src/os_cpu/solaris_x86/vm/os_solaris_x86.cpp

Fri, 30 Nov 2012 15:23:16 -0800

author
twisti
date
Fri, 30 Nov 2012 15:23:16 -0800
changeset 4318
cd3d6a6b95d9
parent 4153
b9a9ed0f8eeb
child 4325
d2f8c38e543d
permissions
-rw-r--r--

8003240: x86: move MacroAssembler into separate file
Reviewed-by: kvn

duke@435 1 /*
mikael@4153 2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 // no precompiled headers
twisti@4318 26 #include "asm/macroAssembler.hpp"
stefank@2314 27 #include "classfile/classLoader.hpp"
stefank@2314 28 #include "classfile/systemDictionary.hpp"
stefank@2314 29 #include "classfile/vmSymbols.hpp"
stefank@2314 30 #include "code/icBuffer.hpp"
stefank@2314 31 #include "code/vtableStubs.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "jvm_solaris.h"
stefank@2314 34 #include "memory/allocation.inline.hpp"
stefank@2314 35 #include "mutex_solaris.inline.hpp"
stefank@2314 36 #include "os_share_solaris.hpp"
stefank@2314 37 #include "prims/jniFastGetField.hpp"
stefank@2314 38 #include "prims/jvm.h"
stefank@2314 39 #include "prims/jvm_misc.hpp"
stefank@2314 40 #include "runtime/arguments.hpp"
stefank@2314 41 #include "runtime/extendedPC.hpp"
stefank@2314 42 #include "runtime/frame.inline.hpp"
stefank@2314 43 #include "runtime/interfaceSupport.hpp"
stefank@2314 44 #include "runtime/java.hpp"
stefank@2314 45 #include "runtime/javaCalls.hpp"
stefank@2314 46 #include "runtime/mutexLocker.hpp"
stefank@2314 47 #include "runtime/osThread.hpp"
stefank@2314 48 #include "runtime/sharedRuntime.hpp"
stefank@2314 49 #include "runtime/stubRoutines.hpp"
stefank@2314 50 #include "runtime/timer.hpp"
stefank@2314 51 #include "thread_solaris.inline.hpp"
stefank@2314 52 #include "utilities/events.hpp"
stefank@2314 53 #include "utilities/vmError.hpp"
duke@435 54
duke@435 55 // put OS-includes here
duke@435 56 # include <sys/types.h>
duke@435 57 # include <sys/mman.h>
duke@435 58 # include <pthread.h>
duke@435 59 # include <signal.h>
duke@435 60 # include <setjmp.h>
duke@435 61 # include <errno.h>
duke@435 62 # include <dlfcn.h>
duke@435 63 # include <stdio.h>
duke@435 64 # include <unistd.h>
duke@435 65 # include <sys/resource.h>
duke@435 66 # include <thread.h>
duke@435 67 # include <sys/stat.h>
duke@435 68 # include <sys/time.h>
duke@435 69 # include <sys/filio.h>
duke@435 70 # include <sys/utsname.h>
duke@435 71 # include <sys/systeminfo.h>
duke@435 72 # include <sys/socket.h>
duke@435 73 # include <sys/trap.h>
duke@435 74 # include <sys/lwp.h>
duke@435 75 # include <pwd.h>
duke@435 76 # include <poll.h>
duke@435 77 # include <sys/lwp.h>
duke@435 78 # include <procfs.h> // see comment in <sys/procfs.h>
duke@435 79
duke@435 80 #ifndef AMD64
duke@435 81 // QQQ seems useless at this point
duke@435 82 # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later
duke@435 83 #endif // AMD64
duke@435 84 # include <sys/procfs.h> // see comment in <sys/procfs.h>
duke@435 85
duke@435 86
duke@435 87 #define MAX_PATH (2 * K)
duke@435 88
duke@435 89 // Minimum stack size for the VM. It's easier to document a constant value
duke@435 90 // but it's different for x86 and sparc because the page sizes are different.
duke@435 91 #ifdef AMD64
duke@435 92 size_t os::Solaris::min_stack_allowed = 224*K;
duke@435 93 #define REG_SP REG_RSP
duke@435 94 #define REG_PC REG_RIP
duke@435 95 #define REG_FP REG_RBP
duke@435 96 #else
duke@435 97 size_t os::Solaris::min_stack_allowed = 64*K;
duke@435 98 #define REG_SP UESP
duke@435 99 #define REG_PC EIP
duke@435 100 #define REG_FP EBP
duke@435 101 // 4900493 counter to prevent runaway LDTR refresh attempt
duke@435 102
duke@435 103 static volatile int ldtr_refresh = 0;
duke@435 104 // the libthread instruction that faults because of the stale LDTR
duke@435 105
duke@435 106 static const unsigned char movlfs[] = { 0x8e, 0xe0 // movl %eax,%fs
duke@435 107 };
duke@435 108 #endif // AMD64
duke@435 109
duke@435 110 char* os::non_memory_address_word() {
duke@435 111 // Must never look like an address returned by reserve_memory,
duke@435 112 // even in its subfields (as defined by the CPU immediate fields,
duke@435 113 // if the CPU splits constants across multiple instructions).
