src/share/vm/opto/addnode.cpp

Thu, 02 Oct 2008 08:37:44 -0700

author
kvn
date
Thu, 02 Oct 2008 08:37:44 -0700
changeset 835
cc80376deb0c
parent 755
2b73d212b1fd
child 1077
660978a2a31a
permissions
-rw-r--r--

6667595: Set probability FAIR for pre-, post- loops and ALWAYS for main loop
Summary: Fix loop's probability. Add optimizations to avoid spilling. Change InlineSmallCode to product flag.
Reviewed-by: never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 #include "incls/_precompiled.incl"
duke@435 28 #include "incls/_addnode.cpp.incl"
duke@435 29
duke@435 30 #define MAXFLOAT ((float)3.40282346638528860e+38)
duke@435 31
duke@435 32 // Classic Add functionality. This covers all the usual 'add' behaviors for
duke@435 33 // an algebraic ring. Add-integer, add-float, add-double, and binary-or are
duke@435 34 // all inherited from this class. The various identity values are supplied
duke@435 35 // by virtual functions.
duke@435 36
duke@435 37
duke@435 38 //=============================================================================
duke@435 39 //------------------------------hash-------------------------------------------
duke@435 40 // Hash function over AddNodes. Needs to be commutative; i.e., I swap
duke@435 41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
duke@435 42 // the same value in the presence of edge swapping.
duke@435 43 uint AddNode::hash() const {
duke@435 44 return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
duke@435 45 }
duke@435 46
duke@435 47 //------------------------------Identity---------------------------------------
duke@435 48 // If either input is a constant 0, return the other input.
duke@435 49 Node *AddNode::Identity( PhaseTransform *phase ) {
duke@435 50 const Type *zero = add_id(); // The additive identity
duke@435 51 if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
duke@435 52 if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
duke@435 53 return this;
duke@435 54 }
duke@435 55
duke@435 56 //------------------------------commute----------------------------------------
duke@435 57 // Commute operands to move loads and constants to the right.
duke@435 58 static bool commute( Node *add, int con_left, int con_right ) {
duke@435 59 Node *in1 = add->in(1);
duke@435 60 Node *in2 = add->in(2);
duke@435 61
duke@435 62 // Convert "1+x" into "x+1".
duke@435 63 // Right is a constant; leave it
duke@435 64 if( con_right ) return false;
duke@435 65 // Left is a constant; move it right.
duke@435 66 if( con_left ) {
duke@435 67 add->swap_edges(1, 2);
duke@435 68 return true;
duke@435 69 }
duke@435 70
duke@435 71 // Convert "Load+x" into "x+Load".
duke@435 72 // Now check for loads
never@534 73 if (in2->is_Load()) {
never@534 74 if (!in1->is_Load()) {
never@534 75 // already x+Load to return
never@534 76 return false;
never@534 77 }
never@534 78 // both are loads, so fall through to sort inputs by idx
never@534 79 } else if( in1->is_Load() ) {
never@534 80 // Left is a Load and Right is not; move it right.
duke@435 81 add->swap_edges(1, 2);
duke@435 82 return true;
duke@435 83 }
duke@435 84
duke@435 85 PhiNode *phi;
duke@435 86 // Check for tight loop increments: Loop-phi of Add of loop-phi
duke@435 87 if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
duke@435 88 return false;
duke@435 89 if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
duke@435 90 add->swap_edges(1, 2);
duke@435 91 return true;
duke@435 92 }
duke@435 93
duke@435 94 // Otherwise, sort inputs (commutativity) to help value numbering.
duke@435 95 if( in1->_idx > in2->_idx ) {
duke@435 96 add->swap_edges(1, 2);
duke@435 97 return true;
duke@435 98 }
duke@435 99 return false;
duke@435 100 }
duke@435 101
duke@435 102 //------------------------------Idealize---------------------------------------
duke@435 103 // If we get here, we assume we are associative!
duke@435 104 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 105 const Type *t1 = phase->type( in(1) );
duke@435 106 const Type *t2 = phase->type( in(2) );
duke@435 107 int con_left = t1->singleton();
duke@435 108 int con_right = t2->singleton();
duke@435 109
duke@435 110 // Check for commutative operation desired
duke@435 111 if( commute(this,con_left,con_right) ) return this;
duke@435 112
duke@435 113 AddNode *progress = NULL; // Progress flag
duke@435 114
duke@435 115 // Convert "(x+1)+2" into "x+(1+2)". If the right input is a
duke@435 116 // constant, and the left input is an add of a constant, flatten the
duke@435 117 // expression tree.
duke@435 118 Node *add1 = in(1);
duke@435 119 Node *add2 = in(2);
duke@435 120 int add1_op = add1->Opcode();
duke@435 121 int this_op = Opcode();
duke@435 122 if( con_right && t2 != Type::TOP && // Right input is a constant?
duke@435 123 add1_op == this_op ) { // Left input is an Add?
duke@435 124
duke@435 125 // Type of left _in right input
duke@435 126 const Type *t12 = phase->type( add1->in(2) );
duke@435 127 if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
duke@435 128 // Check for rare case of closed data cycle which can happen inside
duke@435 129 // unreachable loops. In these cases the computation is undefined.
