src/share/vm/c1/c1_LinearScan.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1832
b4776199210f
child 1939
b812ff5abc73
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_c1_LinearScan.cpp.incl"
duke@435 27
duke@435 28
duke@435 29 #ifndef PRODUCT
duke@435 30
duke@435 31 static LinearScanStatistic _stat_before_alloc;
duke@435 32 static LinearScanStatistic _stat_after_asign;
duke@435 33 static LinearScanStatistic _stat_final;
duke@435 34
duke@435 35 static LinearScanTimers _total_timer;
duke@435 36
duke@435 37 // helper macro for short definition of timer
duke@435 38 #define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
duke@435 39
duke@435 40 // helper macro for short definition of trace-output inside code
duke@435 41 #define TRACE_LINEAR_SCAN(level, code) \
duke@435 42 if (TraceLinearScanLevel >= level) { \
duke@435 43 code; \
duke@435 44 }
duke@435 45
duke@435 46 #else
duke@435 47
duke@435 48 #define TIME_LINEAR_SCAN(timer_name)
duke@435 49 #define TRACE_LINEAR_SCAN(level, code)
duke@435 50
duke@435 51 #endif
duke@435 52
duke@435 53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
duke@435 54 #ifdef _LP64
duke@435 55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
duke@435 56 #else
duke@435 57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
duke@435 58 #endif
duke@435 59
duke@435 60
duke@435 61 // Implementation of LinearScan
duke@435 62
duke@435 63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
duke@435 64 : _compilation(ir->compilation())
duke@435 65 , _ir(ir)
duke@435 66 , _gen(gen)
duke@435 67 , _frame_map(frame_map)
duke@435 68 , _num_virtual_regs(gen->max_virtual_register_number())
duke@435 69 , _has_fpu_registers(false)
duke@435 70 , _num_calls(-1)
duke@435 71 , _max_spills(0)
duke@435 72 , _unused_spill_slot(-1)
duke@435 73 , _intervals(0) // initialized later with correct length
duke@435 74 , _new_intervals_from_allocation(new IntervalList())
duke@435 75 , _sorted_intervals(NULL)
duke@435 76 , _lir_ops(0) // initialized later with correct length
duke@435 77 , _block_of_op(0) // initialized later with correct length
duke@435 78 , _has_info(0)
duke@435 79 , _has_call(0)
duke@435 80 , _scope_value_cache(0) // initialized later with correct length
duke@435 81 , _interval_in_loop(0, 0) // initialized later with correct length
duke@435 82 , _cached_blocks(*ir->linear_scan_order())
never@739 83 #ifdef X86
duke@435 84 , _fpu_stack_allocator(NULL)
duke@435 85 #endif
duke@435 86 {
duke@435 87 // note: to use more than on instance of LinearScan at a time this function call has to
duke@435 88 // be moved somewhere outside of this constructor:
duke@435 89 Interval::initialize();
duke@435 90
duke@435 91 assert(this->ir() != NULL, "check if valid");
duke@435 92 assert(this->compilation() != NULL, "check if valid");
duke@435 93 assert(this->gen() != NULL, "check if valid");
duke@435 94 assert(this->frame_map() != NULL, "check if valid");
duke@435 95 }
duke@435 96
duke@435 97
duke@435 98 // ********** functions for converting LIR-Operands to register numbers
duke@435 99 //
duke@435 100 // Emulate a flat register file comprising physical integer registers,
duke@435 101 // physical floating-point registers and virtual registers, in that order.
duke@435 102 // Virtual registers already have appropriate numbers, since V0 is
duke@435 103 // the number of physical registers.
duke@435 104 // Returns -1 for hi word if opr is a single word operand.
duke@435 105 //
duke@435 106 // Note: the inverse operation (calculating an operand for register numbers)
duke@435 107 // is done in calc_operand_for_interval()
duke@435 108
duke@435 109 int LinearScan::reg_num(LIR_Opr opr) {
duke@435 110 assert(opr->is_register(), "should not call this otherwise");
duke@435 111
duke@435 112 if (opr->is_virtual_register()) {
duke@435 113 assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
duke@435 114 return opr->vreg_number();
duke@435 115 } else if (opr->is_single_cpu()) {
duke@435 116 return opr->cpu_regnr();
duke@435 117 } else if (opr->is_double_cpu()) {
duke@435 118 return opr->cpu_regnrLo();
never@739 119 #ifdef X86
duke@435 120 } else if (opr->is_single_xmm()) {
duke@435 121 return opr->fpu_regnr() + pd_first_xmm_reg;
duke@435 122 } else if (opr->is_double_xmm()) {
duke@435 123 return opr->fpu_regnrLo() + pd_first_xmm_reg;
duke@435 124 #endif
duke@435 125 } else if (opr->is_single_fpu()) {
duke@435 126 return opr->fpu_regnr() + pd_first_fpu_reg;
duke@435 127 } else if (opr->is_double_fpu()) {
duke@435 128 return opr->fpu_regnrLo() + pd_first_fpu_reg;
duke@435 129 } else {
duke@435 130 ShouldNotReachHere();
never@739 131 return -1;
duke@435 132 }
duke@435 133 }
duke@435 134
duke@435 135 int LinearScan::reg_numHi(LIR_Opr opr) {
duke@435 136 assert(opr->is_register(), "should not call this otherwise");
duke@435 137
duke@435 138 if (opr->is_virtual_register()) {
duke@435 139 return -1;
duke@435 140 } else if (opr->is_single_cpu()) {
duke@435 141 return -1;
duke@435 142 } else if (opr->is_double_cpu()) {
duke@435 143 return opr->cpu_regnrHi();
never@739 144 #ifdef X86
duke@435 145 } else if (opr->is_single_xmm()) {
duke@435 146 return -1;
duke@435 147 } else if (opr->is_double_xmm()) {
duke@435 148 return -1;
duke@435 149 #endif
duke@435 150 } else if (opr->is_single_fpu()) {
duke@435 151 return -1;
duke@435 152 } else if (opr->is_double_fpu()) {
duke@435 153 return opr->fpu_regnrHi() + pd_first_fpu_reg;
duke@435 154 } else {
duke@435 155 ShouldNotReachHere();
never@739 156 return -1;
duke@435 157 }
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 // ********** functions for classification of intervals
duke@435 162
duke@435 163 bool LinearScan::is_precolored_interval(const Interval* i) {
duke@435 164 return i->reg_num() < LinearScan::nof_regs;
duke@435 165 }
duke@435 166
duke@435 167 bool LinearScan::is_virtual_interval(const Interval* i) {
duke@435 168 return i->reg_num() >= LIR_OprDesc::vreg_base;
duke@435 169 }
duke@435 170
duke@435 171 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
duke@435 172 return i->reg_num() < LinearScan::nof_cpu_regs;
duke@435 173 }
duke@435 174
duke@435 175 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
duke@435 176 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
duke@435 177 }
duke@435 178
duke@435 179 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
duke@435 180 return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
duke@435 181 }
duke@435 182
duke@435 183 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
duke@435 184 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
duke@435 185 }
duke@435 186
duke@435 187 bool LinearScan::is_in_fpu_register(const Interval* i) {
duke@435 188 // fixed intervals not needed for FPU stack allocation
duke@435 189 return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
duke@435 190 }
duke@435 191
duke@435 192 bool LinearScan::is_oop_interval(const Interval* i) {
duke@435 193 // fixed intervals never contain oops
duke@435 194 return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
duke@435 195 }
duke@435 196
duke@435 197
duke@435 198 // ********** General helper functions
duke@435 199
duke@435 200 // compute next unused stack index that can be used for spilling
duke@435 201 int LinearScan::allocate_spill_slot(bool double_word) {
duke@435 202 int spill_slot;
duke@435 203 if (double_word) {
duke@435 204 if ((_max_spills & 1) == 1) {
duke@435 205 // alignment of double-word values
duke@435 206 // the hole because of the alignment is filled with the next single-word value
duke@435 207 assert(_unused_spill_slot == -1, "wasting a spill slot");
duke@435 208 _unused_spill_slot = _max_spills;
duke@435 209 _max_spills++;
duke@435 210 }
duke@435 211 spill_slot = _max_spills;
duke@435 212 _max_spills += 2;
duke@435 213
duke@435 214 } else if (_unused_spill_slot != -1) {
duke@435 215 // re-use hole that was the result of a previous double-word alignment
duke@435 216 spill_slot = _unused_spill_slot;
duke@435 217 _unused_spill_slot = -1;
duke@435 218
duke@435 219 } else {
duke@435 220 spill_slot = _max_spills;
duke@435 221 _max_spills++;
duke@435 222 }
duke@435 223
duke@435 224 int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
duke@435 225
duke@435 226 // the class OopMapValue uses only 11 bits for storing the name of the
duke@435 227 // oop location. So a stack slot bigger than 2^11 leads to an overflow
duke@435 228 // that is not reported in product builds. Prevent this by checking the
duke@435 229 // spill slot here (altough this value and the later used location name
duke@435 230 // are slightly different)
duke@435 231 if (result > 2000) {
duke@435 232 bailout("too many stack slots used");
duke@435 233 }
duke@435 234
duke@435 235 return result;
duke@435 236 }
duke@435 237
duke@435 238 void LinearScan::assign_spill_slot(Interval* it) {
duke@435 239 // assign the canonical spill slot of the parent (if a part of the interval
duke@435 240 // is already spilled) or allocate a new spill slot
duke@435 241 if (it->canonical_spill_slot() >= 0) {
duke@435 242 it->assign_reg(it->canonical_spill_slot());
duke@435 243 } else {
duke@435 244 int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
duke@435 245 it->set_canonical_spill_slot(spill);
duke@435 246 it->assign_reg(spill);
duke@435 247 }
duke@435 248 }
duke@435 249
duke@435 250 void LinearScan::propagate_spill_slots() {
duke@435 251 if (!frame_map()->finalize_frame(max_spills())) {
duke@435 252 bailout("frame too large");
duke@435 253 }
duke@435 254 }
duke@435 255
duke@435 256 // create a new interval with a predefined reg_num
duke@435 257 // (only used for parent intervals that are created during the building phase)
duke@435 258 Interval* LinearScan::create_interval(int reg_num) {
duke@435 259 assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
duke@435 260
duke@435 261 Interval* interval = new Interval(reg_num);
duke@435 262 _intervals.at_put(reg_num, interval);
duke@435 263
duke@435 264 // assign register number for precolored intervals
duke@435 265 if (reg_num < LIR_OprDesc::vreg_base) {
duke@435 266 interval->assign_reg(reg_num);
duke@435 267 }
duke@435 268 return interval;
duke@435 269 }
duke@435 270
duke@435 271 // assign a new reg_num to the interval and append it to the list of intervals
duke@435 272 // (only used for child intervals that are created during register allocation)
duke@435 273 void LinearScan::append_interval(Interval* it) {
duke@435 274 it->set_reg_num(_intervals.length());
duke@435 275 _intervals.append(it);
duke@435 276 _new_intervals_from_allocation->append(it);
duke@435 277 }
duke@435 278
duke@435 279 // copy the vreg-flags if an interval is split
duke@435 280 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
duke@435 281 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
duke@435 282 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
duke@435 283 }
duke@435 284 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
duke@435 285 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
duke@435 286 }
duke@435 287
duke@435 288 // Note: do not copy the must_start_in_memory flag because it is not necessary for child
duke@435 289 // intervals (only the very beginning of the interval must be in memory)
duke@435 290 }
duke@435 291
duke@435 292
duke@435 293 // ********** spill move optimization
duke@435 294 // eliminate moves from register to stack if stack slot is known to be correct
duke@435 295
duke@435 296 // called during building of intervals
duke@435 297 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
duke@435 298 assert(interval->is_split_parent(), "can only be called for split parents");
duke@435 299
duke@435 300 switch (interval->spill_state()) {
duke@435 301 case noDefinitionFound:
duke@435 302 assert(interval->spill_definition_pos() == -1, "must no be set before");
duke@435 303 interval->set_spill_definition_pos(def_pos);
duke@435 304 interval->set_spill_state(oneDefinitionFound);
duke@435 305 break;
duke@435 306
duke@435 307 case oneDefinitionFound:
duke@435 308 assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
duke@435 309 if (def_pos < interval->spill_definition_pos() - 2) {
duke@435 310 // second definition found, so no spill optimization possible for this interval
duke@435 311 interval->set_spill_state(noOptimization);
duke@435 312 } else {
duke@435 313 // two consecutive definitions (because of two-operand LIR form)
duke@435 314 assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
duke@435 315 }
duke@435 316 break;
duke@435 317
duke@435 318 case noOptimization:
duke@435 319 // nothing to do
duke@435 320 break;
duke@435 321
duke@435 322 default:
duke@435 323 assert(false, "other states not allowed at this time");
duke@435 324 }
duke@435 325 }
duke@435 326
duke@435 327 // called during register allocation
duke@435 328 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
duke@435 329 switch (interval->spill_state()) {
duke@435 330 case oneDefinitionFound: {
duke@435 331 int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
duke@435 332 int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
duke@435 333
duke@435 334 if (def_loop_depth < spill_loop_depth) {
duke@435 335 // the loop depth of the spilling position is higher then the loop depth
duke@435 336 // at the definition of the interval -> move write to memory out of loop
duke@435 337 // by storing at definitin of the interval
duke@435 338 interval->set_spill_state(storeAtDefinition);
duke@435 339 } else {
duke@435 340 // the interval is currently spilled only once, so for now there is no
duke@435 341 // reason to store the interval at the definition
duke@435 342 interval->set_spill_state(oneMoveInserted);
duke@435 343 }
duke@435 344 break;
duke@435 345 }
duke@435 346
duke@435 347 case oneMoveInserted: {
duke@435 348 // the interval is spilled more then once, so it is better to store it to
duke@435 349 // memory at the definition
duke@435 350 interval->set_spill_state(storeAtDefinition);
duke@435 351 break;
duke@435 352 }
duke@435 353
duke@435 354 case storeAtDefinition:
duke@435 355 case startInMemory:
duke@435 356 case noOptimization:
duke@435 357 case noDefinitionFound:
duke@435 358 // nothing to do
duke@435 359 break;
duke@435 360
duke@435 361 default:
duke@435 362 assert(false, "other states not allowed at this time");
duke@435 363 }
duke@435 364 }
duke@435 365
duke@435 366
duke@435 367 bool LinearScan::must_store_at_definition(const Interval* i) {
duke@435 368 return i->is_split_parent() && i->spill_state() == storeAtDefinition;
duke@435 369 }
duke@435 370
duke@435 371 // called once before asignment of register numbers
duke@435 372 void LinearScan::eliminate_spill_moves() {
duke@435 373 TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
duke@435 374 TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
duke@435 375
duke@435 376 // collect all intervals that must be stored after their definion.
