src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 12 Oct 2010 09:36:48 -0700

author
johnc
date
Tue, 12 Oct 2010 09:36:48 -0700
changeset 2216
c32059ef4dc0
parent 2191
894b1d7c7e01
child 2217
b14ec34b1e07
permissions
-rw-r--r--

6971296: G1: simplify G1RemSet class hierarchy
Summary: Remove G1RemSet base class and StupidG1RemSet class; rename HRInto_G1RemSet to just G1RemSet.
Reviewed-by: ysr, tonyp

ysr@777 1 /*
trims@1907 2 * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 26 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 27 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 28 // heap subsets that will yield large amounts of garbage.
ysr@777 29
ysr@777 30 class HeapRegion;
ysr@777 31 class HeapRegionSeq;
ysr@777 32 class PermanentGenerationSpec;
ysr@777 33 class GenerationSpec;
ysr@777 34 class OopsInHeapRegionClosure;
ysr@777 35 class G1ScanHeapEvacClosure;
ysr@777 36 class ObjectClosure;
ysr@777 37 class SpaceClosure;
ysr@777 38 class CompactibleSpaceClosure;
ysr@777 39 class Space;
ysr@777 40 class G1CollectorPolicy;
ysr@777 41 class GenRemSet;
ysr@777 42 class G1RemSet;
ysr@777 43 class HeapRegionRemSetIterator;
ysr@777 44 class ConcurrentMark;
ysr@777 45 class ConcurrentMarkThread;
ysr@777 46 class ConcurrentG1Refine;
ysr@777 47 class ConcurrentZFThread;
ysr@777 48
jcoomes@2064 49 typedef OverflowTaskQueue<StarTask> RefToScanQueue;
jcoomes@1746 50 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
ysr@777 51
johnc@1242 52 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 53 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 54
ysr@777 55 enum G1GCThreadGroups {
ysr@777 56 G1CRGroup = 0,
ysr@777 57 G1ZFGroup = 1,
ysr@777 58 G1CMGroup = 2,
ysr@777 59 G1CLGroup = 3
ysr@777 60 };
ysr@777 61
ysr@777 62 enum GCAllocPurpose {
ysr@777 63 GCAllocForTenured,
ysr@777 64 GCAllocForSurvived,
ysr@777 65 GCAllocPurposeCount
ysr@777 66 };
ysr@777 67
ysr@777 68 class YoungList : public CHeapObj {
ysr@777 69 private:
ysr@777 70 G1CollectedHeap* _g1h;
ysr@777 71
ysr@777 72 HeapRegion* _head;
ysr@777 73
johnc@1829 74 HeapRegion* _survivor_head;
johnc@1829 75 HeapRegion* _survivor_tail;
johnc@1829 76
johnc@1829 77 HeapRegion* _curr;
johnc@1829 78
ysr@777 79 size_t _length;
johnc@1829 80 size_t _survivor_length;
ysr@777 81
ysr@777 82 size_t _last_sampled_rs_lengths;
ysr@777 83 size_t _sampled_rs_lengths;
ysr@777 84
johnc@1829 85 void empty_list(HeapRegion* list);
ysr@777 86
ysr@777 87 public:
ysr@777 88 YoungList(G1CollectedHeap* g1h);
ysr@777 89
johnc@1829 90 void push_region(HeapRegion* hr);
johnc@1829 91 void add_survivor_region(HeapRegion* hr);
johnc@1829 92
johnc@1829 93 void empty_list();
johnc@1829 94 bool is_empty() { return _length == 0; }
johnc@1829 95 size_t length() { return _length; }
johnc@1829 96 size_t survivor_length() { return _survivor_length; }
ysr@777 97
ysr@777 98 void rs_length_sampling_init();
ysr@777 99 bool rs_length_sampling_more();
ysr@777 100 void rs_length_sampling_next();
ysr@777 101
ysr@777 102 void reset_sampled_info() {
ysr@777 103 _last_sampled_rs_lengths = 0;
ysr@777 104 }
ysr@777 105 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 106
ysr@777 107 // for development purposes
ysr@777 108 void reset_auxilary_lists();
johnc@1829 109 void clear() { _head = NULL; _length = 0; }
johnc@1829 110
johnc@1829 111 void clear_survivors() {
johnc@1829 112 _survivor_head = NULL;
johnc@1829 113 _survivor_tail = NULL;
johnc@1829 114 _survivor_length = 0;
johnc@1829 115 }
johnc@1829 116
ysr@777 117 HeapRegion* first_region() { return _head; }
ysr@777 118 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 119 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 120
ysr@777 121 // debugging
ysr@777 122 bool check_list_well_formed();
johnc@1829 123 bool check_list_empty(bool check_sample = true);
ysr@777 124 void print();
ysr@777 125 };
ysr@777 126
ysr@777 127 class RefineCardTableEntryClosure;
ysr@777 128 class G1CollectedHeap : public SharedHeap {
ysr@777 129 friend class VM_G1CollectForAllocation;
ysr@777 130 friend class VM_GenCollectForPermanentAllocation;
ysr@777 131 friend class VM_G1CollectFull;
ysr@777 132 friend class VM_G1IncCollectionPause;
ysr@777 133 friend class VMStructs;
ysr@777 134
ysr@777 135 // Closures used in implementation.
ysr@777 136 friend class G1ParCopyHelper;
ysr@777 137 friend class G1IsAliveClosure;
ysr@777 138 friend class G1EvacuateFollowersClosure;
ysr@777 139 friend class G1ParScanThreadState;
ysr@777 140 friend class G1ParScanClosureSuper;
ysr@777 141 friend class G1ParEvacuateFollowersClosure;
ysr@777 142 friend class G1ParTask;
ysr@777 143 friend class G1FreeGarbageRegionClosure;
ysr@777 144 friend class RefineCardTableEntryClosure;
ysr@777 145 friend class G1PrepareCompactClosure;
ysr@777 146 friend class RegionSorter;
ysr@777 147 friend class CountRCClosure;
ysr@777 148 friend class EvacPopObjClosure;
apetrusenko@1231 149 friend class G1ParCleanupCTTask;
ysr@777 150
ysr@777 151 // Other related classes.
ysr@777 152 friend class G1MarkSweep;
ysr@777 153
ysr@777 154 private:
ysr@777 155 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 156 static G1CollectedHeap* _g1h;
ysr@777 157
tonyp@1377 158 static size_t _humongous_object_threshold_in_words;
tonyp@1377 159
ysr@777 160 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 161 VirtualSpace _g1_storage;
ysr@777 162 MemRegion _g1_reserved;
ysr@777 163
ysr@777 164 // The part of _g1_storage that is currently committed.
ysr@777 165 MemRegion _g1_committed;
ysr@777 166
ysr@777 167 // The maximum part of _g1_storage that has ever been committed.
ysr@777 168 MemRegion _g1_max_committed;
ysr@777 169
ysr@777 170 // The number of regions that are completely free.
ysr@777 171 size_t _free_regions;
ysr@777 172
ysr@777 173 // The number of regions we could create by expansion.
ysr@777 174 size_t _expansion_regions;
ysr@777 175
ysr@777 176 // Return the number of free regions in the heap (by direct counting.)
ysr@777 177 size_t count_free_regions();
ysr@777 178 // Return the number of free regions on the free and unclean lists.
ysr@777 179 size_t count_free_regions_list();
ysr@777 180
ysr@777 181 // The block offset table for the G1 heap.
ysr@777 182 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 183
ysr@777 184 // Move all of the regions off the free lists, then rebuild those free
ysr@777 185 // lists, before and after full GC.
ysr@777 186 void tear_down_region_lists();
ysr@777 187 void rebuild_region_lists();
ysr@777 188 // This sets all non-empty regions to need zero-fill (which they will if
ysr@777 189 // they are empty after full collection.)
ysr@777 190 void set_used_regions_to_need_zero_fill();
ysr@777 191
ysr@777 192 // The sequence of all heap regions in the heap.
ysr@777 193 HeapRegionSeq* _hrs;
ysr@777 194
ysr@777 195 // The region from which normal-sized objects are currently being
ysr@777 196 // allocated. May be NULL.
ysr@777 197 HeapRegion* _cur_alloc_region;
ysr@777 198
ysr@777 199 // Postcondition: cur_alloc_region == NULL.
ysr@777 200 void abandon_cur_alloc_region();
tonyp@1071 201 void abandon_gc_alloc_regions();
ysr@777 202
ysr@777 203 // The to-space memory regions into which objects are being copied during
ysr@777 204 // a GC.
ysr@777 205 HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
apetrusenko@980 206 size_t _gc_alloc_region_counts[GCAllocPurposeCount];
tonyp@1071 207 // These are the regions, one per GCAllocPurpose, that are half-full
tonyp@1071 208 // at the end of a collection and that we want to reuse during the
tonyp@1071 209 // next collection.
tonyp@1071 210 HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
tonyp@1071 211 // This specifies whether we will keep the last half-full region at
tonyp@1071 212 // the end of a collection so that it can be reused during the next
tonyp@1071 213 // collection (this is specified per GCAllocPurpose)
tonyp@1071 214 bool _retain_gc_alloc_region[GCAllocPurposeCount];
ysr@777 215
ysr@777 216 // A list of the regions that have been set to be alloc regions in the
ysr@777 217 // current collection.
ysr@777 218 HeapRegion* _gc_alloc_region_list;
ysr@777 219
apetrusenko@1826 220 // Determines PLAB size for a particular allocation purpose.
apetrusenko@1826 221 static size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 222
ysr@777 223 // When called by par thread, require par_alloc_during_gc_lock() to be held.
ysr@777 224 void push_gc_alloc_region(HeapRegion* hr);
ysr@777 225
ysr@777 226 // This should only be called single-threaded. Undeclares all GC alloc
ysr@777 227 // regions.
ysr@777 228 void forget_alloc_region_list();
ysr@777 229
ysr@777 230 // Should be used to set an alloc region, because there's other
ysr@777 231 // associated bookkeeping.
ysr@777 232 void set_gc_alloc_region(int purpose, HeapRegion* r);
ysr@777 233
ysr@777 234 // Check well-formedness of alloc region list.