duke@435 130 #ifdef ASSERT
duke@435 131 Node *add11 = add1->in(1);
duke@435 132 int add11_op = add11->Opcode();
duke@435 133 if( (add1 == add1->in(1))
duke@435 134 || (add11_op == this_op && add11->in(1) == add1) ) {
duke@435 135 assert(false, "dead loop in AddNode::Ideal");
duke@435 136 }
duke@435 137 #endif
duke@435 138 // The Add of the flattened expression
duke@435 139 Node *x1 = add1->in(1);
duke@435 140 Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
duke@435 141 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 142 if( igvn ) {
duke@435 143 set_req_X(2,x2,igvn);
duke@435 144 set_req_X(1,x1,igvn);
duke@435 145 } else {
duke@435 146 set_req(2,x2);
duke@435 147 set_req(1,x1);
duke@435 148 }
duke@435 149 progress = this; // Made progress
duke@435 150 add1 = in(1);
duke@435 151 add1_op = add1->Opcode();
duke@435 152 }
duke@435 153 }
duke@435 154
duke@435 155 // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
duke@435 156 if( add1_op == this_op && !con_right ) {
duke@435 157 Node *a12 = add1->in(2);
duke@435 158 const Type *t12 = phase->type( a12 );
kvn@835 159 if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
kvn@835 160 !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
kvn@755 161 assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
duke@435 162 add2 = add1->clone();
duke@435 163 add2->set_req(2, in(2));
duke@435 164 add2 = phase->transform(add2);
duke@435 165 set_req(1, add2);
duke@435 166 set_req(2, a12);
duke@435 167 progress = this;
duke@435 168 add2 = a12;
duke@435 169 }
duke@435 170 }
duke@435 171
duke@435 172 // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
duke@435 173 int add2_op = add2->Opcode();
duke@435 174 if( add2_op == this_op && !con_left ) {
duke@435 175 Node *a22 = add2->in(2);
duke@435 176 const Type *t22 = phase->type( a22 );
kvn@835 177 if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
kvn@835 178 !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
kvn@755 179 assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
duke@435 180 Node *addx = add2->clone();
duke@435 181 addx->set_req(1, in(1));
duke@435 182 addx->set_req(2, add2->in(1));
duke@435 183 addx = phase->transform(addx);
duke@435 184 set_req(1, addx);
duke@435 185 set_req(2, a22);
duke@435 186 progress = this;
duke@435 187 }
duke@435 188 }
duke@435 189
duke@435 190 return progress;
duke@435 191 }
duke@435 192
duke@435 193 //------------------------------Value-----------------------------------------
duke@435 194 // An add node sums it's two _in. If one input is an RSD, we must mixin
duke@435 195 // the other input's symbols.
duke@435 196 const Type *AddNode::Value( PhaseTransform *phase ) const {
duke@435 197 // Either input is TOP ==> the result is TOP
duke@435 198 const Type *t1 = phase->type( in(1) );
duke@435 199 const Type *t2 = phase->type( in(2) );
duke@435 200 if( t1 == Type::TOP ) return Type::TOP;
duke@435 201 if( t2 == Type::TOP ) return Type::TOP;
duke@435 202
duke@435 203 // Either input is BOTTOM ==> the result is the local BOTTOM
duke@435 204 const Type *bot = bottom_type();
duke@435 205 if( (t1 == bot) || (t2 == bot) ||
duke@435 206 (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
duke@435 207 return bot;
duke@435 208
duke@435 209 // Check for an addition involving the additive identity
duke@435 210 const Type *tadd = add_of_identity( t1, t2 );
duke@435 211 if( tadd ) return tadd;
duke@435 212
duke@435 213 return add_ring(t1,t2); // Local flavor of type addition
duke@435 214 }
duke@435 215
duke@435 216 //------------------------------add_identity-----------------------------------
duke@435 217 // Check for addition of the identity
duke@435 218 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
duke@435 219 const Type *zero = add_id(); // The additive identity
duke@435 220 if( t1->higher_equal( zero ) ) return t2;
duke@435 221 if( t2->higher_equal( zero ) ) return t1;
duke@435 222
duke@435 223 return NULL;
duke@435 224 }
duke@435 225
duke@435 226
duke@435 227 //=============================================================================
duke@435 228 //------------------------------Idealize---------------------------------------
duke@435 229 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@835 230 Node* in1 = in(1);
kvn@835 231 Node* in2 = in(2);
kvn@835 232 int op1 = in1->Opcode();
kvn@835 233 int op2 = in2->Opcode();
duke@435 234 // Fold (con1-x)+con2 into (con1+con2)-x
kvn@835 235 if ( op1 == Op_AddI && op2 == Op_SubI ) {
kvn@835 236 // Swap edges to try optimizations below
kvn@835 237 in1 = in2;
kvn@835 238 in2 = in(1);
kvn@835 239 op1 = op2;
kvn@835 240 op2 = in2->Opcode();
kvn@835 241 }
duke@435 242 if( op1 == Op_SubI ) {
kvn@835 243 const Type *t_sub1 = phase->type( in1->in(1) );
kvn@835 244 const Type *t_2 = phase->type( in2 );
duke@435 245 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
duke@435 246 return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
kvn@835 247 in1->in(2) );
duke@435 248 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
duke@435 249 if( op2 == Op_SubI ) {
duke@435 250 // Check for dead cycle: d = (a-b)+(c-d)
kvn@835 251 assert( in1->in(2) != this && in2->in(2) != this,
duke@435 252 "dead loop in AddINode::Ideal" );
duke@435 253 Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
kvn@835 254 sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
kvn@835 255 sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
duke@435 256 return sub;
duke@435 257 }
kvn@835 258 // Convert "(a-b)+(b+c)" into "(a+c)"
kvn@835 259 if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
kvn@835 260 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