duke@435 377 // the list is sorted by Interval::spill_definition_pos
duke@435 378 Interval* interval;
duke@435 379 Interval* temp_list;
duke@435 380 create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
duke@435 381
duke@435 382 #ifdef ASSERT
duke@435 383 Interval* prev = NULL;
duke@435 384 Interval* temp = interval;
duke@435 385 while (temp != Interval::end()) {
duke@435 386 assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
duke@435 387 if (prev != NULL) {
duke@435 388 assert(temp->from() >= prev->from(), "intervals not sorted");
duke@435 389 assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
duke@435 390 }
duke@435 391
duke@435 392 assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
duke@435 393 assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
duke@435 394 assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
duke@435 395
duke@435 396 TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
duke@435 397
duke@435 398 temp = temp->next();
duke@435 399 }
duke@435 400 #endif
duke@435 401
duke@435 402 LIR_InsertionBuffer insertion_buffer;
duke@435 403 int num_blocks = block_count();
duke@435 404 for (int i = 0; i < num_blocks; i++) {
duke@435 405 BlockBegin* block = block_at(i);
duke@435 406 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 407 int num_inst = instructions->length();
duke@435 408 bool has_new = false;
duke@435 409
duke@435 410 // iterate all instructions of the block. skip the first because it is always a label
duke@435 411 for (int j = 1; j < num_inst; j++) {
duke@435 412 LIR_Op* op = instructions->at(j);
duke@435 413 int op_id = op->id();
duke@435 414
duke@435 415 if (op_id == -1) {
duke@435 416 // remove move from register to stack if the stack slot is guaranteed to be correct.
duke@435 417 // only moves that have been inserted by LinearScan can be removed.
duke@435 418 assert(op->code() == lir_move, "only moves can have a op_id of -1");
duke@435 419 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
duke@435 420 assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
duke@435 421
duke@435 422 LIR_Op1* op1 = (LIR_Op1*)op;
duke@435 423 Interval* interval = interval_at(op1->result_opr()->vreg_number());
duke@435 424
duke@435 425 if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
duke@435 426 // move target is a stack slot that is always correct, so eliminate instruction
duke@435 427 TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
duke@435 428 instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
duke@435 429 }
duke@435 430
duke@435 431 } else {
duke@435 432 // insert move from register to stack just after the beginning of the interval
duke@435 433 assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
duke@435 434 assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
duke@435 435
duke@435 436 while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
duke@435 437 if (!has_new) {
duke@435 438 // prepare insertion buffer (appended when all instructions of the block are processed)
duke@435 439 insertion_buffer.init(block->lir());
duke@435 440 has_new = true;
duke@435 441 }
duke@435 442
duke@435 443 LIR_Opr from_opr = operand_for_interval(interval);
duke@435 444 LIR_Opr to_opr = canonical_spill_opr(interval);
duke@435 445 assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
duke@435 446 assert(to_opr->is_stack(), "to operand must be a stack slot");
duke@435 447
duke@435 448 insertion_buffer.move(j, from_opr, to_opr);
duke@435 449 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
duke@435 450
duke@435 451 interval = interval->next();
duke@435 452 }
duke@435 453 }
duke@435 454 } // end of instruction iteration
duke@435 455
duke@435 456 if (has_new) {
duke@435 457 block->lir()->append(&insertion_buffer);
duke@435 458 }
duke@435 459 } // end of block iteration
duke@435 460
duke@435 461 assert(interval == Interval::end(), "missed an interval");
duke@435 462 }
duke@435 463
duke@435 464
duke@435 465 // ********** Phase 1: number all instructions in all blocks
duke@435 466 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
duke@435 467
duke@435 468 void LinearScan::number_instructions() {
duke@435 469 {
duke@435 470 // dummy-timer to measure the cost of the timer itself
duke@435 471 // (this time is then subtracted from all other timers to get the real value)
duke@435 472 TIME_LINEAR_SCAN(timer_do_nothing);
duke@435 473 }
duke@435 474 TIME_LINEAR_SCAN(timer_number_instructions);
duke@435 475
duke@435 476 // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
duke@435 477 int num_blocks = block_count();
duke@435 478 int num_instructions = 0;
duke@435 479 int i;
duke@435 480 for (i = 0; i < num_blocks; i++) {
duke@435 481 num_instructions += block_at(i)->lir()->instructions_list()->length();
duke@435 482 }
duke@435 483
duke@435 484 // initialize with correct length
duke@435 485 _lir_ops = LIR_OpArray(num_instructions);
duke@435 486 _block_of_op = BlockBeginArray(num_instructions);
duke@435 487
duke@435 488 int op_id = 0;
duke@435 489 int idx = 0;
duke@435 490
duke@435 491 for (i = 0; i < num_blocks; i++) {
duke@435 492 BlockBegin* block = block_at(i);
duke@435 493 block->set_first_lir_instruction_id(op_id);
duke@435 494 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 495
duke@435 496 int num_inst = instructions->length();
duke@435 497 for (int j = 0; j < num_inst; j++) {
duke@435 498 LIR_Op* op = instructions->at(j);
duke@435 499 op->set_id(op_id);
duke@435 500
duke@435 501 _lir_ops.at_put(idx, op);
duke@435 502 _block_of_op.at_put(idx, block);
duke@435 503 assert(lir_op_with_id(op_id) == op, "must match");
duke@435 504
duke@435 505 idx++;
duke@435 506 op_id += 2; // numbering of lir_ops by two
duke@435 507 }
duke@435 508 block->set_last_lir_instruction_id(op_id - 2);
duke@435 509 }
duke@435 510 assert(idx == num_instructions, "must match");
duke@435 511 assert(idx * 2 == op_id, "must match");
duke@435 512
duke@435 513 _has_call = BitMap(num_instructions); _has_call.clear();
duke@435 514 _has_info = BitMap(num_instructions); _has_info.clear();
duke@435 515 }
duke@435 516
duke@435 517
duke@435 518 // ********** Phase 2: compute local live sets separately for each block
duke@435 519 // (sets live_gen and live_kill for each block)
duke@435 520
duke@435 521 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
duke@435 522 LIR_Opr opr = value->operand();
duke@435 523 Constant* con = value->as_Constant();
duke@435 524
duke@435 525 // check some asumptions about debug information
duke@435 526 assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
duke@435 527 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
duke@435 528 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
duke@435 529
duke@435 530 if ((con == NULL || con->is_pinned()) && opr->is_register()) {
duke@435 531 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 532 int reg = opr->vreg_number();
duke@435 533 if (!live_kill.at(reg)) {
duke@435 534 live_gen.set_bit(reg);
duke@435 535 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
duke@435 536 }
duke@435 537 }
duke@435 538 }
duke@435 539
duke@435 540
duke@435 541 void LinearScan::compute_local_live_sets() {
duke@435 542 TIME_LINEAR_SCAN(timer_compute_local_live_sets);
duke@435 543
duke@435 544 int num_blocks = block_count();
duke@435 545 int live_size = live_set_size();
duke@435 546 bool local_has_fpu_registers = false;
duke@435 547 int local_num_calls = 0;
duke@435 548 LIR_OpVisitState visitor;
duke@435 549
duke@435 550 BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
duke@435 551 local_interval_in_loop.clear();
duke@435 552
duke@435 553 // iterate all blocks
duke@435 554 for (int i = 0; i < num_blocks; i++) {
duke@435 555 BlockBegin* block = block_at(i);
duke@435 556
duke@435 557 BitMap live_gen(live_size); live_gen.clear();
duke@435 558 BitMap live_kill(live_size); live_kill.clear();
duke@435 559
duke@435 560 if (block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 561 // Phi functions at the begin of an exception handler are
duke@435 562 // implicitly defined (= killed) at the beginning of the block.
duke@435 563 for_each_phi_fun(block, phi,
duke@435 564 live_kill.set_bit(phi->operand()->vreg_number())
duke@435 565 );
duke@435 566 }
duke@435 567
duke@435 568 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 569 int num_inst = instructions->length();
duke@435 570
duke@435 571 // iterate all instructions of the block. skip the first because it is always a label
duke@435 572 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
duke@435 573 for (int j = 1; j < num_inst; j++) {
duke@435 574 LIR_Op* op = instructions->at(j);
duke@435 575
duke@435 576 // visit operation to collect all operands
duke@435 577 visitor.visit(op);
duke@435 578
duke@435 579 if (visitor.has_call()) {
duke@435 580 _has_call.set_bit(op->id() >> 1);
duke@435 581 local_num_calls++;
duke@435 582 }
duke@435 583 if (visitor.info_count() > 0) {
duke@435 584 _has_info.set_bit(op->id() >> 1);
duke@435 585 }
duke@435 586
duke@435 587 // iterate input operands of instruction
duke@435 588 int k, n, reg;
duke@435 589 n = visitor.opr_count(LIR_OpVisitState::inputMode);
duke@435 590 for (k = 0; k < n; k++) {
duke@435 591 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
duke@435 592 assert(opr->is_register(), "visitor should only return register operands");
duke@435 593
duke@435 594 if (opr->is_virtual_register()) {
duke@435 595 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 596 reg = opr->vreg_number();
duke@435 597 if (!live_kill.at(reg)) {
duke@435 598 live_gen.set_bit(reg);
duke@435 599 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d", reg, op->id()));
duke@435 600 }
duke@435 601 if (block->loop_index() >= 0) {
duke@435 602 local_interval_in_loop.set_bit(reg, block->loop_index());
duke@435 603 }
duke@435 604 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
duke@435 605 }
duke@435 606
duke@435 607 #ifdef ASSERT
duke@435 608 // fixed intervals are never live at block boundaries, so
duke@435 609 // they need not be processed in live sets.
duke@435 610 // this is checked by these assertions to be sure about it.
duke@435 611 // the entry block may have incoming values in registers, which is ok.
duke@435 612 if (!opr->is_virtual_register() && block != ir()->start()) {
duke@435 613 reg = reg_num(opr);
duke@435 614 if (is_processed_reg_num(reg)) {
duke@435 615 assert(live_kill.at(reg), "using fixed register that is not defined in this block");
duke@435 616 }
duke@435 617 reg = reg_numHi(opr);
duke@435 618 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
duke@435 619 assert(live_kill.at(reg), "using fixed register that is not defined in this block");
duke@435 620 }
duke@435 621 }
duke@435 622 #endif
duke@435 623 }
duke@435 624
duke@435 625 // Add uses of live locals from interpreter's point of view for proper debug information generation
duke@435 626 n = visitor.info_count();
duke@435 627 for (k = 0; k < n; k++) {
duke@435 628 CodeEmitInfo* info = visitor.info_at(k);
duke@435 629 ValueStack* stack = info->stack();
duke@435 630 for_each_state_value(stack, value,
duke@435 631 set_live_gen_kill(value, op, live_gen, live_kill)
duke@435 632 );
duke@435 633 }
duke@435 634
duke@435 635 // iterate temp operands of instruction
duke@435 636 n = visitor.opr_count(LIR_OpVisitState::tempMode);
duke@435 637 for (k = 0; k < n; k++) {
duke@435 638 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
duke@435 639 assert(opr->is_register(), "visitor should only return register operands");
duke@435 640
duke@435 641 if (opr->is_virtual_register()) {
duke@435 642 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 643 reg = opr->vreg_number();
duke@435 644 live_kill.set_bit(reg);
duke@435 645 if (block->loop_index() >= 0) {
duke@435 646 local_interval_in_loop.set_bit(reg, block->loop_index());
duke@435 647 }
duke@435 648 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
duke@435 649 }
duke@435 650
duke@435 651 #ifdef ASSERT
duke@435 652 // fixed intervals are never live at block boundaries, so
duke@435 653 // they need not be processed in live sets
duke@435 654 // process them only in debug mode so that this can be checked
duke@435 655 if (!opr->is_virtual_register()) {
duke@435 656 reg = reg_num(opr);
duke@435 657 if (is_processed_reg_num(reg)) {
duke@435 658 live_kill.set_bit(reg_num(opr));
duke@435 659 }
duke@435 660 reg = reg_numHi(opr);
duke@435 661 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
duke@435 662 live_kill.set_bit(reg);
duke@435 663 }
duke@435 664 }
duke@435 665 #endif
duke@435 666 }
duke@435 667
duke@435 668 // iterate output operands of instruction
duke@435 669 n = visitor.opr_count(LIR_OpVisitState::outputMode);
duke@435 670 for (k = 0; k < n; k++) {
duke@435 671 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
duke@435 672 assert(opr->is_register(), "visitor should only return register operands");
duke@435 673
duke@435 674 if (opr->is_virtual_register()) {
duke@435 675 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 676 reg = opr->vreg_number();
duke@435 677 live_kill.set_bit(reg);
duke@435 678 if (block->loop_index() >= 0) {
duke@435 679 local_interval_in_loop.set_bit(reg, block->loop_index());
duke@435 680 }
duke@435 681 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
duke@435 682 }
duke@435 683
duke@435 684 #ifdef ASSERT
duke@435 685 // fixed intervals are never live at block boundaries, so
duke@435 686 // they need not be processed in live sets
duke@435 687 // process them only in debug mode so that this can be checked
duke@435 688 if (!opr->is_virtual_register()) {
duke@435 689 reg = reg_num(opr);
duke@435 690 if (is_processed_reg_num(reg)) {
duke@435 691 live_kill.set_bit(reg_num(opr));
duke@435 692 }
duke@435 693 reg = reg_numHi(opr);
duke@435 694 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
duke@435 695 live_kill.set_bit(reg);
duke@435 696 }
duke@435 697 }
duke@435 698 #endif
duke@435 699 }
duke@435 700 } // end of instruction iteration
duke@435 701
duke@435 702 block->set_live_gen (live_gen);
duke@435 703 block->set_live_kill(live_kill);
duke@435 704 block->set_live_in (BitMap(live_size)); block->live_in().clear();
duke@435 705 block->set_live_out (BitMap(live_size)); block->live_out().clear();
duke@435 706
duke@435 707 TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d ", block->block_id()); print_bitmap(block->live_gen()));
duke@435 708 TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
duke@435 709 } // end of block iteration
duke@435 710
duke@435 711 // propagate local calculated information into LinearScan object
duke@435 712 _has_fpu_registers = local_has_fpu_registers;
duke@435 713 compilation()->set_has_fpu_code(local_has_fpu_registers);
duke@435 714
duke@435 715 _num_calls = local_num_calls;
duke@435 716 _interval_in_loop = local_interval_in_loop;
duke@435 717 }
duke@435 718
duke@435 719
duke@435 720 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
duke@435 721 // (sets live_in and live_out for each block)
duke@435 722
duke@435 723 void LinearScan::compute_global_live_sets() {
duke@435 724 TIME_LINEAR_SCAN(timer_compute_global_live_sets);
duke@435 725
duke@435 726 int num_blocks = block_count();
duke@435 727 bool change_occurred;
duke@435 728 bool change_occurred_in_block;
duke@435 729 int iteration_count = 0;
duke@435 730 BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
duke@435 731
duke@435 732 // Perform a backward dataflow analysis to compute live_out and live_in for each block.
