 // destination from compiled to interpreted.
duke@435 1520 //
duke@435 1521 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1522 ResourceMark rm(thread);
duke@435 1523 RegisterMap reg_map(thread, false);
duke@435 1524 frame stub_frame = thread->last_frame();
duke@435 1525 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1526 frame caller = stub_frame.sender(&reg_map);
duke@435 1527
duke@435 1528 // Do nothing if the frame isn't a live compiled frame.
duke@435 1529 // nmethod could be deoptimized by the time we get here
duke@435 1530 // so no update to the caller is needed.
duke@435 1531
duke@435 1532 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1533
duke@435 1534 address pc = caller.pc();
duke@435 1535
duke@435 1536 // Default call_addr is the location of the "basic" call.
duke@435 1537 // Determine the address of the call we a reresolving. With
duke@435 1538 // Inline Caches we will always find a recognizable call.
duke@435 1539 // With Inline Caches disabled we may or may not find a
duke@435 1540 // recognizable call. We will always find a call for static
duke@435 1541 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1542 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1543 //
duke@435 1544 // With Inline Caches disabled we can get here for a virtual call
duke@435 1545 // for two reasons:
duke@435 1546 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1547 // will run us thru handle_wrong_method and we will eventually
duke@435 1548 // end up in the interpreter to throw the ame.
duke@435 1549 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1550 // call and between the time we fetch the entry address and
duke@435 1551 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1552 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1553 //
duke@435 1554 address call_addr = NULL;
duke@435 1555 {
duke@435 1556 // Get call instruction under lock because another thread may be
duke@435 1557 // busy patching it.
duke@435 1558 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1559 // Location of call instruction
duke@435 1560 if (NativeCall::is_call_before(pc)) {
duke@435 1561 NativeCall *ncall = nativeCall_before(pc);
duke@435 1562 call_addr = ncall->instruction_address();
duke@435 1563 }
duke@435 1564 }
duke@435 1565
duke@435 1566 // Check for static or virtual call
duke@435 1567 bool is_static_call = false;
duke@435 1568 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1569 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1570 // this is done with it.
duke@435 1571 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1572 nmethodLocker nmlock(caller_nm);
duke@435 1573
duke@435 1574 if (call_addr != NULL) {
duke@435 1575 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1576 int ret = iter.next(); // Get item
duke@435 1577 if (ret) {
duke@435 1578 assert(iter.addr() == call_addr, "must find call");
duke@435 1579 if (iter.type() == relocInfo::static_call_type) {
duke@435 1580 is_static_call = true;
duke@435 1581 } else {
duke@435 1582 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1583 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1584 , "unexpected relocInfo. type");
duke@435 1585 }
duke@435 1586 } else {
duke@435 1587 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1588 }
duke@435 1589
duke@435 1590 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1591 // than directly setting it to the new destination, since resolving of calls
duke@435 1592 // is always done through the same code path. (experience shows that it
duke@435 1593 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1594 // to a wrong method). It should not be performance critical, since the
duke@435 1595 // resolve is only done once.
duke@435 1596
duke@435 1597 MutexLocker ml(CompiledIC_lock);
duke@435 1598 //
duke@435 1599 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1600 // as it is a waste of time
duke@435 1601 //
duke@435 1602 if (caller_nm->is_in_use()) {
duke@435 1603 if (is_static_call) {
duke@435 1604 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1605 ssc->set_to_clean();
duke@435 1606 } else {
duke@435 1607 // compiled, dispatched call (which used to call an interpreted method)
coleenp@4037 1608 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
duke@435 1609 inline_cache->set_to_clean();
duke@435 1610 }
duke@435 1611 }
duke@435 1612 }
duke@435 1613
duke@435 1614 }
duke@435 1615
duke@435 1616 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1617
duke@435 1618
duke@435 1619 #ifndef PRODUCT
duke@435 1620 Atomic::inc(&_wrong_method_ctr);
duke@435 1621
duke@435 1622 if (TraceCallFixup) {
duke@435 1623 ResourceMark rm(thread);
duke@435 1624 tty->print("handle_wrong_method reresolving call to");
duke@435 1625 callee_method->print_short_name(tty);
duke@435 1626 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1627 }
duke@435 1628 #endif
duke@435 1629
duke@435 1630 return callee_method;
duke@435 1631 }
duke@435 1632
twisti@4101 1633 #ifdef ASSERT
twisti@4101 1634 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
twisti@4101 1635 const BasicType* sig_bt,
twisti@4101 1636 const VMRegPair* regs) {
twisti@4101 1637 ResourceMark rm;
twisti@4101 1638 const int total_args_passed = method->size_of_parameters();
twisti@4101 1639 const VMRegPair* regs_with_member_name = regs;
twisti@4101 1640 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
twisti@4101 1641
twisti@4101 1642 const int member_arg_pos = total_args_passed - 1;
twisti@4101 1643 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
twisti@4101 1644 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
twisti@4101 1645
twisti@4101 1646 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@4101 1647 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
twisti@4101 1648
twisti@4101 1649 for (int i = 0; i < member_arg_pos; i++) {
twisti@4101 1650 VMReg a = regs_with_member_name[i].first();
twisti@4101 1651 VMReg b = regs_without_member_name[i].first();
twisti@4101 1652 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
twisti@4101 1653 }
twisti@4101 1654 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
twisti@4101 1655 }
twisti@4101 1656 #endif
twisti@4101 1657
duke@435 1658 // ---------------------------------------------------------------------------
duke@435 1659 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1660 // we were called by a compiled method. However we could have lost a race
duke@435 1661 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1662 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1663 // so he no longer calls into the interpreter.
coleenp@4037 1664 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
coleenp@4037 1665 Method* moop(method);
duke@435 1666
duke@435 1667 address entry_point = moop->from_compiled_entry();
duke@435 1668
duke@435 1669 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1670 // been resolved yet, in which case this function will be called from
duke@435 1671 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1672 // request for a fixup.
duke@435 1673 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1674 // is now back to the i2c in that case we don't need to patch and if
duke@435 1675 // we did we'd leap into space because the callsite needs to use
coleenp@4037 1676 // "to interpreter" stub in order to load up the Method*. Don't
duke@435 1677 // ask me how I know this...
duke@435 1678
duke@435 1679 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1680 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1681 return;
twisti@1640 1682 }
twisti@1640 1683
twisti@1640 1684 // The check above makes sure this is a nmethod.
