src/share/vm/memory/cardTableModRefBS.hpp

Thu, 14 Apr 2011 12:10:15 -0700

author
ysr
date
Thu, 14 Apr 2011 12:10:15 -0700
changeset 2788
c69b1043dfb1
parent 2715
abdfc822206f
child 2819
c48ad6ab8bdf
permissions
-rw-r--r--

7036482: clear argument is redundant and unused in cardtable methods
Summary: Removed the unused clear argument to various cardtbale methods and unused mod_oop_in_space_iterate method. Unrelated to synopsis, added a pair of clarifying parens in AllocationStats constructor.
Reviewed-by: brutisso, jcoomes

duke@435 1 /*
ysr@2788 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
stefank@2314 26 #define SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP
stefank@2314 27
stefank@2314 28 #include "memory/modRefBarrierSet.hpp"
stefank@2314 29 #include "oops/oop.hpp"
stefank@2314 30 #include "oops/oop.inline2.hpp"
stefank@2314 31
duke@435 32 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
duke@435 33 // enumerate ref fields that have been modified (since the last
duke@435 34 // enumeration.)
duke@435 35
duke@435 36 // As it currently stands, this barrier is *imprecise*: when a ref field in
duke@435 37 // an object "o" is modified, the card table entry for the card containing
duke@435 38 // the head of "o" is dirtied, not necessarily the card containing the
duke@435 39 // modified field itself. For object arrays, however, the barrier *is*
duke@435 40 // precise; only the card containing the modified element is dirtied.
duke@435 41 // Any MemRegionClosures used to scan dirty cards should take these
duke@435 42 // considerations into account.
duke@435 43
duke@435 44 class Generation;
duke@435 45 class OopsInGenClosure;
duke@435 46 class DirtyCardToOopClosure;
duke@435 47
duke@435 48 class CardTableModRefBS: public ModRefBarrierSet {
duke@435 49 // Some classes get to look at some private stuff.
duke@435 50 friend class BytecodeInterpreter;
duke@435 51 friend class VMStructs;
duke@435 52 friend class CardTableRS;
duke@435 53 friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
twisti@2047 54 friend class SharkBuilder;
duke@435 55 #ifndef PRODUCT
duke@435 56 // For debugging.
duke@435 57 friend class GuaranteeNotModClosure;
duke@435 58 #endif
duke@435 59 protected:
duke@435 60
duke@435 61 enum CardValues {
duke@435 62 clean_card = -1,
iveresov@1051 63 // The mask contains zeros in places for all other values.
iveresov@1051 64 clean_card_mask = clean_card - 31,
iveresov@1051 65
duke@435 66 dirty_card = 0,
duke@435 67 precleaned_card = 1,
iveresov@1051 68 claimed_card = 2,
iveresov@1051 69 deferred_card = 4,
iveresov@1051 70 last_card = 8,
iveresov@1051 71 CT_MR_BS_last_reserved = 16
duke@435 72 };
duke@435 73
duke@435 74 // dirty and precleaned are equivalent wrt younger_refs_iter.
duke@435 75 static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
duke@435 76 return cv == dirty_card || cv == precleaned_card;
duke@435 77 }
duke@435 78
duke@435 79 // Returns "true" iff the value "cv" will cause the card containing it
duke@435 80 // to be scanned in the current traversal. May be overridden by
duke@435 81 // subtypes.
duke@435 82 virtual bool card_will_be_scanned(jbyte cv) {
duke@435 83 return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
duke@435 84 }
duke@435 85
duke@435 86 // Returns "true" iff the value "cv" may have represented a dirty card at
duke@435 87 // some point.
duke@435 88 virtual bool card_may_have_been_dirty(jbyte cv) {
duke@435 89 return card_is_dirty_wrt_gen_iter(cv);
duke@435 90 }
duke@435 91
duke@435 92 // The declaration order of these const fields is important; see the
duke@435 93 // constructor before changing.