duke@435 114 return (char*) -1;
duke@435 115 }
duke@435 116
duke@435 117 //
duke@435 118 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
duke@435 119 // There are issues with libthread giving out uc_links for different threads
duke@435 120 // on the same uc_link chain and bad or circular links.
duke@435 121 //
duke@435 122 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
duke@435 123 if (valid >= suspect ||
duke@435 124 valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
duke@435 125 valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp ||
duke@435 126 valid->uc_stack.ss_size != suspect->uc_stack.ss_size) {
duke@435 127 DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
duke@435 128 return false;
duke@435 129 }
duke@435 130
duke@435 131 if (thread->is_Java_thread()) {
duke@435 132 if (!valid_stack_address(thread, (address)suspect)) {
duke@435 133 DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
duke@435 134 return false;
duke@435 135 }
duke@435 136 if (!valid_stack_address(thread, (address) suspect->uc_mcontext.gregs[REG_SP])) {
duke@435 137 DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
duke@435 138 return false;
duke@435 139 }
duke@435 140 }
duke@435 141 return true;
duke@435 142 }
duke@435 143
duke@435 144 // We will only follow one level of uc_link since there are libthread
duke@435 145 // issues with ucontext linking and it is better to be safe and just
duke@435 146 // let caller retry later.
duke@435 147 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
duke@435 148 ucontext_t *uc) {
duke@435 149
duke@435 150 ucontext_t *retuc = NULL;
duke@435 151
duke@435 152 if (uc != NULL) {
duke@435 153 if (uc->uc_link == NULL) {
duke@435 154 // cannot validate without uc_link so accept current ucontext
duke@435 155 retuc = uc;
duke@435 156 } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
duke@435 157 // first ucontext is valid so try the next one
duke@435 158 uc = uc->uc_link;
duke@435 159 if (uc->uc_link == NULL) {
duke@435 160 // cannot validate without uc_link so accept current ucontext
duke@435 161 retuc = uc;
duke@435 162 } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
duke@435 163 // the ucontext one level down is also valid so return it
duke@435 164 retuc = uc;
duke@435 165 }
duke@435 166 }
duke@435 167 }
duke@435 168 return retuc;
duke@435 169 }
duke@435 170
duke@435 171 // Assumes ucontext is valid
duke@435 172 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
duke@435 173 return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
duke@435 174 }
duke@435 175
duke@435 176 // Assumes ucontext is valid
duke@435 177 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
duke@435 178 return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
duke@435 179 }
duke@435 180
duke@435 181 // Assumes ucontext is valid
duke@435 182 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
duke@435 183 return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
duke@435 184 }
duke@435 185
duke@435 186 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
duke@435 187 // is currently interrupted by SIGPROF.
duke@435 188 //
duke@435 189 // The difference between this and os::fetch_frame_from_context() is that
duke@435 190 // here we try to skip nested signal frames.
duke@435 191 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
duke@435 192 ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
duke@435 193
duke@435 194 assert(thread != NULL, "just checking");
duke@435 195 assert(ret_sp != NULL, "just checking");
duke@435 196 assert(ret_fp != NULL, "just checking");
duke@435 197
duke@435 198 ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
duke@435 199 return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
duke@435 200 }
duke@435 201
duke@435 202 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
duke@435 203 intptr_t** ret_sp, intptr_t** ret_fp) {
duke@435 204
duke@435 205 ExtendedPC epc;
duke@435 206 ucontext_t *uc = (ucontext_t*)ucVoid;
duke@435 207
duke@435 208 if (uc != NULL) {
duke@435 209 epc = os::Solaris::ucontext_get_ExtendedPC(uc);
duke@435 210 if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
duke@435 211 if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
duke@435 212 } else {
duke@435 213 // construct empty ExtendedPC for return value checking
duke@435 214 epc = ExtendedPC(NULL);
duke@435 215 if (ret_sp) *ret_sp = (intptr_t *)NULL;
duke@435 216 if (ret_fp) *ret_fp = (intptr_t *)NULL;
duke@435 217 }
duke@435 218
duke@435 219 return epc;
duke@435 220 }
duke@435 221
duke@435 222 frame os::fetch_frame_from_context(void* ucVoid) {
duke@435 223 intptr_t* sp;
duke@435 224 intptr_t* fp;
duke@435 225 ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
duke@435 226 return frame(sp, fp, epc.pc());
duke@435 227 }
duke@435 228
duke@435 229 frame os::get_sender_for_C_frame(frame* fr) {
duke@435 230 return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
duke@435 231 }
duke@435 232
roland@3606 233 extern "C" intptr_t *_get_current_sp(); // in .il file
roland@3606 234
roland@3606 235 address os::current_stack_pointer() {
roland@3606 236 return (address)_get_current_sp();
roland@3606 237 }
roland@3606 238
coleenp@907 239 extern "C" intptr_t *_get_current_fp(); // in .il file
duke@435 240
duke@435 241 frame os::current_frame() {
coleenp@907 242 intptr_t* fp = _get_current_fp(); // it's inlined so want current fp
duke@435 243 frame myframe((intptr_t*)os::current_stack_pointer(),
duke@435 244 (intptr_t*)fp,
duke@435 245 CAST_FROM_FN_PTR(address, os::current_frame));
duke@435 246 if (os::is_first_C_frame(&myframe)) {
duke@435 247 // stack is not walkable
sgoldman@542 248 frame ret; // This will be a null useless frame
sgoldman@542 249 return ret;
duke@435 250 } else {
duke@435 251 return os::get_sender_for_C_frame(&myframe);
duke@435 252 }
duke@435 253 }
duke@435 254
duke@435 255 // This is a simple callback that just fetches a PC for an interrupted thread.