ysr@777 235 bool check_gc_alloc_regions();
ysr@777 236
ysr@777 237 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 238 // than the current allocation region.
ysr@777 239 size_t _summary_bytes_used;
ysr@777 240
tonyp@961 241 // This is used for a quick test on whether a reference points into
tonyp@961 242 // the collection set or not. Basically, we have an array, with one
tonyp@961 243 // byte per region, and that byte denotes whether the corresponding
tonyp@961 244 // region is in the collection set or not. The entry corresponding
tonyp@961 245 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 246 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 247 // biased so that it actually points to address 0 of the address
tonyp@961 248 // space, to make the test as fast as possible (we can simply shift
tonyp@961 249 // the address to address into it, instead of having to subtract the
tonyp@961 250 // bottom of the heap from the address before shifting it; basically
tonyp@961 251 // it works in the same way the card table works).
tonyp@961 252 bool* _in_cset_fast_test;
tonyp@961 253
tonyp@961 254 // The allocated array used for the fast test on whether a reference
tonyp@961 255 // points into the collection set or not. This field is also used to
tonyp@961 256 // free the array.
tonyp@961 257 bool* _in_cset_fast_test_base;
tonyp@961 258
tonyp@961 259 // The length of the _in_cset_fast_test_base array.
tonyp@961 260 size_t _in_cset_fast_test_length;
tonyp@961 261
iveresov@788 262 volatile unsigned _gc_time_stamp;
ysr@777 263
ysr@777 264 size_t* _surviving_young_words;
ysr@777 265
ysr@777 266 void setup_surviving_young_words();
ysr@777 267 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 268 void cleanup_surviving_young_words();
ysr@777 269
tonyp@2011 270 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 271 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 272 // explicitly started if:
tonyp@2011 273 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 274 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
tonyp@2011 275 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 276
tonyp@2011 277 // Keeps track of how many "full collections" (i.e., Full GCs or
tonyp@2011 278 // concurrent cycles) we have completed. The number of them we have
tonyp@2011 279 // started is maintained in _total_full_collections in CollectedHeap.
tonyp@2011 280 volatile unsigned int _full_collections_completed;
tonyp@2011 281
ysr@777 282 protected:
ysr@777 283
ysr@777 284 // Returns "true" iff none of the gc alloc regions have any allocations
ysr@777 285 // since the last call to "save_marks".
ysr@777 286 bool all_alloc_regions_no_allocs_since_save_marks();
apetrusenko@980 287 // Perform finalization stuff on all allocation regions.
apetrusenko@980 288 void retire_all_alloc_regions();
ysr@777 289
ysr@777 290 // The number of regions allocated to hold humongous objects.
ysr@777 291 int _num_humongous_regions;
ysr@777 292 YoungList* _young_list;
ysr@777 293
ysr@777 294 // The current policy object for the collector.
ysr@777 295 G1CollectorPolicy* _g1_policy;
ysr@777 296
ysr@777 297 // Parallel allocation lock to protect the current allocation region.
ysr@777 298 Mutex _par_alloc_during_gc_lock;
ysr@777 299 Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
ysr@777 300
ysr@777 301 // If possible/desirable, allocate a new HeapRegion for normal object
ysr@777 302 // allocation sufficient for an allocation of the given "word_size".
ysr@777 303 // If "do_expand" is true, will attempt to expand the heap if necessary
ysr@777 304 // to to satisfy the request. If "zero_filled" is true, requires a
ysr@777 305 // zero-filled region.
ysr@777 306 // (Returning NULL will trigger a GC.)
ysr@777 307 virtual HeapRegion* newAllocRegion_work(size_t word_size,
ysr@777 308 bool do_expand,
ysr@777 309 bool zero_filled);
ysr@777 310
ysr@777 311 virtual HeapRegion* newAllocRegion(size_t word_size,
ysr@777 312 bool zero_filled = true) {
ysr@777 313 return newAllocRegion_work(word_size, false, zero_filled);
ysr@777 314 }
ysr@777 315 virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
ysr@777 316 size_t word_size,
ysr@777 317 bool zero_filled = true);
ysr@777 318
ysr@777 319 // Attempt to allocate an object of the given (very large) "word_size".
ysr@777 320 // Returns "NULL" on failure.
ysr@777 321 virtual HeapWord* humongousObjAllocate(size_t word_size);
ysr@777 322
ysr@777 323 // If possible, allocate a block of the given word_size, else return "NULL".
ysr@777 324 // Returning NULL will trigger GC or heap expansion.
ysr@777 325 // These two methods have rather awkward pre- and
ysr@777 326 // post-conditions. If they are called outside a safepoint, then
ysr@777 327 // they assume that the caller is holding the heap lock. Upon return
ysr@777 328 // they release the heap lock, if they are returning a non-NULL
ysr@777 329 // value. attempt_allocation_slow() also dirties the cards of a
ysr@777 330 // newly-allocated young region after it releases the heap
ysr@777 331 // lock. This change in interface was the neatest way to achieve
ysr@777 332 // this card dirtying without affecting mem_allocate(), which is a
ysr@777 333 // more frequently called method. We tried two or three different
ysr@777 334 // approaches, but they were even more hacky.
ysr@777 335 HeapWord* attempt_allocation(size_t word_size,
ysr@777 336 bool permit_collection_pause = true);
ysr@777 337
ysr@777 338 HeapWord* attempt_allocation_slow(size_t word_size,
ysr@777 339 bool permit_collection_pause = true);
ysr@777 340
ysr@777 341 // Allocate blocks during garbage collection. Will ensure an
ysr@777 342 // allocation region, either by picking one or expanding the
ysr@777 343 // heap, and then allocate a block of the given size. The block
ysr@777 344 // may not be a humongous - it must fit into a single heap region.
ysr@777 345 HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 346 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 347
ysr@777 348 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 349 HeapRegion* alloc_region,
ysr@777 350 bool par,
ysr@777 351 size_t word_size);
ysr@777 352
ysr@777 353 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 354 // that parallel threads might be attempting allocations.
ysr@777 355 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 356
apetrusenko@980 357 // Retires an allocation region when it is full or at the end of a
apetrusenko@980 358 // GC pause.
apetrusenko@980 359 void retire_alloc_region(HeapRegion* alloc_region, bool par);
apetrusenko@980 360
tonyp@2011 361 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2011 362 // inspection request and should collect the entire heap
tonyp@2011 363 // - if clear_all_soft_refs is true, all soft references are cleared
tonyp@2011 364 // during the GC
tonyp@2011 365 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2011 366 // the GC should attempt (at least) to satisfy
tonyp@2011 367 void do_collection(bool explicit_gc,
tonyp@2011 368 bool clear_all_soft_refs,
ysr@777 369 size_t word_size);
ysr@777 370
ysr@777 371 // Callback from VM_G1CollectFull operation.
ysr@777 372 // Perform a full collection.
ysr@777 373 void do_full_collection(bool clear_all_soft_refs);
ysr@777 374
ysr@777 375 // Resize the heap if necessary after a full collection. If this is
ysr@777 376 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 377 // and will be considered part of the used portion of the heap.
ysr@777 378 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 379
ysr@777 380 // Callback from VM_G1CollectForAllocation operation.
ysr@777 381 // This function does everything necessary/possible to satisfy a
ysr@777 382 // failed allocation request (including collection, expansion, etc.)
ysr@777 383 HeapWord* satisfy_failed_allocation(size_t word_size);
ysr@777 384
ysr@777 385 // Attempting to expand the heap sufficiently
ysr@777 386 // to support an allocation of the given "word_size". If
ysr@777 387 // successful, perform the allocation and return the address of the
ysr@777 388 // allocated block, or else "NULL".
ysr@777 389 virtual HeapWord* expand_and_allocate(size_t word_size);
ysr@777 390
ysr@777 391 public:
ysr@777 392 // Expand the garbage-first heap by at least the given size (in bytes!).
ysr@777 393 // (Rounds up to a HeapRegion boundary.)
ysr@777 394 virtual void expand(size_t expand_bytes);
ysr@777 395
ysr@777 396 // Do anything common to GC's.
ysr@777 397 virtual void gc_prologue(bool full);
ysr@777 398 virtual void gc_epilogue(bool full);
ysr@777 399
tonyp@961 400 // We register a region with the fast "in collection set" test. We
tonyp@961 401 // simply set to true the array slot corresponding to this region.
tonyp@961 402 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 403 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 404 assert(r->in_collection_set(), "invariant");
tonyp@961 405 int index = r->hrs_index();
johnc@1829 406 assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
tonyp@961 407 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 408 _in_cset_fast_test_base[index] = true;
tonyp@961 409 }
tonyp@961 410
tonyp@961 411 // This is a fast test on whether a reference points into the
tonyp@961 412 // collection set or not. It does not assume that the reference
tonyp@961 413 // points into the heap; if it doesn't, it will return false.
tonyp@961 414 bool in_cset_fast_test(oop obj) {
tonyp@961 415 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 416 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 417 // no need to subtract the bottom of the heap from obj,
tonyp@961 418 // _in_cset_fast_test is biased
tonyp@961 419 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 420 bool ret = _in_cset_fast_test[index];
tonyp@961 421 // let's make sure the result is consistent with what the slower
tonyp@961 422 // test returns
tonyp@961 423 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 424 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 425 return ret;
tonyp@961 426 } else {
tonyp@961 427 return false;
tonyp@961 428 }
tonyp@961 429 }
tonyp@961 430
johnc@1829 431 void clear_cset_fast_test() {
johnc@1829 432 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 433 memset(_in_cset_fast_test_base, false,
johnc@1829 434 _in_cset_fast_test_length * sizeof(bool));
johnc@1829 435 }
johnc@1829 436
tonyp@2011 437 // This is called at the end of either a concurrent cycle or a Full
tonyp@2011 438 // GC to update the number of full collections completed. Those two
tonyp@2011 439 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 440 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 441 // and then the cycle notices that a Full GC happened and ends
tonyp@2011 442 // too. The outer parameter is a boolean to help us do a bit tighter
tonyp@2011 443 // consistency checking in the method. If outer is false, the caller
tonyp@2011 444 // is the inner caller in the nesting (i.e., the Full GC). If outer
tonyp@2011 445 // is true, the caller is the outer caller in this nesting (i.e.,
tonyp@2011 446 // the concurrent cycle). Further nesting is not currently
tonyp@2011 447 // supported. The end of the this call also notifies the
tonyp@2011 448 // FullGCCount_lock in case a Java thread is waiting for a full GC
tonyp@2011 449 // to happen (e.g., it called System.gc() with
tonyp@2011 450 // +ExplicitGCInvokesConcurrent).
