src/share/vm/runtime/sharedRuntimeTrig.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1840
fb57d4cf76c2
child 2314
f95d63e2154a
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 2001, 2005, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_sharedRuntimeTrig.cpp.incl"
duke@435 27
duke@435 28 // This file contains copies of the fdlibm routines used by
duke@435 29 // StrictMath. It turns out that it is almost always required to use
duke@435 30 // these runtime routines; the Intel CPU doesn't meet the Java
duke@435 31 // specification for sin/cos outside a certain limited argument range,
duke@435 32 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
duke@435 33 // also turns out that avoiding the indirect call through function
duke@435 34 // pointer out to libjava.so in SharedRuntime speeds these routines up
duke@435 35 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
duke@435 36
duke@435 37 // Enabling optimizations in this file causes incorrect code to be
duke@435 38 // generated; can not figure out how to turn down optimization for one
duke@435 39 // file in the IDE on Windows
duke@435 40 #ifdef WIN32
duke@435 41 # pragma optimize ( "", off )
duke@435 42 #endif
duke@435 43
prr@1840 44 /* The above workaround now causes more problems with the latest MS compiler.
prr@1840 45 * Visual Studio 2010's /GS option tries to guard against buffer overruns.
prr@1840 46 * /GS is on by default if you specify optimizations, which we do globally
prr@1840 47 * via /W3 /O2. However the above selective turning off of optimizations means
prr@1840 48 * that /GS issues a warning "4748". And since we treat warnings as errors (/WX)
prr@1840 49 * then the compilation fails. There are several possible solutions
prr@1840 50 * (1) Remove that pragma above as obsolete with VS2010 - requires testing.
prr@1840 51 * (2) Stop treating warnings as errors - would be a backward step
prr@1840 52 * (3) Disable /GS - may help performance but you lose the security checks
prr@1840 53 * (4) Disable the warning with "#pragma warning( disable : 4748 )"
prr@1840 54 * (5) Disable planting the code with __declspec(safebuffers)
prr@1840 55 * I've opted for (5) although we should investigate the local performance
prr@1840 56 * benefits of (1) and global performance benefit of (3).
prr@1840 57 */
prr@1840 58 #if defined(WIN32) && (defined(_MSC_VER) && (_MSC_VER >= 1600))
prr@1840 59 #define SAFEBUF __declspec(safebuffers)
prr@1840 60 #else
prr@1840 61 #define SAFEBUF
prr@1840 62 #endif
prr@1840 63
duke@435 64 #include <math.h>
duke@435 65
duke@435 66 // VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
duke@435 67 // [jk] this is not 100% correct because the float word order may different
duke@435 68 // from the byte order (e.g. on ARM)
duke@435 69 #ifdef VM_LITTLE_ENDIAN
duke@435 70 # define __HI(x) *(1+(int*)&x)
duke@435 71 # define __LO(x) *(int*)&x
duke@435 72 #else
duke@435 73 # define __HI(x) *(int*)&x
duke@435 74 # define __LO(x) *(1+(int*)&x)
duke@435 75 #endif
duke@435 76
duke@435 77 static double copysignA(double x, double y) {
duke@435 78 __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
duke@435 79 return x;
duke@435 80 }
duke@435 81
duke@435 82 /*
duke@435 83 * scalbn (double x, int n)
duke@435 84 * scalbn(x,n) returns x* 2**n computed by exponent
duke@435 85 * manipulation rather than by actually performing an
duke@435 86 * exponentiation or a multiplication.
duke@435 87 */
duke@435 88
duke@435 89 static const double
duke@435 90 two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
duke@435 91 twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
duke@435 92 hugeX = 1.0e+300,
duke@435 93 tiny = 1.0e-300;
duke@435 94
duke@435 95 static double scalbnA (double x, int n) {
duke@435 96 int k,hx,lx;
duke@435 97 hx = __HI(x);
duke@435 98 lx = __LO(x);
duke@435 99 k = (hx&0x7ff00000)>>20; /* extract exponent */
duke@435 100 if (k==0) { /* 0 or subnormal x */
duke@435 101 if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
duke@435 102 x *= two54;
duke@435 103 hx = __HI(x);
duke@435 104 k = ((hx&0x7ff00000)>>20) - 54;
duke@435 105 if (n< -50000) return tiny*x; /*underflow*/
duke@435 106 }
duke@435 107 if (k==0x7ff) return x+x; /* NaN or Inf */
duke@435 108 k = k+n;
duke@435 109 if (k > 0x7fe) return hugeX*copysignA(hugeX,x); /* overflow */
duke@435 110 if (k > 0) /* normal result */
duke@435 111 {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
duke@435 112 if (k <= -54) {
duke@435 113 if (n > 50000) /* in case integer overflow in n+k */
duke@435 114 return hugeX*copysignA(hugeX,x); /*overflow*/
duke@435 115 else return tiny*copysignA(tiny,x); /*underflow*/
duke@435 116 }
duke@435 117 k += 54; /* subnormal result */
duke@435 118 __HI(x) = (hx&0x800fffff)|(k<<20);
duke@435 119 return x*twom54;
duke@435 120 }
duke@435 121
duke@435 122 /*
duke@435 123 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
duke@435 124 * double x[],y[]; int e0,nx,prec; int ipio2[];
duke@435 125 *
duke@435 126 * __kernel_rem_pio2 return the last three digits of N with
duke@435 127 * y = x - N*pi/2
duke@435 128 * so that |y| < pi/2.