duke@435 256 // The thread need not be suspended and the fetched PC is just a hint.
duke@435 257 // This one is currently used for profiling the VMThread ONLY!
duke@435 258
duke@435 259 // Must be synchronous
duke@435 260 void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
duke@435 261 Thread* thread = args->thread();
duke@435 262 ucontext_t* uc = args->ucontext();
duke@435 263 intptr_t* sp;
duke@435 264
duke@435 265 assert(ProfileVM && thread->is_VM_thread(), "just checking");
duke@435 266
duke@435 267 ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
duke@435 268 _addr = new_addr;
duke@435 269 }
duke@435 270
duke@435 271 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
duke@435 272 char lwpstatusfile[PROCFILE_LENGTH];
duke@435 273 int lwpfd, err;
duke@435 274
duke@435 275 if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
duke@435 276 return (err);
duke@435 277 if (*flags == TRS_LWPID) {
duke@435 278 sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
duke@435 279 *lwp);
duke@435 280 if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
duke@435 281 perror("thr_mutator_status: open lwpstatus");
duke@435 282 return (EINVAL);
duke@435 283 }
duke@435 284 if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
duke@435 285 sizeof (lwpstatus_t)) {
duke@435 286 perror("thr_mutator_status: read lwpstatus");
duke@435 287 (void) close(lwpfd);
duke@435 288 return (EINVAL);
duke@435 289 }
duke@435 290 (void) close(lwpfd);
duke@435 291 }
duke@435 292 return (0);
duke@435 293 }
duke@435 294
duke@435 295 #ifndef AMD64
duke@435 296
duke@435 297 // Detecting SSE support by OS
duke@435 298 // From solaris_i486.s
duke@435 299 extern "C" bool sse_check();
duke@435 300 extern "C" bool sse_unavailable();
duke@435 301
duke@435 302 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
duke@435 303 static int sse_status = SSE_UNKNOWN;
duke@435 304
duke@435 305
duke@435 306 static void check_for_sse_support() {
duke@435 307 if (!VM_Version::supports_sse()) {
duke@435 308 sse_status = SSE_NOT_SUPPORTED;
duke@435 309 return;
duke@435 310 }
duke@435 311 // looking for _sse_hw in libc.so, if it does not exist or
duke@435 312 // the value (int) is 0, OS has no support for SSE
duke@435 313 int *sse_hwp;
duke@435 314 void *h;
duke@435 315
duke@435 316 if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
duke@435 317 //open failed, presume no support for SSE
duke@435 318 sse_status = SSE_NOT_SUPPORTED;
duke@435 319 return;
duke@435 320 }
duke@435 321 if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
duke@435 322 sse_status = SSE_NOT_SUPPORTED;
duke@435 323 } else if (*sse_hwp == 0) {
duke@435 324 sse_status = SSE_NOT_SUPPORTED;
duke@435 325 }
duke@435 326 dlclose(h);
duke@435 327
duke@435 328 if (sse_status == SSE_UNKNOWN) {
duke@435 329 bool (*try_sse)() = (bool (*)())sse_check;
duke@435 330 sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
duke@435 331 }
duke@435 332
duke@435 333 }
duke@435 334
twisti@1020 335 #endif // AMD64
twisti@1020 336
duke@435 337 bool os::supports_sse() {
twisti@1020 338 #ifdef AMD64
twisti@1020 339 return true;
twisti@1020 340 #else
duke@435 341 if (sse_status == SSE_UNKNOWN)
duke@435 342 check_for_sse_support();
duke@435 343 return sse_status == SSE_SUPPORTED;
twisti@1020 344 #endif // AMD64
duke@435 345 }
duke@435 346
duke@435 347 bool os::is_allocatable(size_t bytes) {
duke@435 348 #ifdef AMD64
duke@435 349 return true;
duke@435 350 #else
duke@435 351
duke@435 352 if (bytes < 2 * G) {
duke@435 353 return true;
duke@435 354 }
duke@435 355
duke@435 356 char* addr = reserve_memory(bytes, NULL);
duke@435 357
duke@435 358 if (addr != NULL) {
duke@435 359 release_memory(addr, bytes);
duke@435 360 }
duke@435 361
duke@435 362 return addr != NULL;
duke@435 363 #endif // AMD64
duke@435 364
duke@435 365 }
duke@435 366
duke@435 367 extern "C" void Fetch32PFI () ;
duke@435 368 extern "C" void Fetch32Resume () ;
duke@435 369 #ifdef AMD64
duke@435 370 extern "C" void FetchNPFI () ;
duke@435 371 extern "C" void FetchNResume () ;
duke@435 372 #endif // AMD64
duke@435 373
coleenp@2507 374 extern "C" JNIEXPORT int
coleenp@2507 375 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
coleenp@2507 376 int abort_if_unrecognized) {
duke@435 377 ucontext_t* uc = (ucontext_t*) ucVoid;
duke@435 378
duke@435 379 #ifndef AMD64
duke@435 380 if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
duke@435 381 // the SSE instruction faulted. supports_sse() need return false.
