src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.hpp

Thu, 16 Jun 2011 15:51:57 -0400

author
tonyp
date
Thu, 16 Jun 2011 15:51:57 -0400
changeset 2971
c9ca3f51cf41
parent 2969
6747fd0512e0
child 3269
53074c2c4600
permissions
-rw-r--r--

6994322: Remove the is_tlab and is_noref / is_large_noref parameters from the CollectedHeap
Summary: Remove two unused parameters from the mem_allocate() method and update its uses accordingly.
Reviewed-by: stefank, johnc

duke@435 1 /*
tonyp@2971 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/parallelScavenge/objectStartArray.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psGCAdaptivePolicyCounters.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
stefank@2314 31 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
stefank@2314 32 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 33 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 34 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 35 #include "utilities/ostream.hpp"
stefank@2314 36
duke@435 37 class AdjoiningGenerations;
duke@435 38 class GCTaskManager;
duke@435 39 class PSAdaptiveSizePolicy;
jmasa@1822 40 class GenerationSizer;
jmasa@1822 41 class CollectorPolicy;
duke@435 42
duke@435 43 class ParallelScavengeHeap : public CollectedHeap {
duke@435 44 friend class VMStructs;
duke@435 45 private:
duke@435 46 static PSYoungGen* _young_gen;
duke@435 47 static PSOldGen* _old_gen;
duke@435 48 static PSPermGen* _perm_gen;
duke@435 49
duke@435 50 // Sizing policy for entire heap
duke@435 51 static PSAdaptiveSizePolicy* _size_policy;
duke@435 52 static PSGCAdaptivePolicyCounters* _gc_policy_counters;
duke@435 53
duke@435 54 static ParallelScavengeHeap* _psh;
duke@435 55
duke@435 56 size_t _perm_gen_alignment;
duke@435 57 size_t _young_gen_alignment;
duke@435 58 size_t _old_gen_alignment;
duke@435 59
jmasa@1822 60 GenerationSizer* _collector_policy;
jmasa@1822 61
duke@435 62 inline size_t set_alignment(size_t& var, size_t val);
duke@435 63
duke@435 64 // Collection of generations that are adjacent in the
duke@435 65 // space reserved for the heap.
duke@435 66 AdjoiningGenerations* _gens;
duke@435 67
duke@435 68 static GCTaskManager* _gc_task_manager; // The task manager.
duke@435 69
duke@435 70 protected:
duke@435 71 static inline size_t total_invocations();
duke@435 72 HeapWord* allocate_new_tlab(size_t size);
duke@435 73
duke@435 74 public:
duke@435 75 ParallelScavengeHeap() : CollectedHeap() {
jmasa@448 76 set_alignment(_perm_gen_alignment, intra_heap_alignment());
jmasa@448 77 set_alignment(_young_gen_alignment, intra_heap_alignment());
jmasa@448 78 set_alignment(_old_gen_alignment, intra_heap_alignment());
duke@435 79 }
duke@435 80
duke@435 81 // For use by VM operations
duke@435 82 enum CollectionType {
duke@435 83 Scavenge,
duke@435 84 MarkSweep
duke@435 85 };
duke@435 86
duke@435 87 ParallelScavengeHeap::Name kind() const {
duke@435 88 return CollectedHeap::ParallelScavengeHeap;
duke@435 89 }
duke@435 90
jmasa@1822 91 CollectorPolicy* collector_policy() const { return (CollectorPolicy*) _collector_policy; }
jmasa@1822 92 // GenerationSizer* collector_policy() const { return _collector_policy; }
jmasa@1822 93
duke@435 94 static PSYoungGen* young_gen() { return _young_gen; }
duke@435 95 static PSOldGen* old_gen() { return _old_gen; }
duke@435 96 static PSPermGen* perm_gen() { return _perm_gen; }
duke@435 97
duke@435 98 virtual PSAdaptiveSizePolicy* size_policy() { return _size_policy; }
duke@435 99
duke@435 100 static PSGCAdaptivePolicyCounters* gc_policy_counters() { return _gc_policy_counters; }
duke@435 101
duke@435 102 static ParallelScavengeHeap* heap();
duke@435 103
duke@435 104 static GCTaskManager* const gc_task_manager() { return _gc_task_manager; }
duke@435 105
duke@435 106 AdjoiningGenerations* gens() { return _gens; }
duke@435 107
duke@435 108 // Returns JNI_OK on success
duke@435 109 virtual jint initialize();
duke@435 110
duke@435 111 void post_initialize();
duke@435 112 void update_counters();
duke@435 113 // The alignment used for the various generations.
duke@435 114 size_t perm_gen_alignment() const { return _perm_gen_alignment; }