duke@435 94 const MemRegion _whole_heap; // the region covered by the card table
duke@435 95 const size_t _guard_index; // index of very last element in the card
duke@435 96 // table; it is set to a guard value
duke@435 97 // (last_card) and should never be modified
duke@435 98 const size_t _last_valid_index; // index of the last valid element
duke@435 99 const size_t _page_size; // page size used when mapping _byte_map
duke@435 100 const size_t _byte_map_size; // in bytes
duke@435 101 jbyte* _byte_map; // the card marking array
duke@435 102
duke@435 103 int _cur_covered_regions;
duke@435 104 // The covered regions should be in address order.
duke@435 105 MemRegion* _covered;
duke@435 106 // The committed regions correspond one-to-one to the covered regions.
duke@435 107 // They represent the card-table memory that has been committed to service
duke@435 108 // the corresponding covered region. It may be that committed region for
duke@435 109 // one covered region corresponds to a larger region because of page-size
duke@435 110 // roundings. Thus, a committed region for one covered region may
duke@435 111 // actually extend onto the card-table space for the next covered region.
duke@435 112 MemRegion* _committed;
duke@435 113
duke@435 114 // The last card is a guard card, and we commit the page for it so
duke@435 115 // we can use the card for verification purposes. We make sure we never
duke@435 116 // uncommit the MemRegion for that page.
duke@435 117 MemRegion _guard_region;
duke@435 118
duke@435 119 protected:
duke@435 120 // Initialization utilities; covered_words is the size of the covered region
duke@435 121 // in, um, words.
duke@435 122 inline size_t cards_required(size_t covered_words);
duke@435 123 inline size_t compute_byte_map_size();
duke@435 124
duke@435 125 // Finds and return the index of the region, if any, to which the given
duke@435 126 // region would be contiguous. If none exists, assign a new region and
duke@435 127 // returns its index. Requires that no more than the maximum number of
duke@435 128 // covered regions defined in the constructor are ever in use.
duke@435 129 int find_covering_region_by_base(HeapWord* base);
duke@435 130
duke@435 131 // Same as above, but finds the region containing the given address
duke@435 132 // instead of starting at a given base address.
duke@435 133 int find_covering_region_containing(HeapWord* addr);
duke@435 134
duke@435 135 // Resize one of the regions covered by the remembered set.
duke@435 136 void resize_covered_region(MemRegion new_region);
duke@435 137
duke@435 138 // Returns the leftmost end of a committed region corresponding to a
duke@435 139 // covered region before covered region "ind", or else "NULL" if "ind" is
duke@435 140 // the first covered region.
duke@435 141 HeapWord* largest_prev_committed_end(int ind) const;
duke@435 142
duke@435 143 // Returns the part of the region mr that doesn't intersect with
duke@435 144 // any committed region other than self. Used to prevent uncommitting
duke@435 145 // regions that are also committed by other regions. Also protects
duke@435 146 // against uncommitting the guard region.
duke@435 147 MemRegion committed_unique_to_self(int self, MemRegion mr) const;
duke@435 148
duke@435 149 // Mapping from address to card marking array entry
duke@435 150 jbyte* byte_for(const void* p) const {
duke@435 151 assert(_whole_heap.contains(p),
duke@435 152 "out of bounds access to card marking array");
duke@435 153 jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
duke@435 154 assert(result >= _byte_map && result < _byte_map + _byte_map_size,
duke@435 155 "out of bounds accessor for card marking array");
duke@435 156 return result;
duke@435 157 }
duke@435 158
duke@435 159 // The card table byte one after the card marking array
duke@435 160 // entry for argument address. Typically used for higher bounds
duke@435 161 // for loops iterating through the card table.
duke@435 162 jbyte* byte_after(const void* p) const {
duke@435 163 return byte_for(p) + 1;
duke@435 164 }
duke@435 165
duke@435 166 // Iterate over the portion of the card-table which covers the given
duke@435 167 // region mr in the given space and apply cl to any dirty sub-regions
duke@435 168 // of mr. cl and dcto_cl must either be the same closure or cl must
duke@435 169 // wrap dcto_cl. Both are required - neither may be NULL. Also, dcto_cl
duke@435 170 // may be modified. Note that this function will operate in a parallel
duke@435 171 // mode if worker threads are available.