tonyp@2011 451 void increment_full_collections_completed(bool outer);
tonyp@2011 452
tonyp@2011 453 unsigned int full_collections_completed() {
tonyp@2011 454 return _full_collections_completed;
tonyp@2011 455 }
tonyp@2011 456
ysr@777 457 protected:
ysr@777 458
ysr@777 459 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 460 // (Rounds down to a HeapRegion boundary.)
ysr@777 461 virtual void shrink(size_t expand_bytes);
ysr@777 462 void shrink_helper(size_t expand_bytes);
ysr@777 463
jcoomes@2064 464 #if TASKQUEUE_STATS
jcoomes@2064 465 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 466 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 467 void reset_taskqueue_stats();
jcoomes@2064 468 #endif // TASKQUEUE_STATS
jcoomes@2064 469
ysr@777 470 // Do an incremental collection: identify a collection set, and evacuate
ysr@777 471 // its live objects elsewhere.
ysr@777 472 virtual void do_collection_pause();
ysr@777 473
ysr@777 474 // The guts of the incremental collection pause, executed by the vm
apetrusenko@1112 475 // thread.
tonyp@2011 476 virtual void do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 477
ysr@777 478 // Actually do the work of evacuating the collection set.
ysr@777 479 virtual void evacuate_collection_set();
ysr@777 480
ysr@777 481 // If this is an appropriate right time, do a collection pause.
ysr@777 482 // The "word_size" argument, if non-zero, indicates the size of an
ysr@777 483 // allocation request that is prompting this query.
ysr@777 484 void do_collection_pause_if_appropriate(size_t word_size);
ysr@777 485
ysr@777 486 // The g1 remembered set of the heap.
ysr@777 487 G1RemSet* _g1_rem_set;
ysr@777 488 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 489 ModRefBarrierSet* _mr_bs;
ysr@777 490
iveresov@1051 491 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 492 // concurrently after the collection.
iveresov@1051 493 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 494
ysr@777 495 // The Heap Region Rem Set Iterator.
ysr@777 496 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 497
ysr@777 498 // The closure used to refine a single card.
ysr@777 499 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 500
ysr@777 501 // A function to check the consistency of dirty card logs.
ysr@777 502 void check_ct_logs_at_safepoint();
ysr@777 503
johnc@2060 504 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 505 // references into the current collection set. This is used to
johnc@2060 506 // update the remembered sets of the regions in the collection
johnc@2060 507 // set in the event of an evacuation failure.
johnc@2060 508 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 509
ysr@777 510 // After a collection pause, make the regions in the CS into free
ysr@777 511 // regions.
ysr@777 512 void free_collection_set(HeapRegion* cs_head);
ysr@777 513
johnc@1829 514 // Abandon the current collection set without recording policy
johnc@1829 515 // statistics or updating free lists.
johnc@1829 516 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 517
ysr@777 518 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 519 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 520 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 521 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 522 // NULL, then this step is skipped. The "worker_i"
ysr@777 523 // param is for use with parallel roots processing, and should be
ysr@777 524 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 525 // In the sequential case this param will be ignored.
ysr@777 526 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 527 SharedHeap::ScanningOption so,
ysr@777 528 OopClosure* scan_non_heap_roots,
ysr@777 529 OopsInHeapRegionClosure* scan_rs,
ysr@777 530 OopsInGenClosure* scan_perm,
ysr@777 531 int worker_i);
ysr@777 532
ysr@777 533 // Apply "blk" to all the weak roots of the system. These include
ysr@777 534 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 535 // string table, and referents of reachable weak refs.
ysr@777 536 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 537 OopClosure* non_root_closure);
ysr@777 538
ysr@777 539 // Invoke "save_marks" on all heap regions.
ysr@777 540 void save_marks();
ysr@777 541
ysr@777 542 // Free a heap region.
ysr@777 543 void free_region(HeapRegion* hr);
ysr@777 544 // A component of "free_region", exposed for 'batching'.
ysr@777 545 // All the params after "hr" are out params: the used bytes of the freed
ysr@777 546 // region(s), the number of H regions cleared, the number of regions
ysr@777 547 // freed, and pointers to the head and tail of a list of freed contig
ysr@777 548 // regions, linked throught the "next_on_unclean_list" field.
ysr@777 549 void free_region_work(HeapRegion* hr,
ysr@777 550 size_t& pre_used,
ysr@777 551 size_t& cleared_h,
ysr@777 552 size_t& freed_regions,
ysr@777 553 UncleanRegionList* list,
ysr@777 554 bool par = false);
ysr@777 555
ysr@777 556
ysr@777 557 // The concurrent marker (and the thread it runs in.)
ysr@777 558 ConcurrentMark* _cm;
ysr@777 559 ConcurrentMarkThread* _cmThread;
ysr@777 560 bool _mark_in_progress;
ysr@777 561
ysr@777 562 // The concurrent refiner.
ysr@777 563 ConcurrentG1Refine* _cg1r;
ysr@777 564
ysr@777 565 // The concurrent zero-fill thread.
ysr@777 566 ConcurrentZFThread* _czft;
ysr@777 567
ysr@777 568 // The parallel task queues
ysr@777 569 RefToScanQueueSet *_task_queues;
ysr@777 570
ysr@777 571 // True iff a evacuation has failed in the current collection.
ysr@777 572 bool _evacuation_failed;
ysr@777 573
ysr@777 574 // Set the attribute indicating whether evacuation has failed in the
ysr@777 575 // current collection.
ysr@777 576 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 577
ysr@777 578 // Failed evacuations cause some logical from-space objects to have
ysr@777 579 // forwarding pointers to themselves. Reset them.
ysr@777 580 void remove_self_forwarding_pointers();
ysr@777 581
ysr@777 582 // When one is non-null, so is the other. Together, they each pair is
ysr@777 583 // an object with a preserved mark, and its mark value.
ysr@777 584 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 585 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 586
ysr@777 587 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 588 // word being overwritten with a self-forwarding-pointer.
ysr@777 589 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 590
ysr@777 591 // The stack of evac-failure objects left to be scanned.
ysr@777 592 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 593 // The closure to apply to evac-failure objects.
ysr@777 594
ysr@777 595 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 596 // Set the field above.
ysr@777 597 void
ysr@777 598 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 599 _evac_failure_closure = evac_failure_closure;
ysr@777 600 }
ysr@777 601
ysr@777 602 // Push "obj" on the scan stack.
ysr@777 603 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 604 // Process scan stack entries until the stack is empty.
ysr@777 605 void drain_evac_failure_scan_stack();
ysr@777 606 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 607 // prevent unnecessary recursion.
ysr@777 608 bool _drain_in_progress;
ysr@777 609
ysr@777 610 // Do any necessary initialization for evacuation-failure handling.
ysr@777 611 // "cl" is the closure that will be used to process evac-failure
ysr@777 612 // objects.
ysr@777 613 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 614 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 615 // structures.
ysr@777 616 void finalize_for_evac_failure();
ysr@777 617
ysr@777 618 // An attempt to evacuate "obj" has failed; take necessary steps.
ysr@777 619 void handle_evacuation_failure(oop obj);
ysr@777 620 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 621 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 622
ysr@777 623
ysr@777 624 // Ensure that the relevant gc_alloc regions are set.
ysr@777 625 void get_gc_alloc_regions();
tonyp@1071 626 // We're done with GC alloc regions. We are going to tear down the
tonyp@1071 627 // gc alloc list and remove the gc alloc tag from all the regions on
tonyp@1071 628 // that list. However, we will also retain the last (i.e., the one
tonyp@1071 629 // that is half-full) GC alloc region, per GCAllocPurpose, for
tonyp@1071 630 // possible reuse during the next collection, provided
tonyp@1071 631 // _retain_gc_alloc_region[] indicates that it should be the
tonyp@1071 632 // case. Said regions are kept in the _retained_gc_alloc_regions[]
tonyp@1071 633 // array. If the parameter totally is set, we will not retain any
tonyp@1071 634 // regions, irrespective of what _retain_gc_alloc_region[]
tonyp@1071 635 // indicates.
tonyp@1071 636 void release_gc_alloc_regions(bool totally);
tonyp@1071 637 #ifndef PRODUCT
tonyp@1071 638 // Useful for debugging.
tonyp@1071 639 void print_gc_alloc_regions();
tonyp@1071 640 #endif // !PRODUCT
ysr@777 641
ysr@777 642 // ("Weak") Reference processing support
ysr@777 643 ReferenceProcessor* _ref_processor;
ysr@777 644
ysr@777 645 enum G1H_process_strong_roots_tasks {
ysr@777 646 G1H_PS_mark_stack_oops_do,
ysr@777 647 G1H_PS_refProcessor_oops_do,
ysr@777 648 // Leave this one last.
ysr@777 649 G1H_PS_NumElements
ysr@777 650 };
ysr@777 651
ysr@777 652 SubTasksDone* _process_strong_tasks;
ysr@777 653
ysr@777 654 // List of regions which require zero filling.
ysr@777 655 UncleanRegionList _unclean_region_list;
ysr@777 656 bool _unclean_regions_coming;
ysr@777 657
ysr@777 658 public:
jmasa@2188 659
jmasa@2188 660 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 661
ysr@777 662 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 663
jcoomes@2064 664 RefToScanQueue *task_queue(int i) const;
ysr@777 665
iveresov@1051 666 // A set of cards where updates happened during the GC
iveresov@1051 667 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 668
johnc@2060 669 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 670 // references into the current collection set. This is used to
johnc@2060 671 // update the remembered sets of the regions in the collection
johnc@2060 672 // set in the event of an evacuation failure.
johnc@2060 673 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 674 { return _into_cset_dirty_card_queue_set; }
johnc@2060 675
ysr@777 676 // Create a G1CollectedHeap with the specified policy.