duke@435 382 uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
duke@435 383 return true;
duke@435 384 }
duke@435 385 #endif // !AMD64
duke@435 386
duke@435 387 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady
duke@435 388
duke@435 389 SignalHandlerMark shm(t);
duke@435 390
duke@435 391 if(sig == SIGPIPE || sig == SIGXFSZ) {
duke@435 392 if (os::Solaris::chained_handler(sig, info, ucVoid)) {
duke@435 393 return true;
duke@435 394 } else {
duke@435 395 if (PrintMiscellaneous && (WizardMode || Verbose)) {
duke@435 396 char buf[64];
duke@435 397 warning("Ignoring %s - see 4229104 or 6499219",
duke@435 398 os::exception_name(sig, buf, sizeof(buf)));
duke@435 399
duke@435 400 }
duke@435 401 return true;
duke@435 402 }
duke@435 403 }
duke@435 404
duke@435 405 JavaThread* thread = NULL;
duke@435 406 VMThread* vmthread = NULL;
duke@435 407
duke@435 408 if (os::Solaris::signal_handlers_are_installed) {
duke@435 409 if (t != NULL ){
duke@435 410 if(t->is_Java_thread()) {
duke@435 411 thread = (JavaThread*)t;
duke@435 412 }
duke@435 413 else if(t->is_VM_thread()){
duke@435 414 vmthread = (VMThread *)t;
duke@435 415 }
duke@435 416 }
duke@435 417 }
duke@435 418
duke@435 419 guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
duke@435 420
duke@435 421 if (sig == os::Solaris::SIGasync()) {
duke@435 422 if(thread){
duke@435 423 OSThread::InterruptArguments args(thread, uc);
duke@435 424 thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
duke@435 425 return true;
duke@435 426 }
duke@435 427 else if(vmthread){
duke@435 428 OSThread::InterruptArguments args(vmthread, uc);
duke@435 429 vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
duke@435 430 return true;
duke@435 431 } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
duke@435 432 return true;
duke@435 433 } else {
duke@435 434 // If os::Solaris::SIGasync not chained, and this is a non-vm and
duke@435 435 // non-java thread
duke@435 436 return true;
duke@435 437 }
duke@435 438 }
duke@435 439
duke@435 440 if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
duke@435 441 // can't decode this kind of signal
duke@435 442 info = NULL;
duke@435 443 } else {
duke@435 444 assert(sig == info->si_signo, "bad siginfo");
duke@435 445 }
duke@435 446
duke@435 447 // decide if this trap can be handled by a stub
duke@435 448 address stub = NULL;
duke@435 449
duke@435 450 address pc = NULL;
duke@435 451
duke@435 452 //%note os_trap_1
duke@435 453 if (info != NULL && uc != NULL && thread != NULL) {
duke@435 454 // factor me: getPCfromContext
duke@435 455 pc = (address) uc->uc_mcontext.gregs[REG_PC];
duke@435 456
duke@435 457 // SafeFetch32() support
duke@435 458 if (pc == (address) Fetch32PFI) {
duke@435 459 uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
duke@435 460 return true ;
duke@435 461 }
duke@435 462 #ifdef AMD64
duke@435 463 if (pc == (address) FetchNPFI) {
duke@435 464 uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
duke@435 465 return true ;
duke@435 466 }
duke@435 467 #endif // AMD64
duke@435 468
duke@435 469 // Handle ALL stack overflow variations here
duke@435 470 if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
duke@435 471 address addr = (address) info->si_addr;
duke@435 472 if (thread->in_stack_yellow_zone(addr)) {
duke@435 473 thread->disable_stack_yellow_zone();
duke@435 474 if (thread->thread_state() == _thread_in_Java) {
duke@435 475 // Throw a stack overflow exception. Guard pages will be reenabled
duke@435 476 // while unwinding the stack.
duke@435 477 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
duke@435 478 } else {
duke@435 479 // Thread was in the vm or native code. Return and try to finish.
duke@435 480 return true;
duke@435 481 }
duke@435 482 } else if (thread->in_stack_red_zone(addr)) {
duke@435 483 // Fatal red zone violation. Disable the guard pages and fall through
duke@435 484 // to handle_unexpected_exception way down below.