duke@435 172 void non_clean_card_iterate(Space* sp, MemRegion mr,
duke@435 173 DirtyCardToOopClosure* dcto_cl,
ysr@2788 174 MemRegionClosure* cl);
duke@435 175
duke@435 176 // Utility function used to implement the other versions below.
ysr@2788 177 void non_clean_card_iterate_work(MemRegion mr, MemRegionClosure* cl);
duke@435 178
duke@435 179 void par_non_clean_card_iterate_work(Space* sp, MemRegion mr,
duke@435 180 DirtyCardToOopClosure* dcto_cl,
duke@435 181 MemRegionClosure* cl,
duke@435 182 int n_threads);
duke@435 183
duke@435 184 // Dirty the bytes corresponding to "mr" (not all of which must be
duke@435 185 // covered.)
duke@435 186 void dirty_MemRegion(MemRegion mr);
duke@435 187
duke@435 188 // Clear (to clean_card) the bytes entirely contained within "mr" (not
duke@435 189 // all of which must be covered.)
duke@435 190 void clear_MemRegion(MemRegion mr);
duke@435 191
duke@435 192 // *** Support for parallel card scanning.
duke@435 193
duke@435 194 enum SomeConstantsForParallelism {
duke@435 195 StridesPerThread = 2,
duke@435 196 CardsPerStrideChunk = 256
duke@435 197 };
duke@435 198
duke@435 199 // This is an array, one element per covered region of the card table.
duke@435 200 // Each entry is itself an array, with one element per chunk in the
duke@435 201 // covered region. Each entry of these arrays is the lowest non-clean
duke@435 202 // card of the corresponding chunk containing part of an object from the
duke@435 203 // previous chunk, or else NULL.
duke@435 204 typedef jbyte* CardPtr;
duke@435 205 typedef CardPtr* CardArr;
duke@435 206 CardArr* _lowest_non_clean;
duke@435 207 size_t* _lowest_non_clean_chunk_size;
duke@435 208 uintptr_t* _lowest_non_clean_base_chunk_index;
duke@435 209 int* _last_LNC_resizing_collection;
duke@435 210
duke@435 211 // Initializes "lowest_non_clean" to point to the array for the region
duke@435 212 // covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
duke@435 213 // index of the corresponding to the first element of that array.
duke@435 214 // Ensures that these arrays are of sufficient size, allocating if necessary.
duke@435 215 // May be called by several threads concurrently.
duke@435 216 void get_LNC_array_for_space(Space* sp,
duke@435 217 jbyte**& lowest_non_clean,
duke@435 218 uintptr_t& lowest_non_clean_base_chunk_index,
duke@435 219 size_t& lowest_non_clean_chunk_size);
duke@435 220
duke@435 221 // Returns the number of chunks necessary to cover "mr".
duke@435 222 size_t chunks_to_cover(MemRegion mr) {
duke@435 223 return (size_t)(addr_to_chunk_index(mr.last()) -
duke@435 224 addr_to_chunk_index(mr.start()) + 1);
duke@435 225 }
duke@435 226
duke@435 227 // Returns the index of the chunk in a stride which
duke@435 228 // covers the given address.
duke@435 229 uintptr_t addr_to_chunk_index(const void* addr) {
duke@435 230 uintptr_t card = (uintptr_t) byte_for(addr);
duke@435 231 return card / CardsPerStrideChunk;
duke@435 232 }
duke@435 233
duke@435 234 // Apply cl, which must either itself apply dcto_cl or be dcto_cl,
duke@435 235 // to the cards in the stride (of n_strides) within the given space.
duke@435 236 void process_stride(Space* sp,
duke@435 237 MemRegion used,
duke@435 238 jint stride, int n_strides,
duke@435 239 DirtyCardToOopClosure* dcto_cl,
duke@435 240 MemRegionClosure* cl,
duke@435 241 jbyte** lowest_non_clean,
duke@435 242 uintptr_t lowest_non_clean_base_chunk_index,
duke@435 243 size_t lowest_non_clean_chunk_size);
duke@435 244
duke@435 245 // Makes sure that chunk boundaries are handled appropriately, by
duke@435 246 // adjusting the min_done of dcto_cl, and by using a special card-table
duke@435 247 // value to indicate how min_done should be set.