duke@435 733 // The loop is executed until a fixpoint is reached (no changes in an iteration)
duke@435 734 // Exception handlers must be processed because not all live values are
duke@435 735 // present in the state array, e.g. because of global value numbering
duke@435 736 do {
duke@435 737 change_occurred = false;
duke@435 738
duke@435 739 // iterate all blocks in reverse order
duke@435 740 for (int i = num_blocks - 1; i >= 0; i--) {
duke@435 741 BlockBegin* block = block_at(i);
duke@435 742
duke@435 743 change_occurred_in_block = false;
duke@435 744
duke@435 745 // live_out(block) is the union of live_in(sux), for successors sux of block
duke@435 746 int n = block->number_of_sux();
duke@435 747 int e = block->number_of_exception_handlers();
duke@435 748 if (n + e > 0) {
duke@435 749 // block has successors
duke@435 750 if (n > 0) {
duke@435 751 live_out.set_from(block->sux_at(0)->live_in());
duke@435 752 for (int j = 1; j < n; j++) {
duke@435 753 live_out.set_union(block->sux_at(j)->live_in());
duke@435 754 }
duke@435 755 } else {
duke@435 756 live_out.clear();
duke@435 757 }
duke@435 758 for (int j = 0; j < e; j++) {
duke@435 759 live_out.set_union(block->exception_handler_at(j)->live_in());
duke@435 760 }
duke@435 761
duke@435 762 if (!block->live_out().is_same(live_out)) {
duke@435 763 // A change occurred. Swap the old and new live out sets to avoid copying.
duke@435 764 BitMap temp = block->live_out();
duke@435 765 block->set_live_out(live_out);
duke@435 766 live_out = temp;
duke@435 767
duke@435 768 change_occurred = true;
duke@435 769 change_occurred_in_block = true;
duke@435 770 }
duke@435 771 }
duke@435 772
duke@435 773 if (iteration_count == 0 || change_occurred_in_block) {
duke@435 774 // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
duke@435 775 // note: live_in has to be computed only in first iteration or if live_out has changed!
duke@435 776 BitMap live_in = block->live_in();
duke@435 777 live_in.set_from(block->live_out());
duke@435 778 live_in.set_difference(block->live_kill());
duke@435 779 live_in.set_union(block->live_gen());
duke@435 780 }
duke@435 781
duke@435 782 #ifndef PRODUCT
duke@435 783 if (TraceLinearScanLevel >= 4) {
duke@435 784 char c = ' ';
duke@435 785 if (iteration_count == 0 || change_occurred_in_block) {
duke@435 786 c = '*';
duke@435 787 }
duke@435 788 tty->print("(%d) live_in%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
duke@435 789 tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
duke@435 790 }
duke@435 791 #endif
duke@435 792 }
duke@435 793 iteration_count++;
duke@435 794
duke@435 795 if (change_occurred && iteration_count > 50) {
duke@435 796 BAILOUT("too many iterations in compute_global_live_sets");
duke@435 797 }
duke@435 798 } while (change_occurred);
duke@435 799
duke@435 800
duke@435 801 #ifdef ASSERT
duke@435 802 // check that fixed intervals are not live at block boundaries
duke@435 803 // (live set must be empty at fixed intervals)
duke@435 804 for (int i = 0; i < num_blocks; i++) {
duke@435 805 BlockBegin* block = block_at(i);
duke@435 806 for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
duke@435 807 assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty");
duke@435 808 assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
duke@435 809 assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
duke@435 810 }
duke@435 811 }
duke@435 812 #endif
duke@435 813
duke@435 814 // check that the live_in set of the first block is empty
duke@435 815 BitMap live_in_args(ir()->start()->live_in().size());
duke@435 816 live_in_args.clear();
duke@435 817 if (!ir()->start()->live_in().is_same(live_in_args)) {
duke@435 818 #ifdef ASSERT
duke@435 819 tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
duke@435 820 tty->print_cr("affected registers:");
duke@435 821 print_bitmap(ir()->start()->live_in());
duke@435 822
duke@435 823 // print some additional information to simplify debugging
duke@435 824 for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
duke@435 825 if (ir()->start()->live_in().at(i)) {
duke@435 826 Instruction* instr = gen()->instruction_for_vreg(i);
duke@435 827 tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
duke@435 828
duke@435 829 for (int j = 0; j < num_blocks; j++) {
duke@435 830 BlockBegin* block = block_at(j);
duke@435 831 if (block->live_gen().at(i)) {
duke@435 832 tty->print_cr(" used in block B%d", block->block_id());
duke@435 833 }
duke@435 834 if (block->live_kill().at(i)) {
duke@435 835 tty->print_cr(" defined in block B%d", block->block_id());
duke@435 836 }
duke@435 837 }
duke@435 838 }
duke@435 839 }
duke@435 840
duke@435 841 #endif
duke@435 842 // when this fails, virtual registers are used before they are defined.
duke@435 843 assert(false, "live_in set of first block must be empty");
duke@435 844 // bailout of if this occurs in product mode.
duke@435 845 bailout("live_in set of first block not empty");
duke@435 846 }
duke@435 847 }
duke@435 848
duke@435 849
duke@435 850 // ********** Phase 4: build intervals
duke@435 851 // (fills the list _intervals)
duke@435 852
duke@435 853 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
duke@435 854 assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
duke@435 855 LIR_Opr opr = value->operand();
duke@435 856 Constant* con = value->as_Constant();
duke@435 857
duke@435 858 if ((con == NULL || con->is_pinned()) && opr->is_register()) {
duke@435 859 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 860 add_use(opr, from, to, use_kind);
duke@435 861 }
duke@435 862 }
duke@435 863
duke@435 864
duke@435 865 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
duke@435 866 TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
duke@435 867 assert(opr->is_register(), "should not be called otherwise");
duke@435 868
duke@435 869 if (opr->is_virtual_register()) {
duke@435 870 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 871 add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
duke@435 872
duke@435 873 } else {
duke@435 874 int reg = reg_num(opr);
duke@435 875 if (is_processed_reg_num(reg)) {
duke@435 876 add_def(reg, def_pos, use_kind, opr->type_register());
duke@435 877 }
duke@435 878 reg = reg_numHi(opr);
duke@435 879 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
duke@435 880 add_def(reg, def_pos, use_kind, opr->type_register());
duke@435 881 }
duke@435 882 }
duke@435 883 }
duke@435 884
duke@435 885 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
duke@435 886 TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
duke@435 887 assert(opr->is_register(), "should not be called otherwise");
duke@435 888
duke@435 889 if (opr->is_virtual_register()) {
duke@435 890 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 891 add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
duke@435 892
duke@435 893 } else {
duke@435 894 int reg = reg_num(opr);
duke@435 895 if (is_processed_reg_num(reg)) {
duke@435 896 add_use(reg, from, to, use_kind, opr->type_register());
duke@435 897 }
duke@435 898 reg = reg_numHi(opr);
duke@435 899 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
duke@435 900 add_use(reg, from, to, use_kind, opr->type_register());
duke@435 901 }
duke@435 902 }
duke@435 903 }
duke@435 904
duke@435 905 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
duke@435 906 TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
duke@435 907 assert(opr->is_register(), "should not be called otherwise");
duke@435 908
duke@435 909 if (opr->is_virtual_register()) {
duke@435 910 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
duke@435 911 add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
duke@435 912
duke@435 913 } else {
duke@435 914 int reg = reg_num(opr);
duke@435 915 if (is_processed_reg_num(reg)) {
duke@435 916 add_temp(reg, temp_pos, use_kind, opr->type_register());
duke@435 917 }
duke@435 918 reg = reg_numHi(opr);
duke@435 919 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
duke@435 920 add_temp(reg, temp_pos, use_kind, opr->type_register());
duke@435 921 }
duke@435 922 }
duke@435 923 }
duke@435 924
duke@435 925
duke@435 926 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
duke@435 927 Interval* interval = interval_at(reg_num);
duke@435 928 if (interval != NULL) {
duke@435 929 assert(interval->reg_num() == reg_num, "wrong interval");
duke@435 930
duke@435 931 if (type != T_ILLEGAL) {
duke@435 932 interval->set_type(type);
duke@435 933 }
duke@435 934
duke@435 935 Range* r = interval->first();
duke@435 936 if (r->from() <= def_pos) {
duke@435 937 // Update the starting point (when a range is first created for a use, its
duke@435 938 // start is the beginning of the current block until a def is encountered.)
duke@435 939 r->set_from(def_pos);
duke@435 940 interval->add_use_pos(def_pos, use_kind);
duke@435 941
duke@435 942 } else {
duke@435 943 // Dead value - make vacuous interval
duke@435 944 // also add use_kind for dead intervals
duke@435 945 interval->add_range(def_pos, def_pos + 1);
duke@435 946 interval->add_use_pos(def_pos, use_kind);
duke@435 947 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
duke@435 948 }
duke@435 949
duke@435 950 } else {
duke@435 951 // Dead value - make vacuous interval
duke@435 952 // also add use_kind for dead intervals
duke@435 953 interval = create_interval(reg_num);
duke@435 954 if (type != T_ILLEGAL) {
duke@435 955 interval->set_type(type);
duke@435 956 }
duke@435 957
duke@435 958 interval->add_range(def_pos, def_pos + 1);
duke@435 959 interval->add_use_pos(def_pos, use_kind);
duke@435 960 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
duke@435 961 }
duke@435 962
duke@435 963 change_spill_definition_pos(interval, def_pos);
duke@435 964 if (use_kind == noUse && interval->spill_state() <= startInMemory) {
duke@435 965 // detection of method-parameters and roundfp-results
duke@435 966 // TODO: move this directly to position where use-kind is computed
duke@435 967 interval->set_spill_state(startInMemory);
duke@435 968 }
duke@435 969 }
duke@435 970
duke@435 971 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
duke@435 972 Interval* interval = interval_at(reg_num);
duke@435 973 if (interval == NULL) {
duke@435 974 interval = create_interval(reg_num);
duke@435 975 }
duke@435 976 assert(interval->reg_num() == reg_num, "wrong interval");
duke@435 977
duke@435 978 if (type != T_ILLEGAL) {
duke@435 979 interval->set_type(type);
duke@435 980 }
duke@435 981
duke@435 982 interval->add_range(from, to);
duke@435 983 interval->add_use_pos(to, use_kind);
duke@435 984 }
duke@435 985
duke@435 986 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
duke@435 987 Interval* interval = interval_at(reg_num);
duke@435 988 if (interval == NULL) {
duke@435 989 interval = create_interval(reg_num);
duke@435 990 }
duke@435 991 assert(interval->reg_num() == reg_num, "wrong interval");
duke@435 992
duke@435 993 if (type != T_ILLEGAL) {
duke@435 994 interval->set_type(type);
duke@435 995 }
duke@435 996
duke@435 997 interval->add_range(temp_pos, temp_pos + 1);
duke@435 998 interval->add_use_pos(temp_pos, use_kind);
duke@435 999 }
duke@435 1000
duke@435 1001
duke@435 1002 // the results of this functions are used for optimizing spilling and reloading
duke@435 1003 // if the functions return shouldHaveRegister and the interval is spilled,
duke@435 1004 // it is not reloaded to a register.
duke@435 1005 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
duke@435 1006 if (op->code() == lir_move) {
duke@435 1007 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
duke@435 1008 LIR_Op1* move = (LIR_Op1*)op;
duke@435 1009 LIR_Opr res = move->result_opr();
duke@435 1010 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
duke@435 1011
duke@435 1012 if (result_in_memory) {
duke@435 1013 // Begin of an interval with must_start_in_memory set.
duke@435 1014 // This interval will always get a stack slot first, so return noUse.