kvn@835 261 return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
kvn@835 262 }
kvn@835 263 // Convert "(a-b)+(c+b)" into "(a+c)"
kvn@835 264 if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
kvn@835 265 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
kvn@835 266 return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
kvn@835 267 }
kvn@835 268 // Convert "(a-b)+(b-c)" into "(a-c)"
kvn@835 269 if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
kvn@835 270 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
kvn@835 271 return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
kvn@835 272 }
kvn@835 273 // Convert "(a-b)+(c-a)" into "(c-b)"
kvn@835 274 if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
kvn@835 275 assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
kvn@835 276 return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
kvn@835 277 }
duke@435 278 }
duke@435 279
duke@435 280 // Convert "x+(0-y)" into "(x-y)"
kvn@835 281 if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
kvn@835 282 return new (phase->C, 3) SubINode(in1, in2->in(2) );
duke@435 283
duke@435 284 // Convert "(0-y)+x" into "(x-y)"
kvn@835 285 if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
kvn@835 286 return new (phase->C, 3) SubINode( in2, in1->in(2) );
duke@435 287
duke@435 288 // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
duke@435 289 // Helps with array allocation math constant folding
duke@435 290 // See 4790063:
duke@435 291 // Unrestricted transformation is unsafe for some runtime values of 'x'
duke@435 292 // ( x == 0, z == 1, y == -1 ) fails
duke@435 293 // ( x == -5, z == 1, y == 1 ) fails
duke@435 294 // Transform works for small z and small negative y when the addition
duke@435 295 // (x + (y << z)) does not cross zero.
duke@435 296 // Implement support for negative y and (x >= -(y << z))
duke@435 297 // Have not observed cases where type information exists to support
duke@435 298 // positive y and (x <= -(y << z))
duke@435 299 if( op1 == Op_URShiftI && op2 == Op_ConI &&
kvn@835 300 in1->in(2)->Opcode() == Op_ConI ) {
kvn@835 301 jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
kvn@835 302 jint y = phase->type( in2 )->is_int()->get_con();
duke@435 303
duke@435 304 if( z < 5 && -5 < y && y < 0 ) {
kvn@835 305 const Type *t_in11 = phase->type(in1->in(1));
duke@435 306 if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
kvn@835 307 Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
kvn@835 308 return new (phase->C, 3) URShiftINode( a, in1->in(2) );
duke@435 309 }
duke@435 310 }
duke@435 311 }
duke@435 312
duke@435 313 return AddNode::Ideal(phase, can_reshape);
duke@435 314 }
duke@435 315
duke@435 316
duke@435 317 //------------------------------Identity---------------------------------------
duke@435 318 // Fold (x-y)+y OR y+(x-y) into x
duke@435 319 Node *AddINode::Identity( PhaseTransform *phase ) {
duke@435 320 if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
duke@435 321 return in(1)->in(1);
duke@435 322 }
duke@435 323 else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
duke@435 324 return in(2)->in(1);
duke@435 325 }
duke@435 326 return AddNode::Identity(phase);
duke@435 327 }
duke@435 328
duke@435 329
duke@435 330 //------------------------------add_ring---------------------------------------
duke@435 331 // Supplied function returns the sum of the inputs. Guaranteed never
duke@435 332 // to be passed a TOP or BOTTOM type, these are filtered out by
duke@435 333 // pre-check.
duke@435 334 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 335 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 336 const TypeInt *r1 = t1->is_int();
duke@435 337 int lo = r0->_lo + r1->_lo;
duke@435 338 int hi = r0->_hi + r1->_hi;
duke@435 339 if( !(r0->is_con() && r1->is_con()) ) {
duke@435 340 // Not both constants, compute approximate result
duke@435 341 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
duke@435 342 lo = min_jint; hi = max_jint; // Underflow on the low side
duke@435 343 }
duke@435 344 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
duke@435 345 lo = min_jint; hi = max_jint; // Overflow on the high side
duke@435 346 }
duke@435 347 if( lo > hi ) { // Handle overflow
duke@435 348 lo = min_jint; hi = max_jint;
duke@435 349 }
duke@435 350 } else {
duke@435 351 // both constants, compute precise result using 'lo' and 'hi'
duke@435 352 // Semantics define overflow and underflow for integer addition
duke@435 353 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
duke@435 354 }
duke@435 355 return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
duke@435 356 }
duke@435 357
duke@435 358
duke@435 359 //=============================================================================
duke@435 360 //------------------------------Idealize---------------------------------------
duke@435 361 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@835 362 Node* in1 = in(1);
kvn@835 363 Node* in2 = in(2);
kvn@835 364 int op1 = in1->Opcode();
kvn@835 365 int op2 = in2->Opcode();
kvn@835 366 // Fold (con1-x)+con2 into (con1+con2)-x
kvn@835 367 if ( op1 == Op_AddL && op2 == Op_SubL ) {
kvn@835 368 // Swap edges to try optimizations below
kvn@835 369 in1 = in2;
kvn@835 370 in2 = in(1);
kvn@835 371 op1 = op2;
kvn@835 372 op2 = in2->Opcode();
kvn@835 373 }
duke@435 374 // Fold (con1-x)+con2 into (con1+con2)-x
duke@435 375 if( op1 == Op_SubL ) {
kvn@835 376 const Type *t_sub1 = phase->type( in1->in(1) );
kvn@835 377 const Type *t_2 = phase->type( in2 );
duke@435 378 if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
duke@435 379 return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