ysr@777 677 // Must call the initialize method afterwards.
ysr@777 678 // May not return if something goes wrong.
ysr@777 679 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 680
ysr@777 681 // Initialize the G1CollectedHeap to have the initial and
ysr@777 682 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 683 // specified by the policy object.
ysr@777 684 jint initialize();
ysr@777 685
ysr@777 686 void ref_processing_init();
ysr@777 687
ysr@777 688 void set_par_threads(int t) {
ysr@777 689 SharedHeap::set_par_threads(t);
jmasa@2188 690 _process_strong_tasks->set_n_threads(t);
ysr@777 691 }
ysr@777 692
ysr@777 693 virtual CollectedHeap::Name kind() const {
ysr@777 694 return CollectedHeap::G1CollectedHeap;
ysr@777 695 }
ysr@777 696
ysr@777 697 // The current policy object for the collector.
ysr@777 698 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 699
ysr@777 700 // Adaptive size policy. No such thing for g1.
ysr@777 701 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 702
ysr@777 703 // The rem set and barrier set.
ysr@777 704 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 705 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 706
ysr@777 707 // The rem set iterator.
ysr@777 708 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 709 return _rem_set_iterator[i];
ysr@777 710 }
ysr@777 711
ysr@777 712 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 713 return _rem_set_iterator[0];
ysr@777 714 }
ysr@777 715
ysr@777 716 unsigned get_gc_time_stamp() {
ysr@777 717 return _gc_time_stamp;
ysr@777 718 }
ysr@777 719
ysr@777 720 void reset_gc_time_stamp() {
ysr@777 721 _gc_time_stamp = 0;
iveresov@788 722 OrderAccess::fence();
iveresov@788 723 }
iveresov@788 724
iveresov@788 725 void increment_gc_time_stamp() {
iveresov@788 726 ++_gc_time_stamp;
iveresov@788 727 OrderAccess::fence();
ysr@777 728 }
ysr@777 729
johnc@2060 730 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 731 DirtyCardQueue* into_cset_dcq,
johnc@2060 732 bool concurrent, int worker_i);
ysr@777 733
ysr@777 734 // The shared block offset table array.
ysr@777 735 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 736
ysr@777 737 // Reference Processing accessor
ysr@777 738 ReferenceProcessor* ref_processor() { return _ref_processor; }
ysr@777 739
ysr@777 740 // Reserved (g1 only; super method includes perm), capacity and the used
ysr@777 741 // portion in bytes.
tonyp@1527 742 size_t g1_reserved_obj_bytes() const { return _g1_reserved.byte_size(); }
ysr@777 743 virtual size_t capacity() const;
ysr@777 744 virtual size_t used() const;
tonyp@1281 745 // This should be called when we're not holding the heap lock. The
tonyp@1281 746 // result might be a bit inaccurate.
tonyp@1281 747 size_t used_unlocked() const;
ysr@777 748 size_t recalculate_used() const;
ysr@777 749 #ifndef PRODUCT
ysr@777 750 size_t recalculate_used_regions() const;
ysr@777 751 #endif // PRODUCT
ysr@777 752
ysr@777 753 // These virtual functions do the actual allocation.
ysr@777 754 virtual HeapWord* mem_allocate(size_t word_size,
ysr@777 755 bool is_noref,
ysr@777 756 bool is_tlab,
ysr@777 757 bool* gc_overhead_limit_was_exceeded);
ysr@777 758
ysr@777 759 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 760 // allocation, via inlined code (by exporting the address of the top and
ysr@777 761 // end fields defining the extent of the contiguous allocation region.)
ysr@777 762 // But G1CollectedHeap doesn't yet support this.
ysr@777 763
ysr@777 764 // Return an estimate of the maximum allocation that could be performed
ysr@777 765 // without triggering any collection or expansion activity. In a
ysr@777 766 // generational collector, for example, this is probably the largest
ysr@777 767 // allocation that could be supported (without expansion) in the youngest
ysr@777 768 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 769 // should be treated as an approximation, not a guarantee, for use in
ysr@777 770 // heuristic resizing decisions.
ysr@777 771 virtual size_t unsafe_max_alloc();
ysr@777 772
ysr@777 773 virtual bool is_maximal_no_gc() const {
ysr@777 774 return _g1_storage.uncommitted_size() == 0;
ysr@777 775 }
ysr@777 776
ysr@777 777 // The total number of regions in the heap.
ysr@777 778 size_t n_regions();
ysr@777 779
ysr@777 780 // The number of regions that are completely free.
ysr@777 781 size_t max_regions();
ysr@777 782
ysr@777 783 // The number of regions that are completely free.
ysr@777 784 size_t free_regions();
ysr@777 785
ysr@777 786 // The number of regions that are not completely free.
ysr@777 787 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 788
ysr@777 789 // True iff the ZF thread should run.
ysr@777 790 bool should_zf();
ysr@777 791
ysr@777 792 // The number of regions available for "regular" expansion.
ysr@777 793 size_t expansion_regions() { return _expansion_regions; }
ysr@777 794
ysr@777 795 #ifndef PRODUCT
ysr@777 796 bool regions_accounted_for();
ysr@777 797 bool print_region_accounting_info();
ysr@777 798 void print_region_counts();
ysr@777 799 #endif
ysr@777 800
ysr@777 801 HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
ysr@777 802 HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
ysr@777 803
ysr@777 804 void put_region_on_unclean_list(HeapRegion* r);
ysr@777 805 void put_region_on_unclean_list_locked(HeapRegion* r);
ysr@777 806
ysr@777 807 void prepend_region_list_on_unclean_list(UncleanRegionList* list);
ysr@777 808 void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
ysr@777 809
ysr@777 810 void set_unclean_regions_coming(bool b);
ysr@777 811 void set_unclean_regions_coming_locked(bool b);
ysr@777 812 // Wait for cleanup to be complete.
ysr@777 813 void wait_for_cleanup_complete();
ysr@777 814 // Like above, but assumes that the calling thread owns the Heap_lock.
ysr@777 815 void wait_for_cleanup_complete_locked();
ysr@777 816
ysr@777 817 // Return the head of the unclean list.
ysr@777 818 HeapRegion* peek_unclean_region_list_locked();
ysr@777 819 // Remove and return the head of the unclean list.
ysr@777 820 HeapRegion* pop_unclean_region_list_locked();
ysr@777 821
ysr@777 822 // List of regions which are zero filled and ready for allocation.
ysr@777 823 HeapRegion* _free_region_list;
ysr@777 824 // Number of elements on the free list.
ysr@777 825 size_t _free_region_list_size;
ysr@777 826
ysr@777 827 // If the head of the unclean list is ZeroFilled, move it to the free
ysr@777 828 // list.
ysr@777 829 bool move_cleaned_region_to_free_list_locked();
ysr@777 830 bool move_cleaned_region_to_free_list();
ysr@777 831
ysr@777 832 void put_free_region_on_list_locked(HeapRegion* r);
ysr@777 833 void put_free_region_on_list(HeapRegion* r);
ysr@777 834
ysr@777 835 // Remove and return the head element of the free list.
ysr@777 836 HeapRegion* pop_free_region_list_locked();
ysr@777 837
ysr@777 838 // If "zero_filled" is true, we first try the free list, then we try the
ysr@777 839 // unclean list, zero-filling the result. If "zero_filled" is false, we
ysr@777 840 // first try the unclean list, then the zero-filled list.
ysr@777 841 HeapRegion* alloc_free_region_from_lists(bool zero_filled);
ysr@777 842
ysr@777 843 // Verify the integrity of the region lists.
ysr@777 844 void remove_allocated_regions_from_lists();
ysr@777 845 bool verify_region_lists();
ysr@777 846 bool verify_region_lists_locked();
ysr@777 847 size_t unclean_region_list_length();
ysr@777 848 size_t free_region_list_length();
ysr@777 849
ysr@777 850 // Perform a collection of the heap; intended for use in implementing
ysr@777 851 // "System.gc". This probably implies as full a collection as the
ysr@777 852 // "CollectedHeap" supports.
ysr@777 853 virtual void collect(GCCause::Cause cause);
ysr@777 854
ysr@777 855 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 856 void collect_locked(GCCause::Cause cause);
ysr@777 857
ysr@777 858 // This interface assumes that it's being called by the
ysr@777 859 // vm thread. It collects the heap assuming that the
ysr@777 860 // heap lock is already held and that we are executing in
ysr@777 861 // the context of the vm thread.
ysr@777 862 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 863
ysr@777 864 // True iff a evacuation has failed in the most-recent collection.
ysr@777 865 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 866
ysr@777 867 // Free a region if it is totally full of garbage. Returns the number of
ysr@777 868 // bytes freed (0 ==> didn't free it).
ysr@777 869 size_t free_region_if_totally_empty(HeapRegion *hr);
ysr@777 870 void free_region_if_totally_empty_work(HeapRegion *hr,
ysr@777 871 size_t& pre_used,
ysr@777 872 size_t& cleared_h_regions,
ysr@777 873 size_t& freed_regions,
ysr@777 874 UncleanRegionList* list,
ysr@777 875 bool par = false);
ysr@777 876
ysr@777 877 // If we've done free region work that yields the given changes, update
ysr@777 878 // the relevant global variables.
ysr@777 879 void finish_free_region_work(size_t pre_used,
ysr@777 880 size_t cleared_h_regions,
ysr@777 881 size_t freed_regions,
ysr@777 882 UncleanRegionList* list);
ysr@777 883
ysr@777 884
ysr@777 885 // Returns "TRUE" iff "p" points into the allocated area of the heap.
ysr@777 886 virtual bool is_in(const void* p) const;
ysr@777 887
ysr@777 888 // Return "TRUE" iff the given object address is within the collection
ysr@777 889 // set.
ysr@777 890 inline bool obj_in_cs(oop obj);
ysr@777 891
ysr@777 892 // Return "TRUE" iff the given object address is in the reserved
ysr@777 893 // region of g1 (excluding the permanent generation).