duke@435 485 thread->disable_stack_red_zone();
duke@435 486 tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
duke@435 487 }
duke@435 488 }
duke@435 489
duke@435 490 if (thread->thread_state() == _thread_in_vm) {
duke@435 491 if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
duke@435 492 stub = StubRoutines::handler_for_unsafe_access();
duke@435 493 }
duke@435 494 }
duke@435 495
duke@435 496 if (thread->thread_state() == _thread_in_Java) {
duke@435 497 // Support Safepoint Polling
duke@435 498 if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
duke@435 499 stub = SharedRuntime::get_poll_stub(pc);
duke@435 500 }
duke@435 501 else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
duke@435 502 // BugId 4454115: A read from a MappedByteBuffer can fault
duke@435 503 // here if the underlying file has been truncated.
duke@435 504 // Do not crash the VM in such a case.
duke@435 505 CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
duke@435 506 nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
duke@435 507 if (nm != NULL && nm->has_unsafe_access()) {
duke@435 508 stub = StubRoutines::handler_for_unsafe_access();
duke@435 509 }
duke@435 510 }
duke@435 511 else
duke@435 512 if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
duke@435 513 // integer divide by zero
duke@435 514 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
duke@435 515 }
duke@435 516 #ifndef AMD64
duke@435 517 else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
duke@435 518 // floating-point divide by zero
duke@435 519 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
duke@435 520 }
duke@435 521 else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
duke@435 522 // The encoding of D2I in i486.ad can cause an exception prior
duke@435 523 // to the fist instruction if there was an invalid operation
duke@435 524 // pending. We want to dismiss that exception. From the win_32
duke@435 525 // side it also seems that if it really was the fist causing
duke@435 526 // the exception that we do the d2i by hand with different
duke@435 527 // rounding. Seems kind of weird. QQQ TODO
duke@435 528 // Note that we take the exception at the NEXT floating point instruction.
duke@435 529 if (pc[0] == 0xDB) {
duke@435 530 assert(pc[0] == 0xDB, "not a FIST opcode");
duke@435 531 assert(pc[1] == 0x14, "not a FIST opcode");
duke@435 532 assert(pc[2] == 0x24, "not a FIST opcode");
duke@435 533 return true;
duke@435 534 } else {
duke@435 535 assert(pc[-3] == 0xDB, "not an flt invalid opcode");
duke@435 536 assert(pc[-2] == 0x14, "not an flt invalid opcode");
duke@435 537 assert(pc[-1] == 0x24, "not an flt invalid opcode");
duke@435 538 }
duke@435 539 }
duke@435 540 else if (sig == SIGFPE ) {
duke@435 541 tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
duke@435 542 }
duke@435 543 #endif // !AMD64
duke@435 544
duke@435 545 // QQQ It doesn't seem that we need to do this on x86 because we should be able
duke@435 546 // to return properly from the handler without this extra stuff on the back side.
duke@435 547
duke@435 548 else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
duke@435 549 // Determination of interpreter/vtable stub/compiled code null exception
duke@435 550 stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
duke@435 551 }
duke@435 552 }
duke@435 553
duke@435 554 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
duke@435 555 // and the heap gets shrunk before the field access.
duke@435 556 if ((sig == SIGSEGV) || (sig == SIGBUS)) {
duke@435 557 address addr = JNI_FastGetField::find_slowcase_pc(pc);
duke@435 558 if (addr != (address)-1) {
duke@435 559 stub = addr;
duke@435 560 }
duke@435 561 }
duke@435 562
duke@435 563 // Check to see if we caught the safepoint code in the
duke@435 564 // process of write protecting the memory serialization page.
duke@435 565 // It write enables the page immediately after protecting it
duke@435 566 // so we can just return to retry the write.
duke@435 567 if ((sig == SIGSEGV) &&
duke@435 568 os::is_memory_serialize_page(thread, (address)info->si_addr)) {
duke@435 569 // Block current thread until the memory serialize page permission restored.
duke@435 570 os::block_on_serialize_page_trap();
duke@435 571 return true;
duke@435 572 }
duke@435 573 }
duke@435 574
duke@435 575 // Execution protection violation
duke@435 576 //
duke@435 577 // Preventative code for future versions of Solaris which may
duke@435 578 // enable execution protection when running the 32-bit VM on AMD64.
duke@435 579 //
duke@435 580 // This should be kept as the last step in the triage. We don't
duke@435 581 // have a dedicated trap number for a no-execute fault, so be
duke@435 582 // conservative and allow other handlers the first shot.
duke@435 583 //
duke@435 584 // Note: We don't test that info->si_code == SEGV_ACCERR here.
duke@435 585 // this si_code is so generic that it is almost meaningless; and
duke@435 586 // the si_code for this condition may change in the future.
duke@435 587 // Furthermore, a false-positive should be harmless.