duke@435 129 *
duke@435 130 * The method is to compute the integer (mod 8) and fraction parts of
duke@435 131 * (2/pi)*x without doing the full multiplication. In general we
duke@435 132 * skip the part of the product that are known to be a huge integer (
duke@435 133 * more accurately, = 0 mod 8 ). Thus the number of operations are
duke@435 134 * independent of the exponent of the input.
duke@435 135 *
duke@435 136 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
duke@435 137 *
duke@435 138 * Input parameters:
duke@435 139 * x[] The input value (must be positive) is broken into nx
duke@435 140 * pieces of 24-bit integers in double precision format.
duke@435 141 * x[i] will be the i-th 24 bit of x. The scaled exponent
duke@435 142 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
duke@435 143 * match x's up to 24 bits.
duke@435 144 *
duke@435 145 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
duke@435 146 * e0 = ilogb(z)-23
duke@435 147 * z = scalbn(z,-e0)
duke@435 148 * for i = 0,1,2
duke@435 149 * x[i] = floor(z)
duke@435 150 * z = (z-x[i])*2**24
duke@435 151 *
duke@435 152 *
duke@435 153 * y[] ouput result in an array of double precision numbers.
duke@435 154 * The dimension of y[] is:
duke@435 155 * 24-bit precision 1
duke@435 156 * 53-bit precision 2
duke@435 157 * 64-bit precision 2
duke@435 158 * 113-bit precision 3
duke@435 159 * The actual value is the sum of them. Thus for 113-bit
duke@435 160 * precsion, one may have to do something like:
duke@435 161 *
duke@435 162 * long double t,w,r_head, r_tail;
duke@435 163 * t = (long double)y[2] + (long double)y[1];
duke@435 164 * w = (long double)y[0];
duke@435 165 * r_head = t+w;
duke@435 166 * r_tail = w - (r_head - t);
duke@435 167 *
duke@435 168 * e0 The exponent of x[0]
duke@435 169 *
duke@435 170 * nx dimension of x[]
duke@435 171 *
duke@435 172 * prec an interger indicating the precision:
duke@435 173 * 0 24 bits (single)
duke@435 174 * 1 53 bits (double)
duke@435 175 * 2 64 bits (extended)
duke@435 176 * 3 113 bits (quad)
duke@435 177 *
duke@435 178 * ipio2[]
duke@435 179 * integer array, contains the (24*i)-th to (24*i+23)-th
duke@435 180 * bit of 2/pi after binary point. The corresponding
duke@435 181 * floating value is
duke@435 182 *
duke@435 183 * ipio2[i] * 2^(-24(i+1)).
duke@435 184 *
duke@435 185 * External function:
duke@435 186 * double scalbn(), floor();
duke@435 187 *
duke@435 188 *
duke@435 189 * Here is the description of some local variables:
duke@435 190 *
duke@435 191 * jk jk+1 is the initial number of terms of ipio2[] needed
duke@435 192 * in the computation. The recommended value is 2,3,4,
duke@435 193 * 6 for single, double, extended,and quad.
duke@435 194 *
duke@435 195 * jz local integer variable indicating the number of
duke@435 196 * terms of ipio2[] used.
duke@435 197 *
duke@435 198 * jx nx - 1
duke@435 199 *
duke@435 200 * jv index for pointing to the suitable ipio2[] for the
duke@435 201 * computation. In general, we want
duke@435 202 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
duke@435 203 * is an integer. Thus
duke@435 204 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
duke@435 205 * Hence jv = max(0,(e0-3)/24).
duke@435 206 *
duke@435 207 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
duke@435 208 *
duke@435 209 * q[] double array with integral value, representing the
duke@435 210 * 24-bits chunk of the product of x and 2/pi.
duke@435 211 *
duke@435 212 * q0 the corresponding exponent of q[0]. Note that the
duke@435 213 * exponent for q[i] would be q0-24*i.
duke@435 214 *
duke@435 215 * PIo2[] double precision array, obtained by cutting pi/2
duke@435 216 * into 24 bits chunks.
duke@435 217 *
duke@435 218 * f[] ipio2[] in floating point
duke@435 219 *
duke@435 220 * iq[] integer array by breaking up q[] in 24-bits chunk.
duke@435 221 *
duke@435 222 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
duke@435 223 *
duke@435 224 * ih integer. If >0 it indicats q[] is >= 0.5, hence
duke@435 225 * it also indicates the *sign* of the result.
duke@435 226 *
duke@435 227 */
duke@435 228
duke@435 229
duke@435 230 /*
duke@435 231 * Constants:
duke@435 232 * The hexadecimal values are the intended ones for the following
duke@435 233 * constants. The decimal values may be used, provided that the
duke@435 234 * compiler will convert from decimal to binary accurately enough
duke@435 235 * to produce the hexadecimal values shown.
