src/share/vm/runtime/sharedRuntime.cpp

Wed, 01 Dec 2010 15:04:06 +0100

author
stefank
date
Wed, 01 Dec 2010 15:04:06 +0100
changeset 2325
c760f78e0a53
parent 2314
f95d63e2154a
child 2462
8012aa3ccede
permissions
-rw-r--r--

7003125: precompiled.hpp is included when precompiled headers are not used
Summary: Added an ifndef DONT_USE_PRECOMPILED_HEADER to precompiled.hpp. Set up DONT_USE_PRECOMPILED_HEADER when compiling with Sun Studio or when the user specifies USE_PRECOMPILED_HEADER=0. Fixed broken include dependencies.
Reviewed-by: coleenp, kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
stefank@2314 71 #ifdef COMPILER1
stefank@2314 72 #include "c1/c1_Runtime1.hpp"
stefank@2314 73 #endif
stefank@2314 74
duke@435 75 #include <math.h>
duke@435 76
duke@435 77 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 78 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 79 char*, int, char*, int, char*, int);
duke@435 80 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 81 char*, int, char*, int, char*, int);
duke@435 82
duke@435 83 // Implementation of SharedRuntime
duke@435 84
duke@435 85 #ifndef PRODUCT
duke@435 86 // For statistics
duke@435 87 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 88 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 89 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 90 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 91 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 92 int SharedRuntime::_implicit_null_throws = 0;
duke@435 93 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 94 int SharedRuntime::_throw_null_ctr = 0;
duke@435 95
duke@435 96 int SharedRuntime::_nof_normal_calls = 0;
duke@435 97 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 98 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 99 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 100 int SharedRuntime::_nof_static_calls = 0;
duke@435 101 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 102 int SharedRuntime::_nof_interface_calls = 0;
duke@435 103 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 104 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 105 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 106 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 107
duke@435 108 int SharedRuntime::_new_instance_ctr=0;
duke@435 109 int SharedRuntime::_new_array_ctr=0;
duke@435 110 int SharedRuntime::_multi1_ctr=0;
duke@435 111 int SharedRuntime::_multi2_ctr=0;
duke@435 112 int SharedRuntime::_multi3_ctr=0;
duke@435 113 int SharedRuntime::_multi4_ctr=0;
duke@435 114 int SharedRuntime::_multi5_ctr=0;
duke@435 115 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 116 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 117 int SharedRuntime::_mon_enter_ctr=0;
duke@435 118 int SharedRuntime::_mon_exit_ctr=0;
duke@435 119 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 120 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 121 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 122 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 123 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 124 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 125 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 126 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 127 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 128 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 129 int SharedRuntime::_find_handler_ctr=0;
duke@435 130 int SharedRuntime::_rethrow_ctr=0;
duke@435 131
duke@435 132 int SharedRuntime::_ICmiss_index = 0;
duke@435 133 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 134 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 135
duke@435 136 void SharedRuntime::trace_ic_miss(address at) {
duke@435 137 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 138 if (_ICmiss_at[i] == at) {
duke@435 139 _ICmiss_count[i]++;
duke@435 140 return;
duke@435 141 }
duke@435 142 }
duke@435 143 int index = _ICmiss_index++;
duke@435 144 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 145 _ICmiss_at[index] = at;
duke@435 146 _ICmiss_count[index] = 1;
duke@435 147 }
duke@435 148
duke@435 149 void SharedRuntime::print_ic_miss_histogram() {
duke@435 150 if (ICMissHistogram) {
duke@435 151 tty->print_cr ("IC Miss Histogram:");
duke@435 152 int tot_misses = 0;
duke@435 153 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 154 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 155 tot_misses += _ICmiss_count[i];
duke@435 156 }
duke@435 157 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 158 }
duke@435 159 }
duke@435 160 #endif // PRODUCT
duke@435 161
ysr@777 162 #ifndef SERIALGC
ysr@777 163
ysr@777 164 // G1 write-barrier pre: executed before a pointer store.
ysr@777 165 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 166 if (orig == NULL) {
ysr@777 167 assert(false, "should be optimized out");
ysr@777 168 return;
ysr@777 169 }
ysr@1280 170 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 171 // store the original value that was in the field reference
ysr@777 172 thread->satb_mark_queue().enqueue(orig);
ysr@777 173 JRT_END
ysr@777 174
ysr@777 175 // G1 write-barrier post: executed after a pointer store.
ysr@777 176 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 177 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 178 JRT_END
ysr@777 179
ysr@777 180 #endif // !SERIALGC
ysr@777 181
duke@435 182
duke@435 183 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 184 return x * y;
duke@435 185 JRT_END
duke@435 186
duke@435 187
duke@435 188 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 189 if (x == min_jlong && y == CONST64(-1)) {
duke@435 190 return x;
duke@435 191 } else {
duke@435 192 return x / y;
duke@435 193 }
duke@435 194 JRT_END
duke@435 195
duke@435 196
duke@435 197 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 198 if (x == min_jlong && y == CONST64(-1)) {
duke@435 199 return 0;
duke@435 200 } else {
duke@435 201 return x % y;
duke@435 202 }
duke@435 203 JRT_END
duke@435 204
duke@435 205
duke@435 206 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 207 const juint float_infinity = 0x7F800000;
duke@435 208 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 209 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 210
duke@435 211 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 212 #ifdef _WIN64
duke@435 213 // 64-bit Windows on amd64 returns the wrong values for
duke@435 214 // infinity operands.
duke@435 215 union { jfloat f; juint i; } xbits, ybits;
duke@435 216 xbits.f = x;
duke@435 217 ybits.f = y;
duke@435 218 // x Mod Infinity == x unless x is infinity
duke@435 219 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 220 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 221 return x;
duke@435 222 }
duke@435 223 #endif
duke@435 224 return ((jfloat)fmod((double)x,(double)y));
duke@435 225 JRT_END
duke@435 226
duke@435 227
duke@435 228 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 229 #ifdef _WIN64
duke@435 230 union { jdouble d; julong l; } xbits, ybits;
duke@435 231 xbits.d = x;
duke@435 232 ybits.d = y;
duke@435 233 // x Mod Infinity == x unless x is infinity
duke@435 234 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 235 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 236 return x;
duke@435 237 }
duke@435 238 #endif
duke@435 239 return ((jdouble)fmod((double)x,(double)y));
duke@435 240 JRT_END
duke@435 241
bobv@2036 242 #ifdef __SOFTFP__
bobv@2036 243 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 244 return x + y;
bobv@2036 245 JRT_END
bobv@2036 246
bobv@2036 247 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 248 return x - y;
bobv@2036 249 JRT_END
bobv@2036 250
bobv@2036 251 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 252 return x * y;
bobv@2036 253 JRT_END
bobv@2036 254
bobv@2036 255 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 256 return x / y;
bobv@2036 257 JRT_END
bobv@2036 258
bobv@2036 259 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 260 return x + y;
bobv@2036 261 JRT_END
bobv@2036 262
bobv@2036 263 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 264 return x - y;
bobv@2036 265 JRT_END
bobv@2036 266
bobv@2036 267 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 268 return x * y;
bobv@2036 269 JRT_END
bobv@2036 270
bobv@2036 271 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 272 return x / y;
bobv@2036 273 JRT_END
bobv@2036 274
bobv@2036 275 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 276 return (jfloat)x;
bobv@2036 277 JRT_END
bobv@2036 278
bobv@2036 279 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 280 return (jdouble)x;
bobv@2036 281 JRT_END
bobv@2036 282
bobv@2036 283 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 284 return (jdouble)x;
bobv@2036 285 JRT_END
bobv@2036 286
bobv@2036 287 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 288 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 289 JRT_END
bobv@2036 290
bobv@2036 291 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 292 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 293 JRT_END
bobv@2036 294
bobv@2036 295 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 296 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 297 JRT_END
bobv@2036 298
bobv@2036 299 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 300 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 301 JRT_END
bobv@2036 302
bobv@2036 303 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 304 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 305 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 306 JRT_END
bobv@2036 307
bobv@2036 308 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 309 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 310 JRT_END
bobv@2036 311
bobv@2036 312 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 313 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 314 JRT_END
bobv@2036 315
bobv@2036 316 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 317 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 318 JRT_END
bobv@2036 319
bobv@2036 320 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 321 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 322 JRT_END
bobv@2036 323
bobv@2036 324 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 325 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 326 JRT_END
bobv@2036 327
bobv@2036 328 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 329 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 330 JRT_END
bobv@2036 331
bobv@2036 332 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 333 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 334 JRT_END
bobv@2036 335
bobv@2036 336 // Intrinsics make gcc generate code for these.
bobv@2036 337 float SharedRuntime::fneg(float f) {
bobv@2036 338 return -f;
bobv@2036 339 }
bobv@2036 340
bobv@2036 341 double SharedRuntime::dneg(double f) {
bobv@2036 342 return -f;
bobv@2036 343 }
bobv@2036 344
bobv@2036 345 #endif // __SOFTFP__
bobv@2036 346
bobv@2036 347 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 348 // Intrinsics make gcc generate code for these.
bobv@2036 349 double SharedRuntime::dabs(double f) {
bobv@2036 350 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 351 }
bobv@2036 352
bobv@2223 353 #endif
bobv@2223 354
bobv@2223 355 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 356 double SharedRuntime::dsqrt(double f) {
bobv@2036 357 return sqrt(f);
bobv@2036 358 }
bobv@2036 359 #endif
duke@435 360
duke@435 361 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 362 if (g_isnan(x))
kvn@943 363 return 0;
kvn@943 364 if (x >= (jfloat) max_jint)
kvn@943 365 return max_jint;
kvn@943 366 if (x <= (jfloat) min_jint)
kvn@943 367 return min_jint;
kvn@943 368 return (jint) x;
duke@435 369 JRT_END
duke@435 370
duke@435 371
duke@435 372 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 373 if (g_isnan(x))
kvn@943 374 return 0;
kvn@943 375 if (x >= (jfloat) max_jlong)
kvn@943 376 return max_jlong;
kvn@943 377 if (x <= (jfloat) min_jlong)
kvn@943 378 return min_jlong;
kvn@943 379 return (jlong) x;
duke@435 380 JRT_END
duke@435 381
duke@435 382
duke@435 383 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 384 if (g_isnan(x))
kvn@943 385 return 0;
kvn@943 386 if (x >= (jdouble) max_jint)
kvn@943 387 return max_jint;
kvn@943 388 if (x <= (jdouble) min_jint)
kvn@943 389 return min_jint;
kvn@943 390 return (jint) x;
duke@435 391 JRT_END
duke@435 392
duke@435 393
duke@435 394 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 395 if (g_isnan(x))
kvn@943 396 return 0;
kvn@943 397 if (x >= (jdouble) max_jlong)
kvn@943 398 return max_jlong;
kvn@943 399 if (x <= (jdouble) min_jlong)
kvn@943 400 return min_jlong;
kvn@943 401 return (jlong) x;
duke@435 402 JRT_END
duke@435 403
duke@435 404
duke@435 405 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 406 return (jfloat)x;
duke@435 407 JRT_END
duke@435 408
duke@435 409
duke@435 410 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 411 return (jfloat)x;
duke@435 412 JRT_END
duke@435 413
duke@435 414
duke@435 415 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 416 return (jdouble)x;
duke@435 417 JRT_END
duke@435 418
duke@435 419 // Exception handling accross interpreter/compiler boundaries
duke@435 420 //
duke@435 421 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 422 // The continuation address is the entry point of the exception handler of the
duke@435 423 // previous frame depending on the return address.
duke@435 424
twisti@1730 425 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
duke@435 426 assert(frame::verify_return_pc(return_address), "must be a return pc");
duke@435 427
twisti@1803 428 // Reset MethodHandle flag.