kvn@835 380 in1->in(2) );
duke@435 381 // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
duke@435 382 if( op2 == Op_SubL ) {
duke@435 383 // Check for dead cycle: d = (a-b)+(c-d)
kvn@835 384 assert( in1->in(2) != this && in2->in(2) != this,
duke@435 385 "dead loop in AddLNode::Ideal" );
duke@435 386 Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
kvn@835 387 sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
kvn@835 388 sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
duke@435 389 return sub;
duke@435 390 }
kvn@835 391 // Convert "(a-b)+(b+c)" into "(a+c)"
kvn@835 392 if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
kvn@835 393 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
kvn@835 394 return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
kvn@835 395 }
kvn@835 396 // Convert "(a-b)+(c+b)" into "(a+c)"
kvn@835 397 if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
kvn@835 398 assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
kvn@835 399 return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
kvn@835 400 }
kvn@835 401 // Convert "(a-b)+(b-c)" into "(a-c)"
kvn@835 402 if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
kvn@835 403 assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
kvn@835 404 return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
kvn@835 405 }
kvn@835 406 // Convert "(a-b)+(c-a)" into "(c-b)"
kvn@835 407 if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
kvn@835 408 assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
kvn@835 409 return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
kvn@835 410 }
duke@435 411 }
duke@435 412
duke@435 413 // Convert "x+(0-y)" into "(x-y)"
kvn@835 414 if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
kvn@835 415 return new (phase->C, 3) SubLNode( in1, in2->in(2) );
kvn@835 416
kvn@835 417 // Convert "(0-y)+x" into "(x-y)"
kvn@835 418 if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
kvn@835 419 return new (phase->C, 3) SubLNode( in2, in1->in(2) );
duke@435 420
duke@435 421 // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
duke@435 422 // into "(X<<1)+Y" and let shift-folding happen.
duke@435 423 if( op2 == Op_AddL &&
kvn@835 424 in2->in(1) == in1 &&
duke@435 425 op1 != Op_ConL &&
duke@435 426 0 ) {
kvn@835 427 Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
kvn@835 428 return new (phase->C, 3) AddLNode(shift,in2->in(2));
duke@435 429 }
duke@435 430
duke@435 431 return AddNode::Ideal(phase, can_reshape);
duke@435 432 }
duke@435 433
duke@435 434
duke@435 435 //------------------------------Identity---------------------------------------
duke@435 436 // Fold (x-y)+y OR y+(x-y) into x
duke@435 437 Node *AddLNode::Identity( PhaseTransform *phase ) {
duke@435 438 if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
duke@435 439 return in(1)->in(1);
duke@435 440 }
duke@435 441 else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
duke@435 442 return in(2)->in(1);
duke@435 443 }
duke@435 444 return AddNode::Identity(phase);
duke@435 445 }
duke@435 446
duke@435 447
duke@435 448 //------------------------------add_ring---------------------------------------
duke@435 449 // Supplied function returns the sum of the inputs. Guaranteed never
duke@435 450 // to be passed a TOP or BOTTOM type, these are filtered out by
duke@435 451 // pre-check.
duke@435 452 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 453 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 454 const TypeLong *r1 = t1->is_long();
duke@435 455 jlong lo = r0->_lo + r1->_lo;
duke@435 456 jlong hi = r0->_hi + r1->_hi;
duke@435 457 if( !(r0->is_con() && r1->is_con()) ) {
duke@435 458 // Not both constants, compute approximate result
duke@435 459 if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
duke@435 460 lo =min_jlong; hi = max_jlong; // Underflow on the low side
duke@435 461 }
duke@435 462 if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
duke@435 463 lo = min_jlong; hi = max_jlong; // Overflow on the high side
duke@435 464 }
duke@435 465 if( lo > hi ) { // Handle overflow
duke@435 466 lo = min_jlong; hi = max_jlong;
duke@435 467 }
duke@435 468 } else {
duke@435 469 // both constants, compute precise result using 'lo' and 'hi'
duke@435 470 // Semantics define overflow and underflow for integer addition
duke@435 471 // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
duke@435 472 }
duke@435 473 return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
duke@435 474 }
duke@435 475
duke@435 476
duke@435 477 //=============================================================================
duke@435 478 //------------------------------add_of_identity--------------------------------
duke@435 479 // Check for addition of the identity
duke@435 480 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
duke@435 481 // x ADD 0 should return x unless 'x' is a -zero
duke@435 482 //
duke@435 483 // const Type *zero = add_id(); // The additive identity
duke@435 484 // jfloat f1 = t1->getf();
duke@435 485 // jfloat f2 = t2->getf();
duke@435 486 //
duke@435 487 // if( t1->higher_equal( zero ) ) return t2;
duke@435 488 // if( t2->higher_equal( zero ) ) return t1;
duke@435 489
duke@435 490 return NULL;
duke@435 491 }
duke@435 492
duke@435 493 //------------------------------add_ring---------------------------------------
duke@435 494 // Supplied function returns the sum of the inputs.
duke@435 495 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 496 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 497 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 498 // We must be adding 2 float constants.