duke@435 236 */
duke@435 237
duke@435 238
duke@435 239 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
duke@435 240
duke@435 241 static const double PIo2[] = {
duke@435 242 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
duke@435 243 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
duke@435 244 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
duke@435 245 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
duke@435 246 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
duke@435 247 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
duke@435 248 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
duke@435 249 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
duke@435 250 };
duke@435 251
duke@435 252 static const double
duke@435 253 zeroB = 0.0,
duke@435 254 one = 1.0,
duke@435 255 two24B = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
duke@435 256 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
duke@435 257
prr@1840 258 static SAFEBUF int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2) {
duke@435 259 int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
duke@435 260 double z,fw,f[20],fq[20],q[20];
duke@435 261
duke@435 262 /* initialize jk*/
duke@435 263 jk = init_jk[prec];
duke@435 264 jp = jk;
duke@435 265
duke@435 266 /* determine jx,jv,q0, note that 3>q0 */
duke@435 267 jx = nx-1;
duke@435 268 jv = (e0-3)/24; if(jv<0) jv=0;
duke@435 269 q0 = e0-24*(jv+1);
duke@435 270
duke@435 271 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
duke@435 272 j = jv-jx; m = jx+jk;
duke@435 273 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zeroB : (double) ipio2[j];
duke@435 274
duke@435 275 /* compute q[0],q[1],...q[jk] */
duke@435 276 for (i=0;i<=jk;i++) {
duke@435 277 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
duke@435 278 }
duke@435 279
duke@435 280 jz = jk;
duke@435 281 recompute:
duke@435 282 /* distill q[] into iq[] reversingly */
duke@435 283 for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
duke@435 284 fw = (double)((int)(twon24* z));
duke@435 285 iq[i] = (int)(z-two24B*fw);
duke@435 286 z = q[j-1]+fw;
duke@435 287 }
duke@435 288
duke@435 289 /* compute n */
duke@435 290 z = scalbnA(z,q0); /* actual value of z */
duke@435 291 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
duke@435 292 n = (int) z;
duke@435 293 z -= (double)n;
duke@435 294 ih = 0;
duke@435 295 if(q0>0) { /* need iq[jz-1] to determine n */
duke@435 296 i = (iq[jz-1]>>(24-q0)); n += i;
duke@435 297 iq[jz-1] -= i<<(24-q0);
duke@435 298 ih = iq[jz-1]>>(23-q0);
duke@435 299 }
duke@435 300 else if(q0==0) ih = iq[jz-1]>>23;
duke@435 301 else if(z>=0.5) ih=2;
duke@435 302
duke@435 303 if(ih>0) { /* q > 0.5 */
duke@435 304 n += 1; carry = 0;
duke@435 305 for(i=0;i<jz ;i++) { /* compute 1-q */
duke@435 306 j = iq[i];
duke@435 307 if(carry==0) {
duke@435 308 if(j!=0) {
duke@435 309 carry = 1; iq[i] = 0x1000000- j;
duke@435 310 }
duke@435 311 } else iq[i] = 0xffffff - j;
duke@435 312 }
duke@435 313 if(q0>0) { /* rare case: chance is 1 in 12 */
duke@435 314 switch(q0) {
duke@435 315 case 1:
duke@435 316 iq[jz-1] &= 0x7fffff; break;
duke@435 317 case 2:
duke@435 318 iq[jz-1] &= 0x3fffff; break;
duke@435 319 }
duke@435 320 }
duke@435 321 if(ih==2) {
duke@435 322 z = one - z;
duke@435 323 if(carry!=0) z -= scalbnA(one,q0);
duke@435 324 }
duke@435 325 }
duke@435 326
duke@435 327 /* check if recomputation is needed */
duke@435 328 if(z==zeroB) {
duke@435 329 j = 0;
duke@435 330 for (i=jz-1;i>=jk;i--) j |= iq[i];
duke@435 331 if(j==0) { /* need recomputation */
duke@435 332 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
duke@435 333
duke@435 334 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
duke@435 335 f[jx+i] = (double) ipio2[jv+i];
duke@435 336 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
duke@435 337 q[i] = fw;
duke@435 338 }
duke@435 339 jz += k;
duke@435 340 goto recompute;
duke@435 341 }
duke@435 342 }
duke@435 343
duke@435 344 /* chop off zero terms */
duke@435 345 if(z==0.0) {
duke@435 346 jz -= 1; q0 -= 24;
duke@435 347 while(iq[jz]==0) { jz--; q0-=24;}
duke@435 348 } else { /* break z into 24-bit if neccessary */
duke@435 349 z = scalbnA(z,-q0);
duke@435 350 if(z>=two24B) {
duke@435 351 fw = (double)((int)(twon24*z));
duke@435 352 iq[jz] = (int)(z-two24B*fw);
duke@435 353 jz += 1; q0 += 24;
duke@435 354 iq[jz] = (int) fw;
duke@435 355 } else iq[jz] = (int) z ;
duke@435 356 }
duke@435 357
duke@435 358 /* convert integer "bit" chunk to floating-point value */
duke@435 359 fw = scalbnA(one,q0);
duke@435 360 for(i=jz;i>=0;i--) {
duke@435 361 q[i] = fw*(double)iq[i]; fw*=twon24;
duke@435 362 }
duke@435 363
duke@435 364 /* compute PIo2[0,...,jp]*q[jz,...,0] */
duke@435 365 for(i=jz;i>=0;i--) {
duke@435 366 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
duke@435 367 fq[jz-i] = fw;
duke@435 368 }
duke@435 369
duke@435 370 /* compress fq[] into y[] */
duke@435 371 switch(prec) {
duke@435 372 case 0:
duke@435 373 fw = 0.0;
duke@435 374 for (i=jz;i>=0;i--) fw += fq[i];
duke@435 375 y[0] = (ih==0)? fw: -fw;
duke@435 376 break;
duke@435 377 case 1:
duke@435 378 case 2:
duke@435 379 fw = 0.0;
duke@435 380 for (i=jz;i>=0;i--) fw += fq[i];
duke@435 381 y[0] = (ih==0)? fw: -fw;
duke@435 382 fw = fq[0]-fw;
duke@435 383 for (i=1;i<=jz;i++) fw += fq[i];
duke@435 384 y[1] = (ih==0)? fw: -fw;
duke@435 385 break;
duke@435 386 case 3: /* painful */
duke@435 387 for (i=jz;i>0;i--) {
duke@435 388 fw = fq[i-1]+fq[i];
duke@435 389 fq[i] += fq[i-1]-fw;
duke@435 390 fq[i-1] = fw;
duke@435 391 }
duke@435 392 for (i=jz;i>1;i--) {
duke@435 393 fw = fq[i-1]+fq[i];
duke@435 394 fq[i] += fq[i-1]-fw;
duke@435 395 fq[i-1] = fw;
duke@435 396 }
duke@435 397 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
duke@435 398 if(ih==0) {
duke@435 399 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
duke@435 400 } else {
duke@435 401 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
duke@435 402 }
duke@435 403 }
duke@435 404 return n&7;
duke@435 405 }
duke@435 406
duke@435 407
duke@435 408 /*
duke@435 409 * ====================================================
trims@1907 410 * Copyright (c) 1993 Oracle and/or its affilates. All rights reserved.
duke@435 411 *
duke@435 412 * Developed at SunPro, a Sun Microsystems, Inc. business.
duke@435 413 * Permission to use, copy, modify, and distribute this
duke@435 414 * software is freely granted, provided that this notice
duke@435 415 * is preserved.
duke@435 416 * ====================================================
duke@435 417 *
duke@435 418 */
duke@435 419
duke@435 420 /* __ieee754_rem_pio2(x,y)
duke@435 421 *
duke@435 422 * return the remainder of x rem pi/2 in y[0]+y[1]
duke@435 423 * use __kernel_rem_pio2()
duke@435 424 */
duke@435 425
duke@435 426 /*
duke@435 427 * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
duke@435 428 */
duke@435 429 static const int two_over_pi[] = {
duke@435 430 0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
duke@435 431 0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
duke@435 432 0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
duke@435 433 0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
duke@435 434 0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
duke@435 435 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
duke@435 436 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
duke@435 437 0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
duke@435 438 0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
duke@435 439 0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
duke@435 440 0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
duke@435 441 };
duke@435 442
duke@435 443 static const int npio2_hw[] = {
duke@435 444 0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
duke@435 445 0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
duke@435 446 0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
duke@435 447 0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
duke@435 448 0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
duke@435 449 0x404858EB, 0x404921FB,
duke@435 450 };
duke@435 451
duke@435 452 /*
duke@435 453 * invpio2: 53 bits of 2/pi
duke@435 454 * pio2_1: first 33 bit of pi/2
duke@435 455 * pio2_1t: pi/2 - pio2_1
duke@435 456 * pio2_2: second 33 bit of pi/2
duke@435 457 * pio2_2t: pi/2 - (pio2_1+pio2_2)
duke@435 458 * pio2_3: third 33 bit of pi/2
duke@435 459 * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
duke@435 460 */
duke@435 461
duke@435 462 static const double
duke@435 463 zeroA = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
duke@435 464 half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
duke@435 465 two24A = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
duke@435 466 invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
duke@435 467 pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
duke@435 468 pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
duke@435 469 pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
duke@435 470 pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
duke@435 471 pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
duke@435 472 pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
duke@435 473
prr@1840 474 static SAFEBUF int __ieee754_rem_pio2(double x, double *y) {
duke@435 475 double z,w,t,r,fn;
duke@435 476 double tx[3];
duke@435 477 int e0,i,j,nx,n,ix,hx,i0;
duke@435 478
duke@435 479 i0 = ((*(int*)&two24A)>>30)^1; /* high word index */
duke@435 480 hx = *(i0+(int*)&x); /* high word of x */
duke@435 481 ix = hx&0x7fffffff;
duke@435 482 if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
duke@435 483 {y[0] = x; y[1] = 0; return 0;}
duke@435 484 if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
duke@435 485 if(hx>0) {
duke@435 486 z = x - pio2_1;
duke@435 487 if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
duke@435 488 y[0] = z - pio2_1t;