twisti@1803 429 thread->set_is_method_handle_return(false);
twisti@1803 430
duke@435 431 // the fastest case first
duke@435 432 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 433 if (blob != NULL && blob->is_nmethod()) {
duke@435 434 nmethod* code = (nmethod*)blob;
duke@435 435 assert(code != NULL, "nmethod must be present");
twisti@1730 436 // Check if the return address is a MethodHandle call site.
twisti@1803 437 thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
duke@435 438 // native nmethods don't have exception handlers
duke@435 439 assert(!code->is_native_method(), "no exception handler");
duke@435 440 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 441 if (code->is_deopt_pc(return_address)) {
duke@435 442 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 443 } else {
duke@435 444 return code->exception_begin();
duke@435 445 }
duke@435 446 }
duke@435 447
duke@435 448 // Entry code
duke@435 449 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 450 return StubRoutines::catch_exception_entry();
duke@435 451 }
duke@435 452 // Interpreted code
duke@435 453 if (Interpreter::contains(return_address)) {
duke@435 454 return Interpreter::rethrow_exception_entry();
duke@435 455 }
duke@435 456
duke@435 457 // Compiled code
duke@435 458 if (CodeCache::contains(return_address)) {
duke@435 459 CodeBlob* blob = CodeCache::find_blob(return_address);
duke@435 460 if (blob->is_nmethod()) {
duke@435 461 nmethod* code = (nmethod*)blob;
duke@435 462 assert(code != NULL, "nmethod must be present");
twisti@1730 463 // Check if the return address is a MethodHandle call site.
twisti@1803 464 thread->set_is_method_handle_return(code->is_method_handle_return(return_address));
duke@435 465 assert(code->header_begin() != code->exception_begin(), "no exception handler");
duke@435 466 return code->exception_begin();
duke@435 467 }
duke@435 468 if (blob->is_runtime_stub()) {
duke@435 469 ShouldNotReachHere(); // callers are responsible for skipping runtime stub frames
duke@435 470 }
duke@435 471 }
duke@435 472 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
duke@435 473 #ifndef PRODUCT
duke@435 474 { ResourceMark rm;
duke@435 475 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 476 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 477 tty->print_cr("b) other problem");
duke@435 478 }
duke@435 479 #endif // PRODUCT
duke@435 480 ShouldNotReachHere();
duke@435 481 return NULL;
duke@435 482 }
duke@435 483
duke@435 484
twisti@1730 485 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 486 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 487 JRT_END
duke@435 488
twisti@1730 489
duke@435 490 address SharedRuntime::get_poll_stub(address pc) {
duke@435 491 address stub;
duke@435 492 // Look up the code blob
duke@435 493 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 494
duke@435 495 // Should be an nmethod
duke@435 496 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 497
duke@435 498 // Look up the relocation information
duke@435 499 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 500 "safepoint polling: type must be poll" );
duke@435 501
duke@435 502 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 503 "Only polling locations are used for safepoint");
duke@435 504
duke@435 505 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 506 if (at_poll_return) {
duke@435 507 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 508 "polling page return stub not created yet");
twisti@2103 509 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
duke@435 510 } else {
duke@435 511 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 512 "polling page safepoint stub not created yet");
twisti@2103 513 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 514 }
duke@435 515 #ifndef PRODUCT
duke@435 516 if( TraceSafepoint ) {
duke@435 517 char buf[256];
duke@435 518 jio_snprintf(buf, sizeof(buf),
duke@435 519 "... found polling page %s exception at pc = "
duke@435 520 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 521 at_poll_return ? "return" : "loop",
duke@435 522 (intptr_t)pc, (intptr_t)stub);
duke@435 523 tty->print_raw_cr(buf);
duke@435 524 }
duke@435 525 #endif // PRODUCT
duke@435 526 return stub;
duke@435 527 }
duke@435 528
duke@435 529
duke@435 530 oop SharedRuntime::retrieve_receiver( symbolHandle sig, frame caller ) {
duke@435 531 assert(caller.is_interpreted_frame(), "");
duke@435 532 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 533 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 534 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 535 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 536 return result;
duke@435 537 }
duke@435 538
duke@435 539
duke@435 540 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 541 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 542 vframeStream vfst(thread, true);
duke@435 543 methodHandle method = methodHandle(thread, vfst.method());
duke@435 544 address bcp = method()->bcp_from(vfst.bci());
duke@435 545 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 546 }
duke@435 547 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 548 }
duke@435 549
duke@435 550 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, symbolOop name, const char *message) {
duke@435 551 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 552 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 553 }
duke@435 554
dcubed@1045 555 // The interpreter code to call this tracing function is only
dcubed@1045 556 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 557 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 558 // to modify the compilers to generate calls to this function.
dcubed@1045 559 //
dcubed@1045 560 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 561 JavaThread* thread, methodOopDesc* method))
dcubed@1045 562 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 563
dcubed@1045 564 if (method->is_obsolete()) {
dcubed@1045 565 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 566 // an error. Our method could have been redefined just after we
dcubed@1045 567 // fetched the methodOop from the constant pool.
dcubed@1045 568
dcubed@1045 569 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 570 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 571 ("calling obsolete method '%s'",
dcubed@1045 572 method->name_and_sig_as_C_string()));
dcubed@1045 573 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 574 // this option is provided to debug calls to obsolete methods
dcubed@1045 575 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 576 }
dcubed@1045 577 }
dcubed@1045 578 return 0;
dcubed@1045 579 JRT_END
dcubed@1045 580
duke@435 581 // ret_pc points into caller; we are returning caller's exception handler
duke@435 582 // for given exception
duke@435 583 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 584 bool force_unwind, bool top_frame_only) {
duke@435 585 assert(nm != NULL, "must exist");
duke@435 586 ResourceMark rm;
duke@435 587
duke@435 588 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 589 // determine handler bci, if any
duke@435 590 EXCEPTION_MARK;
duke@435 591
duke@435 592 int handler_bci = -1;
duke@435 593 int scope_depth = 0;
duke@435 594 if (!force_unwind) {
duke@435 595 int bci = sd->bci();
duke@435 596 do {
duke@435 597 bool skip_scope_increment = false;
duke@435 598 // exception handler lookup
duke@435 599 KlassHandle ek (THREAD, exception->klass());
duke@435 600 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 601 if (HAS_PENDING_EXCEPTION) {
duke@435 602 // We threw an exception while trying to find the exception handler.
duke@435 603 // Transfer the new exception to the exception handle which will
duke@435 604 // be set into thread local storage, and do another lookup for an
duke@435 605 // exception handler for this exception, this time starting at the
duke@435 606 // BCI of the exception handler which caused the exception to be
duke@435 607 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 608 // argument to ensure that the correct exception is thrown (4870175).
duke@435 609 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 610 CLEAR_PENDING_EXCEPTION;
duke@435 611 if (handler_bci >= 0) {
duke@435 612 bci = handler_bci;
duke@435 613 handler_bci = -1;
duke@435 614 skip_scope_increment = true;
duke@435 615 }
duke@435 616 }
duke@435 617 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 618 sd = sd->sender();
duke@435 619 if (sd != NULL) {
duke@435 620 bci = sd->bci();
duke@435 621 }
duke@435 622 ++scope_depth;
duke@435 623 }
duke@435 624 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 625 }
duke@435 626
duke@435 627 // found handling method => lookup exception handler
twisti@2103 628 int catch_pco = ret_pc - nm->code_begin();
duke@435 629
duke@435 630 ExceptionHandlerTable table(nm);
duke@435 631 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 632 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 633 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 634 // to materialize its exceptions without committing to the exact
duke@435 635 // routing of exceptions. In particular this is needed for adding
duke@435 636 // a synthethic handler to unlock monitors when inlining
duke@435 637 // synchonized methods since the unlock path isn't represented in
duke@435 638 // the bytecodes.
duke@435 639 t = table.entry_for(catch_pco, -1, 0);
duke@435 640 }
duke@435 641
never@1813 642 #ifdef COMPILER1
never@1813 643 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 644 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 645 return nm->unwind_handler_begin();
never@1813 646 }
never@1813 647 #endif
never@1813 648
duke@435 649 if (t == NULL) {
duke@435 650 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 651 tty->print_cr(" Exception:");
duke@435 652 exception->print();
duke@435 653 tty->cr();
duke@435 654 tty->print_cr(" Compiled exception table :");
duke@435 655 table.print();
duke@435 656 nm->print_code();
duke@435 657 guarantee(false, "missing exception handler");
duke@435 658 return NULL;
duke@435 659 }
duke@435 660
twisti@2103 661 return nm->code_begin() + t->pco();
duke@435 662 }
duke@435 663
duke@435 664 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 665 // These errors occur only at call sites
duke@435 666 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 667 JRT_END
duke@435 668
dcubed@451 669 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 670 // These errors occur only at call sites
dcubed@451 671 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 672 JRT_END
dcubed@451 673
duke@435 674 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 675 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 676 JRT_END
duke@435 677
duke@435 678 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 679 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 680 JRT_END
duke@435 681
duke@435 682 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 683 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 684 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 685 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 686 JRT_END
duke@435 687
duke@435 688 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 689 // We avoid using the normal exception construction in this case because
duke@435 690 // it performs an upcall to Java, and we're already out of stack space.
duke@435 691 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 692 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 693 Handle exception (thread, exception_oop);
duke@435 694 if (StackTraceInThrowable) {
duke@435 695 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 696 }
duke@435 697 throw_and_post_jvmti_exception(thread, exception);
duke@435 698 JRT_END
duke@435 699
duke@435 700 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 701 address pc,
duke@435 702 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 703 {
duke@435 704 address target_pc = NULL;
duke@435 705
duke@435 706 if (Interpreter::contains(pc)) {
duke@435 707 #ifdef CC_INTERP
duke@435 708 // C++ interpreter doesn't throw implicit exceptions
duke@435 709 ShouldNotReachHere();
duke@435 710 #else
duke@435 711 switch (exception_kind) {
duke@435 712 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 713 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 714 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 715 default: ShouldNotReachHere();
duke@435 716 }
duke@435 717 #endif // !CC_INTERP
duke@435 718 } else {
duke@435 719 switch (exception_kind) {
duke@435 720 case STACK_OVERFLOW: {
duke@435 721 // Stack overflow only occurs upon frame setup; the callee is
duke@435 722 // going to be unwound. Dispatch to a shared runtime stub
duke@435 723 // which will cause the StackOverflowError to be fabricated
duke@435 724 // and processed.
duke@435 725 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 726 if (thread->deopt_mark() != NULL) {
duke@435 727 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 728 }
duke@435 729 return StubRoutines::throw_StackOverflowError_entry();
duke@435 730 }
duke@435 731
duke@435 732 case IMPLICIT_NULL: {
duke@435 733 if (VtableStubs::contains(pc)) {
duke@435 734 // We haven't yet entered the callee frame. Fabricate an
duke@435 735 // exception and begin dispatching it in the caller. Since
duke@435 736 // the caller was at a call site, it's safe to destroy all
duke@435 737 // caller-saved registers, as these entry points do.
duke@435 738 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 739
poonam@900 740 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 741 if (vt_stub == NULL) return NULL;
poonam@900 742
duke@435 743 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 744 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 745 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 746 } else {
duke@435 747 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 748 }
duke@435 749 } else {
duke@435 750 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 751
poonam@900 752 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 753 if (cb == NULL) return NULL;
duke@435 754
duke@435 755 // Exception happened in CodeCache. Must be either:
duke@435 756 // 1. Inline-cache check in C2I handler blob,
duke@435 757 // 2. Inline-cache check in nmethod, or
duke@435 758 // 3. Implict null exception in nmethod
duke@435 759
duke@435 760 if (!cb->is_nmethod()) {
twisti@1734 761 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 762 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 763 // There is no handler here, so we will simply unwind.
