src/share/vm/gc_implementation/g1/g1BlockOffsetTable.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1844
cff162798819
child 2241
72a161e62cc4
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

ysr@777 1 /*
trims@1907 2 * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 #include "incls/_precompiled.incl"
ysr@777 26 #include "incls/_g1BlockOffsetTable.cpp.incl"
ysr@777 27
ysr@777 28 //////////////////////////////////////////////////////////////////////
ysr@777 29 // G1BlockOffsetSharedArray
ysr@777 30 //////////////////////////////////////////////////////////////////////
ysr@777 31
ysr@777 32 G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
ysr@777 33 size_t init_word_size) :
ysr@777 34 _reserved(reserved), _end(NULL)
ysr@777 35 {
ysr@777 36 size_t size = compute_size(reserved.word_size());
ysr@777 37 ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
ysr@777 38 if (!rs.is_reserved()) {
ysr@777 39 vm_exit_during_initialization("Could not reserve enough space for heap offset array");
ysr@777 40 }
ysr@777 41 if (!_vs.initialize(rs, 0)) {
ysr@777 42 vm_exit_during_initialization("Could not reserve enough space for heap offset array");
ysr@777 43 }
ysr@777 44 _offset_array = (u_char*)_vs.low_boundary();
ysr@777 45 resize(init_word_size);
ysr@777 46 if (TraceBlockOffsetTable) {
ysr@777 47 gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
ysr@777 48 gclog_or_tty->print_cr(" "
ysr@777 49 " rs.base(): " INTPTR_FORMAT
ysr@777 50 " rs.size(): " INTPTR_FORMAT
ysr@777 51 " rs end(): " INTPTR_FORMAT,
ysr@777 52 rs.base(), rs.size(), rs.base() + rs.size());
ysr@777 53 gclog_or_tty->print_cr(" "
ysr@777 54 " _vs.low_boundary(): " INTPTR_FORMAT
ysr@777 55 " _vs.high_boundary(): " INTPTR_FORMAT,
ysr@777 56 _vs.low_boundary(),
ysr@777 57 _vs.high_boundary());
ysr@777 58 }
ysr@777 59 }
ysr@777 60
ysr@777 61 void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
ysr@777 62 assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
ysr@777 63 size_t new_size = compute_size(new_word_size);
ysr@777 64 size_t old_size = _vs.committed_size();
ysr@777 65 size_t delta;
ysr@777 66 char* high = _vs.high();
ysr@777 67 _end = _reserved.start() + new_word_size;
ysr@777 68 if (new_size > old_size) {
ysr@777 69 delta = ReservedSpace::page_align_size_up(new_size - old_size);
ysr@777 70 assert(delta > 0, "just checking");
ysr@777 71 if (!_vs.expand_by(delta)) {
ysr@777 72 // Do better than this for Merlin
ysr@777 73 vm_exit_out_of_memory(delta, "offset table expansion");
ysr@777 74 }
ysr@777 75 assert(_vs.high() == high + delta, "invalid expansion");
ysr@777 76 // Initialization of the contents is left to the
ysr@777 77 // G1BlockOffsetArray that uses it.