duke@435 489 y[1] = (z-y[0])-pio2_1t;
duke@435 490 } else { /* near pi/2, use 33+33+53 bit pi */
duke@435 491 z -= pio2_2;
duke@435 492 y[0] = z - pio2_2t;
duke@435 493 y[1] = (z-y[0])-pio2_2t;
duke@435 494 }
duke@435 495 return 1;
duke@435 496 } else { /* negative x */
duke@435 497 z = x + pio2_1;
duke@435 498 if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
duke@435 499 y[0] = z + pio2_1t;
duke@435 500 y[1] = (z-y[0])+pio2_1t;
duke@435 501 } else { /* near pi/2, use 33+33+53 bit pi */
duke@435 502 z += pio2_2;
duke@435 503 y[0] = z + pio2_2t;
duke@435 504 y[1] = (z-y[0])+pio2_2t;
duke@435 505 }
duke@435 506 return -1;
duke@435 507 }
duke@435 508 }
duke@435 509 if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
duke@435 510 t = fabsd(x);
duke@435 511 n = (int) (t*invpio2+half);
duke@435 512 fn = (double)n;
duke@435 513 r = t-fn*pio2_1;
duke@435 514 w = fn*pio2_1t; /* 1st round good to 85 bit */
duke@435 515 if(n<32&&ix!=npio2_hw[n-1]) {
duke@435 516 y[0] = r-w; /* quick check no cancellation */
duke@435 517 } else {
duke@435 518 j = ix>>20;
duke@435 519 y[0] = r-w;
duke@435 520 i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
duke@435 521 if(i>16) { /* 2nd iteration needed, good to 118 */
duke@435 522 t = r;
duke@435 523 w = fn*pio2_2;
duke@435 524 r = t-w;
duke@435 525 w = fn*pio2_2t-((t-r)-w);
duke@435 526 y[0] = r-w;
duke@435 527 i = j-(((*(i0+(int*)&y[0]))>>20)&0x7ff);
duke@435 528 if(i>49) { /* 3rd iteration need, 151 bits acc */
duke@435 529 t = r; /* will cover all possible cases */
duke@435 530 w = fn*pio2_3;
duke@435 531 r = t-w;
duke@435 532 w = fn*pio2_3t-((t-r)-w);
duke@435 533 y[0] = r-w;
duke@435 534 }
duke@435 535 }
duke@435 536 }
duke@435 537 y[1] = (r-y[0])-w;
duke@435 538 if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
duke@435 539 else return n;
duke@435 540 }
duke@435 541 /*
duke@435 542 * all other (large) arguments
duke@435 543 */
duke@435 544 if(ix>=0x7ff00000) { /* x is inf or NaN */
duke@435 545 y[0]=y[1]=x-x; return 0;
duke@435 546 }
duke@435 547 /* set z = scalbn(|x|,ilogb(x)-23) */
duke@435 548 *(1-i0+(int*)&z) = *(1-i0+(int*)&x);
duke@435 549 e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
duke@435 550 *(i0+(int*)&z) = ix - (e0<<20);
duke@435 551 for(i=0;i<2;i++) {
duke@435 552 tx[i] = (double)((int)(z));
duke@435 553 z = (z-tx[i])*two24A;
duke@435 554 }
duke@435 555 tx[2] = z;
duke@435 556 nx = 3;
duke@435 557 while(tx[nx-1]==zeroA) nx--; /* skip zero term */
duke@435 558 n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
duke@435 559 if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
duke@435 560 return n;
duke@435 561 }
duke@435 562
duke@435 563
duke@435 564 /* __kernel_sin( x, y, iy)
duke@435 565 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
duke@435 566 * Input x is assumed to be bounded by ~pi/4 in magnitude.
duke@435 567 * Input y is the tail of x.
duke@435 568 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
duke@435 569 *
duke@435 570 * Algorithm
duke@435 571 * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
duke@435 572 * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
duke@435 573 * 3. sin(x) is approximated by a polynomial of degree 13 on
duke@435 574 * [0,pi/4]
duke@435 575 * 3 13
duke@435 576 * sin(x) ~ x + S1*x + ... + S6*x
duke@435 577 * where
duke@435 578 *
duke@435 579 * |sin(x) 2 4 6 8 10 12 | -58
duke@435 580 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
duke@435 581 * | x |
duke@435 582 *
duke@435 583 * 4. sin(x+y) = sin(x) + sin'(x')*y
duke@435 584 * ~ sin(x) + (1-x*x/2)*y
duke@435 585 * For better accuracy, let
duke@435 586 * 3 2 2 2 2
duke@435 587 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
duke@435 588 * then 3 2
duke@435 589 * sin(x) = x + (S1*x + (x *(r-y/2)+y))
duke@435 590 */
duke@435 591
duke@435 592 static const double
duke@435 593 S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
duke@435 594 S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
duke@435 595 S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
duke@435 596 S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
duke@435 597 S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
duke@435 598 S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
duke@435 599
duke@435 600 static double __kernel_sin(double x, double y, int iy)
duke@435 601 {
duke@435 602 double z,r,v;
duke@435 603 int ix;
duke@435 604 ix = __HI(x)&0x7fffffff; /* high word of x */
duke@435 605 if(ix<0x3e400000) /* |x| < 2**-27 */
duke@435 606 {if((int)x==0) return x;} /* generate inexact */
duke@435 607 z = x*x;
duke@435 608 v = z*x;
duke@435 609 r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
duke@435 610 if(iy==0) return x+v*(S1+z*r);
duke@435 611 else return x-((z*(half*y-v*r)-y)-v*S1);
duke@435 612 }
duke@435 613
duke@435 614 /*
duke@435 615 * __kernel_cos( x, y )
duke@435 616 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
duke@435 617 * Input x is assumed to be bounded by ~pi/4 in magnitude.