duke@435 499 return TypeF::make( t0->getf() + t1->getf() );
duke@435 500 }
duke@435 501
duke@435 502 //------------------------------Ideal------------------------------------------
duke@435 503 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 504 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 505 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
duke@435 506 }
duke@435 507
duke@435 508 // Floating point additions are not associative because of boundary conditions (infinity)
duke@435 509 return commute(this,
duke@435 510 phase->type( in(1) )->singleton(),
duke@435 511 phase->type( in(2) )->singleton() ) ? this : NULL;
duke@435 512 }
duke@435 513
duke@435 514
duke@435 515 //=============================================================================
duke@435 516 //------------------------------add_of_identity--------------------------------
duke@435 517 // Check for addition of the identity
duke@435 518 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
duke@435 519 // x ADD 0 should return x unless 'x' is a -zero
duke@435 520 //
duke@435 521 // const Type *zero = add_id(); // The additive identity
duke@435 522 // jfloat f1 = t1->getf();
duke@435 523 // jfloat f2 = t2->getf();
duke@435 524 //
duke@435 525 // if( t1->higher_equal( zero ) ) return t2;
duke@435 526 // if( t2->higher_equal( zero ) ) return t1;
duke@435 527
duke@435 528 return NULL;
duke@435 529 }
duke@435 530 //------------------------------add_ring---------------------------------------
duke@435 531 // Supplied function returns the sum of the inputs.
duke@435 532 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 533 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 534 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 535 // We must be adding 2 double constants.
duke@435 536 return TypeD::make( t0->getd() + t1->getd() );
duke@435 537 }
duke@435 538
duke@435 539 //------------------------------Ideal------------------------------------------
duke@435 540 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 541 if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
duke@435 542 return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
duke@435 543 }
duke@435 544
duke@435 545 // Floating point additions are not associative because of boundary conditions (infinity)
duke@435 546 return commute(this,
duke@435 547 phase->type( in(1) )->singleton(),
duke@435 548 phase->type( in(2) )->singleton() ) ? this : NULL;
duke@435 549 }
duke@435 550
duke@435 551
duke@435 552 //=============================================================================
duke@435 553 //------------------------------Identity---------------------------------------
duke@435 554 // If one input is a constant 0, return the other input.
duke@435 555 Node *AddPNode::Identity( PhaseTransform *phase ) {
duke@435 556 return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
duke@435 557 }
duke@435 558
duke@435 559 //------------------------------Idealize---------------------------------------
duke@435 560 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 561 // Bail out if dead inputs
duke@435 562 if( phase->type( in(Address) ) == Type::TOP ) return NULL;
duke@435 563
duke@435 564 // If the left input is an add of a constant, flatten the expression tree.
duke@435 565 const Node *n = in(Address);
duke@435 566 if (n->is_AddP() && n->in(Base) == in(Base)) {
duke@435 567 const AddPNode *addp = n->as_AddP(); // Left input is an AddP
duke@435 568 assert( !addp->in(Address)->is_AddP() ||
duke@435 569 addp->in(Address)->as_AddP() != addp,
duke@435 570 "dead loop in AddPNode::Ideal" );
duke@435 571 // Type of left input's right input
duke@435 572 const Type *t = phase->type( addp->in(Offset) );
duke@435 573 if( t == Type::TOP ) return NULL;
duke@435 574 const TypeX *t12 = t->is_intptr_t();
duke@435 575 if( t12->is_con() ) { // Left input is an add of a constant?
duke@435 576 // If the right input is a constant, combine constants
duke@435 577 const Type *temp_t2 = phase->type( in(Offset) );
duke@435 578 if( temp_t2 == Type::TOP ) return NULL;
duke@435 579 const TypeX *t2 = temp_t2->is_intptr_t();
kvn@467 580 Node* address;
kvn@467 581 Node* offset;
duke@435 582 if( t2->is_con() ) {
duke@435 583 // The Add of the flattened expression
kvn@467 584 address = addp->in(Address);
kvn@467 585 offset = phase->MakeConX(t2->get_con() + t12->get_con());
kvn@467 586 } else {
kvn@467 587 // Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
kvn@467 588 address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
kvn@467 589 offset = addp->in(Offset);
duke@435 590 }
kvn@467 591 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@467 592 if( igvn ) {
kvn@467 593 set_req_X(Address,address,igvn);
kvn@467 594 set_req_X(Offset,offset,igvn);
kvn@467 595 } else {
kvn@467 596 set_req(Address,address);
kvn@467 597 set_req(Offset,offset);
kvn@467 598 }
duke@435 599 return this;
duke@435 600 }
duke@435 601 }
duke@435 602
duke@435 603 // Raw pointers?
duke@435 604 if( in(Base)->bottom_type() == Type::TOP ) {
duke@435 605 // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
duke@435 606 if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
duke@435 607 Node* offset = in(Offset);
duke@435 608 return new (phase->C, 2) CastX2PNode(offset);
duke@435 609 }
duke@435 610 }
duke@435 611
duke@435 612 // If the right is an add of a constant, push the offset down.
duke@435 613 // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
duke@435 614 // The idea is to merge array_base+scaled_index groups together,
duke@435 615 // and only have different constant offsets from the same base.
duke@435 616 const Node *add = in(Offset);
duke@435 617 if( add->Opcode() == Op_AddX && add->in(1) != add ) {
duke@435 618 const Type *t22 = phase->type( add->in(2) );
duke@435 619 if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
duke@435 620 set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
duke@435 621 set_req(Offset, add->in(2));
duke@435 622 return this; // Made progress
duke@435 623 }
duke@435 624 }
duke@435 625
duke@435 626 return NULL; // No progress
duke@435 627 }
duke@435 628
duke@435 629 //------------------------------bottom_type------------------------------------
duke@435 630 // Bottom-type is the pointer-type with unknown offset.