ysr@777 894 bool is_in_g1_reserved(const void* p) const {
ysr@777 895 return _g1_reserved.contains(p);
ysr@777 896 }
ysr@777 897
ysr@777 898 // Returns a MemRegion that corresponds to the space that has been
ysr@777 899 // committed in the heap
ysr@777 900 MemRegion g1_committed() {
ysr@777 901 return _g1_committed;
ysr@777 902 }
ysr@777 903
ysr@1376 904 NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
ysr@777 905
ysr@777 906 // Dirty card table entries covering a list of young regions.
ysr@777 907 void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
ysr@777 908
ysr@777 909 // This resets the card table to all zeros. It is used after
ysr@777 910 // a collection pause which used the card table to claim cards.
ysr@777 911 void cleanUpCardTable();
ysr@777 912
ysr@777 913 // Iteration functions.
ysr@777 914
ysr@777 915 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 916 // "cl.do_oop" on each.
iveresov@1113 917 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 918 oop_iterate(cl, true);
iveresov@1113 919 }
iveresov@1113 920 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 921
ysr@777 922 // Same as above, restricted to a memory region.
iveresov@1113 923 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 924 oop_iterate(mr, cl, true);
iveresov@1113 925 }
iveresov@1113 926 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 927
ysr@777 928 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 929 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 930 object_iterate(cl, true);
iveresov@1113 931 }
iveresov@1113 932 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 933 object_iterate(cl, true);
iveresov@1113 934 }
iveresov@1113 935 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 936
ysr@777 937 // Iterate over all objects allocated since the last collection, calling
ysr@777 938 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 939 // to support this function, or else this call will fail.
ysr@777 940 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 941
ysr@777 942 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 943 virtual void space_iterate(SpaceClosure* cl);
ysr@777 944
ysr@777 945 // Iterate over heap regions, in address order, terminating the
ysr@777 946 // iteration early if the "doHeapRegion" method returns "true".
ysr@777 947 void heap_region_iterate(HeapRegionClosure* blk);
ysr@777 948
ysr@777 949 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 950 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 951 // method returns "true".
ysr@777 952 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
ysr@777 953
ysr@777 954 // As above but starting from the region at index idx.
ysr@777 955 void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
ysr@777 956
ysr@777 957 HeapRegion* region_at(size_t idx);
ysr@777 958
ysr@777 959 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 960 // of regions divided by the number of parallel threads times some
ysr@777 961 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 962 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 963 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 964 // calls will use the same "claim_value", and that that claim value is
ysr@777 965 // different from the claim_value of any heap region before the start of
ysr@777 966 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 967 // attempting to claim the first region in each chunk, and, if
ysr@777 968 // successful, applying the closure to each region in the chunk (and
ysr@777 969 // setting the claim value of the second and subsequent regions of the
ysr@777 970 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 971 // i.e., that a closure never attempt to abort a traversal.
ysr@777 972 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
ysr@777 973 int worker,
ysr@777 974 jint claim_value);
ysr@777 975
tonyp@825 976 // It resets all the region claim values to the default.
tonyp@825 977 void reset_heap_region_claim_values();
tonyp@825 978
tonyp@790 979 #ifdef ASSERT
tonyp@790 980 bool check_heap_region_claim_values(jint claim_value);
tonyp@790 981 #endif // ASSERT
tonyp@790 982
ysr@777 983 // Iterate over the regions (if any) in the current collection set.
ysr@777 984 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 985
ysr@777 986 // As above but starting from region r
ysr@777 987 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 988
ysr@777 989 // Returns the first (lowest address) compactible space in the heap.
ysr@777 990 virtual CompactibleSpace* first_compactible_space();
ysr@777 991
ysr@777 992 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 993 // space containing a given address, or else returns NULL.
ysr@777 994 virtual Space* space_containing(const void* addr) const;
ysr@777 995
ysr@777 996 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 997 // finds the region containing a given address, or else returns NULL.
ysr@777 998 HeapRegion* heap_region_containing(const void* addr) const;
ysr@777 999
ysr@777 1000 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1001 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1002 // region.
ysr@777 1003 HeapRegion* heap_region_containing_raw(const void* addr) const;
ysr@777 1004
ysr@777 1005 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1006 // each address in the (reserved) heap is a member of exactly
ysr@777 1007 // one block. The defining characteristic of a block is that it is
ysr@777 1008 // possible to find its size, and thus to progress forward to the next
ysr@777 1009 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1010 // represent Java objects, or they might be free blocks in a
ysr@777 1011 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1012 // distinguishable and the size of each is determinable.
ysr@777 1013
ysr@777 1014 // Returns the address of the start of the "block" that contains the
ysr@777 1015 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1016 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1017 // non-object.
ysr@777 1018 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1019
ysr@777 1020 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1021 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1022 // of the active area of the heap.
ysr@777 1023 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1024
ysr@777 1025 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1026 // the block is an object.
ysr@777 1027 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1028
ysr@777 1029 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1030 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1031
ysr@777 1032 // Section on thread-local allocation buffers (TLABs)
ysr@777 1033 // See CollectedHeap for semantics.
ysr@777 1034
ysr@777 1035 virtual bool supports_tlab_allocation() const;
ysr@777 1036 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1037 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
tonyp@2073 1038 virtual HeapWord* allocate_new_tlab(size_t word_size);
ysr@777 1039
ysr@777 1040 // Can a compiler initialize a new object without store barriers?
ysr@777 1041 // This permission only extends from the creation of a new object
ysr@1462 1042 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1043 // is granted for this heap type, the compiler promises to call
ysr@1462 1044 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1045 // a new object for which such initializing store barriers will
ysr@1462 1046 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1047 // ready to provide a compensating write barrier as necessary
ysr@1462 1048 // if that storage came out of a non-young region. The efficiency
ysr@1462 1049 // of this implementation depends crucially on being able to
ysr@1462 1050 // answer very efficiently in constant time whether a piece of
ysr@1462 1051 // storage in the heap comes from a young region or not.
ysr@1462 1052 // See ReduceInitialCardMarks.
ysr@777 1053 virtual bool can_elide_tlab_store_barriers() const {
ysr@1629 1054 // 6920090: Temporarily disabled, because of lingering
ysr@1629 1055 // instabilities related to RICM with G1. In the
ysr@1629 1056 // interim, the option ReduceInitialCardMarksForG1
ysr@1629 1057 // below is left solely as a debugging device at least
ysr@1629 1058 // until 6920109 fixes the instabilities.
ysr@1629 1059 return ReduceInitialCardMarksForG1;
ysr@1462 1060 }
ysr@1462 1061
ysr@1601 1062 virtual bool card_mark_must_follow_store() const {
ysr@1601 1063 return true;
ysr@1601 1064 }
ysr@1601 1065
ysr@1462 1066 bool is_in_young(oop obj) {
ysr@1462 1067 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1068 return hr != NULL && hr->is_young();
ysr@1462 1069 }
ysr@1462 1070
ysr@1462 1071 // We don't need barriers for initializing stores to objects
ysr@1462 1072 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1073 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1074 // update logging post-barrier, we don't maintain remembered set
ysr@1462 1075 // information for young gen objects. Note that non-generational
ysr@1462 1076 // G1 does not have any "young" objects, should not elide
ysr@1462 1077 // the rs logging barrier and so should always answer false below.
ysr@1462 1078 // However, non-generational G1 (-XX:-G1Gen) appears to have
ysr@1462 1079 // bit-rotted so was not tested below.
ysr@1462 1080 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1629 1081 // Re 6920090, 6920109 above.
ysr@1629 1082 assert(ReduceInitialCardMarksForG1, "Else cannot be here");
ysr@1462 1083 assert(G1Gen || !is_in_young(new_obj),
ysr@1462 1084 "Non-generational G1 should never return true below");
ysr@1462 1085 return is_in_young(new_obj);
ysr@777 1086 }
ysr@777 1087
ysr@777 1088 // Can a compiler elide a store barrier when it writes
ysr@777 1089 // a permanent oop into the heap? Applies when the compiler
ysr@777 1090 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1091 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1092 // At least until perm gen collection is also G1-ified, at
ysr@777 1093 // which point this should return false.
ysr@777 1094 return true;
ysr@777 1095 }
ysr@777 1096
ysr@777 1097 virtual bool allocs_are_zero_filled();
ysr@777 1098
ysr@777 1099 // The boundary between a "large" and "small" array of primitives, in
ysr@777 1100 // words.
ysr@777 1101 virtual size_t large_typearray_limit();
ysr@777 1102
ysr@777 1103 // Returns "true" iff the given word_size is "very large".
ysr@777 1104 static bool isHumongous(size_t word_size) {
johnc@1748 1105 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1106 // are capped at the humongous thresold and we want to
johnc@1748 1107 // ensure that we don't try to allocate a TLAB as
johnc@1748 1108 // humongous and that we don't allocate a humongous
johnc@1748 1109 // object in a TLAB.
johnc@1748 1110 return word_size > _humongous_object_threshold_in_words;
ysr@777 1111 }
ysr@777 1112
ysr@777 1113 // Update mod union table with the set of dirty cards.
ysr@777 1114 void updateModUnion();
ysr@777 1115
ysr@777 1116 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1117 // that this is always a safe operation, since it doesn't clear any
ysr@777 1118 // bits.
ysr@777 1119 void markModUnionRange(MemRegion mr);
ysr@777 1120
ysr@777 1121 // Records the fact that a marking phase is no longer in progress.
ysr@777 1122 void set_marking_complete() {
ysr@777 1123 _mark_in_progress = false;
ysr@777 1124 }
ysr@777 1125 void set_marking_started() {
ysr@777 1126 _mark_in_progress = true;
ysr@777 1127 }
ysr@777 1128 bool mark_in_progress() {
ysr@777 1129 return _mark_in_progress;
ysr@777 1130 }
ysr@777 1131
ysr@777 1132 // Print the maximum heap capacity.
ysr@777 1133 virtual size_t max_capacity() const;
ysr@777 1134
ysr@777 1135 virtual jlong millis_since_last_gc();
ysr@777 1136
ysr@777 1137 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1138 virtual void prepare_for_verify();
ysr@777 1139
ysr@777 1140 // Perform verification.