duke@435 1015 return noUse;
duke@435 1016
duke@435 1017 } else if (move->in_opr()->is_stack()) {
duke@435 1018 // method argument (condition must be equal to handle_method_arguments)
duke@435 1019 return noUse;
duke@435 1020
duke@435 1021 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
duke@435 1022 // Move from register to register
duke@435 1023 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
duke@435 1024 // special handling of phi-function moves inside osr-entry blocks
duke@435 1025 // input operand must have a register instead of output operand (leads to better register allocation)
duke@435 1026 return shouldHaveRegister;
duke@435 1027 }
duke@435 1028 }
duke@435 1029 }
duke@435 1030
duke@435 1031 if (opr->is_virtual() &&
duke@435 1032 gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
duke@435 1033 // result is a stack-slot, so prevent immediate reloading
duke@435 1034 return noUse;
duke@435 1035 }
duke@435 1036
duke@435 1037 // all other operands require a register
duke@435 1038 return mustHaveRegister;
duke@435 1039 }
duke@435 1040
duke@435 1041 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
duke@435 1042 if (op->code() == lir_move) {
duke@435 1043 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
duke@435 1044 LIR_Op1* move = (LIR_Op1*)op;
duke@435 1045 LIR_Opr res = move->result_opr();
duke@435 1046 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
duke@435 1047
duke@435 1048 if (result_in_memory) {
duke@435 1049 // Move to an interval with must_start_in_memory set.
duke@435 1050 // To avoid moves from stack to stack (not allowed) force the input operand to a register
duke@435 1051 return mustHaveRegister;
duke@435 1052
duke@435 1053 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
duke@435 1054 // Move from register to register
duke@435 1055 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
duke@435 1056 // special handling of phi-function moves inside osr-entry blocks
duke@435 1057 // input operand must have a register instead of output operand (leads to better register allocation)
duke@435 1058 return mustHaveRegister;
duke@435 1059 }
duke@435 1060
duke@435 1061 // The input operand is not forced to a register (moves from stack to register are allowed),
duke@435 1062 // but it is faster if the input operand is in a register
duke@435 1063 return shouldHaveRegister;
duke@435 1064 }
duke@435 1065 }
duke@435 1066
duke@435 1067
never@739 1068 #ifdef X86
duke@435 1069 if (op->code() == lir_cmove) {
duke@435 1070 // conditional moves can handle stack operands
duke@435 1071 assert(op->result_opr()->is_register(), "result must always be in a register");
duke@435 1072 return shouldHaveRegister;
duke@435 1073 }
duke@435 1074
duke@435 1075 // optimizations for second input operand of arithmehtic operations on Intel
duke@435 1076 // this operand is allowed to be on the stack in some cases
duke@435 1077 BasicType opr_type = opr->type_register();
duke@435 1078 if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
duke@435 1079 if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
duke@435 1080 // SSE float instruction (T_DOUBLE only supported with SSE2)
duke@435 1081 switch (op->code()) {
duke@435 1082 case lir_cmp:
duke@435 1083 case lir_add:
duke@435 1084 case lir_sub:
duke@435 1085 case lir_mul:
duke@435 1086 case lir_div:
duke@435 1087 {
duke@435 1088 assert(op->as_Op2() != NULL, "must be LIR_Op2");
duke@435 1089 LIR_Op2* op2 = (LIR_Op2*)op;
duke@435 1090 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
duke@435 1091 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
duke@435 1092 return shouldHaveRegister;
duke@435 1093 }
duke@435 1094 }
duke@435 1095 }
duke@435 1096 } else {
duke@435 1097 // FPU stack float instruction
duke@435 1098 switch (op->code()) {
duke@435 1099 case lir_add:
duke@435 1100 case lir_sub:
duke@435 1101 case lir_mul:
duke@435 1102 case lir_div:
duke@435 1103 {
duke@435 1104 assert(op->as_Op2() != NULL, "must be LIR_Op2");
duke@435 1105 LIR_Op2* op2 = (LIR_Op2*)op;
duke@435 1106 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
duke@435 1107 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
duke@435 1108 return shouldHaveRegister;
duke@435 1109 }
duke@435 1110 }
duke@435 1111 }
duke@435 1112 }
duke@435 1113
duke@435 1114 } else if (opr_type != T_LONG) {
duke@435 1115 // integer instruction (note: long operands must always be in register)
duke@435 1116 switch (op->code()) {
duke@435 1117 case lir_cmp:
duke@435 1118 case lir_add:
duke@435 1119 case lir_sub:
duke@435 1120 case lir_logic_and:
duke@435 1121 case lir_logic_or:
duke@435 1122 case lir_logic_xor:
duke@435 1123 {
duke@435 1124 assert(op->as_Op2() != NULL, "must be LIR_Op2");
duke@435 1125 LIR_Op2* op2 = (LIR_Op2*)op;
duke@435 1126 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
duke@435 1127 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
duke@435 1128 return shouldHaveRegister;
duke@435 1129 }
duke@435 1130 }
duke@435 1131 }
duke@435 1132 }
never@739 1133 #endif // X86
duke@435 1134
duke@435 1135 // all other operands require a register
duke@435 1136 return mustHaveRegister;
duke@435 1137 }
duke@435 1138
duke@435 1139
duke@435 1140 void LinearScan::handle_method_arguments(LIR_Op* op) {
duke@435 1141 // special handling for method arguments (moves from stack to virtual register):
duke@435 1142 // the interval gets no register assigned, but the stack slot.
duke@435 1143 // it is split before the first use by the register allocator.
duke@435 1144
duke@435 1145 if (op->code() == lir_move) {
duke@435 1146 assert(op->as_Op1() != NULL, "must be LIR_Op1");
duke@435 1147 LIR_Op1* move = (LIR_Op1*)op;
duke@435 1148
duke@435 1149 if (move->in_opr()->is_stack()) {
duke@435 1150 #ifdef ASSERT
duke@435 1151 int arg_size = compilation()->method()->arg_size();
duke@435 1152 LIR_Opr o = move->in_opr();
duke@435 1153 if (o->is_single_stack()) {
duke@435 1154 assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
duke@435 1155 } else if (o->is_double_stack()) {
duke@435 1156 assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
duke@435 1157 } else {
duke@435 1158 ShouldNotReachHere();
duke@435 1159 }
duke@435 1160
duke@435 1161 assert(move->id() > 0, "invalid id");
duke@435 1162 assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
duke@435 1163 assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
duke@435 1164
duke@435 1165 TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
duke@435 1166 #endif
duke@435 1167
duke@435 1168 Interval* interval = interval_at(reg_num(move->result_opr()));
duke@435 1169
duke@435 1170 int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
duke@435 1171 interval->set_canonical_spill_slot(stack_slot);
duke@435 1172 interval->assign_reg(stack_slot);
duke@435 1173 }
duke@435 1174 }
duke@435 1175 }
duke@435 1176
duke@435 1177 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
duke@435 1178 // special handling for doubleword move from memory to register:
duke@435 1179 // in this case the registers of the input address and the result
duke@435 1180 // registers must not overlap -> add a temp range for the input registers
duke@435 1181 if (op->code() == lir_move) {
duke@435 1182 assert(op->as_Op1() != NULL, "must be LIR_Op1");
duke@435 1183 LIR_Op1* move = (LIR_Op1*)op;
duke@435 1184
duke@435 1185 if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
duke@435 1186 LIR_Address* address = move->in_opr()->as_address_ptr();
duke@435 1187 if (address != NULL) {
duke@435 1188 if (address->base()->is_valid()) {
duke@435 1189 add_temp(address->base(), op->id(), noUse);
duke@435 1190 }
duke@435 1191 if (address->index()->is_valid()) {
duke@435 1192 add_temp(address->index(), op->id(), noUse);
duke@435 1193 }
duke@435 1194 }
duke@435 1195 }
duke@435 1196 }
duke@435 1197 }
duke@435 1198
duke@435 1199 void LinearScan::add_register_hints(LIR_Op* op) {
duke@435 1200 switch (op->code()) {
duke@435 1201 case lir_move: // fall through
duke@435 1202 case lir_convert: {
duke@435 1203 assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
duke@435 1204 LIR_Op1* move = (LIR_Op1*)op;
duke@435 1205
duke@435 1206 LIR_Opr move_from = move->in_opr();
duke@435 1207 LIR_Opr move_to = move->result_opr();
duke@435 1208
duke@435 1209 if (move_to->is_register() && move_from->is_register()) {
duke@435 1210 Interval* from = interval_at(reg_num(move_from));
duke@435 1211 Interval* to = interval_at(reg_num(move_to));
duke@435 1212 if (from != NULL && to != NULL) {
duke@435 1213 to->set_register_hint(from);
duke@435 1214 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
duke@435 1215 }
duke@435 1216 }
duke@435 1217 break;
duke@435 1218 }
duke@435 1219 case lir_cmove: {
duke@435 1220 assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
duke@435 1221 LIR_Op2* cmove = (LIR_Op2*)op;
duke@435 1222
duke@435 1223 LIR_Opr move_from = cmove->in_opr1();
duke@435 1224 LIR_Opr move_to = cmove->result_opr();
duke@435 1225
duke@435 1226 if (move_to->is_register() && move_from->is_register()) {
duke@435 1227 Interval* from = interval_at(reg_num(move_from));
duke@435 1228 Interval* to = interval_at(reg_num(move_to));
duke@435 1229 if (from != NULL && to != NULL) {
duke@435 1230 to->set_register_hint(from);
duke@435 1231 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
duke@435 1232 }
duke@435 1233 }
duke@435 1234 break;
duke@435 1235 }
duke@435 1236 }
duke@435 1237 }
duke@435 1238
duke@435 1239
duke@435 1240 void LinearScan::build_intervals() {
duke@435 1241 TIME_LINEAR_SCAN(timer_build_intervals);
duke@435 1242
duke@435 1243 // initialize interval list with expected number of intervals
duke@435 1244 // (32 is added to have some space for split children without having to resize the list)
duke@435 1245 _intervals = IntervalList(num_virtual_regs() + 32);
duke@435 1246 // initialize all slots that are used by build_intervals
duke@435 1247 _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
duke@435 1248
duke@435 1249 // create a list with all caller-save registers (cpu, fpu, xmm)
duke@435 1250 // when an instruction is a call, a temp range is created for all these registers
duke@435 1251 int num_caller_save_registers = 0;
duke@435 1252 int caller_save_registers[LinearScan::nof_regs];
duke@435 1253
duke@435 1254 int i;
duke@435 1255 for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
duke@435 1256 LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
duke@435 1257 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
duke@435 1258 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
duke@435 1259 caller_save_registers[num_caller_save_registers++] = reg_num(opr);
duke@435 1260 }
duke@435 1261
duke@435 1262 // temp ranges for fpu registers are only created when the method has
duke@435 1263 // virtual fpu operands. Otherwise no allocation for fpu registers is
duke@435 1264 // perfomed and so the temp ranges would be useless
duke@435 1265 if (has_fpu_registers()) {
never@739 1266 #ifdef X86
duke@435 1267 if (UseSSE < 2) {
duke@435 1268 #endif
duke@435 1269 for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
duke@435 1270 LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
duke@435 1271 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
duke@435 1272 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
duke@435 1273 caller_save_registers[num_caller_save_registers++] = reg_num(opr);
duke@435 1274 }
never@739 1275 #ifdef X86
duke@435 1276 }
duke@435 1277 if (UseSSE > 0) {
duke@435 1278 for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
duke@435 1279 LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
duke@435 1280 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
duke@435 1281 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
duke@435 1282 caller_save_registers[num_caller_save_registers++] = reg_num(opr);
duke@435 1283 }
duke@435 1284 }
duke@435 1285 #endif
duke@435 1286 }
duke@435 1287 assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
duke@435 1288
duke@435 1289
duke@435 1290 LIR_OpVisitState visitor;
duke@435 1291
duke@435 1292 // iterate all blocks in reverse order
duke@435 1293 for (i = block_count() - 1; i >= 0; i--) {
duke@435 1294 BlockBegin* block = block_at(i);
duke@435 1295 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 1296 int block_from = block->first_lir_instruction_id();
duke@435 1297 int block_to = block->last_lir_instruction_id();
duke@435 1298
duke@435 1299 assert(block_from == instructions->at(0)->id(), "must be");
duke@435 1300 assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be");
duke@435 1301
duke@435 1302 // Update intervals for registers live at the end of this block;
duke@435 1303 BitMap live = block->live_out();
never@739 1304 int size = (int)live.size();
never@739 1305 for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
duke@435 1306 assert(live.at(number), "should not stop here otherwise");
duke@435 1307 assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
duke@435 1308 TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
duke@435 1309
duke@435 1310 add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
duke@435 1311
duke@435 1312 // add special use positions for loop-end blocks when the
duke@435 1313 // interval is used anywhere inside this loop. It's possible
duke@435 1314 // that the block was part of a non-natural loop, so it might
duke@435 1315 // have an invalid loop index.
duke@435 1316 if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
duke@435 1317 block->loop_index() != -1 &&
duke@435 1318 is_interval_in_loop(number, block->loop_index())) {
duke@435 1319 interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
duke@435 1320 }
duke@435 1321 }
duke@435 1322
duke@435 1323 // iterate all instructions of the block in reverse order.