duke@435 631 const Type *AddPNode::bottom_type() const {
duke@435 632 if (in(Address) == NULL) return TypePtr::BOTTOM;
duke@435 633 const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
duke@435 634 if( !tp ) return Type::TOP; // TOP input means TOP output
duke@435 635 assert( in(Offset)->Opcode() != Op_ConP, "" );
duke@435 636 const Type *t = in(Offset)->bottom_type();
duke@435 637 if( t == Type::TOP )
duke@435 638 return tp->add_offset(Type::OffsetTop);
duke@435 639 const TypeX *tx = t->is_intptr_t();
duke@435 640 intptr_t txoffset = Type::OffsetBot;
duke@435 641 if (tx->is_con()) { // Left input is an add of a constant?
duke@435 642 txoffset = tx->get_con();
duke@435 643 }
duke@435 644 return tp->add_offset(txoffset);
duke@435 645 }
duke@435 646
duke@435 647 //------------------------------Value------------------------------------------
duke@435 648 const Type *AddPNode::Value( PhaseTransform *phase ) const {
duke@435 649 // Either input is TOP ==> the result is TOP
duke@435 650 const Type *t1 = phase->type( in(Address) );
duke@435 651 const Type *t2 = phase->type( in(Offset) );
duke@435 652 if( t1 == Type::TOP ) return Type::TOP;
duke@435 653 if( t2 == Type::TOP ) return Type::TOP;
duke@435 654
duke@435 655 // Left input is a pointer
duke@435 656 const TypePtr *p1 = t1->isa_ptr();
duke@435 657 // Right input is an int
duke@435 658 const TypeX *p2 = t2->is_intptr_t();
duke@435 659 // Add 'em
duke@435 660 intptr_t p2offset = Type::OffsetBot;
duke@435 661 if (p2->is_con()) { // Left input is an add of a constant?
duke@435 662 p2offset = p2->get_con();
duke@435 663 }
duke@435 664 return p1->add_offset(p2offset);
duke@435 665 }
duke@435 666
duke@435 667 //------------------------Ideal_base_and_offset--------------------------------
duke@435 668 // Split an oop pointer into a base and offset.
duke@435 669 // (The offset might be Type::OffsetBot in the case of an array.)
duke@435 670 // Return the base, or NULL if failure.
duke@435 671 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
duke@435 672 // second return value:
duke@435 673 intptr_t& offset) {
duke@435 674 if (ptr->is_AddP()) {
duke@435 675 Node* base = ptr->in(AddPNode::Base);
duke@435 676 Node* addr = ptr->in(AddPNode::Address);
duke@435 677 Node* offs = ptr->in(AddPNode::Offset);
duke@435 678 if (base == addr || base->is_top()) {
duke@435 679 offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
duke@435 680 if (offset != Type::OffsetBot) {
duke@435 681 return addr;
duke@435 682 }
duke@435 683 }
duke@435 684 }
duke@435 685 offset = Type::OffsetBot;
duke@435 686 return NULL;
duke@435 687 }
duke@435 688
never@452 689 //------------------------------unpack_offsets----------------------------------
never@452 690 // Collect the AddP offset values into the elements array, giving up
never@452 691 // if there are more than length.
never@452 692 int AddPNode::unpack_offsets(Node* elements[], int length) {
never@452 693 int count = 0;
never@452 694 Node* addr = this;
never@452 695 Node* base = addr->in(AddPNode::Base);
never@452 696 while (addr->is_AddP()) {
never@452 697 if (addr->in(AddPNode::Base) != base) {
never@452 698 // give up
never@452 699 return -1;
never@452 700 }
never@452 701 elements[count++] = addr->in(AddPNode::Offset);
never@452 702 if (count == length) {
never@452 703 // give up
never@452 704 return -1;
never@452 705 }
never@452 706 addr = addr->in(AddPNode::Address);
never@452 707 }
never@452 708 return count;
never@452 709 }
never@452 710
duke@435 711 //------------------------------match_edge-------------------------------------
duke@435 712 // Do we Match on this edge index or not? Do not match base pointer edge
duke@435 713 uint AddPNode::match_edge(uint idx) const {
duke@435 714 return idx > Base;
duke@435 715 }
duke@435 716
duke@435 717 //---------------------------mach_bottom_type----------------------------------
duke@435 718 // Utility function for use by ADLC. Implements bottom_type for matched AddP.
duke@435 719 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
duke@435 720 Node* base = n->in(Base);
duke@435 721 const Type *t = base->bottom_type();
duke@435 722 if ( t == Type::TOP ) {
duke@435 723 // an untyped pointer
duke@435 724 return TypeRawPtr::BOTTOM;
duke@435 725 }
duke@435 726 const TypePtr* tp = t->isa_oopptr();
duke@435 727 if ( tp == NULL ) return t;
duke@435 728 if ( tp->_offset == TypePtr::OffsetBot ) return tp;
duke@435 729
duke@435 730 // We must carefully add up the various offsets...
duke@435 731 intptr_t offset = 0;
duke@435 732 const TypePtr* tptr = NULL;
duke@435 733
duke@435 734 uint numopnds = n->num_opnds();
duke@435 735 uint index = n->oper_input_base();
duke@435 736 for ( uint i = 1; i < numopnds; i++ ) {
duke@435 737 MachOper *opnd = n->_opnds[i];
duke@435 738 // Check for any interesting operand info.