tonyp@1246 1141
tonyp@1246 1142 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1143 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1144 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1145 // consistent most of the time, so most calls to this should use
tonyp@1246 1146 // use_prev_marking == true. Currently, there is only one case where
tonyp@1246 1147 // this is called with use_prev_marking == false, which is to verify
tonyp@1246 1148 // the "next" marking information at the end of remark.
tonyp@1246 1149 void verify(bool allow_dirty, bool silent, bool use_prev_marking);
tonyp@1246 1150
tonyp@1246 1151 // Override; it uses the "prev" marking information
ysr@777 1152 virtual void verify(bool allow_dirty, bool silent);
tonyp@1273 1153 // Default behavior by calling print(tty);
ysr@777 1154 virtual void print() const;
tonyp@1273 1155 // This calls print_on(st, PrintHeapAtGCExtended).
ysr@777 1156 virtual void print_on(outputStream* st) const;
tonyp@1273 1157 // If extended is true, it will print out information for all
tonyp@1273 1158 // regions in the heap by calling print_on_extended(st).
tonyp@1273 1159 virtual void print_on(outputStream* st, bool extended) const;
tonyp@1273 1160 virtual void print_on_extended(outputStream* st) const;
ysr@777 1161
ysr@777 1162 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1163 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1164
ysr@777 1165 // Override
ysr@777 1166 void print_tracing_info() const;
ysr@777 1167
ysr@777 1168 // If "addr" is a pointer into the (reserved?) heap, returns a positive
ysr@777 1169 // number indicating the "arena" within the heap in which "addr" falls.
ysr@777 1170 // Or else returns 0.
ysr@777 1171 virtual int addr_to_arena_id(void* addr) const;
ysr@777 1172
ysr@777 1173 // Convenience function to be used in situations where the heap type can be
ysr@777 1174 // asserted to be this type.
ysr@777 1175 static G1CollectedHeap* heap();
ysr@777 1176
ysr@777 1177 void empty_young_list();
ysr@777 1178 bool should_set_young_locked();
ysr@777 1179
ysr@777 1180 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1181 // add appropriate methods for any other surv rate groups
ysr@777 1182
johnc@1829 1183 YoungList* young_list() { return _young_list; }
ysr@777 1184
ysr@777 1185 // debugging
ysr@777 1186 bool check_young_list_well_formed() {
ysr@777 1187 return _young_list->check_list_well_formed();
ysr@777 1188 }
johnc@1829 1189
johnc@1829 1190 bool check_young_list_empty(bool check_heap,
ysr@777 1191 bool check_sample = true);
ysr@777 1192
ysr@777 1193 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1194 // many of these need to be public.
ysr@777 1195
ysr@777 1196 // The functions below are helper functions that a subclass of
ysr@777 1197 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1198 // functions.
ysr@777 1199 // This performs a concurrent marking of the live objects in a
ysr@777 1200 // bitmap off to the side.
ysr@777 1201 void doConcurrentMark();
ysr@777 1202
ysr@777 1203 // This is called from the marksweep collector which then does
ysr@777 1204 // a concurrent mark and verifies that the results agree with
ysr@777 1205 // the stop the world marking.
ysr@777 1206 void checkConcurrentMark();
ysr@777 1207 void do_sync_mark();
ysr@777 1208
ysr@777 1209 bool isMarkedPrev(oop obj) const;
ysr@777 1210 bool isMarkedNext(oop obj) const;
ysr@777 1211
tonyp@1246 1212 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1213 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1214 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1215 const HeapRegion* hr,
tonyp@1246 1216 const bool use_prev_marking) const {
tonyp@1246 1217 if (use_prev_marking) {
tonyp@1246 1218 return is_obj_dead(obj, hr);
tonyp@1246 1219 } else {
tonyp@1246 1220 return is_obj_ill(obj, hr);
tonyp@1246 1221 }
tonyp@1246 1222 }
tonyp@1246 1223
ysr@777 1224 // Determine if an object is dead, given the object and also
ysr@777 1225 // the region to which the object belongs. An object is dead
ysr@777 1226 // iff a) it was not allocated since the last mark and b) it
ysr@777 1227 // is not marked.
ysr@777 1228
ysr@777 1229 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1230 return
ysr@777 1231 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1232 !isMarkedPrev(obj);
ysr@777 1233 }
ysr@777 1234
ysr@777 1235 // This is used when copying an object to survivor space.
ysr@777 1236 // If the object is marked live, then we mark the copy live.
ysr@777 1237 // If the object is allocated since the start of this mark
ysr@777 1238 // cycle, then we mark the copy live.
ysr@777 1239 // If the object has been around since the previous mark
ysr@777 1240 // phase, and hasn't been marked yet during this phase,
ysr@777 1241 // then we don't mark it, we just wait for the
ysr@777 1242 // current marking cycle to get to it.
ysr@777 1243
ysr@777 1244 // This function returns true when an object has been
ysr@777 1245 // around since the previous marking and hasn't yet
ysr@777 1246 // been marked during this marking.
ysr@777 1247
ysr@777 1248 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1249 return
ysr@777 1250 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1251 !isMarkedNext(obj);
ysr@777 1252 }
ysr@777 1253
ysr@777 1254 // Determine if an object is dead, given only the object itself.
ysr@777 1255 // This will find the region to which the object belongs and
ysr@777 1256 // then call the region version of the same function.
ysr@777 1257
ysr@777 1258 // Added if it is in permanent gen it isn't dead.
ysr@777 1259 // Added if it is NULL it isn't dead.
ysr@777 1260
tonyp@1246 1261 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1262 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1263 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1264 const bool use_prev_marking) {
tonyp@1246 1265 if (use_prev_marking) {
tonyp@1246 1266 return is_obj_dead(obj);
tonyp@1246 1267 } else {
tonyp@1246 1268 return is_obj_ill(obj);
tonyp@1246 1269 }
tonyp@1246 1270 }
tonyp@1246 1271
tonyp@1246 1272 bool is_obj_dead(const oop obj) {
tonyp@1246 1273 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1274 if (hr == NULL) {
ysr@777 1275 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1276 return false;
ysr@777 1277 else if (obj == NULL) return false;
ysr@777 1278 else return true;
ysr@777 1279 }
ysr@777 1280 else return is_obj_dead(obj, hr);
ysr@777 1281 }
ysr@777 1282
tonyp@1246 1283 bool is_obj_ill(const oop obj) {
tonyp@1246 1284 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1285 if (hr == NULL) {
ysr@777 1286 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1287 return false;
ysr@777 1288 else if (obj == NULL) return false;
ysr@777 1289 else return true;
ysr@777 1290 }
ysr@777 1291 else return is_obj_ill(obj, hr);
ysr@777 1292 }
ysr@777 1293
ysr@777 1294 // The following is just to alert the verification code
ysr@777 1295 // that a full collection has occurred and that the
ysr@777 1296 // remembered sets are no longer up to date.
ysr@777 1297 bool _full_collection;
ysr@777 1298 void set_full_collection() { _full_collection = true;}
ysr@777 1299 void clear_full_collection() {_full_collection = false;}
ysr@777 1300 bool full_collection() {return _full_collection;}
ysr@777 1301
ysr@777 1302 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1303 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1304
apetrusenko@1231 1305 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1306 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1307 // remembered set scanning and drained during the card table
apetrusenko@1231 1308 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1309 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1310 // element on the list points to itself.
apetrusenko@1231 1311 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1312 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1313 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1314
ysr@777 1315 public:
ysr@777 1316 void stop_conc_gc_threads();
ysr@777 1317
ysr@777 1318 // <NEW PREDICTION>
ysr@777 1319
ysr@777 1320 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1321 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1322 size_t pending_card_num();
ysr@777 1323 size_t max_pending_card_num();
ysr@777 1324 size_t cards_scanned();
ysr@777 1325
ysr@777 1326 // </NEW PREDICTION>
ysr@777 1327
ysr@777 1328 protected:
ysr@777 1329 size_t _max_heap_capacity;
ysr@777 1330
ysr@777 1331 // debug_only(static void check_for_valid_allocation_state();)
ysr@777 1332
ysr@777 1333 public:
ysr@777 1334 // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
ysr@777 1335 // MemoryService). In productization, we can make this assert false
ysr@777 1336 // to catch such places (as well as searching for calls to this...)
ysr@777 1337 static void g1_unimplemented();
ysr@777 1338
ysr@777 1339 };
ysr@777 1340
ysr@1280 1341 #define use_local_bitmaps 1
ysr@1280 1342 #define verify_local_bitmaps 0
ysr@1280 1343 #define oop_buffer_length 256
ysr@1280 1344
ysr@1280 1345 #ifndef PRODUCT
ysr@1280 1346 class GCLabBitMap;
ysr@1280 1347 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1348 private:
ysr@1280 1349 ConcurrentMark* _cm;
ysr@1280 1350 GCLabBitMap* _bitmap;
ysr@1280 1351
ysr@1280 1352 public:
ysr@1280 1353 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1354 GCLabBitMap* bitmap) {
ysr@1280 1355 _cm = cm;
ysr@1280 1356 _bitmap = bitmap;
ysr@1280 1357 }
ysr@1280 1358
ysr@1280 1359 virtual bool do_bit(size_t offset);
ysr@1280 1360 };
ysr@1280 1361 #endif // !PRODUCT
ysr@1280 1362
ysr@1280 1363 class GCLabBitMap: public BitMap {
ysr@1280 1364 private:
ysr@1280 1365 ConcurrentMark* _cm;
ysr@1280 1366
ysr@1280 1367 int _shifter;
ysr@1280 1368 size_t _bitmap_word_covers_words;
ysr@1280 1369
ysr@1280 1370 // beginning of the heap
ysr@1280 1371 HeapWord* _heap_start;
ysr@1280 1372
ysr@1280 1373 // this is the actual start of the GCLab
ysr@1280 1374 HeapWord* _real_start_word;
ysr@1280 1375
ysr@1280 1376 // this is the actual end of the GCLab
ysr@1280 1377 HeapWord* _real_end_word;
ysr@1280 1378
ysr@1280 1379 // this is the first word, possibly located before the actual start
ysr@1280 1380 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1381 HeapWord* _start_word;
ysr@1280 1382
ysr@1280 1383 // size of a GCLab in words
ysr@1280 1384 size_t _gclab_word_size;
ysr@1280 1385
ysr@1280 1386 static int shifter() {
ysr@1280 1387 return MinObjAlignment - 1;
ysr@1280 1388 }
ysr@1280 1389
ysr@1280 1390 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1391 static size_t bitmap_word_covers_words() {
ysr@1280 1392 return BitsPerWord << shifter();
ysr@1280 1393 }
ysr@1280 1394
apetrusenko@1826 1395 size_t gclab_word_size() const {
apetrusenko@1826 1396 return _gclab_word_size;
ysr@1280 1397 }
ysr@1280 1398
apetrusenko@1826 1399 // Calculates actual GCLab size in words
apetrusenko@1826 1400 size_t gclab_real_word_size() const {
apetrusenko@1826 1401 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
apetrusenko@1826 1402 / BitsPerWord;
apetrusenko@1826 1403 }
apetrusenko@1826 1404
apetrusenko@1826 1405 static size_t bitmap_size_in_bits(size_t gclab_word_size) {
apetrusenko@1826 1406 size_t bits_in_bitmap = gclab_word_size >> shifter();
ysr@1280 1407 // We are going to ensure that the beginning of a word in this
ysr@1280 1408 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1409 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1410 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1411 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1412 // enough bits in the bitmap.