ysr@777 78 } else {
ysr@777 79 delta = ReservedSpace::page_align_size_down(old_size - new_size);
ysr@777 80 if (delta == 0) return;
ysr@777 81 _vs.shrink_by(delta);
ysr@777 82 assert(_vs.high() == high - delta, "invalid expansion");
ysr@777 83 }
ysr@777 84 }
ysr@777 85
ysr@777 86 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
ysr@777 87 assert(p >= _reserved.start(), "just checking");
ysr@777 88 size_t delta = pointer_delta(p, _reserved.start());
ysr@777 89 return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
ysr@777 90 }
ysr@777 91
ysr@777 92
ysr@777 93 //////////////////////////////////////////////////////////////////////
ysr@777 94 // G1BlockOffsetArray
ysr@777 95 //////////////////////////////////////////////////////////////////////
ysr@777 96
ysr@777 97 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
ysr@777 98 MemRegion mr, bool init_to_zero) :
ysr@777 99 G1BlockOffsetTable(mr.start(), mr.end()),
ysr@777 100 _unallocated_block(_bottom),
ysr@777 101 _array(array), _csp(NULL),
ysr@777 102 _init_to_zero(init_to_zero) {
ysr@777 103 assert(_bottom <= _end, "arguments out of order");
ysr@777 104 if (!_init_to_zero) {
ysr@777 105 // initialize cards to point back to mr.start()
ysr@777 106 set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
ysr@777 107 _array->set_offset_array(0, 0); // set first card to 0
ysr@777 108 }
ysr@777 109 }
ysr@777 110
ysr@777 111 void G1BlockOffsetArray::set_space(Space* sp) {
ysr@777 112 _sp = sp;
ysr@777 113 _csp = sp->toContiguousSpace();
ysr@777 114 }
ysr@777 115
ysr@777 116 // The arguments follow the normal convention of denoting
ysr@777 117 // a right-open interval: [start, end)
ysr@777 118 void
ysr@777 119 G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
ysr@777 120
ysr@777 121 if (start >= end) {
ysr@777 122 // The start address is equal to the end address (or to
ysr@777 123 // the right of the end address) so there are not cards
ysr@777 124 // that need to be updated..
ysr@777 125 return;
ysr@777 126 }
ysr@777 127
ysr@777 128 // Write the backskip value for each region.
ysr@777 129 //
ysr@777 130 // offset
ysr@777 131 // card 2nd 3rd
ysr@777 132 // | +- 1st | |
ysr@777 133 // v v v v
ysr@777 134 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
ysr@777 135 // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
ysr@777 136 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-
ysr@777 137 // 11 19 75
ysr@777 138 // 12
ysr@777 139 //
ysr@777 140 // offset card is the card that points to the start of an object
ysr@777 141 // x - offset value of offset card
ysr@777 142 // 1st - start of first logarithmic region
ysr@777 143 // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
ysr@777 144 // 2nd - start of second logarithmic region
ysr@777 145 // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
ysr@777 146 // 3rd - start of third logarithmic region
ysr@777 147 // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
ysr@777 148 //
ysr@777 149 // integer below the block offset entry is an example of
ysr@777 150 // the index of the entry
ysr@777 151 //
ysr@777 152 // Given an address,
ysr@777 153 // Find the index for the address
ysr@777 154 // Find the block offset table entry
ysr@777 155 // Convert the entry to a back slide
ysr@777 156 // (e.g., with today's, offset = 0x81 =>
ysr@777 157 // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
ysr@777 158 // Move back N (e.g., 8) entries and repeat with the
ysr@777 159 // value of the new entry
ysr@777 160 //
ysr@777 161 size_t start_card = _array->index_for(start);
ysr@777 162 size_t end_card = _array->index_for(end-1);
ysr@777 163 assert(start ==_array->address_for_index(start_card), "Precondition");
ysr@777 164 assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
ysr@777 165 set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
ysr@777 166 }
ysr@777 167
ysr@777 168 // Unlike the normal convention in this code, the argument here denotes
ysr@777 169 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
ysr@777 170 // above.
ysr@777 171 void
ysr@777 172 G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
ysr@777 173 if (start_card > end_card) {
ysr@777 174 return;
ysr@777 175 }
ysr@777 176 assert(start_card > _array->index_for(_bottom), "Cannot be first card");
ysr@777 177 assert(_array->offset_array(start_card-1) <= N_words,
ysr@777 178 "Offset card has an unexpected value");
ysr@777 179 size_t start_card_for_region = start_card;
ysr@777 180 u_char offset = max_jubyte;
ysr@777 181 for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
ysr@777 182 // -1 so that the the card with the actual offset is counted. Another -1
ysr@777 183 // so that the reach ends in this region and not at the start
ysr@777 184 // of the next.