duke@435 739 // In particular, check for both memory and non-memory operands.
duke@435 740 // %%%%% Clean this up: use xadd_offset
kvn@741 741 intptr_t con = opnd->constant();
duke@435 742 if ( con == TypePtr::OffsetBot ) goto bottom_out;
duke@435 743 offset += con;
duke@435 744 con = opnd->constant_disp();
duke@435 745 if ( con == TypePtr::OffsetBot ) goto bottom_out;
duke@435 746 offset += con;
duke@435 747 if( opnd->scale() != 0 ) goto bottom_out;
duke@435 748
duke@435 749 // Check each operand input edge. Find the 1 allowed pointer
duke@435 750 // edge. Other edges must be index edges; track exact constant
duke@435 751 // inputs and otherwise assume the worst.
duke@435 752 for ( uint j = opnd->num_edges(); j > 0; j-- ) {
duke@435 753 Node* edge = n->in(index++);
duke@435 754 const Type* et = edge->bottom_type();
duke@435 755 const TypeX* eti = et->isa_intptr_t();
duke@435 756 if ( eti == NULL ) {
duke@435 757 // there must be one pointer among the operands
duke@435 758 guarantee(tptr == NULL, "must be only one pointer operand");
duke@435 759 tptr = et->isa_oopptr();
duke@435 760 guarantee(tptr != NULL, "non-int operand must be pointer");
kvn@728 761 if (tptr->higher_equal(tp->add_offset(tptr->offset())))
kvn@728 762 tp = tptr; // Set more precise type for bailout
duke@435 763 continue;
duke@435 764 }
duke@435 765 if ( eti->_hi != eti->_lo ) goto bottom_out;
duke@435 766 offset += eti->_lo;
duke@435 767 }
duke@435 768 }
duke@435 769 guarantee(tptr != NULL, "must be exactly one pointer operand");
duke@435 770 return tptr->add_offset(offset);
duke@435 771
duke@435 772 bottom_out:
duke@435 773 return tp->add_offset(TypePtr::OffsetBot);
duke@435 774 }
duke@435 775
duke@435 776 //=============================================================================
duke@435 777 //------------------------------Identity---------------------------------------
duke@435 778 Node *OrINode::Identity( PhaseTransform *phase ) {
duke@435 779 // x | x => x
duke@435 780 if (phase->eqv(in(1), in(2))) {
duke@435 781 return in(1);
duke@435 782 }
duke@435 783
duke@435 784 return AddNode::Identity(phase);
duke@435 785 }
duke@435 786
duke@435 787 //------------------------------add_ring---------------------------------------
duke@435 788 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
duke@435 789 // the logical operations the ring's ADD is really a logical OR function.
duke@435 790 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 791 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 792 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 793 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 794 const TypeInt *r1 = t1->is_int();
duke@435 795
duke@435 796 // If both args are bool, can figure out better types
duke@435 797 if ( r0 == TypeInt::BOOL ) {
duke@435 798 if ( r1 == TypeInt::ONE) {
duke@435 799 return TypeInt::ONE;
duke@435 800 } else if ( r1 == TypeInt::BOOL ) {
duke@435 801 return TypeInt::BOOL;
duke@435 802 }
duke@435 803 } else if ( r0 == TypeInt::ONE ) {
duke@435 804 if ( r1 == TypeInt::BOOL ) {
duke@435 805 return TypeInt::ONE;
duke@435 806 }
duke@435 807 }
duke@435 808
duke@435 809 // If either input is not a constant, just return all integers.
duke@435 810 if( !r0->is_con() || !r1->is_con() )
duke@435 811 return TypeInt::INT; // Any integer, but still no symbols.
duke@435 812
duke@435 813 // Otherwise just OR them bits.
duke@435 814 return TypeInt::make( r0->get_con() | r1->get_con() );
duke@435 815 }
duke@435 816
duke@435 817 //=============================================================================
duke@435 818 //------------------------------Identity---------------------------------------
duke@435 819 Node *OrLNode::Identity( PhaseTransform *phase ) {
duke@435 820 // x | x => x
duke@435 821 if (phase->eqv(in(1), in(2))) {
duke@435 822 return in(1);
duke@435 823 }
duke@435 824
duke@435 825 return AddNode::Identity(phase);
duke@435 826 }
duke@435 827
duke@435 828 //------------------------------add_ring---------------------------------------
duke@435 829 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 830 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 831 const TypeLong *r1 = t1->is_long();
duke@435 832
duke@435 833 // If either input is not a constant, just return all integers.
duke@435 834 if( !r0->is_con() || !r1->is_con() )
duke@435 835 return TypeLong::LONG; // Any integer, but still no symbols.
duke@435 836
duke@435 837 // Otherwise just OR them bits.
duke@435 838 return TypeLong::make( r0->get_con() | r1->get_con() );
duke@435 839 }
duke@435 840
duke@435 841 //=============================================================================
duke@435 842 //------------------------------add_ring---------------------------------------
duke@435 843 // Supplied function returns the sum of the inputs IN THE CURRENT RING. For
duke@435 844 // the logical operations the ring's ADD is really a logical OR function.
duke@435 845 // This also type-checks the inputs for sanity. Guaranteed never to
duke@435 846 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
duke@435 847 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 848 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 849 const TypeInt *r1 = t1->is_int();
duke@435 850
duke@435 851 // Complementing a boolean?