duke@435 1324 // skip the first instruction because it is always a label
duke@435 1325 // definitions of intervals are processed before uses
duke@435 1326 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
duke@435 1327 for (int j = instructions->length() - 1; j >= 1; j--) {
duke@435 1328 LIR_Op* op = instructions->at(j);
duke@435 1329 int op_id = op->id();
duke@435 1330
duke@435 1331 // visit operation to collect all operands
duke@435 1332 visitor.visit(op);
duke@435 1333
duke@435 1334 // add a temp range for each register if operation destroys caller-save registers
duke@435 1335 if (visitor.has_call()) {
duke@435 1336 for (int k = 0; k < num_caller_save_registers; k++) {
duke@435 1337 add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
duke@435 1338 }
duke@435 1339 TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
duke@435 1340 }
duke@435 1341
duke@435 1342 // Add any platform dependent temps
duke@435 1343 pd_add_temps(op);
duke@435 1344
duke@435 1345 // visit definitions (output and temp operands)
duke@435 1346 int k, n;
duke@435 1347 n = visitor.opr_count(LIR_OpVisitState::outputMode);
duke@435 1348 for (k = 0; k < n; k++) {
duke@435 1349 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
duke@435 1350 assert(opr->is_register(), "visitor should only return register operands");
duke@435 1351 add_def(opr, op_id, use_kind_of_output_operand(op, opr));
duke@435 1352 }
duke@435 1353
duke@435 1354 n = visitor.opr_count(LIR_OpVisitState::tempMode);
duke@435 1355 for (k = 0; k < n; k++) {
duke@435 1356 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
duke@435 1357 assert(opr->is_register(), "visitor should only return register operands");
duke@435 1358 add_temp(opr, op_id, mustHaveRegister);
duke@435 1359 }
duke@435 1360
duke@435 1361 // visit uses (input operands)
duke@435 1362 n = visitor.opr_count(LIR_OpVisitState::inputMode);
duke@435 1363 for (k = 0; k < n; k++) {
duke@435 1364 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
duke@435 1365 assert(opr->is_register(), "visitor should only return register operands");
duke@435 1366 add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
duke@435 1367 }
duke@435 1368
duke@435 1369 // Add uses of live locals from interpreter's point of view for proper
duke@435 1370 // debug information generation
duke@435 1371 // Treat these operands as temp values (if the life range is extended
duke@435 1372 // to a call site, the value would be in a register at the call otherwise)
duke@435 1373 n = visitor.info_count();
duke@435 1374 for (k = 0; k < n; k++) {
duke@435 1375 CodeEmitInfo* info = visitor.info_at(k);
duke@435 1376 ValueStack* stack = info->stack();
duke@435 1377 for_each_state_value(stack, value,
duke@435 1378 add_use(value, block_from, op_id + 1, noUse);
duke@435 1379 );
duke@435 1380 }
duke@435 1381
duke@435 1382 // special steps for some instructions (especially moves)
duke@435 1383 handle_method_arguments(op);
duke@435 1384 handle_doubleword_moves(op);
duke@435 1385 add_register_hints(op);
duke@435 1386
duke@435 1387 } // end of instruction iteration
duke@435 1388 } // end of block iteration
duke@435 1389
duke@435 1390
duke@435 1391 // add the range [0, 1[ to all fixed intervals
duke@435 1392 // -> the register allocator need not handle unhandled fixed intervals
duke@435 1393 for (int n = 0; n < LinearScan::nof_regs; n++) {
duke@435 1394 Interval* interval = interval_at(n);
duke@435 1395 if (interval != NULL) {
duke@435 1396 interval->add_range(0, 1);
duke@435 1397 }
duke@435 1398 }
duke@435 1399 }
duke@435 1400
duke@435 1401
duke@435 1402 // ********** Phase 5: actual register allocation
duke@435 1403
duke@435 1404 int LinearScan::interval_cmp(Interval** a, Interval** b) {
duke@435 1405 if (*a != NULL) {
duke@435 1406 if (*b != NULL) {
duke@435 1407 return (*a)->from() - (*b)->from();
duke@435 1408 } else {
duke@435 1409 return -1;
duke@435 1410 }
duke@435 1411 } else {
duke@435 1412 if (*b != NULL) {
duke@435 1413 return 1;
duke@435 1414 } else {
duke@435 1415 return 0;
duke@435 1416 }
duke@435 1417 }
duke@435 1418 }
duke@435 1419
duke@435 1420 #ifndef PRODUCT
duke@435 1421 bool LinearScan::is_sorted(IntervalArray* intervals) {
duke@435 1422 int from = -1;
duke@435 1423 int i, j;
duke@435 1424 for (i = 0; i < intervals->length(); i ++) {
duke@435 1425 Interval* it = intervals->at(i);
duke@435 1426 if (it != NULL) {
duke@435 1427 if (from > it->from()) {
duke@435 1428 assert(false, "");
duke@435 1429 return false;
duke@435 1430 }
duke@435 1431 from = it->from();
duke@435 1432 }
duke@435 1433 }
duke@435 1434
duke@435 1435 // check in both directions if sorted list and unsorted list contain same intervals
duke@435 1436 for (i = 0; i < interval_count(); i++) {
duke@435 1437 if (interval_at(i) != NULL) {
duke@435 1438 int num_found = 0;
duke@435 1439 for (j = 0; j < intervals->length(); j++) {
duke@435 1440 if (interval_at(i) == intervals->at(j)) {
duke@435 1441 num_found++;
duke@435 1442 }
duke@435 1443 }
duke@435 1444 assert(num_found == 1, "lists do not contain same intervals");
duke@435 1445 }
duke@435 1446 }
duke@435 1447 for (j = 0; j < intervals->length(); j++) {
duke@435 1448 int num_found = 0;
duke@435 1449 for (i = 0; i < interval_count(); i++) {
duke@435 1450 if (interval_at(i) == intervals->at(j)) {
duke@435 1451 num_found++;
duke@435 1452 }
duke@435 1453 }
duke@435 1454 assert(num_found == 1, "lists do not contain same intervals");
duke@435 1455 }
duke@435 1456
duke@435 1457 return true;
duke@435 1458 }
duke@435 1459 #endif
duke@435 1460
duke@435 1461 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
duke@435 1462 if (*prev != NULL) {
duke@435 1463 (*prev)->set_next(interval);
duke@435 1464 } else {
duke@435 1465 *first = interval;
duke@435 1466 }
duke@435 1467 *prev = interval;
duke@435 1468 }
duke@435 1469
duke@435 1470 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
duke@435 1471 assert(is_sorted(_sorted_intervals), "interval list is not sorted");
duke@435 1472
duke@435 1473 *list1 = *list2 = Interval::end();
duke@435 1474
duke@435 1475 Interval* list1_prev = NULL;
duke@435 1476 Interval* list2_prev = NULL;
duke@435 1477 Interval* v;
duke@435 1478
duke@435 1479 const int n = _sorted_intervals->length();
duke@435 1480 for (int i = 0; i < n; i++) {
duke@435 1481 v = _sorted_intervals->at(i);
duke@435 1482 if (v == NULL) continue;
duke@435 1483
duke@435 1484 if (is_list1(v)) {
duke@435 1485 add_to_list(list1, &list1_prev, v);
duke@435 1486 } else if (is_list2 == NULL || is_list2(v)) {
duke@435 1487 add_to_list(list2, &list2_prev, v);
duke@435 1488 }
duke@435 1489 }
duke@435 1490
duke@435 1491 if (list1_prev != NULL) list1_prev->set_next(Interval::end());
duke@435 1492 if (list2_prev != NULL) list2_prev->set_next(Interval::end());
duke@435 1493
duke@435 1494 assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
duke@435 1495 assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
duke@435 1496 }
duke@435 1497
duke@435 1498
duke@435 1499 void LinearScan::sort_intervals_before_allocation() {
duke@435 1500 TIME_LINEAR_SCAN(timer_sort_intervals_before);
duke@435 1501
duke@435 1502 IntervalList* unsorted_list = &_intervals;
duke@435 1503 int unsorted_len = unsorted_list->length();
duke@435 1504 int sorted_len = 0;
duke@435 1505 int unsorted_idx;
duke@435 1506 int sorted_idx = 0;
duke@435 1507 int sorted_from_max = -1;
duke@435 1508
duke@435 1509 // calc number of items for sorted list (sorted list must not contain NULL values)
duke@435 1510 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
duke@435 1511 if (unsorted_list->at(unsorted_idx) != NULL) {
duke@435 1512 sorted_len++;
duke@435 1513 }
duke@435 1514 }
duke@435 1515 IntervalArray* sorted_list = new IntervalArray(sorted_len);
duke@435 1516
duke@435 1517 // special sorting algorithm: the original interval-list is almost sorted,
duke@435 1518 // only some intervals are swapped. So this is much faster than a complete QuickSort
duke@435 1519 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
duke@435 1520 Interval* cur_interval = unsorted_list->at(unsorted_idx);
duke@435 1521
duke@435 1522 if (cur_interval != NULL) {
duke@435 1523 int cur_from = cur_interval->from();
duke@435 1524
duke@435 1525 if (sorted_from_max <= cur_from) {
duke@435 1526 sorted_list->at_put(sorted_idx++, cur_interval);
duke@435 1527 sorted_from_max = cur_interval->from();
duke@435 1528 } else {
duke@435 1529 // the asumption that the intervals are already sorted failed,
duke@435 1530 // so this interval must be sorted in manually
duke@435 1531 int j;
duke@435 1532 for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
duke@435 1533 sorted_list->at_put(j + 1, sorted_list->at(j));
duke@435 1534 }
duke@435 1535 sorted_list->at_put(j + 1, cur_interval);
duke@435 1536 sorted_idx++;
duke@435 1537 }
duke@435 1538 }
duke@435 1539 }
duke@435 1540 _sorted_intervals = sorted_list;
duke@435 1541 }
duke@435 1542
duke@435 1543 void LinearScan::sort_intervals_after_allocation() {
duke@435 1544 TIME_LINEAR_SCAN(timer_sort_intervals_after);
duke@435 1545
duke@435 1546 IntervalArray* old_list = _sorted_intervals;
duke@435 1547 IntervalList* new_list = _new_intervals_from_allocation;
duke@435 1548 int old_len = old_list->length();
duke@435 1549 int new_len = new_list->length();
duke@435 1550
duke@435 1551 if (new_len == 0) {
duke@435 1552 // no intervals have been added during allocation, so sorted list is already up to date
duke@435 1553 return;
duke@435 1554 }
duke@435 1555
duke@435 1556 // conventional sort-algorithm for new intervals
duke@435 1557 new_list->sort(interval_cmp);
duke@435 1558
duke@435 1559 // merge old and new list (both already sorted) into one combined list
duke@435 1560 IntervalArray* combined_list = new IntervalArray(old_len + new_len);
duke@435 1561 int old_idx = 0;
duke@435 1562 int new_idx = 0;
duke@435 1563
duke@435 1564 while (old_idx + new_idx < old_len + new_len) {
duke@435 1565 if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
duke@435 1566 combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
duke@435 1567 old_idx++;
duke@435 1568 } else {
duke@435 1569 combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
duke@435 1570 new_idx++;
duke@435 1571 }
duke@435 1572 }
duke@435 1573
duke@435 1574 _sorted_intervals = combined_list;
duke@435 1575 }
duke@435 1576
duke@435 1577
duke@435 1578 void LinearScan::allocate_registers() {
duke@435 1579 TIME_LINEAR_SCAN(timer_allocate_registers);
duke@435 1580
duke@435 1581 Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
duke@435 1582 Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
duke@435 1583
duke@435 1584 create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
duke@435 1585 if (has_fpu_registers()) {
duke@435 1586 create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
duke@435 1587 #ifdef ASSERT
duke@435 1588 } else {
duke@435 1589 // fpu register allocation is omitted because no virtual fpu registers are present
duke@435 1590 // just check this again...
duke@435 1591 create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
duke@435 1592 assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
duke@435 1593 #endif
duke@435 1594 }
duke@435 1595
duke@435 1596 // allocate cpu registers
duke@435 1597 LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
duke@435 1598 cpu_lsw.walk();
duke@435 1599 cpu_lsw.finish_allocation();
duke@435 1600
duke@435 1601 if (has_fpu_registers()) {
duke@435 1602 // allocate fpu registers
duke@435 1603 LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
duke@435 1604 fpu_lsw.walk();
duke@435 1605 fpu_lsw.finish_allocation();
duke@435 1606 }
duke@435 1607 }
duke@435 1608
duke@435 1609
duke@435 1610 // ********** Phase 6: resolve data flow
duke@435 1611 // (insert moves at edges between blocks if intervals have been split)
duke@435 1612
duke@435 1613 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
duke@435 1614 // instead of returning NULL
duke@435 1615 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
duke@435 1616 Interval* result = interval->split_child_at_op_id(op_id, mode);
duke@435 1617 if (result != NULL) {
duke@435 1618 return result;
duke@435 1619 }
duke@435 1620
duke@435 1621 assert(false, "must find an interval, but do a clean bailout in product mode");
duke@435 1622 result = new Interval(LIR_OprDesc::vreg_base);
duke@435 1623 result->assign_reg(0);
duke@435 1624 result->set_type(T_INT);
duke@435 1625 BAILOUT_("LinearScan: interval is NULL", result);
duke@435 1626 }
duke@435 1627
duke@435 1628
duke@435 1629 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
duke@435 1630 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
duke@435 1631 assert(interval_at(reg_num) != NULL, "no interval found");
duke@435 1632
duke@435 1633 return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
duke@435 1634 }
duke@435 1635
duke@435 1636 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
duke@435 1637 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
duke@435 1638 assert(interval_at(reg_num) != NULL, "no interval found");
duke@435 1639
duke@435 1640 return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
duke@435 1641 }
duke@435 1642
duke@435 1643 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
duke@435 1644 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
duke@435 1645 assert(interval_at(reg_num) != NULL, "no interval found");
duke@435 1646
duke@435 1647 return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
duke@435 1648 }
duke@435 1649
duke@435 1650
duke@435 1651 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
duke@435 1652 DEBUG_ONLY(move_resolver.check_empty());
duke@435 1653
duke@435 1654 const int num_regs = num_virtual_regs();
duke@435 1655 const int size = live_set_size();
duke@435 1656 const BitMap live_at_edge = to_block->live_in();
duke@435 1657
duke@435 1658 // visit all registers where the live_at_edge bit is set
never@739 1659 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
duke@435 1660 assert(r < num_regs, "live information set for not exisiting interval");
duke@435 1661 assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
duke@435 1662
duke@435 1663 Interval* from_interval = interval_at_block_end(from_block, r);
duke@435 1664 Interval* to_interval = interval_at_block_begin(to_block, r);
duke@435 1665
duke@435 1666 if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
duke@435 1667 // need to insert move instruction
duke@435 1668 move_resolver.add_mapping(from_interval, to_interval);
duke@435 1669 }
duke@435 1670 }
duke@435 1671 }
duke@435 1672
duke@435 1673
duke@435 1674 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
duke@435 1675 if (from_block->number_of_sux() <= 1) {
duke@435 1676 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
duke@435 1677
duke@435 1678 LIR_OpList* instructions = from_block->lir()->instructions_list();
duke@435 1679 LIR_OpBranch* branch = instructions->last()->as_OpBranch();
duke@435 1680 if (branch != NULL) {
duke@435 1681 // insert moves before branch
duke@435 1682 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
duke@435 1683 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
duke@435 1684 } else {
duke@435 1685 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
duke@435 1686 }
duke@435 1687
duke@435 1688 } else {
duke@435 1689 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
duke@435 1690 #ifdef ASSERT
duke@435 1691 assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
duke@435 1692
duke@435 1693 // because the number of predecessor edges matches the number of
duke@435 1694 // successor edges, blocks which are reached by switch statements
duke@435 1695 // may have be more than one predecessor but it will be guaranteed
duke@435 1696 // that all predecessors will be the same.