ysr@777 185 size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
ysr@777 186 offset = N_words + i;
ysr@777 187 if (reach >= end_card) {
ysr@777 188 _array->set_offset_array(start_card_for_region, end_card, offset);
ysr@777 189 start_card_for_region = reach + 1;
ysr@777 190 break;
ysr@777 191 }
ysr@777 192 _array->set_offset_array(start_card_for_region, reach, offset);
ysr@777 193 start_card_for_region = reach + 1;
ysr@777 194 }
ysr@777 195 assert(start_card_for_region > end_card, "Sanity check");
ysr@777 196 DEBUG_ONLY(check_all_cards(start_card, end_card);)
ysr@777 197 }
ysr@777 198
ysr@777 199 // The block [blk_start, blk_end) has been allocated;
ysr@777 200 // adjust the block offset table to represent this information;
ysr@777 201 // right-open interval: [blk_start, blk_end)
ysr@777 202 void
ysr@777 203 G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
ysr@777 204 mark_block(blk_start, blk_end);
ysr@777 205 allocated(blk_start, blk_end);
ysr@777 206 }
ysr@777 207
ysr@777 208 // Adjust BOT to show that a previously whole block has been split
ysr@777 209 // into two.
ysr@777 210 void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
ysr@777 211 size_t left_blk_size) {
ysr@777 212 // Verify that the BOT shows [blk, blk + blk_size) to be one block.
ysr@777 213 verify_single_block(blk, blk_size);
ysr@777 214 // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
ysr@777 215 // is one single block.
ysr@777 216 mark_block(blk + left_blk_size, blk + blk_size);
ysr@777 217 }
ysr@777 218
ysr@777 219
ysr@777 220 // Action_mark - update the BOT for the block [blk_start, blk_end).
ysr@777 221 // Current typical use is for splitting a block.
ysr@777 222 // Action_single - udpate the BOT for an allocation.
ysr@777 223 // Action_verify - BOT verification.
ysr@777 224 void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
ysr@777 225 HeapWord* blk_end,
ysr@777 226 Action action) {
ysr@777 227 assert(Universe::heap()->is_in_reserved(blk_start),
ysr@777 228 "reference must be into the heap");
ysr@777 229 assert(Universe::heap()->is_in_reserved(blk_end-1),
ysr@777 230 "limit must be within the heap");
ysr@777 231 // This is optimized to make the test fast, assuming we only rarely
ysr@777 232 // cross boundaries.
ysr@777 233 uintptr_t end_ui = (uintptr_t)(blk_end - 1);
ysr@777 234 uintptr_t start_ui = (uintptr_t)blk_start;
ysr@777 235 // Calculate the last card boundary preceding end of blk
ysr@777 236 intptr_t boundary_before_end = (intptr_t)end_ui;
ysr@777 237 clear_bits(boundary_before_end, right_n_bits(LogN));
ysr@777 238 if (start_ui <= (uintptr_t)boundary_before_end) {
ysr@777 239 // blk starts at or crosses a boundary
ysr@777 240 // Calculate index of card on which blk begins
ysr@777 241 size_t start_index = _array->index_for(blk_start);
ysr@777 242 // Index of card on which blk ends
ysr@777 243 size_t end_index = _array->index_for(blk_end - 1);
ysr@777 244 // Start address of card on which blk begins
ysr@777 245 HeapWord* boundary = _array->address_for_index(start_index);
ysr@777 246 assert(boundary <= blk_start, "blk should start at or after boundary");
ysr@777 247 if (blk_start != boundary) {
ysr@777 248 // blk starts strictly after boundary
ysr@777 249 // adjust card boundary and start_index forward to next card
ysr@777 250 boundary += N_words;
ysr@777 251 start_index++;
ysr@777 252 }
ysr@777 253 assert(start_index <= end_index, "monotonicity of index_for()");
ysr@777 254 assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
ysr@777 255 switch (action) {
ysr@777 256 case Action_mark: {
ysr@777 257 if (init_to_zero()) {
ysr@777 258 _array->set_offset_array(start_index, boundary, blk_start);
ysr@777 259 break;
ysr@777 260 } // Else fall through to the next case
ysr@777 261 }
ysr@777 262 case Action_single: {
ysr@777 263 _array->set_offset_array(start_index, boundary, blk_start);
ysr@777 264 // We have finished marking the "offset card". We need to now
ysr@777 265 // mark the subsequent cards that this blk spans.