duke@435 852 if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
duke@435 853 || r1 == TypeInt::BOOL))
duke@435 854 return TypeInt::BOOL;
duke@435 855
duke@435 856 if( !r0->is_con() || !r1->is_con() ) // Not constants
duke@435 857 return TypeInt::INT; // Any integer, but still no symbols.
duke@435 858
duke@435 859 // Otherwise just XOR them bits.
duke@435 860 return TypeInt::make( r0->get_con() ^ r1->get_con() );
duke@435 861 }
duke@435 862
duke@435 863 //=============================================================================
duke@435 864 //------------------------------add_ring---------------------------------------
duke@435 865 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 866 const TypeLong *r0 = t0->is_long(); // Handy access
duke@435 867 const TypeLong *r1 = t1->is_long();
duke@435 868
duke@435 869 // If either input is not a constant, just return all integers.
duke@435 870 if( !r0->is_con() || !r1->is_con() )
duke@435 871 return TypeLong::LONG; // Any integer, but still no symbols.
duke@435 872
duke@435 873 // Otherwise just OR them bits.
duke@435 874 return TypeLong::make( r0->get_con() ^ r1->get_con() );
duke@435 875 }
duke@435 876
duke@435 877 //=============================================================================
duke@435 878 //------------------------------add_ring---------------------------------------
duke@435 879 // Supplied function returns the sum of the inputs.
duke@435 880 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 881 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 882 const TypeInt *r1 = t1->is_int();
duke@435 883
duke@435 884 // Otherwise just MAX them bits.
duke@435 885 return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
duke@435 886 }
duke@435 887
duke@435 888 //=============================================================================
duke@435 889 //------------------------------Idealize---------------------------------------
duke@435 890 // MINs show up in range-check loop limit calculations. Look for
duke@435 891 // "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
duke@435 892 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 893 Node *progress = NULL;
duke@435 894 // Force a right-spline graph
duke@435 895 Node *l = in(1);
duke@435 896 Node *r = in(2);
duke@435 897 // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
duke@435 898 // to force a right-spline graph for the rest of MinINode::Ideal().
duke@435 899 if( l->Opcode() == Op_MinI ) {
duke@435 900 assert( l != l->in(1), "dead loop in MinINode::Ideal" );
duke@435 901 r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
duke@435 902 l = l->in(1);
duke@435 903 set_req(1, l);
duke@435 904 set_req(2, r);
duke@435 905 return this;
duke@435 906 }
duke@435 907
duke@435 908 // Get left input & constant
duke@435 909 Node *x = l;
duke@435 910 int x_off = 0;
duke@435 911 if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
duke@435 912 x->in(2)->is_Con() ) {
duke@435 913 const Type *t = x->in(2)->bottom_type();
duke@435 914 if( t == Type::TOP ) return NULL; // No progress
duke@435 915 x_off = t->is_int()->get_con();
duke@435 916 x = x->in(1);
duke@435 917 }
duke@435 918
duke@435 919 // Scan a right-spline-tree for MINs
duke@435 920 Node *y = r;
duke@435 921 int y_off = 0;
duke@435 922 // Check final part of MIN tree
duke@435 923 if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
duke@435 924 y->in(2)->is_Con() ) {
duke@435 925 const Type *t = y->in(2)->bottom_type();
duke@435 926 if( t == Type::TOP ) return NULL; // No progress
duke@435 927 y_off = t->is_int()->get_con();
duke@435 928 y = y->in(1);
duke@435 929 }
duke@435 930 if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
duke@435 931 swap_edges(1, 2);
duke@435 932 return this;
duke@435 933 }
duke@435 934
duke@435 935
duke@435 936 if( r->Opcode() == Op_MinI ) {
duke@435 937 assert( r != r->in(2), "dead loop in MinINode::Ideal" );
duke@435 938 y = r->in(1);
duke@435 939 // Check final part of MIN tree
duke@435 940 if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
duke@435 941 y->in(2)->is_Con() ) {
duke@435 942 const Type *t = y->in(2)->bottom_type();
duke@435 943 if( t == Type::TOP ) return NULL; // No progress
duke@435 944 y_off = t->is_int()->get_con();
duke@435 945 y = y->in(1);
duke@435 946 }
duke@435 947
duke@435 948 if( x->_idx > y->_idx )
duke@435 949 return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
duke@435 950
duke@435 951 // See if covers: MIN2(x+c0,MIN2(y+c1,z))
duke@435 952 if( !phase->eqv(x,y) ) return NULL;
duke@435 953 // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
duke@435 954 // MIN2(x+c0 or x+c1 which less, z).
duke@435 955 return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
duke@435 956 } else {
duke@435 957 // See if covers: MIN2(x+c0,y+c1)
duke@435 958 if( !phase->eqv(x,y) ) return NULL;
duke@435 959 // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
duke@435 960 return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
duke@435 961 }
duke@435 962
duke@435 963 }
duke@435 964
duke@435 965 //------------------------------add_ring---------------------------------------
duke@435 966 // Supplied function returns the sum of the inputs.
duke@435 967 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
duke@435 968 const TypeInt *r0 = t0->is_int(); // Handy access
duke@435 969 const TypeInt *r1 = t1->is_int();
duke@435 970
duke@435 971 // Otherwise just MIN them bits.
duke@435 972 return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
duke@435 973 }

mercurial