twisti@1640 1685 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1686 assert(nm, "must be");
twisti@1640 1687
twisti@3240 1688 // Get the return PC for the passed caller PC.
twisti@3240 1689 address return_pc = caller_pc + frame::pc_return_offset;
twisti@3240 1690
duke@435 1691 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1692 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1693 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1694 // call site with the same old data. clear_code will set code() to NULL
duke@435 1695 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1696 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1697 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1698 // and patch the code with the same old data. Asi es la vida.
duke@435 1699
duke@435 1700 if (moop->code() == NULL) return;
duke@435 1701
twisti@1640 1702 if (nm->is_in_use()) {
duke@435 1703
duke@435 1704 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1705 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
twisti@3240 1706 if (NativeCall::is_call_before(return_pc)) {
twisti@3240 1707 NativeCall *call = nativeCall_before(return_pc);
duke@435 1708 //
duke@435 1709 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1710 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1711 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1712 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1713 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1714 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1715 // for the rest of its life! Just another racing bug in the life of
duke@435 1716 // fixup_callers_callsite ...
duke@435 1717 //
twisti@1918 1718 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1719 iter.next();
duke@435 1720 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1721 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1722 if ( typ != relocInfo::static_call_type &&
duke@435 1723 typ != relocInfo::opt_virtual_call_type &&
duke@435 1724 typ != relocInfo::static_stub_type) {
duke@435 1725 return;
duke@435 1726 }
duke@435 1727 address destination = call->destination();
duke@435 1728 if (destination != entry_point) {
duke@435 1729 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1730 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1731 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1732 // static call or optimized virtual
duke@435 1733 if (TraceCallFixup) {
twisti@1639 1734 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1735 moop->print_short_name(tty);
duke@435 1736 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1737 }
duke@435 1738 call->set_destination_mt_safe(entry_point);
duke@435 1739 } else {
duke@435 1740 if (TraceCallFixup) {
duke@435 1741 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1742 moop->print_short_name(tty);
duke@435 1743 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1744 }
duke@435 1745 // assert is too strong could also be resolve destinations.
duke@435 1746 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1747 }
duke@435 1748 } else {
duke@435 1749 if (TraceCallFixup) {
twisti@1639 1750 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1751 moop->print_short_name(tty);
duke@435 1752 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1753 }
duke@435 1754 }
duke@435 1755 }
duke@435 1756 }
duke@435 1757 IRT_END
duke@435 1758
duke@435 1759
duke@435 1760 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1761 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1762 oopDesc* dest, jint dest_pos,
duke@435 1763 jint length,
duke@435 1764 JavaThread* thread)) {
duke@435 1765 #ifndef PRODUCT
duke@435 1766 _slow_array_copy_ctr++;
duke@435 1767 #endif
duke@435 1768 // Check if we have null pointers
duke@435 1769 if (src == NULL || dest == NULL) {
duke@435 1770 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1771 }
duke@435 1772 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1773 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1774 // that src and dest are truly arrays (and are conformable).
duke@435 1775 // The copy_array mechanism is awkward and could be removed, but
duke@435 1776 // the compilers don't call this function except as a last resort,
duke@435 1777 // so it probably doesn't matter.
hseigel@4278 1778 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1779 (arrayOopDesc*)dest, dest_pos,
duke@435 1780 length, thread);
duke@435 1781 }
duke@435 1782 JRT_END
duke@435 1783
duke@435 1784 char* SharedRuntime::generate_class_cast_message(
duke@435 1785 JavaThread* thread, const char* objName) {
duke@435 1786
duke@435 1787 // Get target class name from the checkcast instruction
duke@435 1788 vframeStream vfst(thread, true);
duke@435 1789 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1790 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
hseigel@4278 1791 Klass* targetKlass = vfst.method()->constants()->klass_at(
hseigel@4278 1792 cc.index(), thread);
duke@435 1793 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1794 }
duke@435 1795
duke@435 1796 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1797 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1798 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1799
kamg@488 1800 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1801 if (NULL == message) {
kamg@488 1802 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1803 message = const_cast<char*>(objName);
duke@435 1804 } else {
duke@435 1805 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1806 }
duke@435 1807 return message;
duke@435 1808 }
duke@435 1809
duke@435 1810 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1811 (void) JavaThread::current()->reguard_stack();
duke@435 1812 JRT_END
duke@435 1813
duke@435 1814
duke@435 1815 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1816 #ifndef PRODUCT
duke@435 1817 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1818 #endif
duke@435 1819 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1820 oop obj(_obj);
duke@435 1821 #ifndef PRODUCT
duke@435 1822 _monitor_enter_ctr++; // monitor enter slow
duke@435 1823 #endif
duke@435 1824 if (PrintBiasedLockingStatistics) {
duke@435 1825 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1826 }
duke@435 1827 Handle h_obj(THREAD, obj);
duke@435 1828 if (UseBiasedLocking) {
duke@435 1829 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1830 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1831 } else {
duke@435 1832 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1833 }
duke@435 1834 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1835 JRT_END
duke@435 1836
duke@435 1837 #ifndef PRODUCT
duke@435 1838 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1839 #endif
duke@435 1840 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1841 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1842 oop obj(_obj);
duke@435 1843 #ifndef PRODUCT
duke@435 1844 _monitor_exit_ctr++; // monitor exit slow
duke@435 1845 #endif
duke@435 1846 Thread* THREAD = JavaThread::current();
duke@435 1847 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1848 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1849 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1850 #undef MIGHT_HAVE_PENDING
duke@435 1851 #ifdef MIGHT_HAVE_PENDING
duke@435 1852 // Save and restore any pending_exception around the exception mark.
duke@435 1853 // While the slow_exit must not throw an exception, we could come into
duke@435 1854 // this routine with one set.