duke@435 764 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 765 }
duke@435 766
duke@435 767 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 768 nmethod* nm = (nmethod*)cb;
duke@435 769 if (nm->inlinecache_check_contains(pc)) {
duke@435 770 // exception happened inside inline-cache check code
duke@435 771 // => the nmethod is not yet active (i.e., the frame
duke@435 772 // is not set up yet) => use return address pushed by
duke@435 773 // caller => don't push another return address
duke@435 774 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 775 }
duke@435 776
duke@435 777 #ifndef PRODUCT
duke@435 778 _implicit_null_throws++;
duke@435 779 #endif
duke@435 780 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 781 // If there's an unexpected fault, target_pc might be NULL,
never@1685 782 // in which case we want to fall through into the normal
never@1685 783 // error handling code.
duke@435 784 }
duke@435 785
duke@435 786 break; // fall through
duke@435 787 }
duke@435 788
duke@435 789
duke@435 790 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 791 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 792 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 793 #ifndef PRODUCT
duke@435 794 _implicit_div0_throws++;
duke@435 795 #endif
duke@435 796 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 797 // If there's an unexpected fault, target_pc might be NULL,
never@1685 798 // in which case we want to fall through into the normal
never@1685 799 // error handling code.
duke@435 800 break; // fall through
duke@435 801 }
duke@435 802
duke@435 803 default: ShouldNotReachHere();
duke@435 804 }
duke@435 805
duke@435 806 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 807
duke@435 808 // for AbortVMOnException flag
duke@435 809 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 810 if (exception_kind == IMPLICIT_NULL) {
duke@435 811 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 812 } else {
duke@435 813 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 814 }
duke@435 815 return target_pc;
duke@435 816 }
duke@435 817
duke@435 818 ShouldNotReachHere();
duke@435 819 return NULL;
duke@435 820 }
duke@435 821
duke@435 822
duke@435 823 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 824 {
duke@435 825 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 826 }
duke@435 827 JNI_END
duke@435 828
duke@435 829
duke@435 830 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 831 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 832 }
duke@435 833
duke@435 834
duke@435 835 #ifndef PRODUCT
duke@435 836 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 837 const frame f = thread->last_frame();
duke@435 838 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 839 #ifndef PRODUCT
duke@435 840 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 841 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 842 #endif // !PRODUCT
duke@435 843 return preserve_this_value;
duke@435 844 JRT_END
duke@435 845 #endif // !PRODUCT
duke@435 846
duke@435 847
duke@435 848 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 849 os::yield_all(attempts);
duke@435 850 JRT_END
duke@435 851
duke@435 852
duke@435 853 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 854 assert(obj->is_oop(), "must be a valid oop");
duke@435 855 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 856 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 857 JRT_END
duke@435 858
duke@435 859
duke@435 860 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 861 if (thread != NULL) {
duke@435 862 if (thread->is_Java_thread()) {
duke@435 863 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 864 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 865 }
duke@435 866 }
duke@435 867 return 0;
duke@435 868 }
duke@435 869
duke@435 870 /**
duke@435 871 * This function ought to be a void function, but cannot be because
duke@435 872 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 873 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 874 */
duke@435 875 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 876 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 877 }
duke@435 878
duke@435 879 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 880 assert(DTraceAllocProbes, "wrong call");
duke@435 881 Klass* klass = o->blueprint();
duke@435 882 int size = o->size();
duke@435 883 symbolOop name = klass->name();
duke@435 884 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 885 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 886 return 0;
duke@435 887 }
duke@435 888
duke@435 889 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 890 JavaThread* thread, methodOopDesc* method))
duke@435 891 assert(DTraceMethodProbes, "wrong call");
duke@435 892 symbolOop kname = method->klass_name();
duke@435 893 symbolOop name = method->name();
duke@435 894 symbolOop sig = method->signature();
duke@435 895 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 896 kname->bytes(), kname->utf8_length(),
duke@435 897 name->bytes(), name->utf8_length(),
duke@435 898 sig->bytes(), sig->utf8_length());
duke@435 899 return 0;
duke@435 900 JRT_END
duke@435 901
duke@435 902 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 903 JavaThread* thread, methodOopDesc* method))
duke@435 904 assert(DTraceMethodProbes, "wrong call");
duke@435 905 symbolOop kname = method->klass_name();
duke@435 906 symbolOop name = method->name();
duke@435 907 symbolOop sig = method->signature();
duke@435 908 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 909 kname->bytes(), kname->utf8_length(),
duke@435 910 name->bytes(), name->utf8_length(),
duke@435 911 sig->bytes(), sig->utf8_length());
duke@435 912 return 0;
duke@435 913 JRT_END
duke@435 914
duke@435 915
duke@435 916 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 917 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 918 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 919 // vtable updates, etc. Caller frame must be compiled.
duke@435 920 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 921 ResourceMark rm(THREAD);
duke@435 922
duke@435 923 // last java frame on stack (which includes native call frames)
duke@435 924 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 925
duke@435 926 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 927 }
duke@435 928
duke@435 929
duke@435 930 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 931 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 932 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 933 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 934 vframeStream& vfst,
duke@435 935 Bytecodes::Code& bc,
duke@435 936 CallInfo& callinfo, TRAPS) {
duke@435 937 Handle receiver;
duke@435 938 Handle nullHandle; //create a handy null handle for exception returns
duke@435 939
duke@435 940 assert(!vfst.at_end(), "Java frame must exist");
duke@435 941
duke@435 942 // Find caller and bci from vframe
duke@435 943 methodHandle caller (THREAD, vfst.method());
duke@435 944 int bci = vfst.bci();
duke@435 945
duke@435 946 // Find bytecode
duke@435 947 Bytecode_invoke* bytecode = Bytecode_invoke_at(caller, bci);
jrose@1957 948 bc = bytecode->java_code();
duke@435 949 int bytecode_index = bytecode->index();
duke@435 950
duke@435 951 // Find receiver for non-static call
duke@435 952 if (bc != Bytecodes::_invokestatic) {
duke@435 953 // This register map must be update since we need to find the receiver for
duke@435 954 // compiled frames. The receiver might be in a register.
duke@435 955 RegisterMap reg_map2(thread);
duke@435 956 frame stubFrame = thread->last_frame();
duke@435 957 // Caller-frame is a compiled frame
duke@435 958 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 959
duke@435 960 methodHandle callee = bytecode->static_target(CHECK_(nullHandle));
duke@435 961 if (callee.is_null()) {
duke@435 962 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 963 }
duke@435 964 // Retrieve from a compiled argument list
duke@435 965 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 966
duke@435 967 if (receiver.is_null()) {
duke@435 968 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 969 }
duke@435 970 }
duke@435 971
duke@435 972 // Resolve method. This is parameterized by bytecode.
duke@435 973 constantPoolHandle constants (THREAD, caller->constants());
duke@435 974 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 975 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 976
duke@435 977 #ifdef ASSERT
duke@435 978 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 979 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 980 assert(receiver.not_null(), "should have thrown exception");
duke@435 981 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 982 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 983 // klass is already loaded
duke@435 984 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 985 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 986 if (receiver_klass->oop_is_instance()) {
duke@435 987 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 988 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 989 receiver_klass.print();
duke@435 990 }
duke@435 991 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 992 }
duke@435 993 }
duke@435 994 #endif
duke@435 995
duke@435 996 return receiver;
duke@435 997 }
duke@435 998
duke@435 999 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1000 ResourceMark rm(THREAD);
duke@435 1001 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1002 // exist on the stack since last JavaCall. If not, we need
duke@435 1003 // to get the target method from the JavaCall wrapper.
duke@435 1004 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1005 methodHandle callee_method;
duke@435 1006 if (vfst.at_end()) {
duke@435 1007 // No Java frames were found on stack since we did the JavaCall.
duke@435 1008 // Hence the stack can only contain an entry_frame. We need to
duke@435 1009 // find the target method from the stub frame.
duke@435 1010 RegisterMap reg_map(thread, false);
duke@435 1011 frame fr = thread->last_frame();
duke@435 1012 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1013 fr = fr.sender(&reg_map);
duke@435 1014 assert(fr.is_entry_frame(), "must be");
duke@435 1015 // fr is now pointing to the entry frame.
duke@435 1016 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1017 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1018 } else {
duke@435 1019 Bytecodes::Code bc;
duke@435 1020 CallInfo callinfo;
duke@435 1021 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1022 callee_method = callinfo.selected_method();
duke@435 1023 }
duke@435 1024 assert(callee_method()->is_method(), "must be");
duke@435 1025 return callee_method;
duke@435 1026 }
duke@435 1027
duke@435 1028 // Resolves a call.
duke@435 1029 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1030 bool is_virtual,
duke@435 1031 bool is_optimized, TRAPS) {
duke@435 1032 methodHandle callee_method;
duke@435 1033 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1034 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1035 int retry_count = 0;
duke@435 1036 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1037 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1038 // If has a pending exception then there is no need to re-try to
duke@435 1039 // resolve this method.
duke@435 1040 // If the method has been redefined, we need to try again.
duke@435 1041 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1042 // require that java.lang.Object has been updated.
duke@435 1043
duke@435 1044 // It is very unlikely that method is redefined more than 100 times
duke@435 1045 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1046 // means then there could be a bug here.
duke@435 1047 guarantee((retry_count++ < 100),
duke@435 1048 "Could not resolve to latest version of redefined method");
duke@435 1049 // method is redefined in the middle of resolve so re-try.
duke@435 1050 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1051 }
duke@435 1052 }
duke@435 1053 return callee_method;
duke@435 1054 }
duke@435 1055
duke@435 1056 // Resolves a call. The compilers generate code for calls that go here
duke@435 1057 // and are patched with the real destination of the call.
duke@435 1058 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1059 bool is_virtual,
duke@435 1060 bool is_optimized, TRAPS) {
duke@435 1061
duke@435 1062 ResourceMark rm(thread);
duke@435 1063 RegisterMap cbl_map(thread, false);
duke@435 1064 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1065
twisti@1730 1066 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1067 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1068 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1069 // make sure caller is not getting deoptimized
duke@435 1070 // and removed before we are done with it.
duke@435 1071 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1072 nmethodLocker caller_lock(caller_nm);
duke@435 1073
duke@435 1074
duke@435 1075 // determine call info & receiver
duke@435 1076 // note: a) receiver is NULL for static calls
duke@435 1077 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1078 CallInfo call_info;
duke@435 1079 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1080 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1081 call_info, CHECK_(methodHandle()));
duke@435 1082 methodHandle callee_method = call_info.selected_method();
duke@435 1083
duke@435 1084 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 1085 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 1086
duke@435 1087 #ifndef PRODUCT
duke@435 1088 // tracing/debugging/statistics
duke@435 1089 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1090 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1091 (&_resolve_static_ctr);
duke@435 1092 Atomic::inc(addr);
duke@435 1093
duke@435 1094 if (TraceCallFixup) {
duke@435 1095 ResourceMark rm(thread);
duke@435 1096 tty->print("resolving %s%s (%s) call to",
duke@435 1097 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1098 Bytecodes::name(invoke_code));
duke@435 1099 callee_method->print_short_name(tty);
duke@435 1100 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1101 }
duke@435 1102 #endif
duke@435 1103
twisti@1730 1104 // JSR 292
twisti@1730 1105 // If the resolved method is a MethodHandle invoke target the call
twisti@1730 1106 // site must be a MethodHandle call site.
twisti@1730 1107 if (callee_method->is_method_handle_invoke()) {
twisti@1730 1108 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1109 }
twisti@1730 1110
duke@435 1111 // Compute entry points. This might require generation of C2I converter
duke@435 1112 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1113 // computation of the entry points is independent of patching the call. We
duke@435 1114 // always return the entry-point, but we only patch the stub if the call has
duke@435 1115 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1116 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1117 // virtual this is just a destination address.
duke@435 1118
duke@435 1119 StaticCallInfo static_call_info;
duke@435 1120 CompiledICInfo virtual_call_info;
duke@435 1121
duke@435 1122 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1123 // we are done patching the code.