duke@435 1697 for (int i = 0; i < to_block->number_of_preds(); i++) {
duke@435 1698 assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
duke@435 1699 }
duke@435 1700 #endif
duke@435 1701
duke@435 1702 move_resolver.set_insert_position(to_block->lir(), 0);
duke@435 1703 }
duke@435 1704 }
duke@435 1705
duke@435 1706
duke@435 1707 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
duke@435 1708 void LinearScan::resolve_data_flow() {
duke@435 1709 TIME_LINEAR_SCAN(timer_resolve_data_flow);
duke@435 1710
duke@435 1711 int num_blocks = block_count();
duke@435 1712 MoveResolver move_resolver(this);
duke@435 1713 BitMap block_completed(num_blocks); block_completed.clear();
duke@435 1714 BitMap already_resolved(num_blocks); already_resolved.clear();
duke@435 1715
duke@435 1716 int i;
duke@435 1717 for (i = 0; i < num_blocks; i++) {
duke@435 1718 BlockBegin* block = block_at(i);
duke@435 1719
duke@435 1720 // check if block has only one predecessor and only one successor
duke@435 1721 if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
duke@435 1722 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 1723 assert(instructions->at(0)->code() == lir_label, "block must start with label");
duke@435 1724 assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
duke@435 1725 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
duke@435 1726
duke@435 1727 // check if block is empty (only label and branch)
duke@435 1728 if (instructions->length() == 2) {
duke@435 1729 BlockBegin* pred = block->pred_at(0);
duke@435 1730 BlockBegin* sux = block->sux_at(0);
duke@435 1731
duke@435 1732 // prevent optimization of two consecutive blocks
duke@435 1733 if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
duke@435 1734 TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
duke@435 1735 block_completed.set_bit(block->linear_scan_number());
duke@435 1736
duke@435 1737 // directly resolve between pred and sux (without looking at the empty block between)
duke@435 1738 resolve_collect_mappings(pred, sux, move_resolver);
duke@435 1739 if (move_resolver.has_mappings()) {
duke@435 1740 move_resolver.set_insert_position(block->lir(), 0);
duke@435 1741 move_resolver.resolve_and_append_moves();
duke@435 1742 }
duke@435 1743 }
duke@435 1744 }
duke@435 1745 }
duke@435 1746 }
duke@435 1747
duke@435 1748
duke@435 1749 for (i = 0; i < num_blocks; i++) {
duke@435 1750 if (!block_completed.at(i)) {
duke@435 1751 BlockBegin* from_block = block_at(i);
duke@435 1752 already_resolved.set_from(block_completed);
duke@435 1753
duke@435 1754 int num_sux = from_block->number_of_sux();
duke@435 1755 for (int s = 0; s < num_sux; s++) {
duke@435 1756 BlockBegin* to_block = from_block->sux_at(s);
duke@435 1757
duke@435 1758 // check for duplicate edges between the same blocks (can happen with switch blocks)
duke@435 1759 if (!already_resolved.at(to_block->linear_scan_number())) {
duke@435 1760 TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
duke@435 1761 already_resolved.set_bit(to_block->linear_scan_number());
duke@435 1762
duke@435 1763 // collect all intervals that have been split between from_block and to_block
duke@435 1764 resolve_collect_mappings(from_block, to_block, move_resolver);
duke@435 1765 if (move_resolver.has_mappings()) {
duke@435 1766 resolve_find_insert_pos(from_block, to_block, move_resolver);
duke@435 1767 move_resolver.resolve_and_append_moves();
duke@435 1768 }
duke@435 1769 }
duke@435 1770 }
duke@435 1771 }
duke@435 1772 }
duke@435 1773 }
duke@435 1774
duke@435 1775
duke@435 1776 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
duke@435 1777 if (interval_at(reg_num) == NULL) {
duke@435 1778 // if a phi function is never used, no interval is created -> ignore this
duke@435 1779 return;
duke@435 1780 }
duke@435 1781
duke@435 1782 Interval* interval = interval_at_block_begin(block, reg_num);
duke@435 1783 int reg = interval->assigned_reg();
duke@435 1784 int regHi = interval->assigned_regHi();
duke@435 1785
duke@435 1786 if ((reg < nof_regs && interval->always_in_memory()) ||
duke@435 1787 (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
duke@435 1788 // the interval is split to get a short range that is located on the stack
duke@435 1789 // in the following two cases:
duke@435 1790 // * the interval started in memory (e.g. method parameter), but is currently in a register
duke@435 1791 // this is an optimization for exception handling that reduces the number of moves that
duke@435 1792 // are necessary for resolving the states when an exception uses this exception handler
duke@435 1793 // * the interval would be on the fpu stack at the begin of the exception handler
duke@435 1794 // this is not allowed because of the complicated fpu stack handling on Intel
duke@435 1795
duke@435 1796 // range that will be spilled to memory
duke@435 1797 int from_op_id = block->first_lir_instruction_id();
duke@435 1798 int to_op_id = from_op_id + 1; // short live range of length 1
duke@435 1799 assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
duke@435 1800 "no split allowed between exception entry and first instruction");
duke@435 1801
duke@435 1802 if (interval->from() != from_op_id) {
duke@435 1803 // the part before from_op_id is unchanged
duke@435 1804 interval = interval->split(from_op_id);
duke@435 1805 interval->assign_reg(reg, regHi);
duke@435 1806 append_interval(interval);
duke@435 1807 }
duke@435 1808 assert(interval->from() == from_op_id, "must be true now");
duke@435 1809
duke@435 1810 Interval* spilled_part = interval;
duke@435 1811 if (interval->to() != to_op_id) {
duke@435 1812 // the part after to_op_id is unchanged
duke@435 1813 spilled_part = interval->split_from_start(to_op_id);
duke@435 1814 append_interval(spilled_part);
duke@435 1815 move_resolver.add_mapping(spilled_part, interval);
duke@435 1816 }
duke@435 1817 assign_spill_slot(spilled_part);
duke@435 1818
duke@435 1819 assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
duke@435 1820 }
duke@435 1821 }
duke@435 1822
duke@435 1823 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
duke@435 1824 assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
duke@435 1825 DEBUG_ONLY(move_resolver.check_empty());
duke@435 1826
duke@435 1827 // visit all registers where the live_in bit is set
duke@435 1828 int size = live_set_size();
never@739 1829 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
duke@435 1830 resolve_exception_entry(block, r, move_resolver);
duke@435 1831 }
duke@435 1832
duke@435 1833 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
duke@435 1834 for_each_phi_fun(block, phi,
duke@435 1835 resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
duke@435 1836 );
duke@435 1837
duke@435 1838 if (move_resolver.has_mappings()) {
duke@435 1839 // insert moves after first instruction
duke@435 1840 move_resolver.set_insert_position(block->lir(), 1);
duke@435 1841 move_resolver.resolve_and_append_moves();
duke@435 1842 }
duke@435 1843 }
duke@435 1844
duke@435 1845
duke@435 1846 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
duke@435 1847 if (interval_at(reg_num) == NULL) {
duke@435 1848 // if a phi function is never used, no interval is created -> ignore this
duke@435 1849 return;
duke@435 1850 }
duke@435 1851
duke@435 1852 // the computation of to_interval is equal to resolve_collect_mappings,
duke@435 1853 // but from_interval is more complicated because of phi functions
duke@435 1854 BlockBegin* to_block = handler->entry_block();
duke@435 1855 Interval* to_interval = interval_at_block_begin(to_block, reg_num);
duke@435 1856
duke@435 1857 if (phi != NULL) {
duke@435 1858 // phi function of the exception entry block
duke@435 1859 // no moves are created for this phi function in the LIR_Generator, so the
duke@435 1860 // interval at the throwing instruction must be searched using the operands
duke@435 1861 // of the phi function
duke@435 1862 Value from_value = phi->operand_at(handler->phi_operand());
duke@435 1863
duke@435 1864 // with phi functions it can happen that the same from_value is used in
duke@435 1865 // multiple mappings, so notify move-resolver that this is allowed
duke@435 1866 move_resolver.set_multiple_reads_allowed();
duke@435 1867
duke@435 1868 Constant* con = from_value->as_Constant();
duke@435 1869 if (con != NULL && !con->is_pinned()) {
duke@435 1870 // unpinned constants may have no register, so add mapping from constant to interval
duke@435 1871 move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
duke@435 1872 } else {
duke@435 1873 // search split child at the throwing op_id
duke@435 1874 Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
duke@435 1875 move_resolver.add_mapping(from_interval, to_interval);
duke@435 1876 }
duke@435 1877
duke@435 1878 } else {
duke@435 1879 // no phi function, so use reg_num also for from_interval
duke@435 1880 // search split child at the throwing op_id
duke@435 1881 Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
duke@435 1882 if (from_interval != to_interval) {
duke@435 1883 // optimization to reduce number of moves: when to_interval is on stack and
duke@435 1884 // the stack slot is known to be always correct, then no move is necessary
duke@435 1885 if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
duke@435 1886 move_resolver.add_mapping(from_interval, to_interval);
duke@435 1887 }
duke@435 1888 }
duke@435 1889 }
duke@435 1890 }
duke@435 1891
duke@435 1892 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
duke@435 1893 TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
duke@435 1894
duke@435 1895 DEBUG_ONLY(move_resolver.check_empty());
duke@435 1896 assert(handler->lir_op_id() == -1, "already processed this xhandler");
duke@435 1897 DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
duke@435 1898 assert(handler->entry_code() == NULL, "code already present");
duke@435 1899
duke@435 1900 // visit all registers where the live_in bit is set
duke@435 1901 BlockBegin* block = handler->entry_block();
duke@435 1902 int size = live_set_size();
never@739 1903 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
duke@435 1904 resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
duke@435 1905 }
duke@435 1906
duke@435 1907 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
duke@435 1908 for_each_phi_fun(block, phi,
duke@435 1909 resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
duke@435 1910 );
duke@435 1911
duke@435 1912 if (move_resolver.has_mappings()) {
duke@435 1913 LIR_List* entry_code = new LIR_List(compilation());
duke@435 1914 move_resolver.set_insert_position(entry_code, 0);
duke@435 1915 move_resolver.resolve_and_append_moves();
duke@435 1916
duke@435 1917 entry_code->jump(handler->entry_block());
duke@435 1918 handler->set_entry_code(entry_code);
duke@435 1919 }
duke@435 1920 }
duke@435 1921
duke@435 1922
duke@435 1923 void LinearScan::resolve_exception_handlers() {
duke@435 1924 MoveResolver move_resolver(this);
duke@435 1925 LIR_OpVisitState visitor;
duke@435 1926 int num_blocks = block_count();
duke@435 1927
duke@435 1928 int i;
duke@435 1929 for (i = 0; i < num_blocks; i++) {
duke@435 1930 BlockBegin* block = block_at(i);
duke@435 1931 if (block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 1932 resolve_exception_entry(block, move_resolver);
duke@435 1933 }
duke@435 1934 }
duke@435 1935
duke@435 1936 for (i = 0; i < num_blocks; i++) {
duke@435 1937 BlockBegin* block = block_at(i);
duke@435 1938 LIR_List* ops = block->lir();
duke@435 1939 int num_ops = ops->length();
duke@435 1940
duke@435 1941 // iterate all instructions of the block. skip the first because it is always a label
duke@435 1942 assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
duke@435 1943 for (int j = 1; j < num_ops; j++) {
duke@435 1944 LIR_Op* op = ops->at(j);
duke@435 1945 int op_id = op->id();
duke@435 1946
duke@435 1947 if (op_id != -1 && has_info(op_id)) {
duke@435 1948 // visit operation to collect all operands
duke@435 1949 visitor.visit(op);
duke@435 1950 assert(visitor.info_count() > 0, "should not visit otherwise");
duke@435 1951
duke@435 1952 XHandlers* xhandlers = visitor.all_xhandler();
duke@435 1953 int n = xhandlers->length();
duke@435 1954 for (int k = 0; k < n; k++) {
duke@435 1955 resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
duke@435 1956 }
duke@435 1957
duke@435 1958 #ifdef ASSERT
duke@435 1959 } else {
duke@435 1960 visitor.visit(op);
duke@435 1961 assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
duke@435 1962 #endif
duke@435 1963 }
duke@435 1964 }
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 // ********** Phase 7: assign register numbers back to LIR
duke@435 1970 // (includes computation of debug information and oop maps)
duke@435 1971
duke@435 1972 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
duke@435 1973 VMReg reg = interval->cached_vm_reg();
duke@435 1974 if (!reg->is_valid() ) {
duke@435 1975 reg = vm_reg_for_operand(operand_for_interval(interval));
duke@435 1976 interval->set_cached_vm_reg(reg);
duke@435 1977 }
duke@435 1978 assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
duke@435 1979 return reg;
duke@435 1980 }
duke@435 1981
duke@435 1982 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
duke@435 1983 assert(opr->is_oop(), "currently only implemented for oop operands");
duke@435 1984 return frame_map()->regname(opr);
duke@435 1985 }
duke@435 1986
duke@435 1987
duke@435 1988 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
duke@435 1989 LIR_Opr opr = interval->cached_opr();
duke@435 1990 if (opr->is_illegal()) {
duke@435 1991 opr = calc_operand_for_interval(interval);
duke@435 1992 interval->set_cached_opr(opr);
duke@435 1993 }
duke@435 1994
duke@435 1995 assert(opr == calc_operand_for_interval(interval), "wrong cached value");
duke@435 1996 return opr;