duke@435 1855 oop pending_excep = NULL;
duke@435 1856 const char* pending_file;
duke@435 1857 int pending_line;
duke@435 1858 if (HAS_PENDING_EXCEPTION) {
duke@435 1859 pending_excep = PENDING_EXCEPTION;
duke@435 1860 pending_file = THREAD->exception_file();
duke@435 1861 pending_line = THREAD->exception_line();
duke@435 1862 CLEAR_PENDING_EXCEPTION;
duke@435 1863 }
duke@435 1864 #endif /* MIGHT_HAVE_PENDING */
duke@435 1865
duke@435 1866 {
duke@435 1867 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1868 EXCEPTION_MARK;
duke@435 1869 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1870 }
duke@435 1871
duke@435 1872 #ifdef MIGHT_HAVE_PENDING
duke@435 1873 if (pending_excep != NULL) {
duke@435 1874 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1875 }
duke@435 1876 #endif /* MIGHT_HAVE_PENDING */
duke@435 1877 JRT_END
duke@435 1878
duke@435 1879 #ifndef PRODUCT
duke@435 1880
duke@435 1881 void SharedRuntime::print_statistics() {
duke@435 1882 ttyLocker ttyl;
duke@435 1883 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1884
duke@435 1885 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1886 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1887 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1888
duke@435 1889 SharedRuntime::print_ic_miss_histogram();
duke@435 1890
duke@435 1891 if (CountRemovableExceptions) {
duke@435 1892 if (_nof_removable_exceptions > 0) {
duke@435 1893 Unimplemented(); // this counter is not yet incremented
duke@435 1894 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1895 }
duke@435 1896 }
duke@435 1897
duke@435 1898 // Dump the JRT_ENTRY counters
duke@435 1899 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1900 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1901 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1902 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1903 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1904 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1905 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1906
duke@435 1907 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1908 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1909 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1910 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1911 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1912
duke@435 1913 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1914 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1915 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1916 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1917 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1918 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1919 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1920 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1921 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1922 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1923 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1924 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1925 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1926 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1927 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1928 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1929
never@1622 1930 AdapterHandlerLibrary::print_statistics();
never@1622 1931
duke@435 1932 if (xtty != NULL) xtty->tail("statistics");
duke@435 1933 }
duke@435 1934
duke@435 1935 inline double percent(int x, int y) {
duke@435 1936 return 100.0 * x / MAX2(y, 1);
duke@435 1937 }
duke@435 1938
duke@435 1939 class MethodArityHistogram {
duke@435 1940 public:
duke@435 1941 enum { MAX_ARITY = 256 };
duke@435 1942 private:
duke@435 1943 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1944 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1945 static int _max_arity; // max. arity seen
duke@435 1946 static int _max_size; // max. arg size seen
duke@435 1947
duke@435 1948 static void add_method_to_histogram(nmethod* nm) {
coleenp@4037 1949 Method* m = nm->method();
duke@435 1950 ArgumentCount args(m->signature());
duke@435 1951 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1952 int argsize = m->size_of_parameters();
duke@435 1953 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1954 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1955 int count = nm->method()->compiled_invocation_count();
duke@435 1956 _arity_histogram[arity] += count;
duke@435 1957 _size_histogram[argsize] += count;
duke@435 1958 _max_arity = MAX2(_max_arity, arity);
duke@435 1959 _max_size = MAX2(_max_size, argsize);
duke@435 1960 }
duke@435 1961
duke@435 1962 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1963 const int N = MIN2(5, n);
duke@435 1964 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1965 double sum = 0;
duke@435 1966 double weighted_sum = 0;
duke@435 1967 int i;
duke@435 1968 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1969 double rest = sum;
duke@435 1970 double percent = sum / 100;
duke@435 1971 for (i = 0; i <= N; i++) {
duke@435 1972 rest -= histo[i];
duke@435 1973 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1974 }
duke@435 1975 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1976 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1977 }
duke@435 1978
duke@435 1979 void print_histogram() {
duke@435 1980 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1981 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1982 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1983 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1984 tty->cr();
duke@435 1985 }
duke@435 1986
duke@435 1987 public:
duke@435 1988 MethodArityHistogram() {
duke@435 1989 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1990 _max_arity = _max_size = 0;
duke@435 1991 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1992 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1993 print_histogram();
duke@435 1994 }
duke@435 1995 };
duke@435 1996
duke@435 1997 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1998 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1999 int MethodArityHistogram::_max_arity;
duke@435 2000 int MethodArityHistogram::_max_size;
duke@435 2001
duke@435 2002 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2003 tty->print_cr("Calls from compiled code:");
duke@435 2004 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2005 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2006 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2007 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2008 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2009 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2010 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2011 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2012 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2013 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2014 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2015 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2016 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2017 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2018 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2019 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2020 tty->cr();
duke@435 2021 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2022 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2023 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2024 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2025 tty->cr();
duke@435 2026
duke@435 2027 MethodArityHistogram h;
duke@435 2028 }
duke@435 2029 #endif
duke@435 2030
duke@435 2031
never@1622 2032 // A simple wrapper class around the calling convention information
never@1622 2033 // that allows sharing of adapters for the same calling convention.
zgu@3900 2034 class AdapterFingerPrint : public CHeapObj<mtCode> {
never@1622 2035 private:
twisti@3969 2036 enum {
twisti@3969 2037 _basic_type_bits = 4,
twisti@3969 2038 _basic_type_mask = right_n_bits(_basic_type_bits),
twisti@3969 2039 _basic_types_per_int = BitsPerInt / _basic_type_bits,
twisti@3969 2040 _compact_int_count = 3
twisti@3969 2041 };
twisti@3969 2042 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
twisti@3969 2043 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
twisti@3969 2044
never@1622 2045 union {
twisti@3969 2046 int _compact[_compact_int_count];
never@1642 2047 int* _fingerprint;
never@1622 2048 } _value;
never@1642 2049 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2050 // Otherwise _value._fingerprint is the array.
never@1622 2051
never@1642 2052 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2053 // These are correct for the current system but someday it might be
never@1642 2054 // necessary to make this mapping platform dependent.
twisti@3969 2055 static int adapter_encoding(BasicType in) {
never@1642 2056 switch(in) {
never@1642 2057 case T_BOOLEAN:
never@1642 2058 case T_BYTE:
never@1642 2059 case T_SHORT:
never@1642 2060 case T_CHAR:
never@1642 2061 // There are all promoted to T_INT in the calling convention
never@1642 2062 return T_INT;
never@1642 2063
never@1642 2064 case T_OBJECT:
never@1642 2065 case T_ARRAY:
twisti@3969 2066 // In other words, we assume that any register good enough for
twisti@3969 2067 // an int or long is good enough for a managed pointer.