twisti@1730 1124 nmethod* callee_nm = callee_method->code();
twisti@1730 1125 nmethodLocker nl_callee(callee_nm);
duke@435 1126 #ifdef ASSERT
twisti@1730 1127 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1128 #endif
duke@435 1129
duke@435 1130 if (is_virtual) {
duke@435 1131 assert(receiver.not_null(), "sanity check");
duke@435 1132 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1133 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1134 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1135 is_optimized, static_bound, virtual_call_info,
duke@435 1136 CHECK_(methodHandle()));
duke@435 1137 } else {
duke@435 1138 // static call
duke@435 1139 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1140 }
duke@435 1141
duke@435 1142 // grab lock, check for deoptimization and potentially patch caller
duke@435 1143 {
duke@435 1144 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1145
duke@435 1146 // Now that we are ready to patch if the methodOop was redefined then
duke@435 1147 // don't update call site and let the caller retry.
duke@435 1148
duke@435 1149 if (!callee_method->is_old()) {
duke@435 1150 #ifdef ASSERT
duke@435 1151 // We must not try to patch to jump to an already unloaded method.
duke@435 1152 if (dest_entry_point != 0) {
duke@435 1153 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1154 "should not unload nmethod while locked");
duke@435 1155 }
duke@435 1156 #endif
duke@435 1157 if (is_virtual) {
duke@435 1158 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1159 if (inline_cache->is_clean()) {
duke@435 1160 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1161 }
duke@435 1162 } else {
duke@435 1163 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1164 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1165 }
duke@435 1166 }
duke@435 1167
duke@435 1168 } // unlock CompiledIC_lock
duke@435 1169
duke@435 1170 return callee_method;
duke@435 1171 }
duke@435 1172
duke@435 1173
duke@435 1174 // Inline caches exist only in compiled code
duke@435 1175 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1176 #ifdef ASSERT
duke@435 1177 RegisterMap reg_map(thread, false);
duke@435 1178 frame stub_frame = thread->last_frame();
duke@435 1179 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1180 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1181 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1182 #endif /* ASSERT */
duke@435 1183
duke@435 1184 methodHandle callee_method;
duke@435 1185 JRT_BLOCK
duke@435 1186 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1187 // Return methodOop through TLS
duke@435 1188 thread->set_vm_result(callee_method());
duke@435 1189 JRT_BLOCK_END
duke@435 1190 // return compiled code entry point after potential safepoints
duke@435 1191 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1192 return callee_method->verified_code_entry();
duke@435 1193 JRT_END
duke@435 1194
duke@435 1195
duke@435 1196 // Handle call site that has been made non-entrant
duke@435 1197 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1198 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1199 // as we race to call it. We don't want to take a safepoint if
duke@435 1200 // the caller was interpreted because the caller frame will look
duke@435 1201 // interpreted to the stack walkers and arguments are now
duke@435 1202 // "compiled" so it is much better to make this transition
duke@435 1203 // invisible to the stack walking code. The i2c path will
duke@435 1204 // place the callee method in the callee_target. It is stashed
duke@435 1205 // there because if we try and find the callee by normal means a
duke@435 1206 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1207 RegisterMap reg_map(thread, false);
duke@435 1208 frame stub_frame = thread->last_frame();
duke@435 1209 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1210 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1211
twisti@1570 1212 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1213 // simply redispatch to the callee_target.
twisti@1570 1214 address sender_pc = caller_frame.pc();
twisti@1570 1215 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1216 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1217 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1218 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1219 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1220 // adapter.
twisti@1639 1221 methodOop callee = thread->callee_target();
twisti@1639 1222 if (callee != NULL) {
twisti@1639 1223 assert(callee->is_method(), "sanity");
twisti@1639 1224 is_mh_invoke_via_adapter = true;
twisti@1639 1225 }
twisti@1639 1226 }
twisti@1570 1227
twisti@1570 1228 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1229 caller_frame.is_entry_frame() ||
twisti@1639 1230 is_mh_invoke_via_adapter) {
duke@435 1231 methodOop callee = thread->callee_target();
duke@435 1232 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1233 thread->set_vm_result(callee);
duke@435 1234 thread->set_callee_target(NULL);
duke@435 1235 return callee->get_c2i_entry();
duke@435 1236 }
duke@435 1237
duke@435 1238 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1239 methodHandle callee_method;
duke@435 1240 JRT_BLOCK
duke@435 1241 // Force resolving of caller (if we called from compiled frame)
duke@435 1242 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1243 thread->set_vm_result(callee_method());
duke@435 1244 JRT_BLOCK_END
duke@435 1245 // return compiled code entry point after potential safepoints
duke@435 1246 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1247 return callee_method->verified_code_entry();
duke@435 1248 JRT_END
duke@435 1249
duke@435 1250
duke@435 1251 // resolve a static call and patch code
duke@435 1252 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1253 methodHandle callee_method;
duke@435 1254 JRT_BLOCK
duke@435 1255 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1256 thread->set_vm_result(callee_method());
duke@435 1257 JRT_BLOCK_END
duke@435 1258 // return compiled code entry point after potential safepoints
duke@435 1259 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1260 return callee_method->verified_code_entry();
duke@435 1261 JRT_END
duke@435 1262
duke@435 1263
duke@435 1264 // resolve virtual call and update inline cache to monomorphic
duke@435 1265 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1266 methodHandle callee_method;
duke@435 1267 JRT_BLOCK
duke@435 1268 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1269 thread->set_vm_result(callee_method());
duke@435 1270 JRT_BLOCK_END
duke@435 1271 // return compiled code entry point after potential safepoints
duke@435 1272 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1273 return callee_method->verified_code_entry();
duke@435 1274 JRT_END
duke@435 1275
duke@435 1276
duke@435 1277 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1278 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1279 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1280 methodHandle callee_method;
duke@435 1281 JRT_BLOCK
duke@435 1282 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1283 thread->set_vm_result(callee_method());
duke@435 1284 JRT_BLOCK_END
duke@435 1285 // return compiled code entry point after potential safepoints
duke@435 1286 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1287 return callee_method->verified_code_entry();
duke@435 1288 JRT_END
duke@435 1289
duke@435 1290
duke@435 1291
duke@435 1292
duke@435 1293
duke@435 1294 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1295 ResourceMark rm(thread);
duke@435 1296 CallInfo call_info;
duke@435 1297 Bytecodes::Code bc;
duke@435 1298
duke@435 1299 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1300 // receivers for non-static calls
duke@435 1301 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1302 CHECK_(methodHandle()));
duke@435 1303 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1304 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1305 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1306 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1307 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1308 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1309 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1310 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1311 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1312 //
duke@435 1313 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1314 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1315 if (TraceCallFixup) {
duke@435 1316 RegisterMap reg_map(thread, false);
duke@435 1317 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1318 ResourceMark rm(thread);
duke@435 1319 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1320 callee_method->print_short_name(tty);
duke@435 1321 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1322 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1323 }
duke@435 1324 return callee_method;
duke@435 1325 }
duke@435 1326
duke@435 1327 methodHandle callee_method = call_info.selected_method();
duke@435 1328
duke@435 1329 bool should_be_mono = false;
duke@435 1330
duke@435 1331 #ifndef PRODUCT
duke@435 1332 Atomic::inc(&_ic_miss_ctr);
duke@435 1333
duke@435 1334 // Statistics & Tracing
duke@435 1335 if (TraceCallFixup) {
duke@435 1336 ResourceMark rm(thread);
duke@435 1337 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1338 callee_method->print_short_name(tty);
duke@435 1339 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1340 }
duke@435 1341
duke@435 1342 if (ICMissHistogram) {
duke@435 1343 MutexLocker m(VMStatistic_lock);
duke@435 1344 RegisterMap reg_map(thread, false);
duke@435 1345 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1346 // produce statistics under the lock
duke@435 1347 trace_ic_miss(f.pc());
duke@435 1348 }
duke@435 1349 #endif
duke@435 1350
duke@435 1351 // install an event collector so that when a vtable stub is created the
duke@435 1352 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1353 // event can't be posted when the stub is created as locks are held
duke@435 1354 // - instead the event will be deferred until the event collector goes
duke@435 1355 // out of scope.
duke@435 1356 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1357
duke@435 1358 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1359 // made non-entrant or we are called from interpreted.
duke@435 1360 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1361 RegisterMap reg_map(thread, false);
duke@435 1362 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1363 CodeBlob* cb = caller_frame.cb();
duke@435 1364 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1365 // Not a non-entrant nmethod, so find inline_cache
duke@435 1366 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1367 bool should_be_mono = false;
duke@435 1368 if (inline_cache->is_optimized()) {
duke@435 1369 if (TraceCallFixup) {
duke@435 1370 ResourceMark rm(thread);
duke@435 1371 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1372 callee_method->print_short_name(tty);
duke@435 1373 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1374 }
duke@435 1375 should_be_mono = true;
duke@435 1376 } else {
duke@435 1377 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1378 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1379
duke@435 1380 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1381 // This isn't a real miss. We must have seen that compiled code
duke@435 1382 // is now available and we want the call site converted to a
duke@435 1383 // monomorphic compiled call site.
duke@435 1384 // We can't assert for callee_method->code() != NULL because it
duke@435 1385 // could have been deoptimized in the meantime
duke@435 1386 if (TraceCallFixup) {
duke@435 1387 ResourceMark rm(thread);
duke@435 1388 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1389 callee_method->print_short_name(tty);
duke@435 1390 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1391 }
duke@435 1392 should_be_mono = true;
duke@435 1393 }
duke@435 1394 }
duke@435 1395 }
duke@435 1396
duke@435 1397 if (should_be_mono) {
duke@435 1398
duke@435 1399 // We have a path that was monomorphic but was going interpreted
duke@435 1400 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1401 // by using a new icBuffer.
duke@435 1402 CompiledICInfo info;
duke@435 1403 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1404 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1405 receiver_klass,
duke@435 1406 inline_cache->is_optimized(),
duke@435 1407 false,
duke@435 1408 info, CHECK_(methodHandle()));
duke@435 1409 inline_cache->set_to_monomorphic(info);
duke@435 1410 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1411 // Change to megamorphic
duke@435 1412 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1413 } else {
duke@435 1414 // Either clean or megamorphic
duke@435 1415 }
duke@435 1416 }
duke@435 1417 } // Release CompiledIC_lock
duke@435 1418
duke@435 1419 return callee_method;
duke@435 1420 }
duke@435 1421
duke@435 1422 //
duke@435 1423 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1424 // This routines handles both virtual call sites, optimized virtual call
duke@435 1425 // sites, and static call sites. Typically used to change a call sites
duke@435 1426 // destination from compiled to interpreted.
duke@435 1427 //
duke@435 1428 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1429 ResourceMark rm(thread);
duke@435 1430 RegisterMap reg_map(thread, false);
duke@435 1431 frame stub_frame = thread->last_frame();
duke@435 1432 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1433 frame caller = stub_frame.sender(&reg_map);
duke@435 1434
duke@435 1435 // Do nothing if the frame isn't a live compiled frame.
duke@435 1436 // nmethod could be deoptimized by the time we get here
duke@435 1437 // so no update to the caller is needed.
duke@435 1438
duke@435 1439 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1440
duke@435 1441 address pc = caller.pc();
duke@435 1442 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1443
duke@435 1444 // Default call_addr is the location of the "basic" call.
duke@435 1445 // Determine the address of the call we a reresolving. With
duke@435 1446 // Inline Caches we will always find a recognizable call.
duke@435 1447 // With Inline Caches disabled we may or may not find a
duke@435 1448 // recognizable call. We will always find a call for static
duke@435 1449 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1450 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1451 //
duke@435 1452 // With Inline Caches disabled we can get here for a virtual call
duke@435 1453 // for two reasons:
duke@435 1454 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1455 // will run us thru handle_wrong_method and we will eventually
duke@435 1456 // end up in the interpreter to throw the ame.