ysr@777 266 if (start_index < end_index) {
ysr@777 267 HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
ysr@777 268 HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
ysr@777 269 set_remainder_to_point_to_start(rem_st, rem_end);
ysr@777 270 }
ysr@777 271 break;
ysr@777 272 }
ysr@777 273 case Action_check: {
ysr@777 274 _array->check_offset_array(start_index, boundary, blk_start);
ysr@777 275 // We have finished checking the "offset card". We need to now
ysr@777 276 // check the subsequent cards that this blk spans.
ysr@777 277 check_all_cards(start_index + 1, end_index);
ysr@777 278 break;
ysr@777 279 }
ysr@777 280 default:
ysr@777 281 ShouldNotReachHere();
ysr@777 282 }
ysr@777 283 }
ysr@777 284 }
ysr@777 285
ysr@777 286 // The card-interval [start_card, end_card] is a closed interval; this
ysr@777 287 // is an expensive check -- use with care and only under protection of
ysr@777 288 // suitable flag.
ysr@777 289 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
ysr@777 290
ysr@777 291 if (end_card < start_card) {
ysr@777 292 return;
ysr@777 293 }
ysr@777 294 guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
ysr@777 295 for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
ysr@777 296 u_char entry = _array->offset_array(c);
ysr@777 297 if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
ysr@777 298 guarantee(entry > N_words, "Should be in logarithmic region");
ysr@777 299 }
ysr@777 300 size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
ysr@777 301 size_t landing_card = c - backskip;
ysr@777 302 guarantee(landing_card >= (start_card - 1), "Inv");
ysr@777 303 if (landing_card >= start_card) {
ysr@777 304 guarantee(_array->offset_array(landing_card) <= entry, "monotonicity");
ysr@777 305 } else {
ysr@777 306 guarantee(landing_card == start_card - 1, "Tautology");
ysr@777 307 guarantee(_array->offset_array(landing_card) <= N_words, "Offset value");
ysr@777 308 }
ysr@777 309 }
ysr@777 310 }
ysr@777 311
ysr@777 312 // The range [blk_start, blk_end) represents a single contiguous block
ysr@777 313 // of storage; modify the block offset table to represent this
ysr@777 314 // information; Right-open interval: [blk_start, blk_end)
ysr@777 315 // NOTE: this method does _not_ adjust _unallocated_block.
ysr@777 316 void
ysr@777 317 G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
ysr@777 318 do_block_internal(blk_start, blk_end, Action_single);
ysr@777 319 }
ysr@777 320
ysr@777 321 // Mark the BOT such that if [blk_start, blk_end) straddles a card
ysr@777 322 // boundary, the card following the first such boundary is marked
ysr@777 323 // with the appropriate offset.
ysr@777 324 // NOTE: this method does _not_ adjust _unallocated_block or
ysr@777 325 // any cards subsequent to the first one.