duke@435 1997 }
duke@435 1998
duke@435 1999 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
duke@435 2000 int assigned_reg = interval->assigned_reg();
duke@435 2001 BasicType type = interval->type();
duke@435 2002
duke@435 2003 if (assigned_reg >= nof_regs) {
duke@435 2004 // stack slot
duke@435 2005 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
duke@435 2006 return LIR_OprFact::stack(assigned_reg - nof_regs, type);
duke@435 2007
duke@435 2008 } else {
duke@435 2009 // register
duke@435 2010 switch (type) {
duke@435 2011 case T_OBJECT: {
duke@435 2012 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
duke@435 2013 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
duke@435 2014 return LIR_OprFact::single_cpu_oop(assigned_reg);
duke@435 2015 }
duke@435 2016
duke@435 2017 case T_INT: {
duke@435 2018 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
duke@435 2019 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
duke@435 2020 return LIR_OprFact::single_cpu(assigned_reg);
duke@435 2021 }
duke@435 2022
duke@435 2023 case T_LONG: {
duke@435 2024 int assigned_regHi = interval->assigned_regHi();
duke@435 2025 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
duke@435 2026 assert(num_physical_regs(T_LONG) == 1 ||
duke@435 2027 (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
duke@435 2028
duke@435 2029 assert(assigned_reg != assigned_regHi, "invalid allocation");
duke@435 2030 assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
duke@435 2031 "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
duke@435 2032 assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
duke@435 2033 if (requires_adjacent_regs(T_LONG)) {
duke@435 2034 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
duke@435 2035 }
duke@435 2036
duke@435 2037 #ifdef _LP64
duke@435 2038 return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
duke@435 2039 #else
never@739 2040 #ifdef SPARC
duke@435 2041 return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
duke@435 2042 #else
duke@435 2043 return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
never@739 2044 #endif // SPARC
never@739 2045 #endif // LP64
duke@435 2046 }
duke@435 2047
duke@435 2048 case T_FLOAT: {
never@739 2049 #ifdef X86
duke@435 2050 if (UseSSE >= 1) {
duke@435 2051 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
duke@435 2052 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
duke@435 2053 return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
duke@435 2054 }
duke@435 2055 #endif
duke@435 2056
duke@435 2057 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
duke@435 2058 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
duke@435 2059 return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
duke@435 2060 }
duke@435 2061
duke@435 2062 case T_DOUBLE: {
never@739 2063 #ifdef X86
duke@435 2064 if (UseSSE >= 2) {
duke@435 2065 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
duke@435 2066 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
duke@435 2067 return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
duke@435 2068 }
duke@435 2069 #endif
duke@435 2070
duke@435 2071 #ifdef SPARC
duke@435 2072 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
duke@435 2073 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
duke@435 2074 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
duke@435 2075 LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
duke@435 2076 #else
duke@435 2077 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
duke@435 2078 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
duke@435 2079 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
duke@435 2080 #endif
duke@435 2081 return result;
duke@435 2082 }
duke@435 2083
duke@435 2084 default: {
duke@435 2085 ShouldNotReachHere();
duke@435 2086 return LIR_OprFact::illegalOpr;
duke@435 2087 }
duke@435 2088 }
duke@435 2089 }
duke@435 2090 }
duke@435 2091
duke@435 2092 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
duke@435 2093 assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
duke@435 2094 return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
duke@435 2095 }
duke@435 2096
duke@435 2097 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
duke@435 2098 assert(opr->is_virtual(), "should not call this otherwise");
duke@435 2099
duke@435 2100 Interval* interval = interval_at(opr->vreg_number());
duke@435 2101 assert(interval != NULL, "interval must exist");
duke@435 2102
duke@435 2103 if (op_id != -1) {
duke@435 2104 #ifdef ASSERT
duke@435 2105 BlockBegin* block = block_of_op_with_id(op_id);
duke@435 2106 if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
duke@435 2107 // check if spill moves could have been appended at the end of this block, but
duke@435 2108 // before the branch instruction. So the split child information for this branch would
duke@435 2109 // be incorrect.
duke@435 2110 LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
duke@435 2111 if (branch != NULL) {
duke@435 2112 if (block->live_out().at(opr->vreg_number())) {
duke@435 2113 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
duke@435 2114 assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
duke@435 2115 }
duke@435 2116 }
duke@435 2117 }
duke@435 2118 #endif
duke@435 2119
duke@435 2120 // operands are not changed when an interval is split during allocation,
duke@435 2121 // so search the right interval here
duke@435 2122 interval = split_child_at_op_id(interval, op_id, mode);
duke@435 2123 }
duke@435 2124
duke@435 2125 LIR_Opr res = operand_for_interval(interval);
duke@435 2126
never@739 2127 #ifdef X86
duke@435 2128 // new semantic for is_last_use: not only set on definite end of interval,
duke@435 2129 // but also before hole
duke@435 2130 // This may still miss some cases (e.g. for dead values), but it is not necessary that the
duke@435 2131 // last use information is completely correct
duke@435 2132 // information is only needed for fpu stack allocation
duke@435 2133 if (res->is_fpu_register()) {
duke@435 2134 if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
duke@435 2135 assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
duke@435 2136 res = res->make_last_use();
duke@435 2137 }
duke@435 2138 }
duke@435 2139 #endif
duke@435 2140
duke@435 2141 assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
duke@435 2142
duke@435 2143 return res;
duke@435 2144 }
duke@435 2145
duke@435 2146
duke@435 2147 #ifdef ASSERT
duke@435 2148 // some methods used to check correctness of debug information
duke@435 2149
duke@435 2150 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
duke@435 2151 if (values == NULL) {
duke@435 2152 return;
duke@435 2153 }
duke@435 2154
duke@435 2155 for (int i = 0; i < values->length(); i++) {
duke@435 2156 ScopeValue* value = values->at(i);
duke@435 2157
duke@435 2158 if (value->is_location()) {
duke@435 2159 Location location = ((LocationValue*)value)->location();
duke@435 2160 assert(location.where() == Location::on_stack, "value is in register");
duke@435 2161 }
duke@435 2162 }
duke@435 2163 }
duke@435 2164
duke@435 2165 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
duke@435 2166 if (values == NULL) {
duke@435 2167 return;
duke@435 2168 }
duke@435 2169
duke@435 2170 for (int i = 0; i < values->length(); i++) {
duke@435 2171 MonitorValue* value = values->at(i);
duke@435 2172
duke@435 2173 if (value->owner()->is_location()) {
duke@435 2174 Location location = ((LocationValue*)value->owner())->location();
duke@435 2175 assert(location.where() == Location::on_stack, "owner is in register");
duke@435 2176 }
duke@435 2177 assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
duke@435 2178 }
duke@435 2179 }
duke@435 2180
duke@435 2181 void assert_equal(Location l1, Location l2) {
duke@435 2182 assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
duke@435 2183 }
duke@435 2184
duke@435 2185 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
duke@435 2186 if (v1->is_location()) {
duke@435 2187 assert(v2->is_location(), "");
duke@435 2188 assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
duke@435 2189 } else if (v1->is_constant_int()) {
duke@435 2190 assert(v2->is_constant_int(), "");
duke@435 2191 assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
duke@435 2192 } else if (v1->is_constant_double()) {
duke@435 2193 assert(v2->is_constant_double(), "");
duke@435 2194 assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
duke@435 2195 } else if (v1->is_constant_long()) {
duke@435 2196 assert(v2->is_constant_long(), "");
duke@435 2197 assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
duke@435 2198 } else if (v1->is_constant_oop()) {
duke@435 2199 assert(v2->is_constant_oop(), "");
duke@435 2200 assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
duke@435 2201 } else {
duke@435 2202 ShouldNotReachHere();
duke@435 2203 }
duke@435 2204 }
duke@435 2205
duke@435 2206 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
duke@435 2207 assert_equal(m1->owner(), m2->owner());
duke@435 2208 assert_equal(m1->basic_lock(), m2->basic_lock());
duke@435 2209 }
duke@435 2210
duke@435 2211 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
duke@435 2212 assert(d1->scope() == d2->scope(), "not equal");
duke@435 2213 assert(d1->bci() == d2->bci(), "not equal");
duke@435 2214
duke@435 2215 if (d1->locals() != NULL) {
duke@435 2216 assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
duke@435 2217 assert(d1->locals()->length() == d2->locals()->length(), "not equal");
duke@435 2218 for (int i = 0; i < d1->locals()->length(); i++) {
duke@435 2219 assert_equal(d1->locals()->at(i), d2->locals()->at(i));
duke@435 2220 }
duke@435 2221 } else {
duke@435 2222 assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
duke@435 2223 }
duke@435 2224
duke@435 2225 if (d1->expressions() != NULL) {
duke@435 2226 assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
duke@435 2227 assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
duke@435 2228 for (int i = 0; i < d1->expressions()->length(); i++) {
duke@435 2229 assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
duke@435 2230 }
duke@435 2231 } else {
duke@435 2232 assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
duke@435 2233 }
duke@435 2234
duke@435 2235 if (d1->monitors() != NULL) {
duke@435 2236 assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
duke@435 2237 assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
duke@435 2238 for (int i = 0; i < d1->monitors()->length(); i++) {
duke@435 2239 assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
duke@435 2240 }
duke@435 2241 } else {
duke@435 2242 assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
duke@435 2243 }
duke@435 2244
duke@435 2245 if (d1->caller() != NULL) {
duke@435 2246 assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
duke@435 2247 assert_equal(d1->caller(), d2->caller());
duke@435 2248 } else {
duke@435 2249 assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
duke@435 2250 }
duke@435 2251 }
duke@435 2252
duke@435 2253 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
duke@435 2254 if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
duke@435 2255 Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
duke@435 2256 switch (code) {
duke@435 2257 case Bytecodes::_ifnull : // fall through
duke@435 2258 case Bytecodes::_ifnonnull : // fall through
duke@435 2259 case Bytecodes::_ifeq : // fall through
duke@435 2260 case Bytecodes::_ifne : // fall through
duke@435 2261 case Bytecodes::_iflt : // fall through
duke@435 2262 case Bytecodes::_ifge : // fall through
duke@435 2263 case Bytecodes::_ifgt : // fall through
duke@435 2264 case Bytecodes::_ifle : // fall through
duke@435 2265 case Bytecodes::_if_icmpeq : // fall through
duke@435 2266 case Bytecodes::_if_icmpne : // fall through
duke@435 2267 case Bytecodes::_if_icmplt : // fall through
duke@435 2268 case Bytecodes::_if_icmpge : // fall through
duke@435 2269 case Bytecodes::_if_icmpgt : // fall through
duke@435 2270 case Bytecodes::_if_icmple : // fall through
duke@435 2271 case Bytecodes::_if_acmpeq : // fall through
duke@435 2272 case Bytecodes::_if_acmpne :
duke@435 2273 assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
duke@435 2274 break;
duke@435 2275 }
duke@435 2276 }
duke@435 2277 }
duke@435 2278
duke@435 2279 #endif // ASSERT
duke@435 2280
duke@435 2281
duke@435 2282 IntervalWalker* LinearScan::init_compute_oop_maps() {
duke@435 2283 // setup lists of potential oops for walking
duke@435 2284 Interval* oop_intervals;
duke@435 2285 Interval* non_oop_intervals;
duke@435 2286
duke@435 2287 create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
duke@435 2288
duke@435 2289 // intervals that have no oops inside need not to be processed
duke@435 2290 // to ensure a walking until the last instruction id, add a dummy interval
duke@435 2291 // with a high operation id
duke@435 2292 non_oop_intervals = new Interval(any_reg);
duke@435 2293 non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
duke@435 2294
duke@435 2295 return new IntervalWalker(this, oop_intervals, non_oop_intervals);
duke@435 2296 }
duke@435 2297
duke@435 2298
duke@435 2299 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
duke@435 2300 TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
duke@435 2301
duke@435 2302 // walk before the current operation -> intervals that start at
duke@435 2303 // the operation (= output operands of the operation) are not
duke@435 2304 // included in the oop map
duke@435 2305 iw->walk_before(op->id());
duke@435 2306
duke@435 2307 int frame_size = frame_map()->framesize();
duke@435 2308 int arg_count = frame_map()->oop_map_arg_count();
duke@435 2309 OopMap* map = new OopMap(frame_size, arg_count);
duke@435 2310
duke@435 2311 // Check if this is a patch site.