never@1642 2068 #ifdef _LP64
twisti@1861 2069 return T_LONG;
never@1642 2070 #else
twisti@1861 2071 return T_INT;
never@1642 2072 #endif
never@1642 2073
never@1642 2074 case T_INT:
never@1642 2075 case T_LONG:
never@1642 2076 case T_FLOAT:
never@1642 2077 case T_DOUBLE:
never@1642 2078 case T_VOID:
never@1642 2079 return in;
never@1642 2080
never@1642 2081 default:
never@1642 2082 ShouldNotReachHere();
never@1642 2083 return T_CONFLICT;
never@1622 2084 }
never@1622 2085 }
never@1622 2086
never@1642 2087 public:
never@1642 2088 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2089 // The fingerprint is based on the BasicType signature encoded
never@3039 2090 // into an array of ints with eight entries per int.
never@1642 2091 int* ptr;
twisti@3969 2092 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
twisti@3969 2093 if (len <= _compact_int_count) {
twisti@3969 2094 assert(_compact_int_count == 3, "else change next line");
never@1642 2095 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2096 // Storing the signature encoded as signed chars hits about 98%
never@1642 2097 // of the time.
never@1642 2098 _length = -len;
never@1642 2099 ptr = _value._compact;
never@1642 2100 } else {
never@1642 2101 _length = len;
zgu@3900 2102 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
never@1642 2103 ptr = _value._fingerprint;
never@1642 2104 }
never@1642 2105
never@3039 2106 // Now pack the BasicTypes with 8 per int
never@1642 2107 int sig_index = 0;
never@1642 2108 for (int index = 0; index < len; index++) {
never@1642 2109 int value = 0;
twisti@3969 2110 for (int byte = 0; byte < _basic_types_per_int; byte++) {
twisti@3969 2111 int bt = ((sig_index < total_args_passed)
twisti@3969 2112 ? adapter_encoding(sig_bt[sig_index++])
twisti@3969 2113 : 0);
twisti@3969 2114 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
twisti@3969 2115 value = (value << _basic_type_bits) | bt;
never@1642 2116 }
never@1642 2117 ptr[index] = value;
never@1642 2118 }
never@1622 2119 }
never@1622 2120
never@1622 2121 ~AdapterFingerPrint() {
never@1622 2122 if (_length > 0) {
zgu@3900 2123 FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
never@1622 2124 }
never@1622 2125 }
never@1622 2126
never@1642 2127 int value(int index) {
never@1622 2128 if (_length < 0) {
never@1622 2129 return _value._compact[index];
never@1622 2130 }
never@1622 2131 return _value._fingerprint[index];
never@1622 2132 }
never@1622 2133 int length() {
never@1622 2134 if (_length < 0) return -_length;
never@1622 2135 return _length;
never@1622 2136 }
never@1622 2137
never@1622 2138 bool is_compact() {
never@1622 2139 return _length <= 0;
never@1622 2140 }
never@1622 2141
never@1622 2142 unsigned int compute_hash() {
never@1642 2143 int hash = 0;
never@1622 2144 for (int i = 0; i < length(); i++) {
never@1642 2145 int v = value(i);
never@1622 2146 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2147 }
never@1622 2148 return (unsigned int)hash;
never@1622 2149 }
never@1622 2150
never@1622 2151 const char* as_string() {
never@1622 2152 stringStream st;
never@3039 2153 st.print("0x");
never@1622 2154 for (int i = 0; i < length(); i++) {
never@3039 2155 st.print("%08x", value(i));
never@1622 2156 }
never@1622 2157 return st.as_string();
never@1622 2158 }
never@1622 2159
never@1622 2160 bool equals(AdapterFingerPrint* other) {
never@1622 2161 if (other->_length != _length) {
never@1622 2162 return false;
never@1622 2163 }
never@1622 2164 if (_length < 0) {
twisti@3969 2165 assert(_compact_int_count == 3, "else change next line");
never@1642 2166 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2167 _value._compact[1] == other->_value._compact[1] &&
never@1642 2168 _value._compact[2] == other->_value._compact[2];
never@1622 2169 } else {
never@1622 2170 for (int i = 0; i < _length; i++) {
never@1622 2171 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2172 return false;
never@1622 2173 }
never@1622 2174 }
never@1622 2175 }
never@1622 2176 return true;
never@1622 2177 }
never@1622 2178 };
never@1622 2179
never@1622 2180
never@1622 2181 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
zgu@3900 2182 class AdapterHandlerTable : public BasicHashtable<mtCode> {
never@1622 2183 friend class AdapterHandlerTableIterator;
never@1622 2184
never@1622 2185 private:
never@1622 2186
kvn@1698 2187 #ifndef PRODUCT
never@1622 2188 static int _lookups; // number of calls to lookup
never@1622 2189 static int _buckets; // number of buckets checked
never@1622 2190 static int _equals; // number of buckets checked with matching hash
never@1622 2191 static int _hits; // number of successful lookups
never@1622 2192 static int _compact; // number of equals calls with compact signature
never@1622 2193 #endif
never@1622 2194
never@1622 2195 AdapterHandlerEntry* bucket(int i) {
zgu@3900 2196 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
never@1622 2197 }
never@1622 2198
never@1622 2199 public:
never@1622 2200 AdapterHandlerTable()
zgu@3900 2201 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2202
never@1622 2203 // Create a new entry suitable for insertion in the table
never@1622 2204 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
zgu@3900 2205 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
never@1622 2206 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2207 return entry;
never@1622 2208 }
never@1622 2209
never@1622 2210 // Insert an entry into the table
never@1622 2211 void add(AdapterHandlerEntry* entry) {
never@1622 2212 int index = hash_to_index(entry->hash());
never@1622 2213 add_entry(index, entry);
never@1622 2214 }
never@1622 2215
never@1642 2216 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2217 entry->deallocate();
zgu@3900 2218 BasicHashtable<mtCode>::free_entry(entry);
never@1642 2219 }
never@1642 2220
never@1622 2221 // Find a entry with the same fingerprint if it exists
never@1642 2222 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2223 NOT_PRODUCT(_lookups++);
never@1642 2224 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2225 unsigned int hash = fp.compute_hash();