duke@435 618 * Input y is the tail of x.
duke@435 619 *
duke@435 620 * Algorithm
duke@435 621 * 1. Since cos(-x) = cos(x), we need only to consider positive x.
duke@435 622 * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
duke@435 623 * 3. cos(x) is approximated by a polynomial of degree 14 on
duke@435 624 * [0,pi/4]
duke@435 625 * 4 14
duke@435 626 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
duke@435 627 * where the remez error is
duke@435 628 *
duke@435 629 * | 2 4 6 8 10 12 14 | -58
duke@435 630 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
duke@435 631 * | |
duke@435 632 *
duke@435 633 * 4 6 8 10 12 14
duke@435 634 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
duke@435 635 * cos(x) = 1 - x*x/2 + r
duke@435 636 * since cos(x+y) ~ cos(x) - sin(x)*y
duke@435 637 * ~ cos(x) - x*y,
duke@435 638 * a correction term is necessary in cos(x) and hence
duke@435 639 * cos(x+y) = 1 - (x*x/2 - (r - x*y))
duke@435 640 * For better accuracy when x > 0.3, let qx = |x|/4 with
duke@435 641 * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
duke@435 642 * Then
duke@435 643 * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
duke@435 644 * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
duke@435 645 * magnitude of the latter is at least a quarter of x*x/2,
duke@435 646 * thus, reducing the rounding error in the subtraction.
duke@435 647 */
duke@435 648
duke@435 649 static const double
duke@435 650 C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
duke@435 651 C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
duke@435 652 C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
duke@435 653 C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
duke@435 654 C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
duke@435 655 C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
duke@435 656
duke@435 657 static double __kernel_cos(double x, double y)
duke@435 658 {
duke@435 659 double a,hz,z,r,qx;
duke@435 660 int ix;
duke@435 661 ix = __HI(x)&0x7fffffff; /* ix = |x|'s high word*/
duke@435 662 if(ix<0x3e400000) { /* if x < 2**27 */
duke@435 663 if(((int)x)==0) return one; /* generate inexact */
duke@435 664 }
duke@435 665 z = x*x;
duke@435 666 r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
duke@435 667 if(ix < 0x3FD33333) /* if |x| < 0.3 */
duke@435 668 return one - (0.5*z - (z*r - x*y));
duke@435 669 else {
duke@435 670 if(ix > 0x3fe90000) { /* x > 0.78125 */
duke@435 671 qx = 0.28125;
duke@435 672 } else {
duke@435 673 __HI(qx) = ix-0x00200000; /* x/4 */
duke@435 674 __LO(qx) = 0;
duke@435 675 }
duke@435 676 hz = 0.5*z-qx;
duke@435 677 a = one-qx;
duke@435 678 return a - (hz - (z*r-x*y));
duke@435 679 }
duke@435 680 }
duke@435 681
duke@435 682 /* __kernel_tan( x, y, k )
duke@435 683 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
duke@435 684 * Input x is assumed to be bounded by ~pi/4 in magnitude.
duke@435 685 * Input y is the tail of x.
duke@435 686 * Input k indicates whether tan (if k=1) or
duke@435 687 * -1/tan (if k= -1) is returned.
duke@435 688 *
duke@435 689 * Algorithm
duke@435 690 * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
duke@435 691 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
duke@435 692 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
duke@435 693 * [0,0.67434]
duke@435 694 * 3 27
duke@435 695 * tan(x) ~ x + T1*x + ... + T13*x
duke@435 696 * where
duke@435 697 *
duke@435 698 * |tan(x) 2 4 26 | -59.2
duke@435 699 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
duke@435 700 * | x |
duke@435 701 *
duke@435 702 * Note: tan(x+y) = tan(x) + tan'(x)*y
duke@435 703 * ~ tan(x) + (1+x*x)*y
duke@435 704 * Therefore, for better accuracy in computing tan(x+y), let
duke@435 705 * 3 2 2 2 2
duke@435 706 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
duke@435 707 * then
duke@435 708 * 3 2
duke@435 709 * tan(x+y) = x + (T1*x + (x *(r+y)+y))
duke@435 710 *
duke@435 711 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
duke@435 712 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
duke@435 713 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
duke@435 714 */
duke@435 715
duke@435 716 static const double
duke@435 717 pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
duke@435 718 pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
duke@435 719 T[] = {
duke@435 720 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
duke@435 721 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
duke@435 722 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
duke@435 723 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
duke@435 724 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
duke@435 725 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
duke@435 726 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
duke@435 727 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