ysr@777 326 void
ysr@777 327 G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
ysr@777 328 do_block_internal(blk_start, blk_end, Action_mark);
ysr@777 329 }
ysr@777 330
ysr@777 331 void G1BlockOffsetArray::join_blocks(HeapWord* blk1, HeapWord* blk2) {
ysr@777 332 HeapWord* blk1_start = Universe::heap()->block_start(blk1);
ysr@777 333 HeapWord* blk2_start = Universe::heap()->block_start(blk2);
ysr@777 334 assert(blk1 == blk1_start && blk2 == blk2_start,
ysr@777 335 "Must be block starts.");
ysr@777 336 assert(blk1 + _sp->block_size(blk1) == blk2, "Must be contiguous.");
ysr@777 337 size_t blk1_start_index = _array->index_for(blk1);
ysr@777 338 size_t blk2_start_index = _array->index_for(blk2);
ysr@777 339 assert(blk1_start_index <= blk2_start_index, "sanity");
ysr@777 340 HeapWord* blk2_card_start = _array->address_for_index(blk2_start_index);
ysr@777 341 if (blk2 == blk2_card_start) {
ysr@777 342 // blk2 starts a card. Does blk1 start on the prevous card, or futher
ysr@777 343 // back?
ysr@777 344 assert(blk1_start_index < blk2_start_index, "must be lower card.");
ysr@777 345 if (blk1_start_index + 1 == blk2_start_index) {
ysr@777 346 // previous card; new value for blk2 card is size of blk1.
ysr@777 347 _array->set_offset_array(blk2_start_index, (u_char) _sp->block_size(blk1));
ysr@777 348 } else {
ysr@777 349 // Earlier card; go back a card.
ysr@777 350 _array->set_offset_array(blk2_start_index, N_words);
ysr@777 351 }
ysr@777 352 } else {
ysr@777 353 // blk2 does not start a card. Does it cross a card? If not, nothing
ysr@777 354 // to do.
ysr@777 355 size_t blk2_end_index =
ysr@777 356 _array->index_for(blk2 + _sp->block_size(blk2) - 1);
ysr@777 357 assert(blk2_end_index >= blk2_start_index, "sanity");
ysr@777 358 if (blk2_end_index > blk2_start_index) {
ysr@777 359 // Yes, it crosses a card. The value for the next card must change.
ysr@777 360 if (blk1_start_index + 1 == blk2_start_index) {
ysr@777 361 // previous card; new value for second blk2 card is size of blk1.
ysr@777 362 _array->set_offset_array(blk2_start_index + 1,
ysr@777 363 (u_char) _sp->block_size(blk1));
ysr@777 364 } else {
ysr@777 365 // Earlier card; go back a card.
ysr@777 366 _array->set_offset_array(blk2_start_index + 1, N_words);
ysr@777 367 }
ysr@777 368 }
ysr@777 369 }
ysr@777 370 }
ysr@777 371
ysr@777 372 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
ysr@777 373 assert(_bottom <= addr && addr < _end,
ysr@777 374 "addr must be covered by this Array");
ysr@777 375 // Must read this exactly once because it can be modified by parallel
ysr@777 376 // allocation.
ysr@777 377 HeapWord* ub = _unallocated_block;
ysr@777 378 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
ysr@777 379 assert(ub < _end, "tautology (see above)");
ysr@777 380 return ub;
ysr@777 381 }
ysr@777 382 // Otherwise, find the block start using the table.
ysr@777 383 HeapWord* q = block_at_or_preceding(addr, false, 0);
ysr@777 384 return forward_to_block_containing_addr(q, addr);
ysr@777 385 }
ysr@777 386
ysr@777 387 // This duplicates a little code from the above: unavoidable.
ysr@777 388 HeapWord*
ysr@777 389 G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
ysr@777 390 assert(_bottom <= addr && addr < _end,
ysr@777 391 "addr must be covered by this Array");
ysr@777 392 // Must read this exactly once because it can be modified by parallel
ysr@777 393 // allocation.
ysr@777 394 HeapWord* ub = _unallocated_block;
ysr@777 395 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
ysr@777 396 assert(ub < _end, "tautology (see above)");
ysr@777 397 return ub;
ysr@777 398 }
ysr@777 399 // Otherwise, find the block start using the table.