duke@435 1457 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1458 // call and between the time we fetch the entry address and
duke@435 1459 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1460 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1461 //
duke@435 1462 address call_addr = NULL;
duke@435 1463 {
duke@435 1464 // Get call instruction under lock because another thread may be
duke@435 1465 // busy patching it.
duke@435 1466 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1467 // Location of call instruction
duke@435 1468 if (NativeCall::is_call_before(pc)) {
duke@435 1469 NativeCall *ncall = nativeCall_before(pc);
duke@435 1470 call_addr = ncall->instruction_address();
duke@435 1471 }
duke@435 1472 }
duke@435 1473
duke@435 1474 // Check for static or virtual call
duke@435 1475 bool is_static_call = false;
duke@435 1476 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1477 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1478 // this is done with it.
duke@435 1479 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1480 nmethodLocker nmlock(caller_nm);
duke@435 1481
duke@435 1482 if (call_addr != NULL) {
duke@435 1483 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1484 int ret = iter.next(); // Get item
duke@435 1485 if (ret) {
duke@435 1486 assert(iter.addr() == call_addr, "must find call");
duke@435 1487 if (iter.type() == relocInfo::static_call_type) {
duke@435 1488 is_static_call = true;
duke@435 1489 } else {
duke@435 1490 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1491 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1492 , "unexpected relocInfo. type");
duke@435 1493 }
duke@435 1494 } else {
duke@435 1495 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1496 }
duke@435 1497
duke@435 1498 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1499 // than directly setting it to the new destination, since resolving of calls
duke@435 1500 // is always done through the same code path. (experience shows that it
duke@435 1501 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1502 // to a wrong method). It should not be performance critical, since the
duke@435 1503 // resolve is only done once.
duke@435 1504
duke@435 1505 MutexLocker ml(CompiledIC_lock);
duke@435 1506 //
duke@435 1507 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1508 // as it is a waste of time
duke@435 1509 //
duke@435 1510 if (caller_nm->is_in_use()) {
duke@435 1511 if (is_static_call) {
duke@435 1512 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1513 ssc->set_to_clean();
duke@435 1514 } else {
duke@435 1515 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1516 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1517 inline_cache->set_to_clean();
duke@435 1518 }
duke@435 1519 }
duke@435 1520 }
duke@435 1521
duke@435 1522 }
duke@435 1523
duke@435 1524 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1525
duke@435 1526
duke@435 1527 #ifndef PRODUCT
duke@435 1528 Atomic::inc(&_wrong_method_ctr);
duke@435 1529
duke@435 1530 if (TraceCallFixup) {
duke@435 1531 ResourceMark rm(thread);
duke@435 1532 tty->print("handle_wrong_method reresolving call to");
duke@435 1533 callee_method->print_short_name(tty);
duke@435 1534 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1535 }
duke@435 1536 #endif
duke@435 1537
duke@435 1538 return callee_method;
duke@435 1539 }
duke@435 1540
duke@435 1541 // ---------------------------------------------------------------------------
duke@435 1542 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1543 // we were called by a compiled method. However we could have lost a race
duke@435 1544 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1545 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1546 // so he no longer calls into the interpreter.
duke@435 1547 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1548 methodOop moop(method);
duke@435 1549
duke@435 1550 address entry_point = moop->from_compiled_entry();
duke@435 1551
duke@435 1552 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1553 // been resolved yet, in which case this function will be called from
duke@435 1554 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1555 // request for a fixup.
duke@435 1556 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1557 // is now back to the i2c in that case we don't need to patch and if
duke@435 1558 // we did we'd leap into space because the callsite needs to use
duke@435 1559 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1560 // ask me how I know this...
duke@435 1561
duke@435 1562 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1563 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1564 return;
twisti@1640 1565 }
twisti@1640 1566
twisti@1640 1567 // The check above makes sure this is a nmethod.
twisti@1640 1568 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1569 assert(nm, "must be");
twisti@1640 1570
twisti@1640 1571 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1640 1572 // to implement MethodHandle actions.
twisti@1640 1573 if (nm->is_method_handle_return(caller_pc)) {
duke@435 1574 return;
duke@435 1575 }
duke@435 1576
duke@435 1577 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1578 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1579 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1580 // call site with the same old data. clear_code will set code() to NULL
duke@435 1581 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1582 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1583 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1584 // and patch the code with the same old data. Asi es la vida.
duke@435 1585
duke@435 1586 if (moop->code() == NULL) return;
duke@435 1587
twisti@1640 1588 if (nm->is_in_use()) {
duke@435 1589
duke@435 1590 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1591 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1592 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1593 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1594 //
duke@435 1595 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1596 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1597 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1598 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1599 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1600 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1601 // for the rest of its life! Just another racing bug in the life of
duke@435 1602 // fixup_callers_callsite ...
duke@435 1603 //
twisti@1918 1604 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1605 iter.next();
duke@435 1606 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1607 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1608 if ( typ != relocInfo::static_call_type &&
duke@435 1609 typ != relocInfo::opt_virtual_call_type &&
duke@435 1610 typ != relocInfo::static_stub_type) {
duke@435 1611 return;
duke@435 1612 }
duke@435 1613 address destination = call->destination();
duke@435 1614 if (destination != entry_point) {
duke@435 1615 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1616 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1617 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1618 // static call or optimized virtual
duke@435 1619 if (TraceCallFixup) {
twisti@1639 1620 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1621 moop->print_short_name(tty);
duke@435 1622 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1623 }
duke@435 1624 call->set_destination_mt_safe(entry_point);
duke@435 1625 } else {
duke@435 1626 if (TraceCallFixup) {
duke@435 1627 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1628 moop->print_short_name(tty);
duke@435 1629 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1630 }
duke@435 1631 // assert is too strong could also be resolve destinations.
duke@435 1632 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1633 }
duke@435 1634 } else {
duke@435 1635 if (TraceCallFixup) {
twisti@1639 1636 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1637 moop->print_short_name(tty);
duke@435 1638 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1639 }
duke@435 1640 }
duke@435 1641 }
duke@435 1642 }
duke@435 1643
duke@435 1644 IRT_END
duke@435 1645
duke@435 1646
duke@435 1647 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1648 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1649 oopDesc* dest, jint dest_pos,
duke@435 1650 jint length,
duke@435 1651 JavaThread* thread)) {
duke@435 1652 #ifndef PRODUCT
duke@435 1653 _slow_array_copy_ctr++;
duke@435 1654 #endif
duke@435 1655 // Check if we have null pointers
duke@435 1656 if (src == NULL || dest == NULL) {
duke@435 1657 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1658 }
duke@435 1659 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1660 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1661 // that src and dest are truly arrays (and are conformable).
duke@435 1662 // The copy_array mechanism is awkward and could be removed, but
duke@435 1663 // the compilers don't call this function except as a last resort,
duke@435 1664 // so it probably doesn't matter.
duke@435 1665 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1666 (arrayOopDesc*)dest, dest_pos,
duke@435 1667 length, thread);
duke@435 1668 }
duke@435 1669 JRT_END
duke@435 1670
duke@435 1671 char* SharedRuntime::generate_class_cast_message(
duke@435 1672 JavaThread* thread, const char* objName) {
duke@435 1673
duke@435 1674 // Get target class name from the checkcast instruction
duke@435 1675 vframeStream vfst(thread, true);
duke@435 1676 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1677 Bytecode_checkcast* cc = Bytecode_checkcast_at(
duke@435 1678 vfst.method()->bcp_from(vfst.bci()));
duke@435 1679 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
duke@435 1680 cc->index(), thread));
duke@435 1681 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1682 }
duke@435 1683
jrose@1145 1684 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1685 oopDesc* required,
jrose@1145 1686 oopDesc* actual) {
jrose@2148 1687 if (TraceMethodHandles) {
jrose@2148 1688 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
jrose@2148 1689 thread, required, actual);
jrose@2148 1690 }
jrose@1145 1691 assert(EnableMethodHandles, "");
jrose@1145 1692 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@2148 1693 char* message = NULL;
jrose@1145 1694 if (singleKlass != NULL) {
jrose@1145 1695 const char* objName = "argument or return value";
jrose@1145 1696 if (actual != NULL) {
jrose@1145 1697 // be flexible about the junk passed in:
jrose@1145 1698 klassOop ak = (actual->is_klass()
jrose@1145 1699 ? (klassOop)actual
jrose@1145 1700 : actual->klass());
jrose@1145 1701 objName = Klass::cast(ak)->external_name();
jrose@1145 1702 }
jrose@1145 1703 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1704 ? (klassOop)required
jrose@1145 1705 : java_lang_Class::as_klassOop(required));
jrose@2148 1706 message = generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1707 } else {
jrose@1145 1708 // %%% need to get the MethodType string, without messing around too much
jrose@1145 1709 // Get a signature from the invoke instruction
jrose@1145 1710 const char* mhName = "method handle";
jrose@1145 1711 const char* targetType = "the required signature";
jrose@1145 1712 vframeStream vfst(thread, true);
jrose@1145 1713 if (!vfst.at_end()) {
jrose@1145 1714 Bytecode_invoke* call = Bytecode_invoke_at(vfst.method(), vfst.bci());
jrose@1145 1715 methodHandle target;
jrose@1145 1716 {
jrose@1145 1717 EXCEPTION_MARK;
jrose@1145 1718 target = call->static_target(THREAD);
jrose@1145 1719 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1720 }
jrose@1145 1721 if (target.not_null()
jrose@1145 1722 && target->is_method_handle_invoke()
jrose@1145 1723 && required == target->method_handle_type()) {
jrose@1145 1724 targetType = target->signature()->as_C_string();
jrose@1145 1725 }
jrose@1145 1726 }
jrose@1145 1727 klassOop kignore; int fignore;
jrose@1145 1728 methodOop actual_method = MethodHandles::decode_method(actual,
jrose@1145 1729 kignore, fignore);
jrose@1145 1730 if (actual_method != NULL) {
jrose@1862 1731 if (methodOopDesc::is_method_handle_invoke_name(actual_method->name()))
jrose@1145 1732 mhName = "$";
jrose@1145 1733 else
jrose@1145 1734 mhName = actual_method->signature()->as_C_string();
jrose@1145 1735 if (mhName[0] == '$')
jrose@1145 1736 mhName = actual_method->signature()->as_C_string();
jrose@1145 1737 }
jrose@2148 1738 message = generate_class_cast_message(mhName, targetType,
jrose@2148 1739 " cannot be called as ");
jrose@1145 1740 }
jrose@2148 1741 if (TraceMethodHandles) {
jrose@2148 1742 tty->print_cr("WrongMethodType => message=%s", message);
jrose@2148 1743 }
jrose@2148 1744 return message;
jrose@1145 1745 }
jrose@1145 1746
jrose@1145 1747 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1748 oopDesc* required) {
jrose@1145 1749 if (required == NULL) return NULL;
never@1577 1750 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1751 return required;
jrose@1145 1752 if (required->is_klass())
jrose@1145 1753 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1754 return NULL;
jrose@1145 1755 }
jrose@1145 1756
jrose@1145 1757
duke@435 1758 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1759 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1760 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1761
kamg@488 1762 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1763 if (NULL == message) {
kamg@488 1764 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1765 message = const_cast<char*>(objName);
duke@435 1766 } else {
duke@435 1767 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1768 }
duke@435 1769 return message;
duke@435 1770 }
duke@435 1771
duke@435 1772 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1773 (void) JavaThread::current()->reguard_stack();
duke@435 1774 JRT_END
duke@435 1775
duke@435 1776
duke@435 1777 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1778 #ifndef PRODUCT
duke@435 1779 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1780 #endif
duke@435 1781 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1782 oop obj(_obj);
duke@435 1783 #ifndef PRODUCT
duke@435 1784 _monitor_enter_ctr++; // monitor enter slow
duke@435 1785 #endif
duke@435 1786 if (PrintBiasedLockingStatistics) {
duke@435 1787 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1788 }
duke@435 1789 Handle h_obj(THREAD, obj);
duke@435 1790 if (UseBiasedLocking) {
duke@435 1791 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1792 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1793 } else {
duke@435 1794 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1795 }
duke@435 1796 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1797 JRT_END
duke@435 1798
duke@435 1799 #ifndef PRODUCT
duke@435 1800 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1801 #endif
duke@435 1802 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1803 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1804 oop obj(_obj);
duke@435 1805 #ifndef PRODUCT
duke@435 1806 _monitor_exit_ctr++; // monitor exit slow
duke@435 1807 #endif
duke@435 1808 Thread* THREAD = JavaThread::current();
duke@435 1809 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1810 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1811 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1812 #undef MIGHT_HAVE_PENDING
duke@435 1813 #ifdef MIGHT_HAVE_PENDING
duke@435 1814 // Save and restore any pending_exception around the exception mark.