duke@435 728 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
duke@435 729 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
duke@435 730 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
duke@435 731 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
duke@435 732 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
duke@435 733 };
duke@435 734
duke@435 735 static double __kernel_tan(double x, double y, int iy)
duke@435 736 {
duke@435 737 double z,r,v,w,s;
duke@435 738 int ix,hx;
duke@435 739 hx = __HI(x); /* high word of x */
duke@435 740 ix = hx&0x7fffffff; /* high word of |x| */
duke@435 741 if(ix<0x3e300000) { /* x < 2**-28 */
duke@435 742 if((int)x==0) { /* generate inexact */
duke@435 743 if (((ix | __LO(x)) | (iy + 1)) == 0)
duke@435 744 return one / fabsd(x);
duke@435 745 else {
duke@435 746 if (iy == 1)
duke@435 747 return x;
duke@435 748 else { /* compute -1 / (x+y) carefully */
duke@435 749 double a, t;
duke@435 750
duke@435 751 z = w = x + y;
duke@435 752 __LO(z) = 0;
duke@435 753 v = y - (z - x);
duke@435 754 t = a = -one / w;
duke@435 755 __LO(t) = 0;
duke@435 756 s = one + t * z;
duke@435 757 return t + a * (s + t * v);
duke@435 758 }
duke@435 759 }
duke@435 760 }
duke@435 761 }
duke@435 762 if(ix>=0x3FE59428) { /* |x|>=0.6744 */
duke@435 763 if(hx<0) {x = -x; y = -y;}
duke@435 764 z = pio4-x;
duke@435 765 w = pio4lo-y;
duke@435 766 x = z+w; y = 0.0;
duke@435 767 }
duke@435 768 z = x*x;
duke@435 769 w = z*z;
duke@435 770 /* Break x^5*(T[1]+x^2*T[2]+...) into
duke@435 771 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
duke@435 772 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
duke@435 773 */
duke@435 774 r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
duke@435 775 v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
duke@435 776 s = z*x;
duke@435 777 r = y + z*(s*(r+v)+y);
duke@435 778 r += T[0]*s;
duke@435 779 w = x+r;
duke@435 780 if(ix>=0x3FE59428) {
duke@435 781 v = (double)iy;
duke@435 782 return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
duke@435 783 }
duke@435 784 if(iy==1) return w;
duke@435 785 else { /* if allow error up to 2 ulp,
duke@435 786 simply return -1.0/(x+r) here */
duke@435 787 /* compute -1.0/(x+r) accurately */
duke@435 788 double a,t;
duke@435 789 z = w;
duke@435 790 __LO(z) = 0;
duke@435 791 v = r-(z - x); /* z+v = r+x */
duke@435 792 t = a = -1.0/w; /* a = -1.0/w */
duke@435 793 __LO(t) = 0;
duke@435 794 s = 1.0+t*z;
duke@435 795 return t+a*(s+t*v);
duke@435 796 }
duke@435 797 }
duke@435 798
duke@435 799
duke@435 800 //----------------------------------------------------------------------
duke@435 801 //
duke@435 802 // Routines for new sin/cos implementation
duke@435 803 //
duke@435 804 //----------------------------------------------------------------------
duke@435 805
duke@435 806 /* sin(x)
duke@435 807 * Return sine function of x.
duke@435 808 *
duke@435 809 * kernel function:
duke@435 810 * __kernel_sin ... sine function on [-pi/4,pi/4]
duke@435 811 * __kernel_cos ... cose function on [-pi/4,pi/4]
duke@435 812 * __ieee754_rem_pio2 ... argument reduction routine
duke@435 813 *
duke@435 814 * Method.
duke@435 815 * Let S,C and T denote the sin, cos and tan respectively on
duke@435 816 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
duke@435 817 * in [-pi/4 , +pi/4], and let n = k mod 4.
duke@435 818 * We have
duke@435 819 *
duke@435 820 * n sin(x) cos(x) tan(x)
duke@435 821 * ----------------------------------------------------------
duke@435 822 * 0 S C T
duke@435 823 * 1 C -S -1/T
duke@435 824 * 2 -S -C T
duke@435 825 * 3 -C S -1/T
duke@435 826 * ----------------------------------------------------------
duke@435 827 *
duke@435 828 * Special cases:
duke@435 829 * Let trig be any of sin, cos, or tan.
duke@435 830 * trig(+-INF) is NaN, with signals;
duke@435 831 * trig(NaN) is that NaN;
duke@435 832 *
duke@435 833 * Accuracy:
duke@435 834 * TRIG(x) returns trig(x) nearly rounded
duke@435 835 */
duke@435 836
duke@435 837 JRT_LEAF(jdouble, SharedRuntime::dsin(jdouble x))
duke@435 838 double y[2],z=0.0;
duke@435 839 int n, ix;
duke@435 840
duke@435 841 /* High word of x. */
duke@435 842 ix = __HI(x);
duke@435 843
duke@435 844 /* |x| ~< pi/4 */
duke@435 845 ix &= 0x7fffffff;
duke@435 846 if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
duke@435 847
duke@435 848 /* sin(Inf or NaN) is NaN */
duke@435 849 else if (ix>=0x7ff00000) return x-x;
duke@435 850
duke@435 851 /* argument reduction needed */
duke@435 852 else {
duke@435 853 n = __ieee754_rem_pio2(x,y);
duke@435 854 switch(n&3) {
duke@435 855 case 0: return __kernel_sin(y[0],y[1],1);
duke@435 856 case 1: return __kernel_cos(y[0],y[1]);
duke@435 857 case 2: return -__kernel_sin(y[0],y[1],1);
duke@435 858 default:
duke@435 859 return -__kernel_cos(y[0],y[1]);
duke@435 860 }
duke@435 861 }
duke@435 862 JRT_END
duke@435 863
duke@435 864 /* cos(x)
duke@435 865 * Return cosine function of x.