ysr@777 400 HeapWord* q = block_at_or_preceding(addr, false, 0);
ysr@777 401 HeapWord* n = q + _sp->block_size(q);
ysr@777 402 return forward_to_block_containing_addr_const(q, n, addr);
ysr@777 403 }
ysr@777 404
ysr@777 405
ysr@777 406 HeapWord*
ysr@777 407 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
ysr@777 408 HeapWord* n,
ysr@777 409 const void* addr) {
ysr@777 410 // We're not in the normal case. We need to handle an important subcase
ysr@777 411 // here: LAB allocation. An allocation previously recorded in the
ysr@777 412 // offset table was actually a lab allocation, and was divided into
ysr@777 413 // several objects subsequently. Fix this situation as we answer the
ysr@777 414 // query, by updating entries as we cross them.
iveresov@787 415
iveresov@787 416 // If the fist object's end q is at the card boundary. Start refining
iveresov@787 417 // with the corresponding card (the value of the entry will be basically
iveresov@787 418 // set to 0). If the object crosses the boundary -- start from the next card.
iveresov@787 419 size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
ysr@777 420 HeapWord* next_boundary = _array->address_for_index(next_index);
ysr@777 421 if (csp() != NULL) {
ysr@777 422 if (addr >= csp()->top()) return csp()->top();
ysr@777 423 while (next_boundary < addr) {
ysr@777 424 while (n <= next_boundary) {
ysr@777 425 q = n;
ysr@777 426 oop obj = oop(q);
ysr@1280 427 if (obj->klass_or_null() == NULL) return q;
ysr@777 428 n += obj->size();
ysr@777 429 }
ysr@777 430 assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
ysr@777 431 // [q, n) is the block that crosses the boundary.
ysr@777 432 alloc_block_work2(&next_boundary, &next_index, q, n);
ysr@777 433 }
ysr@777 434 } else {
ysr@777 435 while (next_boundary < addr) {
ysr@777 436 while (n <= next_boundary) {
ysr@777 437 q = n;
ysr@777 438 oop obj = oop(q);
ysr@1280 439 if (obj->klass_or_null() == NULL) return q;
ysr@777 440 n += _sp->block_size(q);
ysr@777 441 }
ysr@777 442 assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
ysr@777 443 // [q, n) is the block that crosses the boundary.
ysr@777 444 alloc_block_work2(&next_boundary, &next_index, q, n);
ysr@777 445 }
ysr@777 446 }
ysr@777 447 return forward_to_block_containing_addr_const(q, n, addr);
ysr@777 448 }
ysr@777 449
ysr@777 450 HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
ysr@777 451 assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
ysr@777 452
ysr@777 453 assert(_bottom <= addr && addr < _end,
ysr@777 454 "addr must be covered by this Array");
ysr@777 455 // Must read this exactly once because it can be modified by parallel
ysr@777 456 // allocation.
ysr@777 457 HeapWord* ub = _unallocated_block;
ysr@777 458 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
ysr@777 459 assert(ub < _end, "tautology (see above)");
ysr@777 460 return ub;
ysr@777 461 }
ysr@777 462
ysr@777 463 // Otherwise, find the block start using the table, but taking
ysr@777 464 // care (cf block_start_unsafe() above) not to parse any objects/blocks
ysr@777 465 // on the cards themsleves.
ysr@777 466 size_t index = _array->index_for(addr);
ysr@777 467 assert(_array->address_for_index(index) == addr,
ysr@777 468 "arg should be start of card");
ysr@777 469
ysr@777 470 HeapWord* q = (HeapWord*)addr;
ysr@777 471 uint offset;
ysr@777 472 do {
ysr@777 473 offset = _array->offset_array(index--);
ysr@777 474 q -= offset;
ysr@777 475 } while (offset == N_words);
ysr@777 476 assert(q <= addr, "block start should be to left of arg");
ysr@777 477 return q;
ysr@777 478 }
ysr@777 479
ysr@777 480 // Note that the committed size of the covered space may have changed,
ysr@777 481 // so the table size might also wish to change.