never@1622 2226 int index = hash_to_index(hash);
never@1622 2227 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2228 NOT_PRODUCT(_buckets++);
never@1622 2229 if (e->hash() == hash) {
kvn@1698 2230 NOT_PRODUCT(_equals++);
never@1622 2231 if (fp.equals(e->fingerprint())) {
kvn@1698 2232 #ifndef PRODUCT
never@1622 2233 if (fp.is_compact()) _compact++;
never@1622 2234 _hits++;
never@1622 2235 #endif
never@1622 2236 return e;
never@1622 2237 }
never@1622 2238 }
never@1622 2239 }
never@1622 2240 return NULL;
never@1622 2241 }
never@1622 2242
kvn@1698 2243 #ifndef PRODUCT
never@1622 2244 void print_statistics() {
never@1622 2245 ResourceMark rm;
never@1622 2246 int longest = 0;
never@1622 2247 int empty = 0;
never@1622 2248 int total = 0;
never@1622 2249 int nonempty = 0;
never@1622 2250 for (int index = 0; index < table_size(); index++) {
never@1622 2251 int count = 0;
never@1622 2252 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2253 count++;
never@1622 2254 }
never@1622 2255 if (count != 0) nonempty++;
never@1622 2256 if (count == 0) empty++;
never@1622 2257 if (count > longest) longest = count;
never@1622 2258 total += count;
never@1622 2259 }
never@1622 2260 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2261 empty, longest, total, total / (double)nonempty);
never@1622 2262 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2263 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2264 }
never@1622 2265 #endif
never@1622 2266 };
never@1622 2267
never@1622 2268
kvn@1698 2269 #ifndef PRODUCT
never@1622 2270
never@1622 2271 int AdapterHandlerTable::_lookups;
never@1622 2272 int AdapterHandlerTable::_buckets;
never@1622 2273 int AdapterHandlerTable::_equals;
never@1622 2274 int AdapterHandlerTable::_hits;
never@1622 2275 int AdapterHandlerTable::_compact;
never@1622 2276
bobv@2036 2277 #endif
bobv@2036 2278
never@1622 2279 class AdapterHandlerTableIterator : public StackObj {
never@1622 2280 private:
never@1622 2281 AdapterHandlerTable* _table;
never@1622 2282 int _index;
never@1622 2283 AdapterHandlerEntry* _current;
never@1622 2284
never@1622 2285 void scan() {
never@1622 2286 while (_index < _table->table_size()) {
never@1622 2287 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2288 _index++;
never@1622 2289 if (a != NULL) {
never@1622 2290 _current = a;
never@1622 2291 return;
never@1622 2292 }
never@1622 2293 }
never@1622 2294 }
never@1622 2295
never@1622 2296 public:
never@1622 2297 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2298 scan();
never@1622 2299 }
never@1622 2300 bool has_next() {
never@1622 2301 return _current != NULL;
never@1622 2302 }
never@1622 2303 AdapterHandlerEntry* next() {
never@1622 2304 if (_current != NULL) {
never@1622 2305 AdapterHandlerEntry* result = _current;
never@1622 2306 _current = _current->next();
never@1622 2307 if (_current == NULL) scan();
never@1622 2308 return result;
never@1622 2309 } else {
never@1622 2310 return NULL;
never@1622 2311 }
never@1622 2312 }
never@1622 2313 };
never@1622 2314
never@1622 2315
duke@435 2316 // ---------------------------------------------------------------------------
duke@435 2317 // Implementation of AdapterHandlerLibrary
never@1622 2318 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2319 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2320 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2321 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2322
kvn@1177 2323 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2324 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2325 if (_buffer == NULL) // Initialize lazily
kvn@1177 2326 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2327 return _buffer;
kvn@1177 2328 }
duke@435 2329
duke@435 2330 void AdapterHandlerLibrary::initialize() {
never@1622 2331 if (_adapters != NULL) return;
never@1622 2332 _adapters = new AdapterHandlerTable();
duke@435 2333
duke@435 2334 // Create a special handler for abstract methods. Abstract methods
duke@435 2335 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2336 // fill it in with something appropriate just in case. Pass handle
duke@435 2337 // wrong method for the c2i transitions.
duke@435 2338 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2339 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2340 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2341 wrong_method, wrong_method);
duke@435 2342 }
duke@435 2343
never@1622 2344 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2345 address i2c_entry,
never@1622 2346 address c2i_entry,
never@1622 2347 address c2i_unverified_entry) {
never@1622 2348 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2349 }
never@1622 2350
never@1622 2351 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2352 // Use customized signature handler. Need to lock around updates to
never@1622 2353 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2354 // and a single writer: this could be fixed if it becomes a
never@1622 2355 // problem).
duke@435 2356
duke@435 2357 // Get the address of the ic_miss handlers before we grab the
duke@435 2358 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2359 // was caused by the initialization of the stubs happening
duke@435 2360 // while we held the lock and then notifying jvmti while
duke@435 2361 // holding it. This just forces the initialization to be a little
duke@435 2362 // earlier.
duke@435 2363 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2364 assert(ic_miss != NULL, "must have handler");
duke@435 2365
never@1622 2366 ResourceMark rm;
never@1622 2367
twisti@2103 2368 NOT_PRODUCT(int insts_size);
twisti@1734 2369 AdapterBlob* B = NULL;
kvn@1177 2370 AdapterHandlerEntry* entry = NULL;
never@1622 2371 AdapterFingerPrint* fingerprint = NULL;
duke@435 2372 {
duke@435 2373 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2374 // make sure data structure is initialized
duke@435 2375 initialize();
duke@435 2376
duke@435 2377 if (method->is_abstract()) {
never@1622 2378 return _abstract_method_handler;
duke@435 2379 }
duke@435 2380
never@1622 2381 // Fill in the signature array, for the calling-convention call.