ysr@1280 1413 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1414 }
ysr@1280 1415 public:
apetrusenko@1826 1416 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
apetrusenko@1826 1417 : BitMap(bitmap_size_in_bits(gclab_word_size)),
ysr@1280 1418 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1419 _shifter(shifter()),
ysr@1280 1420 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1421 _heap_start(heap_start),
apetrusenko@1826 1422 _gclab_word_size(gclab_word_size),
ysr@1280 1423 _real_start_word(NULL),
ysr@1280 1424 _real_end_word(NULL),
ysr@1280 1425 _start_word(NULL)
ysr@1280 1426 {
ysr@1280 1427 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@1280 1428 "just making sure");
ysr@1280 1429 }
ysr@1280 1430
ysr@1280 1431 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1432 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1433 assert(offset < size(), "offset should be within bounds");
ysr@1280 1434 return offset;
ysr@1280 1435 }
ysr@1280 1436
ysr@1280 1437 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1438 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1439 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1440 return addr;
ysr@1280 1441 }
ysr@1280 1442
ysr@1280 1443 bool fields_well_formed() {
ysr@1280 1444 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1445 (_real_end_word == NULL) &&
ysr@1280 1446 (_start_word == NULL);
ysr@1280 1447 if (ret1)
ysr@1280 1448 return true;
ysr@1280 1449
ysr@1280 1450 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1451 _start_word < _real_end_word &&
ysr@1280 1452 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1453 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1454 > _real_end_word;
ysr@1280 1455 return ret2;
ysr@1280 1456 }
ysr@1280 1457
ysr@1280 1458 inline bool mark(HeapWord* addr) {
ysr@1280 1459 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1460 assert(fields_well_formed(), "invariant");
ysr@1280 1461
ysr@1280 1462 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1463 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1464
ysr@1280 1465 // first mark it on the bitmap
ysr@1280 1466 at_put(heapWordToOffset(addr), true);
ysr@1280 1467
ysr@1280 1468 return true;
ysr@1280 1469 } else {
ysr@1280 1470 return false;
ysr@1280 1471 }
ysr@1280 1472 }
ysr@1280 1473
ysr@1280 1474 inline bool isMarked(HeapWord* addr) {
ysr@1280 1475 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1476 assert(fields_well_formed(), "invariant");
ysr@1280 1477
ysr@1280 1478 return at(heapWordToOffset(addr));
ysr@1280 1479 }
ysr@1280 1480
ysr@1280 1481 void set_buffer(HeapWord* start) {
ysr@1280 1482 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1483 clear();
ysr@1280 1484
ysr@1280 1485 assert(start != NULL, "invariant");
ysr@1280 1486 _real_start_word = start;
ysr@1280 1487 _real_end_word = start + _gclab_word_size;
ysr@1280 1488
ysr@1280 1489 size_t diff =
ysr@1280 1490 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1491 _start_word = start - diff;
ysr@1280 1492
ysr@1280 1493 assert(fields_well_formed(), "invariant");
ysr@1280 1494 }
ysr@1280 1495
ysr@1280 1496 #ifndef PRODUCT
ysr@1280 1497 void verify() {
ysr@1280 1498 // verify that the marks have been propagated
ysr@1280 1499 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1500 iterate(&cl);
ysr@1280 1501 }
ysr@1280 1502 #endif // PRODUCT
ysr@1280 1503
ysr@1280 1504 void retire() {
ysr@1280 1505 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1506 assert(fields_well_formed(), "invariant");
ysr@1280 1507
ysr@1280 1508 if (_start_word != NULL) {
ysr@1280 1509 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1510
ysr@1280 1511 // this means that the bitmap was set up for the GCLab
ysr@1280 1512 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1513
ysr@1280 1514 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1515 0, // always start from the start of the bitmap
ysr@1280 1516 _start_word,
apetrusenko@1826 1517 gclab_real_word_size());
ysr@1280 1518 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1519
ysr@1280 1520 #ifndef PRODUCT
ysr@1280 1521 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1522 verify();
ysr@1280 1523 #endif // PRODUCT
ysr@1280 1524 } else {
ysr@1280 1525 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1526 }
ysr@1280 1527 }
ysr@1280 1528
apetrusenko@1826 1529 size_t bitmap_size_in_words() const {
apetrusenko@1826 1530 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1531 }
apetrusenko@1826 1532
ysr@1280 1533 };
ysr@1280 1534
ysr@1280 1535 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1536 private:
ysr@1280 1537 bool _retired;
ysr@1280 1538 bool _during_marking;
ysr@1280 1539 GCLabBitMap _bitmap;
ysr@1280 1540
ysr@1280 1541 public:
apetrusenko@1826 1542 G1ParGCAllocBuffer(size_t gclab_word_size) :
apetrusenko@1826 1543 ParGCAllocBuffer(gclab_word_size),
ysr@1280 1544 _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
apetrusenko@1826 1545 _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
ysr@1280 1546 _retired(false)
ysr@1280 1547 { }
ysr@1280 1548
ysr@1280 1549 inline bool mark(HeapWord* addr) {
ysr@1280 1550 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1551 assert(_during_marking, "invariant");
ysr@1280 1552 return _bitmap.mark(addr);
ysr@1280 1553 }
ysr@1280 1554
ysr@1280 1555 inline void set_buf(HeapWord* buf) {
ysr@1280 1556 if (use_local_bitmaps && _during_marking)
ysr@1280 1557 _bitmap.set_buffer(buf);
ysr@1280 1558 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1559 _retired = false;
ysr@1280 1560 }
ysr@1280 1561
ysr@1280 1562 inline void retire(bool end_of_gc, bool retain) {
ysr@1280 1563 if (_retired)
ysr@1280 1564 return;
ysr@1280 1565 if (use_local_bitmaps && _during_marking) {
ysr@1280 1566 _bitmap.retire();
ysr@1280 1567 }
ysr@1280 1568 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1569 _retired = true;
ysr@1280 1570 }
ysr@1280 1571 };
ysr@1280 1572
ysr@1280 1573 class G1ParScanThreadState : public StackObj {
ysr@1280 1574 protected:
ysr@1280 1575 G1CollectedHeap* _g1h;
ysr@1280 1576 RefToScanQueue* _refs;
ysr@1280 1577 DirtyCardQueue _dcq;
ysr@1280 1578 CardTableModRefBS* _ct_bs;
ysr@1280 1579 G1RemSet* _g1_rem;
ysr@1280 1580
apetrusenko@1826 1581 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1582 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1583 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1584 ageTable _age_table;
ysr@1280 1585
ysr@1280 1586 size_t _alloc_buffer_waste;
ysr@1280 1587 size_t _undo_waste;
ysr@1280 1588
ysr@1280 1589 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1590 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1591 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1592
ysr@1280 1593 int _hash_seed;
ysr@1280 1594 int _queue_num;
ysr@1280 1595
tonyp@1966 1596 size_t _term_attempts;
ysr@1280 1597
ysr@1280 1598 double _start;
ysr@1280 1599 double _start_strong_roots;
ysr@1280 1600 double _strong_roots_time;
ysr@1280 1601 double _start_term;
ysr@1280 1602 double _term_time;
ysr@1280 1603
ysr@1280 1604 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1605 // surviving words. base is what we get back from the malloc call
ysr@1280 1606 size_t* _surviving_young_words_base;
ysr@1280 1607 // this points into the array, as we use the first few entries for padding
ysr@1280 1608 size_t* _surviving_young_words;
ysr@1280 1609
jcoomes@2064 1610 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1611
ysr@1280 1612 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1613
ysr@1280 1614 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1615
ysr@1280 1616 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1617 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1618
ysr@1280 1619 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1620 if (!from->is_survivor()) {
ysr@1280 1621 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1622 }
ysr@1280 1623 }
ysr@1280 1624
ysr@1280 1625 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1626 // If the new value of the field points to the same region or
ysr@1280 1627 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1628 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1629 size_t card_index = ctbs()->index_for(p);
ysr@1280 1630 // If the card hasn't been added to the buffer, do it.