duke@435 248 void process_chunk_boundaries(Space* sp,
duke@435 249 DirtyCardToOopClosure* dcto_cl,
duke@435 250 MemRegion chunk_mr,
duke@435 251 MemRegion used,
duke@435 252 jbyte** lowest_non_clean,
duke@435 253 uintptr_t lowest_non_clean_base_chunk_index,
duke@435 254 size_t lowest_non_clean_chunk_size);
duke@435 255
duke@435 256 public:
duke@435 257 // Constants
duke@435 258 enum SomePublicConstants {
duke@435 259 card_shift = 9,
duke@435 260 card_size = 1 << card_shift,
duke@435 261 card_size_in_words = card_size / sizeof(HeapWord)
duke@435 262 };
duke@435 263
ysr@777 264 static int clean_card_val() { return clean_card; }
iveresov@1051 265 static int clean_card_mask_val() { return clean_card_mask; }
ysr@777 266 static int dirty_card_val() { return dirty_card; }
ysr@777 267 static int claimed_card_val() { return claimed_card; }
ysr@777 268 static int precleaned_card_val() { return precleaned_card; }
iveresov@1051 269 static int deferred_card_val() { return deferred_card; }
ysr@777 270
duke@435 271 // For RTTI simulation.
duke@435 272 bool is_a(BarrierSet::Name bsn) {
ysr@777 273 return bsn == BarrierSet::CardTableModRef || ModRefBarrierSet::is_a(bsn);
duke@435 274 }
duke@435 275
duke@435 276 CardTableModRefBS(MemRegion whole_heap, int max_covered_regions);
duke@435 277
duke@435 278 // *** Barrier set functions.
duke@435 279
ysr@777 280 bool has_write_ref_pre_barrier() { return false; }
ysr@777 281
coleenp@548 282 inline bool write_ref_needs_barrier(void* field, oop new_val) {
duke@435 283 // Note that this assumes the perm gen is the highest generation
duke@435 284 // in the address space
duke@435 285 return new_val != NULL && !new_val->is_perm();
duke@435 286 }
duke@435 287
duke@435 288 // Record a reference update. Note that these versions are precise!
duke@435 289 // The scanning code has to handle the fact that the write barrier may be
duke@435 290 // either precise or imprecise. We make non-virtual inline variants of
duke@435 291 // these functions here for performance.
duke@435 292 protected:
duke@435 293 void write_ref_field_work(oop obj, size_t offset, oop newVal);
ysr@1280 294 virtual void write_ref_field_work(void* field, oop newVal);
duke@435 295 public:
duke@435 296
duke@435 297 bool has_write_ref_array_opt() { return true; }
duke@435 298 bool has_write_region_opt() { return true; }
duke@435 299
duke@435 300 inline void inline_write_region(MemRegion mr) {
duke@435 301 dirty_MemRegion(mr);
duke@435 302 }
duke@435 303 protected:
duke@435 304 void write_region_work(MemRegion mr) {
duke@435 305 inline_write_region(mr);
duke@435 306 }
duke@435 307 public:
duke@435 308
duke@435 309 inline void inline_write_ref_array(MemRegion mr) {
duke@435 310 dirty_MemRegion(mr);
duke@435 311 }
duke@435 312 protected:
duke@435 313 void write_ref_array_work(MemRegion mr) {
duke@435 314 inline_write_ref_array(mr);
duke@435 315 }
duke@435 316 public:
duke@435 317
duke@435 318 bool is_aligned(HeapWord* addr) {
duke@435 319 return is_card_aligned(addr);
duke@435 320 }
duke@435 321
duke@435 322 // *** Card-table-barrier-specific things.
duke@435 323
ysr@1280 324 template <class T> inline void inline_write_ref_field_pre(T* field, oop newVal) {}
ysr@777 325
ysr@1280 326 template <class T> inline void inline_write_ref_field(T* field, oop newVal) {
ysr@1280 327 jbyte* byte = byte_for((void*)field);
duke@435 328 *byte = dirty_card;
duke@435 329 }
duke@435 330
ysr@777 331 // These are used by G1, when it uses the card table as a temporary data
ysr@777 332 // structure for card claiming.