never@1622 2382 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2383
never@1622 2384 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2385 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2386 int i = 0;
never@1622 2387 if (!method->is_static()) // Pass in receiver first
never@1622 2388 sig_bt[i++] = T_OBJECT;
never@1622 2389 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2390 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2391 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2392 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2393 }
never@1622 2394 assert(i == total_args_passed, "");
never@1622 2395
never@1642 2396 // Lookup method signature's fingerprint
never@1642 2397 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2398
never@1642 2399 #ifdef ASSERT
never@1642 2400 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2401 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2402 shared_entry = entry;
never@1642 2403 entry = NULL;
never@1642 2404 }
never@1642 2405 #endif
never@1642 2406
never@1622 2407 if (entry != NULL) {
never@1622 2408 return entry;
duke@435 2409 }
duke@435 2410
never@1642 2411 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2412 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2413
never@1622 2414 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2415 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2416
duke@435 2417 // Create I2C & C2I handlers
duke@435 2418
twisti@1734 2419 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2420 if (buf != NULL) {
twisti@2103 2421 CodeBuffer buffer(buf);
kvn@1177 2422 short buffer_locs[20];
kvn@1177 2423 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2424 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2425 MacroAssembler _masm(&buffer);
duke@435 2426
kvn@1177 2427 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2428 total_args_passed,
kvn@1177 2429 comp_args_on_stack,
kvn@1177 2430 sig_bt,
never@1622 2431 regs,
never@1622 2432 fingerprint);
kvn@1177 2433
never@1642 2434 #ifdef ASSERT
never@1642 2435 if (VerifyAdapterSharing) {
never@1642 2436 if (shared_entry != NULL) {
twisti@2103 2437 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2438 "code must match");
never@1642 2439 // Release the one just created and return the original
never@1642 2440 _adapters->free_entry(entry);
never@1642 2441 return shared_entry;
never@1642 2442 } else {
twisti@2103 2443 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2444 }
never@1642 2445 }
never@1642 2446 #endif
never@1642 2447
twisti@1734 2448 B = AdapterBlob::create(&buffer);
twisti@2103 2449 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2450 }
kvn@463 2451 if (B == NULL) {
kvn@463 2452 // CodeCache is full, disable compilation
kvn@463 2453 // Ought to log this but compile log is only per compile thread
kvn@463 2454 // and we're some non descript Java thread.
kvn@1637 2455 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2456 CompileBroker::handle_full_code_cache();
never@1622 2457 return NULL; // Out of CodeCache space
kvn@463 2458 }
twisti@2103 2459 entry->relocate(B->content_begin());
duke@435 2460 #ifndef PRODUCT
duke@435 2461 // debugging suppport
twisti@3969 2462 if (PrintAdapterHandlers || PrintStubCode) {
kvn@4107 2463 ttyLocker ttyl;
twisti@3969 2464 entry->print_adapter_on(tty);
twisti@3969 2465 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
never@1622 2466 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@3969 2467 method->signature()->as_C_string(), insts_size);
duke@435 2468 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@3969 2469 if (Verbose || PrintStubCode) {
twisti@3969 2470 address first_pc = entry->base_address();
kvn@4107 2471 if (first_pc != NULL) {
twisti@3969 2472 Disassembler::decode(first_pc, first_pc + insts_size);
kvn@4107 2473 tty->cr();
kvn@4107 2474 }
twisti@3969 2475 }
duke@435 2476 }
duke@435 2477 #endif
duke@435 2478
never@1622 2479 _adapters->add(entry);
duke@435 2480 }
duke@435 2481 // Outside of the lock
duke@435 2482 if (B != NULL) {
duke@435 2483 char blob_id[256];
duke@435 2484 jio_snprintf(blob_id,
duke@435 2485 sizeof(blob_id),
never@1622 2486 "%s(%s)@" PTR_FORMAT,
twisti@1734 2487 B->name(),
never@1622 2488 fingerprint->as_string(),
twisti@2103 2489 B->content_begin());
twisti@2103 2490 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2491
duke@435 2492 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2493 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2494 }
duke@435 2495 }
never@1622 2496 return entry;
duke@435 2497 }
duke@435 2498
twisti@3969 2499 address AdapterHandlerEntry::base_address() {
twisti@3969 2500 address base = _i2c_entry;
twisti@3969 2501 if (base == NULL) base = _c2i_entry;
twisti@3969 2502 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
twisti@3969 2503 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
twisti@3969 2504 return base;
twisti@3969 2505 }
twisti@3969 2506
duke@435 2507 void AdapterHandlerEntry::relocate(address new_base) {
twisti@3969 2508 address old_base = base_address();
twisti@3969 2509 assert(old_base != NULL, "");
twisti@3969 2510 ptrdiff_t delta = new_base - old_base;
twisti@3969 2511 if (_i2c_entry != NULL)
duke@435 2512 _i2c_entry += delta;
twisti@3969 2513 if (_c2i_entry != NULL)
duke@435 2514 _c2i_entry += delta;
twisti@3969 2515 if (_c2i_unverified_entry != NULL)
duke@435 2516 _c2i_unverified_entry += delta;
twisti@3969 2517 assert(base_address() == new_base, "");
duke@435 2518 }
duke@435 2519
never@1642 2520
never@1642 2521 void AdapterHandlerEntry::deallocate() {
never@1642 2522 delete _fingerprint;
never@1642 2523 #ifdef ASSERT
zgu@3900 2524 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
zgu@3900 2525 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
never@1642 2526 #endif
never@1642 2527 }
never@1642 2528
never@1642 2529
never@1642 2530 #ifdef ASSERT
never@1642 2531 // Capture the code before relocation so that it can be compared
never@1642 2532 // against other versions. If the code is captured after relocation
never@1642 2533 // then relative instructions won't be equivalent.
never@1642 2534 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
zgu@3900 2535 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
never@1642 2536 _code_length = length;
never@1642 2537 memcpy(_saved_code, buffer, length);
never@1642 2538 _total_args_passed = total_args_passed;
zgu@3900 2539 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
never@1642 2540 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2541 }
never@1642 2542
never@1642 2543
never@1642 2544 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2545 if (length != _code_length) {
never@1642 2546 return false;
never@1642 2547 }
never@1642 2548 for (int i = 0; i < length; i++) {
never@1642 2549 if (buffer[i] != _saved_code[i]) {
never@1642 2550 return false;
never@1642 2551 }
never@1642 2552 }
never@1642 2553 return true;
never@1642 2554 }
never@1642 2555 #endif
never@1642 2556
never@1642 2557
duke@435 2558 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2559 // java compiled calling convention to the native convention, handlizes
duke@435 2560 // arguments, and transitions to native. On return from the native we transition
duke@435 2561 // back to java blocking if a safepoint is in progress.