duke@435 115 size_t young_gen_alignment() const { return _young_gen_alignment; }
duke@435 116 size_t old_gen_alignment() const { return _old_gen_alignment; }
duke@435 117
jmasa@448 118 // The alignment used for eden and survivors within the young gen
jmasa@448 119 // and for boundary between young gen and old gen.
jmasa@448 120 size_t intra_heap_alignment() const { return 64 * K; }
duke@435 121
duke@435 122 size_t capacity() const;
duke@435 123 size_t used() const;
duke@435 124
duke@435 125 // Return "true" if all generations (but perm) have reached the
duke@435 126 // maximal committed limit that they can reach, without a garbage
duke@435 127 // collection.
duke@435 128 virtual bool is_maximal_no_gc() const;
duke@435 129
jmasa@2909 130 // Return true if the reference points to an object that
jmasa@2909 131 // can be moved in a partial collection. For currently implemented
jmasa@2909 132 // generational collectors that means during a collection of
jmasa@2909 133 // the young gen.
jmasa@2909 134 virtual bool is_scavengable(const void* addr);
jmasa@2909 135
duke@435 136 // Does this heap support heap inspection? (+PrintClassHistogram)
duke@435 137 bool supports_heap_inspection() const { return true; }
duke@435 138
duke@435 139 size_t permanent_capacity() const;
duke@435 140 size_t permanent_used() const;
duke@435 141
duke@435 142 size_t max_capacity() const;
duke@435 143
duke@435 144 // Whether p is in the allocated part of the heap
duke@435 145 bool is_in(const void* p) const;
duke@435 146
duke@435 147 bool is_in_reserved(const void* p) const;
duke@435 148 bool is_in_permanent(const void *p) const { // reserved part
duke@435 149 return perm_gen()->reserved().contains(p);
duke@435 150 }
duke@435 151
jmasa@2909 152 #ifdef ASSERT
jmasa@2909 153 virtual bool is_in_partial_collection(const void *p);
jmasa@2909 154 #endif
jmasa@2909 155
duke@435 156 bool is_permanent(const void *p) const { // committed part
duke@435 157 return perm_gen()->is_in(p);
duke@435 158 }
duke@435 159
ysr@1462 160 inline bool is_in_young(oop p); // reserved part
ysr@1462 161 inline bool is_in_old_or_perm(oop p); // reserved part
duke@435 162
duke@435 163 // Memory allocation. "gc_time_limit_was_exceeded" will
duke@435 164 // be set to true if the adaptive size policy determine that
duke@435 165 // an excessive amount of time is being spent doing collections
duke@435 166 // and caused a NULL to be returned. If a NULL is not returned,
duke@435 167 // "gc_time_limit_was_exceeded" has an undefined meaning.
tonyp@2971 168 HeapWord* mem_allocate(size_t size,
tonyp@2971 169 bool* gc_overhead_limit_was_exceeded);
duke@435 170
tonyp@2971 171 // Allocation attempt(s) during a safepoint. It should never be called
tonyp@2971 172 // to allocate a new TLAB as this allocation might be satisfied out
tonyp@2971 173 // of the old generation.
tonyp@2971 174 HeapWord* failed_mem_allocate(size_t size);
duke@435 175
duke@435 176 HeapWord* permanent_mem_allocate(size_t size);
duke@435 177 HeapWord* failed_permanent_mem_allocate(size_t size);
duke@435 178
duke@435 179 // Support for System.gc()
duke@435 180 void collect(GCCause::Cause cause);
duke@435 181
duke@435 182 // This interface assumes that it's being called by the
duke@435 183 // vm thread. It collects the heap assuming that the
duke@435 184 // heap lock is already held and that we are executing in
duke@435 185 // the context of the vm thread.
duke@435 186 void collect_as_vm_thread(GCCause::Cause cause);
duke@435 187
duke@435 188 // These also should be called by the vm thread at a safepoint (e.g., from a
duke@435 189 // VM operation).
duke@435 190 //
duke@435 191 // The first collects the young generation only, unless the scavenge fails; it
duke@435 192 // will then attempt a full gc. The second collects the entire heap; if
duke@435 193 // maximum_compaction is true, it will compact everything and clear all soft
duke@435 194 // references.
duke@435 195 inline void invoke_scavenge();
duke@435 196 inline void invoke_full_gc(bool maximum_compaction);
duke@435 197
duke@435 198 bool supports_inline_contig_alloc() const { return !UseNUMA; }
iveresov@576 199