ysr@777 333 bool is_card_dirty(size_t card_index) {
ysr@777 334 return _byte_map[card_index] == dirty_card_val();
ysr@777 335 }
ysr@777 336
ysr@777 337 void mark_card_dirty(size_t card_index) {
ysr@777 338 _byte_map[card_index] = dirty_card_val();
ysr@777 339 }
ysr@777 340
ysr@777 341 bool is_card_claimed(size_t card_index) {
iveresov@1051 342 jbyte val = _byte_map[card_index];
iveresov@1051 343 return (val & (clean_card_mask_val() | claimed_card_val())) == claimed_card_val();
ysr@777 344 }
ysr@777 345
iveresov@1696 346 void set_card_claimed(size_t card_index) {
iveresov@1696 347 jbyte val = _byte_map[card_index];
iveresov@1696 348 if (val == clean_card_val()) {
iveresov@1696 349 val = (jbyte)claimed_card_val();
iveresov@1696 350 } else {
iveresov@1696 351 val |= (jbyte)claimed_card_val();
iveresov@1696 352 }
iveresov@1696 353 _byte_map[card_index] = val;
iveresov@1696 354 }
iveresov@1696 355
ysr@777 356 bool claim_card(size_t card_index);
ysr@777 357
ysr@777 358 bool is_card_clean(size_t card_index) {
ysr@777 359 return _byte_map[card_index] == clean_card_val();
ysr@777 360 }
ysr@777 361
iveresov@1051 362 bool is_card_deferred(size_t card_index) {
iveresov@1051 363 jbyte val = _byte_map[card_index];
iveresov@1051 364 return (val & (clean_card_mask_val() | deferred_card_val())) == deferred_card_val();
iveresov@1051 365 }
iveresov@1051 366
iveresov@1051 367 bool mark_card_deferred(size_t card_index);
iveresov@1051 368
duke@435 369 // Card marking array base (adjusted for heap low boundary)
duke@435 370 // This would be the 0th element of _byte_map, if the heap started at 0x0.
duke@435 371 // But since the heap starts at some higher address, this points to somewhere
duke@435 372 // before the beginning of the actual _byte_map.
duke@435 373 jbyte* byte_map_base;
duke@435 374
duke@435 375 // Return true if "p" is at the start of a card.
duke@435 376 bool is_card_aligned(HeapWord* p) {
duke@435 377 jbyte* pcard = byte_for(p);
duke@435 378 return (addr_for(pcard) == p);
duke@435 379 }
duke@435 380
tonyp@2715 381 HeapWord* align_to_card_boundary(HeapWord* p) {
tonyp@2715 382 jbyte* pcard = byte_for(p + card_size_in_words - 1);
tonyp@2715 383 return addr_for(pcard);
tonyp@2715 384 }
tonyp@2715 385
duke@435 386 // The kinds of precision a CardTableModRefBS may offer.
duke@435 387 enum PrecisionStyle {
duke@435 388 Precise,
duke@435 389 ObjHeadPreciseArray
duke@435 390 };
duke@435 391
duke@435 392 // Tells what style of precision this card table offers.
duke@435 393 PrecisionStyle precision() {
duke@435 394 return ObjHeadPreciseArray; // Only one supported for now.
duke@435 395 }
duke@435 396
duke@435 397 // ModRefBS functions.
ysr@777 398 virtual void invalidate(MemRegion mr, bool whole_heap = false);
duke@435 399 void clear(MemRegion mr);
ysr@777 400 void dirty(MemRegion mr);
duke@435 401
duke@435 402 // *** Card-table-RemSet-specific things.
duke@435 403
duke@435 404 // Invoke "cl.do_MemRegion" on a set of MemRegions that collectively
duke@435 405 // includes all the modified cards (expressing each card as a
duke@435 406 // MemRegion). Thus, several modified cards may be lumped into one
duke@435 407 // region. The regions are non-overlapping, and are visited in
duke@435 408 // *decreasing* address order. (This order aids with imprecise card
duke@435 409 // marking, where a dirty card may cause scanning, and summarization
duke@435 410 // marking, of objects that extend onto subsequent cards.)