ysr@1280 1631 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1632 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1633 }
ysr@1280 1634 }
ysr@1280 1635 }
ysr@1280 1636
ysr@1280 1637 public:
ysr@1280 1638 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1639
ysr@1280 1640 ~G1ParScanThreadState() {
ysr@1280 1641 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1642 }
ysr@1280 1643
ysr@1280 1644 RefToScanQueue* refs() { return _refs; }
ysr@1280 1645 ageTable* age_table() { return &_age_table; }
ysr@1280 1646
ysr@1280 1647 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1648 return _alloc_buffers[purpose];
ysr@1280 1649 }
ysr@1280 1650
jcoomes@2064 1651 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1652 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1653
ysr@1280 1654 template <class T> void push_on_queue(T* ref) {
ysr@1280 1655 assert(ref != NULL, "invariant");
ysr@1280 1656 assert(has_partial_array_mask(ref) ||
iveresov@1696 1657 _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(ref)), "invariant");
ysr@1280 1658 #ifdef ASSERT
ysr@1280 1659 if (has_partial_array_mask(ref)) {
ysr@1280 1660 oop p = clear_partial_array_mask(ref);
ysr@1280 1661 // Verify that we point into the CS
ysr@1280 1662 assert(_g1h->obj_in_cs(p), "Should be in CS");
ysr@1280 1663 }
ysr@1280 1664 #endif
jcoomes@2064 1665 refs()->push(ref);
ysr@1280 1666 }
ysr@1280 1667
ysr@1280 1668 void pop_from_queue(StarTask& ref) {
ysr@1280 1669 if (refs()->pop_local(ref)) {
ysr@1280 1670 assert((oop*)ref != NULL, "pop_local() returned true");
ysr@1280 1671 assert(UseCompressedOops || !ref.is_narrow(), "Error");
ysr@1280 1672 assert(has_partial_array_mask((oop*)ref) ||
iveresov@1696 1673 _g1h->is_in_g1_reserved(ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)ref)
iveresov@1696 1674 : oopDesc::load_decode_heap_oop((oop*)ref)),
iveresov@1696 1675 "invariant");
ysr@1280 1676 } else {
ysr@1280 1677 StarTask null_task;
ysr@1280 1678 ref = null_task;
ysr@1280 1679 }
ysr@1280 1680 }
ysr@1280 1681
ysr@1280 1682 void pop_from_overflow_queue(StarTask& ref) {
jcoomes@2064 1683 StarTask new_ref;
jcoomes@2064 1684 refs()->pop_overflow(new_ref);
ysr@1280 1685 assert((oop*)new_ref != NULL, "pop() from a local non-empty stack");
ysr@1280 1686 assert(UseCompressedOops || !new_ref.is_narrow(), "Error");
ysr@1280 1687 assert(has_partial_array_mask((oop*)new_ref) ||
iveresov@1696 1688 _g1h->is_in_g1_reserved(new_ref.is_narrow() ? oopDesc::load_decode_heap_oop((narrowOop*)new_ref)
iveresov@1696 1689 : oopDesc::load_decode_heap_oop((oop*)new_ref)),
iveresov@1696 1690 "invariant");
ysr@1280 1691 ref = new_ref;
ysr@1280 1692 }
ysr@1280 1693
jcoomes@2191 1694 int refs_to_scan() { return (int)refs()->size(); }
jcoomes@2191 1695 int overflowed_refs_to_scan() { return (int)refs()->overflow_stack()->size(); }
ysr@1280 1696
ysr@1280 1697 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1698 if (G1DeferredRSUpdate) {
ysr@1280 1699 deferred_rs_update(from, p, tid);
ysr@1280 1700 } else {
ysr@1280 1701 immediate_rs_update(from, p, tid);
ysr@1280 1702 }
ysr@1280 1703 }
ysr@1280 1704
ysr@1280 1705 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1706
ysr@1280 1707 HeapWord* obj = NULL;
apetrusenko@1826 1708 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1709 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1710 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
apetrusenko@1826 1711 assert(gclab_word_size == alloc_buf->word_sz(),
apetrusenko@1826 1712 "dynamic resizing is not supported");
ysr@1280 1713 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 1714 alloc_buf->retire(false, false);
ysr@1280 1715
apetrusenko@1826 1716 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1717 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1718 // Otherwise.
ysr@1280 1719 alloc_buf->set_buf(buf);
ysr@1280 1720
ysr@1280 1721 obj = alloc_buf->allocate(word_sz);
ysr@1280 1722 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1723 } else {
ysr@1280 1724 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1725 }
ysr@1280 1726 return obj;
ysr@1280 1727 }
ysr@1280 1728
ysr@1280 1729 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1730 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1731 if (obj != NULL) return obj;
ysr@1280 1732 return allocate_slow(purpose, word_sz);
ysr@1280 1733 }
ysr@1280 1734
ysr@1280 1735 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1736 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1737 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1738 "should contain whole object");
ysr@1280 1739 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1740 } else {
ysr@1280 1741 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1742 add_to_undo_waste(word_sz);
ysr@1280 1743 }
ysr@1280 1744 }
ysr@1280 1745
ysr@1280 1746 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1747 _evac_failure_cl = evac_failure_cl;
ysr@1280 1748 }
ysr@1280 1749 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1750 return _evac_failure_cl;
ysr@1280 1751 }
ysr@1280 1752
ysr@1280 1753 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1754 _evac_cl = evac_cl;
ysr@1280 1755 }
ysr@1280 1756
ysr@1280 1757 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1758 _partial_scan_cl = partial_scan_cl;
ysr@1280 1759 }
ysr@1280 1760
ysr@1280 1761 int* hash_seed() { return &_hash_seed; }
ysr@1280 1762 int queue_num() { return _queue_num; }
ysr@1280 1763
jcoomes@2064 1764 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1765 void note_term_attempt() { _term_attempts++; }
ysr@1280 1766
ysr@1280 1767 void start_strong_roots() {
ysr@1280 1768 _start_strong_roots = os::elapsedTime();
ysr@1280 1769 }
ysr@1280 1770 void end_strong_roots() {
ysr@1280 1771 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1772 }
jcoomes@2064 1773 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1774
ysr@1280 1775 void start_term_time() {
ysr@1280 1776 note_term_attempt();
ysr@1280 1777 _start_term = os::elapsedTime();
ysr@1280 1778 }
ysr@1280 1779 void end_term_time() {
ysr@1280 1780 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1781 }
jcoomes@2064 1782 double term_time() const { return _term_time; }
ysr@1280 1783
jcoomes@2064 1784 double elapsed_time() const {
ysr@1280 1785 return os::elapsedTime() - _start;
ysr@1280 1786 }
ysr@1280 1787
jcoomes@2064 1788 static void
jcoomes@2064 1789 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1790 void
jcoomes@2064 1791 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1792
ysr@1280 1793 size_t* surviving_young_words() {
ysr@1280 1794 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1795 // age -1 regions (i.e. non-young ones)
ysr@1280 1796 return _surviving_young_words;
ysr@1280 1797 }
ysr@1280 1798
ysr@1280 1799 void retire_alloc_buffers() {
ysr@1280 1800 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1801 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1802 add_to_alloc_buffer_waste(waste);
apetrusenko@1826 1803 _alloc_buffers[ap]->retire(true, false);
ysr@1280 1804 }
ysr@1280 1805 }
ysr@1280 1806
ysr@1280 1807 private:
ysr@1280 1808 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1809 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1810 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1811 } else {
ysr@1280 1812 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1813 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1814 // humongous region.
ysr@1280 1815 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1816 _evac_cl->set_region(r);
ysr@1280 1817 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1818 }
ysr@1280 1819 }
ysr@1280 1820
ysr@1280 1821 public:
ysr@1280 1822 void trim_queue() {
ysr@1280 1823 // I've replicated the loop twice, first to drain the overflow
ysr@1280 1824 // queue, second to drain the task queue. This is better than
ysr@1280 1825 // having a single loop, which checks both conditions and, inside
ysr@1280 1826 // it, either pops the overflow queue or the task queue, as each
ysr@1280 1827 // loop is tighter. Also, the decision to drain the overflow queue
ysr@1280 1828 // first is not arbitrary, as the overflow queue is not visible
ysr@1280 1829 // to the other workers, whereas the task queue is. So, we want to
ysr@1280 1830 // drain the "invisible" entries first, while allowing the other
ysr@1280 1831 // workers to potentially steal the "visible" entries.
ysr@1280 1832
ysr@1280 1833 while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
ysr@1280 1834 while (overflowed_refs_to_scan() > 0) {
ysr@1280 1835 StarTask ref_to_scan;
ysr@1280 1836 assert((oop*)ref_to_scan == NULL, "Constructed above");
ysr@1280 1837 pop_from_overflow_queue(ref_to_scan);
ysr@1280 1838 // We shouldn't have pushed it on the queue if it was not
ysr@1280 1839 // pointing into the CSet.
ysr@1280 1840 assert((oop*)ref_to_scan != NULL, "Follows from inner loop invariant");
ysr@1280 1841 if (ref_to_scan.is_narrow()) {
ysr@1280 1842 assert(UseCompressedOops, "Error");
ysr@1280 1843 narrowOop* p = (narrowOop*)ref_to_scan;
ysr@1280 1844 assert(!has_partial_array_mask(p) &&
iveresov@1696 1845 _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1846 deal_with_reference(p);
ysr@1280 1847 } else {
ysr@1280 1848 oop* p = (oop*)ref_to_scan;
iveresov@1696 1849 assert((has_partial_array_mask(p) && _g1h->is_in_g1_reserved(clear_partial_array_mask(p))) ||
iveresov@1696 1850 _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1851 deal_with_reference(p);
ysr@1280 1852 }
ysr@1280 1853 }
ysr@1280 1854
ysr@1280 1855 while (refs_to_scan() > 0) {
ysr@1280 1856 StarTask ref_to_scan;
ysr@1280 1857 assert((oop*)ref_to_scan == NULL, "Constructed above");
ysr@1280 1858 pop_from_queue(ref_to_scan);
ysr@1280 1859 if ((oop*)ref_to_scan != NULL) {
ysr@1280 1860 if (ref_to_scan.is_narrow()) {
ysr@1280 1861 assert(UseCompressedOops, "Error");
ysr@1280 1862 narrowOop* p = (narrowOop*)ref_to_scan;
ysr@1280 1863 assert(!has_partial_array_mask(p) &&
iveresov@1696 1864 _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1865 deal_with_reference(p);
ysr@1280 1866 } else {
ysr@1280 1867 oop* p = (oop*)ref_to_scan;
ysr@1280 1868 assert((has_partial_array_mask(p) && _g1h->obj_in_cs(clear_partial_array_mask(p))) ||
iveresov@1696 1869 _g1h->is_in_g1_reserved(oopDesc::load_decode_heap_oop(p)), "sanity");
ysr@1280 1870 deal_with_reference(p);
ysr@1280 1871 }
ysr@1280 1872 }
ysr@1280 1873 }
ysr@1280 1874 }
ysr@1280 1875 }
ysr@1280 1876 };

mercurial