ysr@777 482 void G1BlockOffsetArray::resize(size_t new_word_size) {
ysr@777 483 HeapWord* new_end = _bottom + new_word_size;
ysr@777 484 if (_end < new_end && !init_to_zero()) {
ysr@777 485 // verify that the old and new boundaries are also card boundaries
ysr@777 486 assert(_array->is_card_boundary(_end),
ysr@777 487 "_end not a card boundary");
ysr@777 488 assert(_array->is_card_boundary(new_end),
ysr@777 489 "new _end would not be a card boundary");
ysr@777 490 // set all the newly added cards
ysr@777 491 _array->set_offset_array(_end, new_end, N_words);
ysr@777 492 }
ysr@777 493 _end = new_end; // update _end
ysr@777 494 }
ysr@777 495
ysr@777 496 void G1BlockOffsetArray::set_region(MemRegion mr) {
ysr@777 497 _bottom = mr.start();
ysr@777 498 _end = mr.end();
ysr@777 499 }
ysr@777 500
ysr@777 501 //
ysr@777 502 // threshold_
ysr@777 503 // | _index_
ysr@777 504 // v v
ysr@777 505 // +-------+-------+-------+-------+-------+
ysr@777 506 // | i-1 | i | i+1 | i+2 | i+3 |
ysr@777 507 // +-------+-------+-------+-------+-------+
ysr@777 508 // ( ^ ]
ysr@777 509 // block-start
ysr@777 510 //
ysr@777 511 void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
ysr@777 512 HeapWord* blk_start, HeapWord* blk_end) {
ysr@777 513 // For efficiency, do copy-in/copy-out.
ysr@777 514 HeapWord* threshold = *threshold_;
ysr@777 515 size_t index = *index_;
ysr@777 516
ysr@777 517 assert(blk_start != NULL && blk_end > blk_start,
ysr@777 518 "phantom block");
ysr@777 519 assert(blk_end > threshold, "should be past threshold");
jcoomes@1844 520 assert(blk_start <= threshold, "blk_start should be at or before threshold");
ysr@777 521 assert(pointer_delta(threshold, blk_start) <= N_words,
ysr@777 522 "offset should be <= BlockOffsetSharedArray::N");
ysr@777 523 assert(Universe::heap()->is_in_reserved(blk_start),
ysr@777 524 "reference must be into the heap");
ysr@777 525 assert(Universe::heap()->is_in_reserved(blk_end-1),
ysr@777 526 "limit must be within the heap");
ysr@777 527 assert(threshold == _array->_reserved.start() + index*N_words,
ysr@777 528 "index must agree with threshold");
ysr@777 529
ysr@777 530 DEBUG_ONLY(size_t orig_index = index;)
ysr@777 531
ysr@777 532 // Mark the card that holds the offset into the block. Note
ysr@777 533 // that _next_offset_index and _next_offset_threshold are not
ysr@777 534 // updated until the end of this method.
ysr@777 535 _array->set_offset_array(index, threshold, blk_start);
ysr@777 536
ysr@777 537 // We need to now mark the subsequent cards that this blk spans.
ysr@777 538
ysr@777 539 // Index of card on which blk ends.
ysr@777 540 size_t end_index = _array->index_for(blk_end - 1);
ysr@777 541
ysr@777 542 // Are there more cards left to be updated?
ysr@777 543 if (index + 1 <= end_index) {
ysr@777 544 HeapWord* rem_st = _array->address_for_index(index + 1);
ysr@777 545 // Calculate rem_end this way because end_index
ysr@777 546 // may be the last valid index in the covered region.
ysr@777 547 HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
ysr@777 548 set_remainder_to_point_to_start(rem_st, rem_end);
ysr@777 549 }
ysr@777 550
ysr@777 551 index = end_index + 1;
ysr@777 552 // Calculate threshold_ this way because end_index
ysr@777 553 // may be the last valid index in the covered region.