duke@435 588 if (UnguardOnExecutionViolation > 0 &&
duke@435 589 (sig == SIGSEGV || sig == SIGBUS) &&
duke@435 590 uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) { // page fault
duke@435 591 int page_size = os::vm_page_size();
duke@435 592 address addr = (address) info->si_addr;
duke@435 593 address pc = (address) uc->uc_mcontext.gregs[REG_PC];
duke@435 594 // Make sure the pc and the faulting address are sane.
duke@435 595 //
duke@435 596 // If an instruction spans a page boundary, and the page containing
duke@435 597 // the beginning of the instruction is executable but the following
duke@435 598 // page is not, the pc and the faulting address might be slightly
duke@435 599 // different - we still want to unguard the 2nd page in this case.
duke@435 600 //
duke@435 601 // 15 bytes seems to be a (very) safe value for max instruction size.
duke@435 602 bool pc_is_near_addr =
duke@435 603 (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
duke@435 604 bool instr_spans_page_boundary =
duke@435 605 (align_size_down((intptr_t) pc ^ (intptr_t) addr,
duke@435 606 (intptr_t) page_size) > 0);
duke@435 607
duke@435 608 if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
duke@435 609 static volatile address last_addr =
duke@435 610 (address) os::non_memory_address_word();
duke@435 611
duke@435 612 // In conservative mode, don't unguard unless the address is in the VM
duke@435 613 if (addr != last_addr &&
duke@435 614 (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
duke@435 615
coleenp@912 616 // Make memory rwx and retry
duke@435 617 address page_start =
duke@435 618 (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
coleenp@912 619 bool res = os::protect_memory((char*) page_start, page_size,
coleenp@912 620 os::MEM_PROT_RWX);
duke@435 621
duke@435 622 if (PrintMiscellaneous && Verbose) {
duke@435 623 char buf[256];
duke@435 624 jio_snprintf(buf, sizeof(buf), "Execution protection violation "
duke@435 625 "at " INTPTR_FORMAT
duke@435 626 ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
duke@435 627 page_start, (res ? "success" : "failed"), errno);
duke@435 628 tty->print_raw_cr(buf);
duke@435 629 }
duke@435 630 stub = pc;
duke@435 631
duke@435 632 // Set last_addr so if we fault again at the same address, we don't end
duke@435 633 // up in an endless loop.
duke@435 634 //
duke@435 635 // There are two potential complications here. Two threads trapping at
duke@435 636 // the same address at the same time could cause one of the threads to
duke@435 637 // think it already unguarded, and abort the VM. Likely very rare.
duke@435 638 //
duke@435 639 // The other race involves two threads alternately trapping at
duke@435 640 // different addresses and failing to unguard the page, resulting in
duke@435 641 // an endless loop. This condition is probably even more unlikely than
duke@435 642 // the first.
duke@435 643 //
duke@435 644 // Although both cases could be avoided by using locks or thread local
duke@435 645 // last_addr, these solutions are unnecessary complication: this
duke@435 646 // handler is a best-effort safety net, not a complete solution. It is
duke@435 647 // disabled by default and should only be used as a workaround in case
duke@435 648 // we missed any no-execute-unsafe VM code.
duke@435 649
duke@435 650 last_addr = addr;
duke@435 651 }
duke@435 652 }
duke@435 653 }
duke@435 654
duke@435 655 if (stub != NULL) {
duke@435 656 // save all thread context in case we need to restore it
duke@435 657
duke@435 658 if (thread != NULL) thread->set_saved_exception_pc(pc);
duke@435 659 // 12/02/99: On Sparc it appears that the full context is also saved
duke@435 660 // but as yet, no one looks at or restores that saved context
duke@435 661 // factor me: setPC
duke@435 662 uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
duke@435 663 return true;
duke@435 664 }
duke@435 665
duke@435 666 // signal-chaining
duke@435 667 if (os::Solaris::chained_handler(sig, info, ucVoid)) {
duke@435 668 return true;
duke@435 669 }
duke@435 670
duke@435 671 #ifndef AMD64
duke@435 672 // Workaround (bug 4900493) for Solaris kernel bug 4966651.
duke@435 673 // Handle an undefined selector caused by an attempt to assign
duke@435 674 // fs in libthread getipriptr(). With the current libthread design every 512
duke@435 675 // thread creations the LDT for a private thread data structure is extended
duke@435 676 // and thre is a hazard that and another thread attempting a thread creation
duke@435 677 // will use a stale LDTR that doesn't reflect the structure's growth,
duke@435 678 // causing a GP fault.
duke@435 679 // Enforce the probable limit of passes through here to guard against an
duke@435 680 // infinite loop if some other move to fs caused the GP fault. Note that
duke@435 681 // this loop counter is ultimately a heuristic as it is possible for
duke@435 682 // more than one thread to generate this fault at a time in an MP system.
duke@435 683 // In the case of the loop count being exceeded or if the poll fails
duke@435 684 // just fall through to a fatal error.
duke@435 685 // If there is some other source of T_GPFLT traps and the text at EIP is
duke@435 686 // unreadable this code will loop infinitely until the stack is exausted.
duke@435 687 // The key to diagnosis in this case is to look for the bottom signal handler
duke@435 688 // frame.