duke@435 866 *
duke@435 867 * kernel function:
duke@435 868 * __kernel_sin ... sine function on [-pi/4,pi/4]
duke@435 869 * __kernel_cos ... cosine function on [-pi/4,pi/4]
duke@435 870 * __ieee754_rem_pio2 ... argument reduction routine
duke@435 871 *
duke@435 872 * Method.
duke@435 873 * Let S,C and T denote the sin, cos and tan respectively on
duke@435 874 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
duke@435 875 * in [-pi/4 , +pi/4], and let n = k mod 4.
duke@435 876 * We have
duke@435 877 *
duke@435 878 * n sin(x) cos(x) tan(x)
duke@435 879 * ----------------------------------------------------------
duke@435 880 * 0 S C T
duke@435 881 * 1 C -S -1/T
duke@435 882 * 2 -S -C T
duke@435 883 * 3 -C S -1/T
duke@435 884 * ----------------------------------------------------------
duke@435 885 *
duke@435 886 * Special cases:
duke@435 887 * Let trig be any of sin, cos, or tan.
duke@435 888 * trig(+-INF) is NaN, with signals;
duke@435 889 * trig(NaN) is that NaN;
duke@435 890 *
duke@435 891 * Accuracy:
duke@435 892 * TRIG(x) returns trig(x) nearly rounded
duke@435 893 */
duke@435 894
duke@435 895 JRT_LEAF(jdouble, SharedRuntime::dcos(jdouble x))
duke@435 896 double y[2],z=0.0;
duke@435 897 int n, ix;
duke@435 898
duke@435 899 /* High word of x. */
duke@435 900 ix = __HI(x);
duke@435 901
duke@435 902 /* |x| ~< pi/4 */
duke@435 903 ix &= 0x7fffffff;
duke@435 904 if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
duke@435 905
duke@435 906 /* cos(Inf or NaN) is NaN */
duke@435 907 else if (ix>=0x7ff00000) return x-x;
duke@435 908
duke@435 909 /* argument reduction needed */
duke@435 910 else {
duke@435 911 n = __ieee754_rem_pio2(x,y);
duke@435 912 switch(n&3) {
duke@435 913 case 0: return __kernel_cos(y[0],y[1]);
duke@435 914 case 1: return -__kernel_sin(y[0],y[1],1);
duke@435 915 case 2: return -__kernel_cos(y[0],y[1]);
duke@435 916 default:
duke@435 917 return __kernel_sin(y[0],y[1],1);
duke@435 918 }
duke@435 919 }
duke@435 920 JRT_END
duke@435 921
duke@435 922 /* tan(x)
duke@435 923 * Return tangent function of x.
duke@435 924 *
duke@435 925 * kernel function:
duke@435 926 * __kernel_tan ... tangent function on [-pi/4,pi/4]
duke@435 927 * __ieee754_rem_pio2 ... argument reduction routine
duke@435 928 *
duke@435 929 * Method.
duke@435 930 * Let S,C and T denote the sin, cos and tan respectively on
duke@435 931 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
duke@435 932 * in [-pi/4 , +pi/4], and let n = k mod 4.
duke@435 933 * We have
duke@435 934 *
duke@435 935 * n sin(x) cos(x) tan(x)
duke@435 936 * ----------------------------------------------------------
duke@435 937 * 0 S C T
duke@435 938 * 1 C -S -1/T
duke@435 939 * 2 -S -C T
duke@435 940 * 3 -C S -1/T
duke@435 941 * ----------------------------------------------------------
duke@435 942 *
duke@435 943 * Special cases:
duke@435 944 * Let trig be any of sin, cos, or tan.
duke@435 945 * trig(+-INF) is NaN, with signals;
duke@435 946 * trig(NaN) is that NaN;
duke@435 947 *
duke@435 948 * Accuracy:
duke@435 949 * TRIG(x) returns trig(x) nearly rounded
duke@435 950 */
duke@435 951
duke@435 952 JRT_LEAF(jdouble, SharedRuntime::dtan(jdouble x))
duke@435 953 double y[2],z=0.0;
duke@435 954 int n, ix;
duke@435 955
duke@435 956 /* High word of x. */
duke@435 957 ix = __HI(x);
duke@435 958
duke@435 959 /* |x| ~< pi/4 */
duke@435 960 ix &= 0x7fffffff;
duke@435 961 if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
duke@435 962
duke@435 963 /* tan(Inf or NaN) is NaN */
duke@435 964 else if (ix>=0x7ff00000) return x-x; /* NaN */
duke@435 965
duke@435 966 /* argument reduction needed */
duke@435 967 else {
duke@435 968 n = __ieee754_rem_pio2(x,y);
duke@435 969 return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
duke@435 970 -1 -- n odd */
duke@435 971 }
duke@435 972 JRT_END
duke@435 973
duke@435 974
duke@435 975 #ifdef WIN32
duke@435 976 # pragma optimize ( "", on )
duke@435 977 #endif

mercurial