twisti@2687 2562 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2563 ResourceMark rm;
duke@435 2564 nmethod* nm = NULL;
duke@435 2565
twisti@3969 2566 assert(method->is_native(), "must be native");
twisti@3969 2567 assert(method->is_method_handle_intrinsic() ||
twisti@3969 2568 method->has_native_function(), "must have something valid to call!");
duke@435 2569
duke@435 2570 {
duke@435 2571 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2572 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2573 // See if somebody beat us to it
duke@435 2574 nm = method->code();
duke@435 2575 if (nm) {
duke@435 2576 return nm;
duke@435 2577 }
duke@435 2578
kvn@1177 2579 ResourceMark rm;
duke@435 2580
kvn@1177 2581 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2582 if (buf != NULL) {
twisti@2103 2583 CodeBuffer buffer(buf);
kvn@1177 2584 double locs_buf[20];
kvn@1177 2585 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2586 MacroAssembler _masm(&buffer);
duke@435 2587
kvn@1177 2588 // Fill in the signature array, for the calling-convention call.
twisti@4101 2589 const int total_args_passed = method->size_of_parameters();
twisti@4101 2590
twisti@4101 2591 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
twisti@4101 2592 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kvn@1177 2593 int i=0;
kvn@1177 2594 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2595 sig_bt[i++] = T_OBJECT;
kvn@1177 2596 SignatureStream ss(method->signature());
kvn@1177 2597 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2598 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2599 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2600 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2601 }
twisti@4101 2602 assert(i == total_args_passed, "");
kvn@1177 2603 BasicType ret_type = ss.type();
kvn@1177 2604
twisti@3969 2605 // Now get the compiled-Java layout as input (or output) arguments.
twisti@3969 2606 // NOTE: Stubs for compiled entry points of method handle intrinsics
twisti@3969 2607 // are just trampolines so the argument registers must be outgoing ones.
twisti@3969 2608 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@3969 2609 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
kvn@1177 2610
kvn@1177 2611 // Generate the compiled-to-native wrapper code
kvn@1177 2612 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2613 method,
twisti@2687 2614 compile_id,
twisti@4101 2615 sig_bt,
twisti@4101 2616 regs,
kvn@1177 2617 ret_type);
duke@435 2618 }
duke@435 2619 }
duke@435 2620
duke@435 2621 // Must unlock before calling set_code
never@2083 2622
duke@435 2623 // Install the generated code.
duke@435 2624 if (nm != NULL) {
twisti@2687 2625 if (PrintCompilation) {
twisti@2687 2626 ttyLocker ttyl;
twisti@2687 2627 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2628 }
duke@435 2629 method->set_code(method, nm);
duke@435 2630 nm->post_compiled_method_load_event();
duke@435 2631 } else {
duke@435 2632 // CodeCache is full, disable compilation
kvn@1637 2633 CompileBroker::handle_full_code_cache();
duke@435 2634 }
duke@435 2635 return nm;
duke@435 2636 }
duke@435 2637
never@3500 2638 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
never@3500 2639 assert(thread == JavaThread::current(), "must be");
never@3500 2640 // The code is about to enter a JNI lazy critical native method and
never@3500 2641 // _needs_gc is true, so if this thread is already in a critical
never@3500 2642 // section then just return, otherwise this thread should block
never@3500 2643 // until needs_gc has been cleared.
never@3500 2644 if (thread->in_critical()) {
never@3500 2645 return;
never@3500 2646 }
never@3500 2647 // Lock and unlock a critical section to give the system a chance to block
never@3500 2648 GC_locker::lock_critical(thread);
never@3500 2649 GC_locker::unlock_critical(thread);
never@3500 2650 JRT_END
never@3500 2651
kamg@551 2652 #ifdef HAVE_DTRACE_H
kamg@551 2653 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2654 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2655 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2656 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2657 // leaf no thread transition is needed.
kamg@551 2658
kamg@551 2659 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2660 ResourceMark rm;
kamg@551 2661 nmethod* nm = NULL;
kamg@551 2662
kamg@551 2663 if (PrintCompilation) {
kamg@551 2664 ttyLocker ttyl;
kamg@551 2665 tty->print("--- n%s ");
kamg@551 2666 method->print_short_name(tty);
kamg@551 2667 if (method->is_static()) {
kamg@551 2668 tty->print(" (static)");
kamg@551 2669 }
kamg@551 2670 tty->cr();
kamg@551 2671 }
kamg@551 2672
kamg@551 2673 {
kamg@551 2674 // perform the work while holding the lock, but perform any printing
kamg@551 2675 // outside the lock
kamg@551 2676 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2677 // See if somebody beat us to it
kamg@551 2678 nm = method->code();
kamg@551 2679 if (nm) {
kamg@551 2680 return nm;
kamg@551 2681 }
kamg@551 2682
kvn@1177 2683 ResourceMark rm;
kvn@1177 2684
kvn@1177 2685 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2686 if (buf != NULL) {
twisti@2103 2687 CodeBuffer buffer(buf);
kvn@1177 2688 // Need a few relocation entries
kvn@1177 2689 double locs_buf[20];
kvn@1177 2690 buffer.insts()->initialize_shared_locs(
kamg@551 2691 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2692 MacroAssembler _masm(&buffer);
kamg@551 2693
kvn@1177 2694 // Generate the compiled-to-native wrapper code
kvn@1177 2695 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2696 }
kamg@551 2697 }
kamg@551 2698 return nm;
kamg@551 2699 }
kamg@551 2700
kamg@551 2701 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2702 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2703 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2704 int jlsOffset = java_lang_String::offset(src);
kamg@551 2705 int jlsLen = java_lang_String::length(src);
kamg@551 2706 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2707 jlsValue->char_at_addr(jlsOffset);
coleenp@4142 2708 assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2709 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2710 }
kamg@551 2711 #endif // ndef HAVE_DTRACE_H
kamg@551 2712
duke@435 2713 // -------------------------------------------------------------------------
duke@435 2714 // Java-Java calling convention
duke@435 2715 // (what you use when Java calls Java)
duke@435 2716
duke@435 2717 //------------------------------name_for_receiver----------------------------------
duke@435 2718 // For a given signature, return the VMReg for parameter 0.