duke@435 689
duke@435 690 if(! IgnoreLibthreadGPFault) {
duke@435 691 if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
duke@435 692 const unsigned char *p =
duke@435 693 (unsigned const char *) uc->uc_mcontext.gregs[EIP];
duke@435 694
duke@435 695 // Expected instruction?
duke@435 696
duke@435 697 if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
duke@435 698
duke@435 699 Atomic::inc(&ldtr_refresh);
duke@435 700
duke@435 701 // Infinite loop?
duke@435 702
duke@435 703 if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
duke@435 704
duke@435 705 // No, force scheduling to get a fresh view of the LDTR
duke@435 706
duke@435 707 if(poll(NULL, 0, 10) == 0) {
duke@435 708
duke@435 709 // Retry the move
duke@435 710
duke@435 711 return false;
duke@435 712 }
duke@435 713 }
duke@435 714 }
duke@435 715 }
duke@435 716 }
duke@435 717 #endif // !AMD64
duke@435 718
duke@435 719 if (!abort_if_unrecognized) {
duke@435 720 // caller wants another chance, so give it to him
duke@435 721 return false;
duke@435 722 }
duke@435 723
duke@435 724 if (!os::Solaris::libjsig_is_loaded) {
duke@435 725 struct sigaction oldAct;
duke@435 726 sigaction(sig, (struct sigaction *)0, &oldAct);
duke@435 727 if (oldAct.sa_sigaction != signalHandler) {
duke@435 728 void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
duke@435 729 : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
twisti@1040 730 warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
duke@435 731 }
duke@435 732 }
duke@435 733
duke@435 734 if (pc == NULL && uc != NULL) {
duke@435 735 pc = (address) uc->uc_mcontext.gregs[REG_PC];
duke@435 736 }
duke@435 737
duke@435 738 // unmask current signal
duke@435 739 sigset_t newset;
duke@435 740 sigemptyset(&newset);
duke@435 741 sigaddset(&newset, sig);
duke@435 742 sigprocmask(SIG_UNBLOCK, &newset, NULL);
duke@435 743
coleenp@2418 744 // Determine which sort of error to throw. Out of swap may signal
coleenp@2418 745 // on the thread stack, which could get a mapping error when touched.
coleenp@2418 746 address addr = (address) info->si_addr;
coleenp@2418 747 if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
coleenp@2418 748 vm_exit_out_of_memory(0, "Out of swap space to map in thread stack.");
coleenp@2418 749 }
coleenp@2418 750
duke@435 751 VMError err(t, sig, pc, info, ucVoid);
duke@435 752 err.report_and_die();
duke@435 753
duke@435 754 ShouldNotReachHere();
duke@435 755 }
duke@435 756
duke@435 757 void os::print_context(outputStream *st, void *context) {
duke@435 758 if (context == NULL) return;
duke@435 759
duke@435 760 ucontext_t *uc = (ucontext_t*)context;
duke@435 761 st->print_cr("Registers:");
duke@435 762 #ifdef AMD64
duke@435 763 st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
duke@435 764 st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
duke@435 765 st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
duke@435 766 st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
duke@435 767 st->cr();
duke@435 768 st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
duke@435 769 st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
duke@435 770 st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
duke@435 771 st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
duke@435 772 st->cr();
never@2262 773 st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
never@2262 774 st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
duke@435 775 st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
duke@435 776 st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
never@1685 777 st->cr();
never@1685 778 st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
duke@435 779 st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
duke@435 780 st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
duke@435 781 st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
duke@435 782 st->cr();
duke@435 783 st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
duke@435 784 st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
duke@435 785 #else
duke@435 786 st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
duke@435 787 st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
duke@435 788 st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
duke@435 789 st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
duke@435 790 st->cr();
duke@435 791 st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
duke@435 792 st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
duke@435 793 st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
duke@435 794 st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
duke@435 795 st->cr();
duke@435 796 st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
duke@435 797 st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
duke@435 798 #endif // AMD64
duke@435 799 st->cr();
duke@435 800 st->cr();
duke@435 801
duke@435 802 intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
duke@435 803 st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
duke@435 804 print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
duke@435 805 st->cr();
duke@435 806
duke@435 807 // Note: it may be unsafe to inspect memory near pc. For example, pc may
duke@435 808 // point to garbage if entry point in an nmethod is corrupted. Leave
duke@435 809 // this at the end, and hope for the best.