ysr@2788 411 void mod_card_iterate(MemRegionClosure* cl) {
ysr@2788 412 non_clean_card_iterate_work(_whole_heap, cl);
duke@435 413 }
duke@435 414
duke@435 415 // Like the "mod_cards_iterate" above, except only invokes the closure
duke@435 416 // for cards within the MemRegion "mr" (which is required to be
duke@435 417 // card-aligned and sized.)
ysr@2788 418 void mod_card_iterate(MemRegion mr, MemRegionClosure* cl) {
ysr@2788 419 non_clean_card_iterate_work(mr, cl);
duke@435 420 }
duke@435 421
duke@435 422 static uintx ct_max_alignment_constraint();
duke@435 423
ysr@777 424 // Apply closure "cl" to the dirty cards containing some part of
ysr@777 425 // MemRegion "mr".
ysr@777 426 void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
duke@435 427
duke@435 428 // Return the MemRegion corresponding to the first maximal run
ysr@777 429 // of dirty cards lying completely within MemRegion mr.
ysr@777 430 // If reset is "true", then sets those card table entries to the given
ysr@777 431 // value.
ysr@777 432 MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
ysr@777 433 int reset_val);
duke@435 434
duke@435 435 // Set all the dirty cards in the given region to precleaned state.
duke@435 436 void preclean_dirty_cards(MemRegion mr);
duke@435 437
ysr@777 438 // Provide read-only access to the card table array.
ysr@777 439 const jbyte* byte_for_const(const void* p) const {
ysr@777 440 return byte_for(p);
ysr@777 441 }
ysr@777 442 const jbyte* byte_after_const(const void* p) const {
ysr@777 443 return byte_after(p);
ysr@777 444 }
ysr@777 445
ysr@777 446 // Mapping from card marking array entry to address of first word
ysr@777 447 HeapWord* addr_for(const jbyte* p) const {
ysr@777 448 assert(p >= _byte_map && p < _byte_map + _byte_map_size,
ysr@777 449 "out of bounds access to card marking array");
ysr@777 450 size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
ysr@777 451 HeapWord* result = (HeapWord*) (delta << card_shift);
ysr@777 452 assert(_whole_heap.contains(result),
ysr@777 453 "out of bounds accessor from card marking array");
ysr@777 454 return result;
ysr@777 455 }
ysr@777 456
duke@435 457 // Mapping from address to card marking array index.
swamyv@924 458 size_t index_for(void* p) {
duke@435 459 assert(_whole_heap.contains(p),
duke@435 460 "out of bounds access to card marking array");
duke@435 461 return byte_for(p) - _byte_map;
duke@435 462 }
duke@435 463
iveresov@1051 464 const jbyte* byte_for_index(const size_t card_index) const {
iveresov@1051 465 return _byte_map + card_index;
iveresov@1051 466 }
iveresov@1051 467
duke@435 468 void verify();
duke@435 469 void verify_guard();
duke@435 470
duke@435 471 void verify_clean_region(MemRegion mr) PRODUCT_RETURN;
apetrusenko@1375 472 void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
duke@435 473
duke@435 474 static size_t par_chunk_heapword_alignment() {
duke@435 475 return CardsPerStrideChunk * card_size_in_words;
duke@435 476 }
ysr@777 477
duke@435 478 };
duke@435 479
duke@435 480 class CardTableRS;
duke@435 481
duke@435 482 // A specialization for the CardTableRS gen rem set.
duke@435 483 class CardTableModRefBSForCTRS: public CardTableModRefBS {
duke@435 484 CardTableRS* _rs;
duke@435 485 protected:
duke@435 486 bool card_will_be_scanned(jbyte cv);
duke@435 487 bool card_may_have_been_dirty(jbyte cv);
duke@435 488 public:
duke@435 489 CardTableModRefBSForCTRS(MemRegion whole_heap,
duke@435 490 int max_covered_regions) :
duke@435 491 CardTableModRefBS(whole_heap, max_covered_regions) {}
duke@435 492
duke@435 493 void set_CTRS(CardTableRS* rs) { _rs = rs; }
duke@435 494 };
stefank@2314 495
stefank@2314 496 #endif // SHARE_VM_MEMORY_CARDTABLEMODREFBS_HPP

mercurial