duke@435 1815 // While the slow_exit must not throw an exception, we could come into
duke@435 1816 // this routine with one set.
duke@435 1817 oop pending_excep = NULL;
duke@435 1818 const char* pending_file;
duke@435 1819 int pending_line;
duke@435 1820 if (HAS_PENDING_EXCEPTION) {
duke@435 1821 pending_excep = PENDING_EXCEPTION;
duke@435 1822 pending_file = THREAD->exception_file();
duke@435 1823 pending_line = THREAD->exception_line();
duke@435 1824 CLEAR_PENDING_EXCEPTION;
duke@435 1825 }
duke@435 1826 #endif /* MIGHT_HAVE_PENDING */
duke@435 1827
duke@435 1828 {
duke@435 1829 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1830 EXCEPTION_MARK;
duke@435 1831 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1832 }
duke@435 1833
duke@435 1834 #ifdef MIGHT_HAVE_PENDING
duke@435 1835 if (pending_excep != NULL) {
duke@435 1836 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1837 }
duke@435 1838 #endif /* MIGHT_HAVE_PENDING */
duke@435 1839 JRT_END
duke@435 1840
duke@435 1841 #ifndef PRODUCT
duke@435 1842
duke@435 1843 void SharedRuntime::print_statistics() {
duke@435 1844 ttyLocker ttyl;
duke@435 1845 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1846
duke@435 1847 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1848 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1849 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1850
duke@435 1851 SharedRuntime::print_ic_miss_histogram();
duke@435 1852
duke@435 1853 if (CountRemovableExceptions) {
duke@435 1854 if (_nof_removable_exceptions > 0) {
duke@435 1855 Unimplemented(); // this counter is not yet incremented
duke@435 1856 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1857 }
duke@435 1858 }
duke@435 1859
duke@435 1860 // Dump the JRT_ENTRY counters
duke@435 1861 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1862 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1863 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1864 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1865 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1866 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1867 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1868
duke@435 1869 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1870 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1871 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1872 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1873 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1874
duke@435 1875 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1876 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1877 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1878 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1879 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1880 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1881 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1882 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1883 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1884 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1885 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1886 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1887 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1888 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1889 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1890 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1891
never@1622 1892 AdapterHandlerLibrary::print_statistics();
never@1622 1893
duke@435 1894 if (xtty != NULL) xtty->tail("statistics");
duke@435 1895 }
duke@435 1896
duke@435 1897 inline double percent(int x, int y) {
duke@435 1898 return 100.0 * x / MAX2(y, 1);
duke@435 1899 }
duke@435 1900
duke@435 1901 class MethodArityHistogram {
duke@435 1902 public:
duke@435 1903 enum { MAX_ARITY = 256 };
duke@435 1904 private:
duke@435 1905 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1906 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1907 static int _max_arity; // max. arity seen
duke@435 1908 static int _max_size; // max. arg size seen
duke@435 1909
duke@435 1910 static void add_method_to_histogram(nmethod* nm) {
duke@435 1911 methodOop m = nm->method();
duke@435 1912 ArgumentCount args(m->signature());
duke@435 1913 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1914 int argsize = m->size_of_parameters();
duke@435 1915 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1916 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1917 int count = nm->method()->compiled_invocation_count();
duke@435 1918 _arity_histogram[arity] += count;
duke@435 1919 _size_histogram[argsize] += count;
duke@435 1920 _max_arity = MAX2(_max_arity, arity);
duke@435 1921 _max_size = MAX2(_max_size, argsize);
duke@435 1922 }
duke@435 1923
duke@435 1924 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1925 const int N = MIN2(5, n);
duke@435 1926 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1927 double sum = 0;
duke@435 1928 double weighted_sum = 0;
duke@435 1929 int i;
duke@435 1930 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1931 double rest = sum;
duke@435 1932 double percent = sum / 100;
duke@435 1933 for (i = 0; i <= N; i++) {
duke@435 1934 rest -= histo[i];
duke@435 1935 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1936 }
duke@435 1937 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1938 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1939 }
duke@435 1940
duke@435 1941 void print_histogram() {
duke@435 1942 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1943 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1944 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1945 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1946 tty->cr();
duke@435 1947 }
duke@435 1948
duke@435 1949 public:
duke@435 1950 MethodArityHistogram() {
duke@435 1951 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1952 _max_arity = _max_size = 0;
duke@435 1953 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1954 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1955 print_histogram();
duke@435 1956 }
duke@435 1957 };
duke@435 1958
duke@435 1959 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1960 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 1961 int MethodArityHistogram::_max_arity;
duke@435 1962 int MethodArityHistogram::_max_size;
duke@435 1963
duke@435 1964 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 1965 tty->print_cr("Calls from compiled code:");
duke@435 1966 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 1967 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 1968 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 1969 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 1970 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 1971 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 1972 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 1973 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 1974 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 1975 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 1976 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 1977 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 1978 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 1979 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 1980 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 1981 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 1982 tty->cr();
duke@435 1983 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 1984 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 1985 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 1986 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 1987 tty->cr();
duke@435 1988
duke@435 1989 MethodArityHistogram h;
duke@435 1990 }
duke@435 1991 #endif
duke@435 1992
duke@435 1993
never@1622 1994 // A simple wrapper class around the calling convention information
never@1622 1995 // that allows sharing of adapters for the same calling convention.
never@1622 1996 class AdapterFingerPrint : public CHeapObj {
never@1622 1997 private:
never@1622 1998 union {
never@1642 1999 int _compact[3];
never@1642 2000 int* _fingerprint;
never@1622 2001 } _value;
never@1642 2002 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2003 // Otherwise _value._fingerprint is the array.
never@1622 2004
never@1642 2005 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2006 // These are correct for the current system but someday it might be
never@1642 2007 // necessary to make this mapping platform dependent.
never@1642 2008 static BasicType adapter_encoding(BasicType in) {
never@1642 2009 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 2010 switch(in) {
never@1642 2011 case T_BOOLEAN:
never@1642 2012 case T_BYTE:
never@1642 2013 case T_SHORT:
never@1642 2014 case T_CHAR:
never@1642 2015 // There are all promoted to T_INT in the calling convention
never@1642 2016 return T_INT;
never@1642 2017
never@1642 2018 case T_OBJECT:
never@1642 2019 case T_ARRAY:
never@1642 2020 #ifdef _LP64
twisti@1861 2021 return T_LONG;
never@1642 2022 #else
twisti@1861 2023 return T_INT;
never@1642 2024 #endif
never@1642 2025
never@1642 2026 case T_INT:
never@1642 2027 case T_LONG:
never@1642 2028 case T_FLOAT:
never@1642 2029 case T_DOUBLE:
never@1642 2030 case T_VOID:
never@1642 2031 return in;
never@1642 2032
never@1642 2033 default:
never@1642 2034 ShouldNotReachHere();
never@1642 2035 return T_CONFLICT;
never@1622 2036 }
never@1622 2037 }
never@1622 2038
never@1642 2039 public:
never@1642 2040 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2041 // The fingerprint is based on the BasicType signature encoded
never@1642 2042 // into an array of ints with four entries per int.
never@1642 2043 int* ptr;
never@1642 2044 int len = (total_args_passed + 3) >> 2;
never@1642 2045 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 2046 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2047 // Storing the signature encoded as signed chars hits about 98%
never@1642 2048 // of the time.
never@1642 2049 _length = -len;
never@1642 2050 ptr = _value._compact;
never@1642 2051 } else {
never@1642 2052 _length = len;
never@1642 2053 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 2054 ptr = _value._fingerprint;
never@1642 2055 }
never@1642 2056
never@1642 2057 // Now pack the BasicTypes with 4 per int
never@1642 2058 int sig_index = 0;
never@1642 2059 for (int index = 0; index < len; index++) {
never@1642 2060 int value = 0;
never@1642 2061 for (int byte = 0; byte < 4; byte++) {
never@1642 2062 if (sig_index < total_args_passed) {
never@1642 2063 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 2064 }
never@1642 2065 }
never@1642 2066 ptr[index] = value;
never@1642 2067 }
never@1622 2068 }
never@1622 2069
never@1622 2070 ~AdapterFingerPrint() {
never@1622 2071 if (_length > 0) {
never@1622 2072 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 2073 }
never@1622 2074 }
never@1622 2075
never@1642 2076 int value(int index) {
never@1622 2077 if (_length < 0) {
never@1622 2078 return _value._compact[index];
never@1622 2079 }
never@1622 2080 return _value._fingerprint[index];
never@1622 2081 }
never@1622 2082 int length() {
never@1622 2083 if (_length < 0) return -_length;
never@1622 2084 return _length;
never@1622 2085 }
never@1622 2086
never@1622 2087 bool is_compact() {
never@1622 2088 return _length <= 0;
never@1622 2089 }
never@1622 2090
never@1622 2091 unsigned int compute_hash() {
never@1642 2092 int hash = 0;
never@1622 2093 for (int i = 0; i < length(); i++) {
never@1642 2094 int v = value(i);
never@1622 2095 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2096 }
never@1622 2097 return (unsigned int)hash;
never@1622 2098 }
never@1622 2099
never@1622 2100 const char* as_string() {
never@1622 2101 stringStream st;
never@1622 2102 for (int i = 0; i < length(); i++) {
never@1622 2103 st.print(PTR_FORMAT, value(i));
never@1622 2104 }
never@1622 2105 return st.as_string();
never@1622 2106 }
never@1622 2107
never@1622 2108 bool equals(AdapterFingerPrint* other) {
never@1622 2109 if (other->_length != _length) {
never@1622 2110 return false;
never@1622 2111 }
never@1622 2112 if (_length < 0) {
never@1642 2113 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2114 _value._compact[1] == other->_value._compact[1] &&
never@1642 2115 _value._compact[2] == other->_value._compact[2];
never@1622 2116 } else {
never@1622 2117 for (int i = 0; i < _length; i++) {
never@1622 2118 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2119 return false;
never@1622 2120 }
never@1622 2121 }
never@1622 2122 }
never@1622 2123 return true;
never@1622 2124 }
never@1622 2125 };
never@1622 2126
never@1622 2127
never@1622 2128 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 2129 class AdapterHandlerTable : public BasicHashtable {
never@1622 2130 friend class AdapterHandlerTableIterator;
never@1622 2131
never@1622 2132 private:
never@1622 2133
kvn@1698 2134 #ifndef PRODUCT
never@1622 2135 static int _lookups; // number of calls to lookup
never@1622 2136 static int _buckets; // number of buckets checked
never@1622 2137 static int _equals; // number of buckets checked with matching hash
never@1622 2138 static int _hits; // number of successful lookups
never@1622 2139 static int _compact; // number of equals calls with compact signature
never@1622 2140 #endif
never@1622 2141
never@1622 2142 AdapterHandlerEntry* bucket(int i) {
never@1622 2143 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 2144 }
never@1622 2145
never@1622 2146 public:
never@1622 2147 AdapterHandlerTable()
never@1622 2148 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2149
never@1622 2150 // Create a new entry suitable for insertion in the table
never@1622 2151 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 2152 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 2153 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2154 return entry;
never@1622 2155 }
never@1622 2156
never@1622 2157 // Insert an entry into the table
never@1622 2158 void add(AdapterHandlerEntry* entry) {
never@1622 2159 int index = hash_to_index(entry->hash());
never@1622 2160 add_entry(index, entry);
never@1622 2161 }
never@1622 2162
never@1642 2163 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2164 entry->deallocate();
never@1642 2165 BasicHashtable::free_entry(entry);
never@1642 2166 }
never@1642 2167
never@1622 2168 // Find a entry with the same fingerprint if it exists
never@1642 2169 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2170 NOT_PRODUCT(_lookups++);
never@1642 2171 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2172 unsigned int hash = fp.compute_hash();
never@1622 2173 int index = hash_to_index(hash);
never@1622 2174 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2175 NOT_PRODUCT(_buckets++);
never@1622 2176 if (e->hash() == hash) {
kvn@1698 2177 NOT_PRODUCT(_equals++);
never@1622 2178 if (fp.equals(e->fingerprint())) {
kvn@1698 2179 #ifndef PRODUCT
never@1622 2180 if (fp.is_compact()) _compact++;
never@1622 2181 _hits++;
never@1622 2182 #endif
never@1622 2183 return e;
never@1622 2184 }
never@1622 2185 }
never@1622 2186 }
never@1622 2187 return NULL;
never@1622 2188 }
never@1622 2189
kvn@1698 2190 #ifndef PRODUCT
never@1622 2191 void print_statistics() {
never@1622 2192 ResourceMark rm;
never@1622 2193 int longest = 0;
never@1622 2194 int empty = 0;
never@1622 2195 int total = 0;
never@1622 2196 int nonempty = 0;
never@1622 2197 for (int index = 0; index < table_size(); index++) {
never@1622 2198 int count = 0;
never@1622 2199 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2200 count++;
never@1622 2201 }
never@1622 2202 if (count != 0) nonempty++;
never@1622 2203 if (count == 0) empty++;
never@1622 2204 if (count > longest) longest = count;
never@1622 2205 total += count;
never@1622 2206 }
never@1622 2207 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2208 empty, longest, total, total / (double)nonempty);
never@1622 2209 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2210 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2211 }
never@1622 2212 #endif
never@1622 2213 };
never@1622 2214
never@1622 2215
kvn@1698 2216 #ifndef PRODUCT
never@1622 2217
never@1622 2218 int AdapterHandlerTable::_lookups;
never@1622 2219 int AdapterHandlerTable::_buckets;
never@1622 2220 int AdapterHandlerTable::_equals;
never@1622 2221 int AdapterHandlerTable::_hits;
never@1622 2222 int AdapterHandlerTable::_compact;
never@1622 2223
bobv@2036 2224 #endif
bobv@2036 2225
never@1622 2226 class AdapterHandlerTableIterator : public StackObj {
never@1622 2227 private:
never@1622 2228 AdapterHandlerTable* _table;
never@1622 2229 int _index;
never@1622 2230 AdapterHandlerEntry* _current;
never@1622 2231
never@1622 2232 void scan() {
never@1622 2233 while (_index < _table->table_size()) {
never@1622 2234 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2235 _index++;
never@1622 2236 if (a != NULL) {
never@1622 2237 _current = a;
never@1622 2238 return;
never@1622 2239 }
never@1622 2240 }
never@1622 2241 }
never@1622 2242
never@1622 2243 public:
never@1622 2244 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2245 scan();
never@1622 2246 }
never@1622 2247 bool has_next() {
never@1622 2248 return _current != NULL;
never@1622 2249 }
never@1622 2250 AdapterHandlerEntry* next() {
never@1622 2251 if (_current != NULL) {
never@1622 2252 AdapterHandlerEntry* result = _current;
never@1622 2253 _current = _current->next();
never@1622 2254 if (_current == NULL) scan();
never@1622 2255 return result;
never@1622 2256 } else {
never@1622 2257 return NULL;
never@1622 2258 }
never@1622 2259 }
never@1622 2260 };
never@1622 2261
never@1622 2262
duke@435 2263 // ---------------------------------------------------------------------------
duke@435 2264 // Implementation of AdapterHandlerLibrary
never@1622 2265 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2266 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2267 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2268 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2269
kvn@1177 2270 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2271 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2272 if (_buffer == NULL) // Initialize lazily
kvn@1177 2273 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2274 return _buffer;
kvn@1177 2275 }
duke@435 2276
duke@435 2277 void AdapterHandlerLibrary::initialize() {
never@1622 2278 if (_adapters != NULL) return;
never@1622 2279 _adapters = new AdapterHandlerTable();
duke@435 2280
duke@435 2281 // Create a special handler for abstract methods. Abstract methods
duke@435 2282 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2283 // fill it in with something appropriate just in case. Pass handle
duke@435 2284 // wrong method for the c2i transitions.
duke@435 2285 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2286 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2287 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2288 wrong_method, wrong_method);
duke@435 2289 }
duke@435 2290
never@1622 2291 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2292 address i2c_entry,
never@1622 2293 address c2i_entry,
never@1622 2294 address c2i_unverified_entry) {
never@1622 2295 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2296 }
never@1622 2297
never@1622 2298 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2299 // Use customized signature handler. Need to lock around updates to
never@1622 2300 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2301 // and a single writer: this could be fixed if it becomes a
never@1622 2302 // problem).
duke@435 2303
duke@435 2304 // Get the address of the ic_miss handlers before we grab the
duke@435 2305 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2306 // was caused by the initialization of the stubs happening
duke@435 2307 // while we held the lock and then notifying jvmti while
duke@435 2308 // holding it. This just forces the initialization to be a little
duke@435 2309 // earlier.
duke@435 2310 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2311 assert(ic_miss != NULL, "must have handler");
duke@435 2312
never@1622 2313 ResourceMark rm;
never@1622 2314
twisti@2103 2315 NOT_PRODUCT(int insts_size);
twisti@1734 2316 AdapterBlob* B = NULL;
kvn@1177 2317 AdapterHandlerEntry* entry = NULL;
never@1622 2318 AdapterFingerPrint* fingerprint = NULL;
duke@435 2319 {
duke@435 2320 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2321 // make sure data structure is initialized
duke@435 2322 initialize();
duke@435 2323
duke@435 2324 if (method->is_abstract()) {
never@1622 2325 return _abstract_method_handler;
duke@435 2326 }
duke@435 2327
never@1622 2328 // Fill in the signature array, for the calling-convention call.
never@1622 2329 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2330
never@1622 2331 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2332 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2333 int i = 0;
never@1622 2334 if (!method->is_static()) // Pass in receiver first
never@1622 2335 sig_bt[i++] = T_OBJECT;
never@1622 2336 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2337 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2338 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2339 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2340 }
never@1622 2341 assert(i == total_args_passed, "");
never@1622 2342
never@1642 2343 // Lookup method signature's fingerprint
never@1642 2344 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2345
never@1642 2346 #ifdef ASSERT
never@1642 2347 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2348 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2349 shared_entry = entry;
never@1642 2350 entry = NULL;
never@1642 2351 }
never@1642 2352 #endif
never@1642 2353
never@1622 2354 if (entry != NULL) {
never@1622 2355 return entry;
duke@435 2356 }
duke@435 2357
never@1642 2358 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2359 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2360
never@1622 2361 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2362 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2363
duke@435 2364 // Create I2C & C2I handlers
duke@435 2365
twisti@1734 2366 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2367 if (buf != NULL) {
twisti@2103 2368 CodeBuffer buffer(buf);
kvn@1177 2369 short buffer_locs[20];
kvn@1177 2370 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2371 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2372 MacroAssembler _masm(&buffer);
duke@435 2373
kvn@1177 2374 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2375 total_args_passed,
kvn@1177 2376 comp_args_on_stack,
kvn@1177 2377 sig_bt,
never@1622 2378 regs,
never@1622 2379 fingerprint);
kvn@1177 2380
never@1642 2381 #ifdef ASSERT
never@1642 2382 if (VerifyAdapterSharing) {
never@1642 2383 if (shared_entry != NULL) {
twisti@2103 2384 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2385 "code must match");
never@1642 2386 // Release the one just created and return the original
never@1642 2387 _adapters->free_entry(entry);
never@1642 2388 return shared_entry;
never@1642 2389 } else {
twisti@2103 2390 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2391 }
never@1642 2392 }
never@1642 2393 #endif
never@1642 2394
twisti@1734 2395 B = AdapterBlob::create(&buffer);
twisti@2103 2396 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2397 }
kvn@463 2398 if (B == NULL) {
kvn@463 2399 // CodeCache is full, disable compilation
kvn@463 2400 // Ought to log this but compile log is only per compile thread
kvn@463 2401 // and we're some non descript Java thread.
kvn@1637 2402 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2403 CompileBroker::handle_full_code_cache();
never@1622 2404 return NULL; // Out of CodeCache space
kvn@463 2405 }
twisti@2103 2406 entry->relocate(B->content_begin());
duke@435 2407 #ifndef PRODUCT
duke@435 2408 // debugging suppport
duke@435 2409 if (PrintAdapterHandlers) {
duke@435 2410 tty->cr();
never@1622 2411 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2412 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@2103 2413 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
duke@435 2414 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@2103 2415 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
duke@435 2416 }
duke@435 2417 #endif
duke@435 2418
never@1622 2419 _adapters->add(entry);
duke@435 2420 }
duke@435 2421 // Outside of the lock
duke@435 2422 if (B != NULL) {
duke@435 2423 char blob_id[256];
duke@435 2424 jio_snprintf(blob_id,
duke@435 2425 sizeof(blob_id),
never@1622 2426 "%s(%s)@" PTR_FORMAT,
twisti@1734 2427 B->name(),
never@1622 2428 fingerprint->as_string(),
twisti@2103 2429 B->content_begin());
twisti@2103 2430 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2431
duke@435 2432 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2433 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2434 }
duke@435 2435 }
never@1622 2436 return entry;
duke@435 2437 }
duke@435 2438
duke@435 2439 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2440 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2441 _i2c_entry += delta;
duke@435 2442 _c2i_entry += delta;
duke@435 2443 _c2i_unverified_entry += delta;
duke@435 2444 }
duke@435 2445
never@1642 2446
never@1642 2447 void AdapterHandlerEntry::deallocate() {
never@1642 2448 delete _fingerprint;
never@1642 2449 #ifdef ASSERT
never@1642 2450 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2451 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2452 #endif
never@1642 2453 }
never@1642 2454
never@1642 2455
never@1642 2456 #ifdef ASSERT
never@1642 2457 // Capture the code before relocation so that it can be compared
never@1642 2458 // against other versions. If the code is captured after relocation
never@1642 2459 // then relative instructions won't be equivalent.
never@1642 2460 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2461 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2462 _code_length = length;
never@1642 2463 memcpy(_saved_code, buffer, length);
never@1642 2464 _total_args_passed = total_args_passed;
never@1642 2465 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2466 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2467 }
never@1642 2468
never@1642 2469
never@1642 2470 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2471 if (length != _code_length) {
never@1642 2472 return false;
never@1642 2473 }
never@1642 2474 for (int i = 0; i < length; i++) {
never@1642 2475 if (buffer[i] != _saved_code[i]) {
never@1642 2476 return false;
never@1642 2477 }
never@1642 2478 }
never@1642 2479 return true;
never@1642 2480 }
never@1642 2481 #endif
never@1642 2482
never@1642 2483
duke@435 2484 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2485 // java compiled calling convention to the native convention, handlizes
duke@435 2486 // arguments, and transitions to native. On return from the native we transition
duke@435 2487 // back to java blocking if a safepoint is in progress.