duke@435 810 ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
duke@435 811 address pc = epc.pc();
duke@435 812 st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
never@2262 813 print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
never@2262 814 }
never@2262 815
never@2262 816 void os::print_register_info(outputStream *st, void *context) {
never@2262 817 if (context == NULL) return;
never@2262 818
never@2262 819 ucontext_t *uc = (ucontext_t*)context;
never@2262 820
never@2262 821 st->print_cr("Register to memory mapping:");
never@2262 822 st->cr();
never@2262 823
never@2262 824 // this is horrendously verbose but the layout of the registers in the
never@2262 825 // context does not match how we defined our abstract Register set, so
never@2262 826 // we can't just iterate through the gregs area
never@2262 827
never@2262 828 // this is only for the "general purpose" registers
never@2262 829
never@2262 830 #ifdef AMD64
never@2262 831 st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
never@2262 832 st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
never@2262 833 st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
never@2262 834 st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
never@2262 835 st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
never@2262 836 st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
never@2262 837 st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
never@2262 838 st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
never@2262 839 st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
never@2262 840 st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
never@2262 841 st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
never@2262 842 st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
never@2262 843 st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
never@2262 844 st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
never@2262 845 st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
never@2262 846 st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
never@2262 847 #else
never@2262 848 st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
never@2262 849 st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
never@2262 850 st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
never@2262 851 st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
never@2262 852 st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
never@2262 853 st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
never@2262 854 st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
never@2262 855 st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
never@2262 856 #endif
never@2262 857
never@2262 858 st->cr();
duke@435 859 }
duke@435 860
bobv@2036 861
duke@435 862 #ifdef AMD64
duke@435 863 void os::Solaris::init_thread_fpu_state(void) {
duke@435 864 // Nothing to do
duke@435 865 }
duke@435 866 #else
duke@435 867 // From solaris_i486.s
duke@435 868 extern "C" void fixcw();
duke@435 869
duke@435 870 void os::Solaris::init_thread_fpu_state(void) {
duke@435 871 // Set fpu to 53 bit precision. This happens too early to use a stub.
duke@435 872 fixcw();
duke@435 873 }
duke@435 874
duke@435 875 // These routines are the initial value of atomic_xchg_entry(),
duke@435 876 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
duke@435 877 // until initialization is complete.
duke@435 878 // TODO - replace with .il implementation when compiler supports it.
duke@435 879
duke@435 880 typedef jint xchg_func_t (jint, volatile jint*);
duke@435 881 typedef jint cmpxchg_func_t (jint, volatile jint*, jint);
duke@435 882 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
duke@435 883 typedef jint add_func_t (jint, volatile jint*);
duke@435 884
duke@435 885 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
duke@435 886 // try to use the stub:
duke@435 887 xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
duke@435 888
duke@435 889 if (func != NULL) {
duke@435 890 os::atomic_xchg_func = func;
duke@435 891 return (*func)(exchange_value, dest);
duke@435 892 }
duke@435 893 assert(Threads::number_of_threads() == 0, "for bootstrap only");
duke@435 894
duke@435 895 jint old_value = *dest;
duke@435 896 *dest = exchange_value;
duke@435 897 return old_value;
duke@435 898 }
duke@435 899
duke@435 900 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
duke@435 901 // try to use the stub:
duke@435 902 cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
duke@435 903
duke@435 904 if (func != NULL) {
duke@435 905 os::atomic_cmpxchg_func = func;
duke@435 906 return (*func)(exchange_value, dest, compare_value);
duke@435 907 }
duke@435 908 assert(Threads::number_of_threads() == 0, "for bootstrap only");
duke@435 909
duke@435 910 jint old_value = *dest;
duke@435 911 if (old_value == compare_value)
duke@435 912 *dest = exchange_value;
duke@435 913 return old_value;
duke@435 914 }
duke@435 915
duke@435 916 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
duke@435 917 // try to use the stub:
duke@435 918 cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
duke@435 919
duke@435 920 if (func != NULL) {
duke@435 921 os::atomic_cmpxchg_long_func = func;
duke@435 922 return (*func)(exchange_value, dest, compare_value);
duke@435 923 }
duke@435 924 assert(Threads::number_of_threads() == 0, "for bootstrap only");
duke@435 925
duke@435 926 jlong old_value = *dest;
duke@435 927 if (old_value == compare_value)
duke@435 928 *dest = exchange_value;
duke@435 929 return old_value;
duke@435 930 }
duke@435 931
duke@435 932 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
duke@435 933 // try to use the stub:
duke@435 934 add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
duke@435 935
duke@435 936 if (func != NULL) {
duke@435 937 os::atomic_add_func = func;
duke@435 938 return (*func)(add_value, dest);
duke@435 939 }
duke@435 940 assert(Threads::number_of_threads() == 0, "for bootstrap only");
duke@435 941
duke@435 942 return (*dest) += add_value;
duke@435 943 }
duke@435 944
duke@435 945 xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap;
duke@435 946 cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap;
duke@435 947 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
duke@435 948 add_func_t* os::atomic_add_func = os::atomic_add_bootstrap;
duke@435 949
zgu@1979 950 extern "C" void _solaris_raw_setup_fpu(address ptr);
duke@435 951 void os::setup_fpu() {
duke@435 952 address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
duke@435 953 _solaris_raw_setup_fpu(fpu_cntrl);
duke@435 954 }
duke@435 955 #endif // AMD64
roland@3606 956
roland@3606 957 #ifndef PRODUCT
roland@3606 958 void os::verify_stack_alignment() {
roland@3606 959 #ifdef AMD64
roland@3606 960 assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
roland@3606 961 #endif
roland@3606 962 }
roland@3606 963 #endif

mercurial