duke@435 2719 VMReg SharedRuntime::name_for_receiver() {
duke@435 2720 VMRegPair regs;
duke@435 2721 BasicType sig_bt = T_OBJECT;
duke@435 2722 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2723 // Return argument 0 register. In the LP64 build pointers
duke@435 2724 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2725 return regs.first();
duke@435 2726 }
duke@435 2727
coleenp@2497 2728 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2729 // This method is returning a data structure allocating as a
duke@435 2730 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2731 char *s = sig->as_C_string();
duke@435 2732 int len = (int)strlen(s);
duke@435 2733 *s++; len--; // Skip opening paren
duke@435 2734 char *t = s+len;
duke@435 2735 while( *(--t) != ')' ) ; // Find close paren
duke@435 2736
duke@435 2737 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2738 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2739 int cnt = 0;
twisti@1573 2740 if (has_receiver) {
duke@435 2741 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2742 }
duke@435 2743
duke@435 2744 while( s < t ) {
duke@435 2745 switch( *s++ ) { // Switch on signature character
duke@435 2746 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2747 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2748 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2749 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2750 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2751 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2752 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2753 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2754 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2755 case 'L': // Oop
duke@435 2756 while( *s++ != ';' ) ; // Skip signature
duke@435 2757 sig_bt[cnt++] = T_OBJECT;
duke@435 2758 break;
duke@435 2759 case '[': { // Array
duke@435 2760 do { // Skip optional size
duke@435 2761 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2762 } while( *s++ == '[' ); // Nested arrays?
duke@435 2763 // Skip element type
duke@435 2764 if( s[-1] == 'L' )
duke@435 2765 while( *s++ != ';' ) ; // Skip signature
duke@435 2766 sig_bt[cnt++] = T_ARRAY;
duke@435 2767 break;
duke@435 2768 }
duke@435 2769 default : ShouldNotReachHere();
duke@435 2770 }
duke@435 2771 }
duke@435 2772 assert( cnt < 256, "grow table size" );
duke@435 2773
duke@435 2774 int comp_args_on_stack;
duke@435 2775 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2776
duke@435 2777 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2778 // we must add that in to get "true" stack offsets.
duke@435 2779
duke@435 2780 if (comp_args_on_stack) {
duke@435 2781 for (int i = 0; i < cnt; i++) {
duke@435 2782 VMReg reg1 = regs[i].first();
duke@435 2783 if( reg1->is_stack()) {
duke@435 2784 // Yuck
duke@435 2785 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2786 }
duke@435 2787 VMReg reg2 = regs[i].second();
duke@435 2788 if( reg2->is_stack()) {
duke@435 2789 // Yuck
duke@435 2790 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2791 }
duke@435 2792 regs[i].set_pair(reg2, reg1);
duke@435 2793 }
duke@435 2794 }
duke@435 2795
duke@435 2796 // results
duke@435 2797 *arg_size = cnt;
duke@435 2798 return regs;
duke@435 2799 }
duke@435 2800
duke@435 2801 // OSR Migration Code
duke@435 2802 //
duke@435 2803 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2804 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2805 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2806 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2807 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2808 // back to the compiled code. The compiled code then pops the current
duke@435 2809 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2810 // copies the interpreter locals and displaced headers where it wants.
duke@435 2811 // Finally it calls back to free the temp buffer.
duke@435 2812 //
duke@435 2813 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2814
duke@435 2815 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2816
duke@435 2817 #ifdef IA64
duke@435 2818 ShouldNotReachHere(); // NYI
duke@435 2819 #endif /* IA64 */
duke@435 2820
duke@435 2821 //
duke@435 2822 // This code is dependent on the memory layout of the interpreter local
duke@435 2823 // array and the monitors. On all of our platforms the layout is identical
duke@435 2824 // so this code is shared. If some platform lays the their arrays out
duke@435 2825 // differently then this code could move to platform specific code or
duke@435 2826 // the code here could be modified to copy items one at a time using
duke@435 2827 // frame accessor methods and be platform independent.
duke@435 2828
duke@435 2829 frame fr = thread->last_frame();
duke@435 2830 assert( fr.is_interpreted_frame(), "" );
duke@435 2831 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2832
duke@435 2833 // Figure out how many monitors are active.
duke@435 2834 int active_monitor_count = 0;
duke@435 2835 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2836 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2837 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2838 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2839 }
duke@435 2840
duke@435 2841 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2842 // could double check it.
duke@435 2843
coleenp@4037 2844 Method* moop = fr.interpreter_frame_method();
duke@435 2845 int max_locals = moop->max_locals();
duke@435 2846 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2847 int buf_size_words = max_locals + active_monitor_count*2;
zgu@3900 2848 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
duke@435 2849
duke@435 2850 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2851 // Since there's no GC I can copy the oops blindly.
duke@435 2852 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2853 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2854 (HeapWord*)&buf[0],
duke@435 2855 max_locals);
duke@435 2856
duke@435 2857 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2858 int i = max_locals;
duke@435 2859 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2860 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2861 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2862 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2863 BasicLock *lock = kptr2->lock();
duke@435 2864 // Inflate so the displaced header becomes position-independent
duke@435 2865 if (lock->displaced_header()->is_unlocked())
duke@435 2866 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2867 // Now the displaced header is free to move
duke@435 2868 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2869 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2870 }
duke@435 2871 }
duke@435 2872 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2873
duke@435 2874 return buf;
duke@435 2875 JRT_END
duke@435 2876
duke@435 2877 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
zgu@3900 2878 FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
duke@435 2879 JRT_END
duke@435 2880
duke@435 2881 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2882 AdapterHandlerTableIterator iter(_adapters);
never@1622 2883 while (iter.has_next()) {
never@1622 2884 AdapterHandlerEntry* a = iter.next();
never@1622 2885 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2886 }
duke@435 2887 return false;
duke@435 2888 }
duke@435 2889
bobv@2036 2890 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2891 AdapterHandlerTableIterator iter(_adapters);
never@1622 2892 while (iter.has_next()) {
never@1622 2893 AdapterHandlerEntry* a = iter.next();
twisti@3969 2894 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
bobv@2036 2895 st->print("Adapter for signature: ");
twisti@3969 2896 a->print_adapter_on(tty);
duke@435 2897 return;
duke@435 2898 }
duke@435 2899 }
duke@435 2900 assert(false, "Should have found handler");
duke@435 2901 }
never@1622 2902
twisti@3969 2903 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
twisti@3969 2904 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
twisti@3969 2905 (intptr_t) this, fingerprint()->as_string(),
twisti@3969 2906 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
twisti@3969 2907
twisti@3969 2908 }
twisti@3969 2909
bobv@2036 2910 #ifndef PRODUCT
bobv@2036 2911
never@1622 2912 void AdapterHandlerLibrary::print_statistics() {
never@1622 2913 _adapters->print_statistics();
never@1622 2914 }
never@1622 2915
duke@435 2916 #endif /* PRODUCT */

mercurial