duke@435 2488 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@435 2489 ResourceMark rm;
duke@435 2490 nmethod* nm = NULL;
duke@435 2491
duke@435 2492 if (PrintCompilation) {
duke@435 2493 ttyLocker ttyl;
duke@435 2494 tty->print("--- n%s ", (method->is_synchronized() ? "s" : " "));
duke@435 2495 method->print_short_name(tty);
duke@435 2496 if (method->is_static()) {
duke@435 2497 tty->print(" (static)");
duke@435 2498 }
duke@435 2499 tty->cr();
duke@435 2500 }
duke@435 2501
duke@435 2502 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2503
duke@435 2504 {
duke@435 2505 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2506 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2507 // See if somebody beat us to it
duke@435 2508 nm = method->code();
duke@435 2509 if (nm) {
duke@435 2510 return nm;
duke@435 2511 }
duke@435 2512
kvn@1177 2513 ResourceMark rm;
duke@435 2514
kvn@1177 2515 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2516 if (buf != NULL) {
twisti@2103 2517 CodeBuffer buffer(buf);
kvn@1177 2518 double locs_buf[20];
kvn@1177 2519 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2520 MacroAssembler _masm(&buffer);
duke@435 2521
kvn@1177 2522 // Fill in the signature array, for the calling-convention call.
kvn@1177 2523 int total_args_passed = method->size_of_parameters();
kvn@1177 2524
kvn@1177 2525 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2526 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2527 int i=0;
kvn@1177 2528 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2529 sig_bt[i++] = T_OBJECT;
kvn@1177 2530 SignatureStream ss(method->signature());
kvn@1177 2531 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2532 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2533 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2534 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2535 }
kvn@1177 2536 assert( i==total_args_passed, "" );
kvn@1177 2537 BasicType ret_type = ss.type();
kvn@1177 2538
kvn@1177 2539 // Now get the compiled-Java layout as input arguments
kvn@1177 2540 int comp_args_on_stack;
kvn@1177 2541 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2542
kvn@1177 2543 // Generate the compiled-to-native wrapper code
kvn@1177 2544 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2545 method,
kvn@1177 2546 total_args_passed,
kvn@1177 2547 comp_args_on_stack,
kvn@1177 2548 sig_bt,regs,
kvn@1177 2549 ret_type);
duke@435 2550 }
duke@435 2551 }
duke@435 2552
duke@435 2553 // Must unlock before calling set_code
never@2083 2554
duke@435 2555 // Install the generated code.
duke@435 2556 if (nm != NULL) {
duke@435 2557 method->set_code(method, nm);
duke@435 2558 nm->post_compiled_method_load_event();
duke@435 2559 } else {
duke@435 2560 // CodeCache is full, disable compilation
kvn@1637 2561 CompileBroker::handle_full_code_cache();
duke@435 2562 }
duke@435 2563 return nm;
duke@435 2564 }
duke@435 2565
kamg@551 2566 #ifdef HAVE_DTRACE_H
kamg@551 2567 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2568 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2569 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2570 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2571 // leaf no thread transition is needed.
kamg@551 2572
kamg@551 2573 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2574 ResourceMark rm;
kamg@551 2575 nmethod* nm = NULL;
kamg@551 2576
kamg@551 2577 if (PrintCompilation) {
kamg@551 2578 ttyLocker ttyl;
kamg@551 2579 tty->print("--- n%s ");
kamg@551 2580 method->print_short_name(tty);
kamg@551 2581 if (method->is_static()) {
kamg@551 2582 tty->print(" (static)");
kamg@551 2583 }
kamg@551 2584 tty->cr();
kamg@551 2585 }
kamg@551 2586
kamg@551 2587 {
kamg@551 2588 // perform the work while holding the lock, but perform any printing
kamg@551 2589 // outside the lock
kamg@551 2590 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2591 // See if somebody beat us to it
kamg@551 2592 nm = method->code();
kamg@551 2593 if (nm) {
kamg@551 2594 return nm;
kamg@551 2595 }
kamg@551 2596
kvn@1177 2597 ResourceMark rm;
kvn@1177 2598
kvn@1177 2599 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2600 if (buf != NULL) {
twisti@2103 2601 CodeBuffer buffer(buf);
kvn@1177 2602 // Need a few relocation entries
kvn@1177 2603 double locs_buf[20];
kvn@1177 2604 buffer.insts()->initialize_shared_locs(
kamg@551 2605 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2606 MacroAssembler _masm(&buffer);
kamg@551 2607
kvn@1177 2608 // Generate the compiled-to-native wrapper code
kvn@1177 2609 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2610 }
kamg@551 2611 }
kamg@551 2612 return nm;
kamg@551 2613 }
kamg@551 2614
kamg@551 2615 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2616 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2617 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2618 int jlsOffset = java_lang_String::offset(src);
kamg@551 2619 int jlsLen = java_lang_String::length(src);
kamg@551 2620 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2621 jlsValue->char_at_addr(jlsOffset);
kamg@551 2622 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2623 }
kamg@551 2624 #endif // ndef HAVE_DTRACE_H
kamg@551 2625
duke@435 2626 // -------------------------------------------------------------------------
duke@435 2627 // Java-Java calling convention
duke@435 2628 // (what you use when Java calls Java)
duke@435 2629
duke@435 2630 //------------------------------name_for_receiver----------------------------------
duke@435 2631 // For a given signature, return the VMReg for parameter 0.
duke@435 2632 VMReg SharedRuntime::name_for_receiver() {
duke@435 2633 VMRegPair regs;
duke@435 2634 BasicType sig_bt = T_OBJECT;
duke@435 2635 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2636 // Return argument 0 register. In the LP64 build pointers
duke@435 2637 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2638 return regs.first();
duke@435 2639 }
duke@435 2640
twisti@1573 2641 VMRegPair *SharedRuntime::find_callee_arguments(symbolOop sig, bool has_receiver, int* arg_size) {
duke@435 2642 // This method is returning a data structure allocating as a
duke@435 2643 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2644 char *s = sig->as_C_string();
duke@435 2645 int len = (int)strlen(s);
duke@435 2646 *s++; len--; // Skip opening paren
duke@435 2647 char *t = s+len;
duke@435 2648 while( *(--t) != ')' ) ; // Find close paren
duke@435 2649
duke@435 2650 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2651 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2652 int cnt = 0;
twisti@1573 2653 if (has_receiver) {
duke@435 2654 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2655 }
duke@435 2656
duke@435 2657 while( s < t ) {
duke@435 2658 switch( *s++ ) { // Switch on signature character
duke@435 2659 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2660 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2661 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2662 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2663 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2664 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2665 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2666 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2667 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2668 case 'L': // Oop
duke@435 2669 while( *s++ != ';' ) ; // Skip signature
duke@435 2670 sig_bt[cnt++] = T_OBJECT;
duke@435 2671 break;
duke@435 2672 case '[': { // Array
duke@435 2673 do { // Skip optional size
duke@435 2674 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2675 } while( *s++ == '[' ); // Nested arrays?
duke@435 2676 // Skip element type
duke@435 2677 if( s[-1] == 'L' )
duke@435 2678 while( *s++ != ';' ) ; // Skip signature
duke@435 2679 sig_bt[cnt++] = T_ARRAY;
duke@435 2680 break;
duke@435 2681 }
duke@435 2682 default : ShouldNotReachHere();
duke@435 2683 }
duke@435 2684 }
duke@435 2685 assert( cnt < 256, "grow table size" );
duke@435 2686
duke@435 2687 int comp_args_on_stack;
duke@435 2688 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2689
duke@435 2690 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2691 // we must add that in to get "true" stack offsets.
duke@435 2692
duke@435 2693 if (comp_args_on_stack) {
duke@435 2694 for (int i = 0; i < cnt; i++) {
duke@435 2695 VMReg reg1 = regs[i].first();
duke@435 2696 if( reg1->is_stack()) {
duke@435 2697 // Yuck
duke@435 2698 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2699 }
duke@435 2700 VMReg reg2 = regs[i].second();
duke@435 2701 if( reg2->is_stack()) {
duke@435 2702 // Yuck
duke@435 2703 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2704 }
duke@435 2705 regs[i].set_pair(reg2, reg1);
duke@435 2706 }
duke@435 2707 }
duke@435 2708
duke@435 2709 // results
duke@435 2710 *arg_size = cnt;
duke@435 2711 return regs;
duke@435 2712 }
duke@435 2713
duke@435 2714 // OSR Migration Code
duke@435 2715 //
duke@435 2716 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2717 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2718 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2719 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2720 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2721 // back to the compiled code. The compiled code then pops the current
duke@435 2722 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2723 // copies the interpreter locals and displaced headers where it wants.
duke@435 2724 // Finally it calls back to free the temp buffer.
duke@435 2725 //
duke@435 2726 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2727
duke@435 2728 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2729
duke@435 2730 #ifdef IA64
duke@435 2731 ShouldNotReachHere(); // NYI
duke@435 2732 #endif /* IA64 */
duke@435 2733
duke@435 2734 //
duke@435 2735 // This code is dependent on the memory layout of the interpreter local
duke@435 2736 // array and the monitors. On all of our platforms the layout is identical
duke@435 2737 // so this code is shared. If some platform lays the their arrays out
duke@435 2738 // differently then this code could move to platform specific code or
duke@435 2739 // the code here could be modified to copy items one at a time using
duke@435 2740 // frame accessor methods and be platform independent.
duke@435 2741
duke@435 2742 frame fr = thread->last_frame();
duke@435 2743 assert( fr.is_interpreted_frame(), "" );
duke@435 2744 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2745
duke@435 2746 // Figure out how many monitors are active.
duke@435 2747 int active_monitor_count = 0;
duke@435 2748 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2749 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2750 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2751 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2752 }
duke@435 2753
duke@435 2754 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2755 // could double check it.
duke@435 2756
duke@435 2757 methodOop moop = fr.interpreter_frame_method();
duke@435 2758 int max_locals = moop->max_locals();
duke@435 2759 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2760 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2761 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2762
duke@435 2763 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2764 // Since there's no GC I can copy the oops blindly.
duke@435 2765 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2766 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2767 (HeapWord*)&buf[0],
duke@435 2768 max_locals);
duke@435 2769
duke@435 2770 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2771 int i = max_locals;
duke@435 2772 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2773 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2774 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2775 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2776 BasicLock *lock = kptr2->lock();
duke@435 2777 // Inflate so the displaced header becomes position-independent
duke@435 2778 if (lock->displaced_header()->is_unlocked())
duke@435 2779 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2780 // Now the displaced header is free to move
duke@435 2781 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2782 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2783 }
duke@435 2784 }
duke@435 2785 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2786
duke@435 2787 return buf;
duke@435 2788 JRT_END
duke@435 2789
duke@435 2790 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2791 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2792 JRT_END
duke@435 2793
duke@435 2794 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2795 AdapterHandlerTableIterator iter(_adapters);
never@1622 2796 while (iter.has_next()) {
never@1622 2797 AdapterHandlerEntry* a = iter.next();
never@1622 2798 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2799 }
duke@435 2800 return false;
duke@435 2801 }
duke@435 2802
bobv@2036 2803 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2804 AdapterHandlerTableIterator iter(_adapters);
never@1622 2805 while (iter.has_next()) {
never@1622 2806 AdapterHandlerEntry* a = iter.next();
never@1622 2807 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@2036 2808 st->print("Adapter for signature: ");
bobv@2036 2809 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@2036 2810 a->fingerprint()->as_string(),
bobv@2036 2811 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@2036 2812
duke@435 2813 return;
duke@435 2814 }
duke@435 2815 }
duke@435 2816 assert(false, "Should have found handler");
duke@435 2817 }
never@1622 2818
bobv@2036 2819 #ifndef PRODUCT
bobv@2036 2820
never@1622 2821 void AdapterHandlerLibrary::print_statistics() {
never@1622 2822 _adapters->print_statistics();
never@1622 2823 }
never@1622 2824
duke@435 2825 #endif /* PRODUCT */

mercurial