iveresov@576 200 HeapWord** top_addr() const { return !UseNUMA ? young_gen()->top_addr() : (HeapWord**)-1; }
iveresov@576 201 HeapWord** end_addr() const { return !UseNUMA ? young_gen()->end_addr() : (HeapWord**)-1; }
duke@435 202
duke@435 203 void ensure_parsability(bool retire_tlabs);
duke@435 204 void accumulate_statistics_all_tlabs();
duke@435 205 void resize_all_tlabs();
duke@435 206
duke@435 207 size_t unsafe_max_alloc();
duke@435 208
duke@435 209 bool supports_tlab_allocation() const { return true; }
duke@435 210
duke@435 211 size_t tlab_capacity(Thread* thr) const;
duke@435 212 size_t unsafe_max_tlab_alloc(Thread* thr) const;
duke@435 213
ysr@777 214 // Can a compiler initialize a new object without store barriers?
ysr@777 215 // This permission only extends from the creation of a new object
ysr@777 216 // via a TLAB up to the first subsequent safepoint.
ysr@777 217 virtual bool can_elide_tlab_store_barriers() const {
ysr@777 218 return true;
ysr@777 219 }
ysr@777 220
ysr@1601 221 virtual bool card_mark_must_follow_store() const {
ysr@1601 222 return false;
ysr@1601 223 }
ysr@1601 224
ysr@1462 225 // Return true if we don't we need a store barrier for
ysr@1462 226 // initializing stores to an object at this address.
ysr@1462 227 virtual bool can_elide_initializing_store_barrier(oop new_obj);
ysr@1462 228
ysr@777 229 // Can a compiler elide a store barrier when it writes
ysr@777 230 // a permanent oop into the heap? Applies when the compiler
ysr@777 231 // is storing x to the heap, where x->is_perm() is true.
ysr@777 232 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 233 return true;
ysr@777 234 }
ysr@777 235
duke@435 236 void oop_iterate(OopClosure* cl);
duke@435 237 void object_iterate(ObjectClosure* cl);
jmasa@952 238 void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
duke@435 239 void permanent_oop_iterate(OopClosure* cl);
duke@435 240 void permanent_object_iterate(ObjectClosure* cl);
duke@435 241
duke@435 242 HeapWord* block_start(const void* addr) const;
duke@435 243 size_t block_size(const HeapWord* addr) const;
duke@435 244 bool block_is_obj(const HeapWord* addr) const;
duke@435 245
duke@435 246 jlong millis_since_last_gc();
duke@435 247
duke@435 248 void prepare_for_verify();
duke@435 249 void print() const;
duke@435 250 void print_on(outputStream* st) const;
duke@435 251 virtual void print_gc_threads_on(outputStream* st) const;
duke@435 252 virtual void gc_threads_do(ThreadClosure* tc) const;
duke@435 253 virtual void print_tracing_info() const;
duke@435 254
johnc@2969 255 void verify(bool allow_dirty, bool silent, VerifyOption option /* ignored */);
duke@435 256
duke@435 257 void print_heap_change(size_t prev_used);
duke@435 258
duke@435 259 // Resize the young generation. The reserved space for the
duke@435 260 // generation may be expanded in preparation for the resize.
duke@435 261 void resize_young_gen(size_t eden_size, size_t survivor_size);
duke@435 262
duke@435 263 // Resize the old generation. The reserved space for the
duke@435 264 // generation may be expanded in preparation for the resize.
duke@435 265 void resize_old_gen(size_t desired_free_space);
jmasa@698 266
jmasa@698 267 // Save the tops of the spaces in all generations
jmasa@698 268 void record_gen_tops_before_GC() PRODUCT_RETURN;
jmasa@698 269
jmasa@698 270 // Mangle the unused parts of all spaces in the heap
jmasa@698 271 void gen_mangle_unused_area() PRODUCT_RETURN;
jrose@1424 272
jrose@1424 273 // Call these in sequential code around the processing of strong roots.
jrose@1424 274 class ParStrongRootsScope : public MarkingCodeBlobClosure::MarkScope {
jrose@1424 275 public:
jrose@1424 276 ParStrongRootsScope();
jrose@1424 277 ~ParStrongRootsScope();
jrose@1424 278 };
duke@435 279 };
duke@435 280
duke@435 281 inline size_t ParallelScavengeHeap::set_alignment(size_t& var, size_t val)
duke@435 282 {
duke@435 283 assert(is_power_of_2((intptr_t)val), "must be a power of 2");
jmasa@448 284 var = round_to(val, intra_heap_alignment());
duke@435 285 return var;
duke@435 286 }
stefank@2314 287
stefank@2314 288 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARALLELSCAVENGEHEAP_HPP

mercurial