ysr@777 554 threshold = _array->address_for_index(end_index) + N_words;
ysr@777 555 assert(threshold >= blk_end, "Incorrect offset threshold");
ysr@777 556
ysr@777 557 // index_ and threshold_ updated here.
ysr@777 558 *threshold_ = threshold;
ysr@777 559 *index_ = index;
ysr@777 560
ysr@777 561 #ifdef ASSERT
ysr@777 562 // The offset can be 0 if the block starts on a boundary. That
ysr@777 563 // is checked by an assertion above.
ysr@777 564 size_t start_index = _array->index_for(blk_start);
ysr@777 565 HeapWord* boundary = _array->address_for_index(start_index);
ysr@777 566 assert((_array->offset_array(orig_index) == 0 &&
ysr@777 567 blk_start == boundary) ||
ysr@777 568 (_array->offset_array(orig_index) > 0 &&
ysr@777 569 _array->offset_array(orig_index) <= N_words),
ysr@777 570 "offset array should have been set");
ysr@777 571 for (size_t j = orig_index + 1; j <= end_index; j++) {
ysr@777 572 assert(_array->offset_array(j) > 0 &&
ysr@777 573 _array->offset_array(j) <=
ysr@777 574 (u_char) (N_words+BlockOffsetArray::N_powers-1),
ysr@777 575 "offset array should have been set");
ysr@777 576 }
ysr@777 577 #endif
ysr@777 578 }
ysr@777 579
ysr@777 580 //////////////////////////////////////////////////////////////////////
ysr@777 581 // G1BlockOffsetArrayContigSpace
ysr@777 582 //////////////////////////////////////////////////////////////////////
ysr@777 583
ysr@777 584 HeapWord*
ysr@777 585 G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
ysr@777 586 assert(_bottom <= addr && addr < _end,
ysr@777 587 "addr must be covered by this Array");
ysr@777 588 HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
ysr@777 589 return forward_to_block_containing_addr(q, addr);
ysr@777 590 }
ysr@777 591
ysr@777 592 HeapWord*
ysr@777 593 G1BlockOffsetArrayContigSpace::
ysr@777 594 block_start_unsafe_const(const void* addr) const {
ysr@777 595 assert(_bottom <= addr && addr < _end,
ysr@777 596 "addr must be covered by this Array");
ysr@777 597 HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
ysr@777 598 HeapWord* n = q + _sp->block_size(q);
ysr@777 599 return forward_to_block_containing_addr_const(q, n, addr);
ysr@777 600 }
ysr@777 601
ysr@777 602 G1BlockOffsetArrayContigSpace::
ysr@777 603 G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
ysr@777 604 MemRegion mr) :
ysr@777 605 G1BlockOffsetArray(array, mr, true)
ysr@777 606 {
ysr@777 607 _next_offset_threshold = NULL;
ysr@777 608 _next_offset_index = 0;
ysr@777 609 }
ysr@777 610
ysr@777 611 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
ysr@777 612 assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
ysr@777 613 "just checking");
ysr@777 614 _next_offset_index = _array->index_for(_bottom);
ysr@777 615 _next_offset_index++;
ysr@777 616 _next_offset_threshold =
ysr@777 617 _array->address_for_index(_next_offset_index);
ysr@777 618 return _next_offset_threshold;
ysr@777 619 }
ysr@777 620
ysr@777 621 void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
ysr@777 622 assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
ysr@777 623 "just checking");
ysr@777 624 size_t bottom_index = _array->index_for(_bottom);
ysr@777 625 assert(_array->address_for_index(bottom_index) == _bottom,
ysr@777 626 "Precondition of call");
ysr@777 627 _array->set_offset_array(bottom_index, 0);
ysr@777 628 }

mercurial