duke@435 2312 bool is_patch_info = false;
duke@435 2313 if (op->code() == lir_move) {
duke@435 2314 assert(!is_call_site, "move must not be a call site");
duke@435 2315 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
duke@435 2316 LIR_Op1* move = (LIR_Op1*)op;
duke@435 2317
duke@435 2318 is_patch_info = move->patch_code() != lir_patch_none;
duke@435 2319 }
duke@435 2320
duke@435 2321 // Iterate through active intervals
duke@435 2322 for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
duke@435 2323 int assigned_reg = interval->assigned_reg();
duke@435 2324
duke@435 2325 assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
duke@435 2326 assert(interval->assigned_regHi() == any_reg, "oop must be single word");
duke@435 2327 assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
duke@435 2328
duke@435 2329 // Check if this range covers the instruction. Intervals that
duke@435 2330 // start or end at the current operation are not included in the
duke@435 2331 // oop map, except in the case of patching moves. For patching
duke@435 2332 // moves, any intervals which end at this instruction are included
duke@435 2333 // in the oop map since we may safepoint while doing the patch
duke@435 2334 // before we've consumed the inputs.
duke@435 2335 if (is_patch_info || op->id() < interval->current_to()) {
duke@435 2336
duke@435 2337 // caller-save registers must not be included into oop-maps at calls
duke@435 2338 assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
duke@435 2339
duke@435 2340 VMReg name = vm_reg_for_interval(interval);
duke@435 2341 map->set_oop(name);
duke@435 2342
duke@435 2343 // Spill optimization: when the stack value is guaranteed to be always correct,
duke@435 2344 // then it must be added to the oop map even if the interval is currently in a register
duke@435 2345 if (interval->always_in_memory() &&
duke@435 2346 op->id() > interval->spill_definition_pos() &&
duke@435 2347 interval->assigned_reg() != interval->canonical_spill_slot()) {
duke@435 2348 assert(interval->spill_definition_pos() > 0, "position not set correctly");
duke@435 2349 assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
duke@435 2350 assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
duke@435 2351
duke@435 2352 map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
duke@435 2353 }
duke@435 2354 }
duke@435 2355 }
duke@435 2356
duke@435 2357 // add oops from lock stack
duke@435 2358 assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
duke@435 2359 int locks_count = info->stack()->locks_size();
duke@435 2360 for (int i = 0; i < locks_count; i++) {
duke@435 2361 map->set_oop(frame_map()->monitor_object_regname(i));
duke@435 2362 }
duke@435 2363
duke@435 2364 return map;
duke@435 2365 }
duke@435 2366
duke@435 2367
duke@435 2368 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
duke@435 2369 assert(visitor.info_count() > 0, "no oop map needed");
duke@435 2370
duke@435 2371 // compute oop_map only for first CodeEmitInfo
duke@435 2372 // because it is (in most cases) equal for all other infos of the same operation
duke@435 2373 CodeEmitInfo* first_info = visitor.info_at(0);
duke@435 2374 OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
duke@435 2375
duke@435 2376 for (int i = 0; i < visitor.info_count(); i++) {
duke@435 2377 CodeEmitInfo* info = visitor.info_at(i);
duke@435 2378 OopMap* oop_map = first_oop_map;
duke@435 2379
duke@435 2380 if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
duke@435 2381 // this info has a different number of locks then the precomputed oop map
duke@435 2382 // (possible for lock and unlock instructions) -> compute oop map with
duke@435 2383 // correct lock information
duke@435 2384 oop_map = compute_oop_map(iw, op, info, visitor.has_call());
duke@435 2385 }
duke@435 2386
duke@435 2387 if (info->_oop_map == NULL) {
duke@435 2388 info->_oop_map = oop_map;
duke@435 2389 } else {
duke@435 2390 // a CodeEmitInfo can not be shared between different LIR-instructions
duke@435 2391 // because interval splitting can occur anywhere between two instructions
duke@435 2392 // and so the oop maps must be different
duke@435 2393 // -> check if the already set oop_map is exactly the one calculated for this operation
duke@435 2394 assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
duke@435 2395 }
duke@435 2396 }
duke@435 2397 }
duke@435 2398
duke@435 2399
duke@435 2400 // frequently used constants
duke@435 2401 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
duke@435 2402 ConstantIntValue LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
duke@435 2403 ConstantIntValue LinearScan::_int_0_scope_value = ConstantIntValue(0);
duke@435 2404 ConstantIntValue LinearScan::_int_1_scope_value = ConstantIntValue(1);
duke@435 2405 ConstantIntValue LinearScan::_int_2_scope_value = ConstantIntValue(2);
duke@435 2406 LocationValue _illegal_value = LocationValue(Location());
duke@435 2407
duke@435 2408 void LinearScan::init_compute_debug_info() {
duke@435 2409 // cache for frequently used scope values
duke@435 2410 // (cpu registers and stack slots)
duke@435 2411 _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
duke@435 2412 }
duke@435 2413
duke@435 2414 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
duke@435 2415 Location loc;
duke@435 2416 if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
duke@435 2417 bailout("too large frame");
duke@435 2418 }
duke@435 2419 ScopeValue* object_scope_value = new LocationValue(loc);
duke@435 2420
duke@435 2421 if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
duke@435 2422 bailout("too large frame");
duke@435 2423 }
duke@435 2424 return new MonitorValue(object_scope_value, loc);
duke@435 2425 }
duke@435 2426
duke@435 2427 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
duke@435 2428 Location loc;
duke@435 2429 if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
duke@435 2430 bailout("too large frame");
duke@435 2431 }
duke@435 2432 return new LocationValue(loc);
duke@435 2433 }
duke@435 2434
duke@435 2435
duke@435 2436 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
duke@435 2437 assert(opr->is_constant(), "should not be called otherwise");
duke@435 2438
duke@435 2439 LIR_Const* c = opr->as_constant_ptr();
duke@435 2440 BasicType t = c->type();
duke@435 2441 switch (t) {
duke@435 2442 case T_OBJECT: {
duke@435 2443 jobject value = c->as_jobject();
duke@435 2444 if (value == NULL) {
duke@435 2445 scope_values->append(&_oop_null_scope_value);
duke@435 2446 } else {
duke@435 2447 scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
duke@435 2448 }
duke@435 2449 return 1;
duke@435 2450 }
duke@435 2451
duke@435 2452 case T_INT: // fall through
duke@435 2453 case T_FLOAT: {
duke@435 2454 int value = c->as_jint_bits();
duke@435 2455 switch (value) {
duke@435 2456 case -1: scope_values->append(&_int_m1_scope_value); break;
duke@435 2457 case 0: scope_values->append(&_int_0_scope_value); break;
duke@435 2458 case 1: scope_values->append(&_int_1_scope_value); break;
duke@435 2459 case 2: scope_values->append(&_int_2_scope_value); break;
duke@435 2460 default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
duke@435 2461 }
duke@435 2462 return 1;
duke@435 2463 }
duke@435 2464
duke@435 2465 case T_LONG: // fall through
duke@435 2466 case T_DOUBLE: {
roland@1495 2467 #ifdef _LP64
roland@1495 2468 scope_values->append(&_int_0_scope_value);
roland@1495 2469 scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
roland@1495 2470 #else
duke@435 2471 if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
duke@435 2472 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
duke@435 2473 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
duke@435 2474 } else {
duke@435 2475 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
duke@435 2476 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
duke@435 2477 }
roland@1495 2478 #endif
duke@435 2479 return 2;
duke@435 2480 }
duke@435 2481
roland@1732 2482 case T_ADDRESS: {
roland@1732 2483 #ifdef _LP64
roland@1732 2484 scope_values->append(new ConstantLongValue(c->as_jint()));
roland@1732 2485 #else
roland@1732 2486 scope_values->append(new ConstantIntValue(c->as_jint()));
roland@1732 2487 #endif
roland@1732 2488 return 1;
roland@1732 2489 }
roland@1732 2490
duke@435 2491 default:
duke@435 2492 ShouldNotReachHere();
never@739 2493 return -1;
duke@435 2494 }
duke@435 2495 }
duke@435 2496
duke@435 2497 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
duke@435 2498 if (opr->is_single_stack()) {
duke@435 2499 int stack_idx = opr->single_stack_ix();
duke@435 2500 bool is_oop = opr->is_oop_register();
duke@435 2501 int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
duke@435 2502
duke@435 2503 ScopeValue* sv = _scope_value_cache.at(cache_idx);
duke@435 2504 if (sv == NULL) {
duke@435 2505 Location::Type loc_type = is_oop ? Location::oop : Location::normal;
duke@435 2506 sv = location_for_name(stack_idx, loc_type);
duke@435 2507 _scope_value_cache.at_put(cache_idx, sv);
duke@435 2508 }
duke@435 2509
duke@435 2510 // check if cached value is correct
duke@435 2511 DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
duke@435 2512
duke@435 2513 scope_values->append(sv);
duke@435 2514 return 1;
duke@435 2515
duke@435 2516 } else if (opr->is_single_cpu()) {
duke@435 2517 bool is_oop = opr->is_oop_register();
duke@435 2518 int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
roland@1495 2519 Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
duke@435 2520
duke@435 2521 ScopeValue* sv = _scope_value_cache.at(cache_idx);
duke@435 2522 if (sv == NULL) {
roland@1495 2523 Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
duke@435 2524 VMReg rname = frame_map()->regname(opr);
duke@435 2525 sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
duke@435 2526 _scope_value_cache.at_put(cache_idx, sv);
duke@435 2527 }
duke@435 2528
duke@435 2529 // check if cached value is correct
roland@1495 2530 DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
duke@435 2531
duke@435 2532 scope_values->append(sv);
duke@435 2533 return 1;
duke@435 2534
never@739 2535 #ifdef X86
duke@435 2536 } else if (opr->is_single_xmm()) {
duke@435 2537 VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
duke@435 2538 LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
duke@435 2539
duke@435 2540 scope_values->append(sv);
duke@435 2541 return 1;
duke@435 2542 #endif
duke@435 2543
duke@435 2544 } else if (opr->is_single_fpu()) {
never@739 2545 #ifdef X86
duke@435 2546 // the exact location of fpu stack values is only known
duke@435 2547 // during fpu stack allocation, so the stack allocator object
duke@435 2548 // must be present
duke@435 2549 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
duke@435 2550 assert(_fpu_stack_allocator != NULL, "must be present");
duke@435 2551 opr = _fpu_stack_allocator->to_fpu_stack(opr);
duke@435 2552 #endif
duke@435 2553
duke@435 2554 Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
duke@435 2555 VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
duke@435 2556 LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
duke@435 2557
duke@435 2558 scope_values->append(sv);
duke@435 2559 return 1;
duke@435 2560
duke@435 2561 } else {
duke@435 2562 // double-size operands
duke@435 2563
duke@435 2564 ScopeValue* first;
duke@435 2565 ScopeValue* second;
duke@435 2566
duke@435 2567 if (opr->is_double_stack()) {
never@739 2568 #ifdef _LP64
never@739 2569 Location loc1;
never@739 2570 Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
never@739 2571 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
never@739 2572 bailout("too large frame");
never@739 2573 }
never@739 2574 // Does this reverse on x86 vs. sparc?
never@739 2575 first = new LocationValue(loc1);
never@739 2576 second = &_int_0_scope_value;
never@739 2577 #else
duke@435 2578 Location loc1, loc2;
duke@435 2579 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
duke@435 2580 bailout("too large frame");
duke@435 2581 }
duke@435 2582 first = new LocationValue(loc1);
duke@435 2583 second = new LocationValue(loc2);
never@739 2584 #endif // _LP64
duke@435 2585
duke@435 2586 } else if (opr->is_double_cpu()) {
duke@435 2587 #ifdef _LP64
duke@435 2588 VMReg rname_first = opr->as_register_lo()->as_VMReg();
duke@435 2589 first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
duke@435 2590 second = &_int_0_scope_value;
duke@435 2591 #else
duke@435 2592 VMReg rname_first = opr->as_register_lo()->as_VMReg();
duke@435 2593 VMReg rname_second = opr->as_register_hi()->as_VMReg();
duke@435 2594
duke@435 2595 if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
duke@435 2596 // lo/hi and swapped relative to first and second, so swap them
duke@435 2597 VMReg tmp = rname_first;
duke@435 2598 rname_first = rname_second;
duke@435 2599 rname_second = tmp;
duke@435 2600 }
duke@435 2601
duke@435 2602 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
duke@435 2603 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
never@739 2604 #endif //_LP64
never@739 2605
never@739 2606
never@739 2607 #ifdef X86
duke@435 2608 } else if (opr->is_double_xmm()) {
duke@435 2609 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
duke@435 2610 VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg();
iveresov@1804 2611 # ifdef _LP64
iveresov@1804 2612 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
iveresov@1804 2613 second = &_int_0_scope_value;
iveresov@1804 2614 # else
iveresov@1804 2615 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
iveresov@1804 2616 // %%% This is probably a waste but we'll keep things as they were for now
iveresov@1804 2617 if (true) {
iveresov@1804 2618 VMReg rname_second = rname_first->next();
iveresov@1804 2619 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
iveresov@1804 2620 }
iveresov@1804 2621 # endif
iveresov@1804 2622 #endif
iveresov@1804 2623
iveresov@1804 2624 } else if (opr->is_double_fpu()) {
iveresov@1804 2625 // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
iveresov@1804 2626 // the double as float registers in the native ordering. On X86,
iveresov@1804 2627 // fpu_regnrLo is a FPU stack slot whose VMReg represents
iveresov@1804 2628 // the low-order word of the double and fpu_regnrLo + 1 is the
iveresov@1804 2629 // name for the other half. *first and *second must represent the
iveresov@1804 2630 // least and most significant words, respectively.
iveresov@1804 2631
iveresov@1804 2632 #ifdef X86
iveresov@1804 2633 // the exact location of fpu stack values is only known
iveresov@1804 2634 // during fpu stack allocation, so the stack allocator object
iveresov@1804 2635 // must be present
iveresov@1804 2636 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
iveresov@1804 2637 assert(_fpu_stack_allocator != NULL, "must be present");
iveresov@1804 2638 opr = _fpu_stack_allocator->to_fpu_stack(opr);
iveresov@1804 2639
iveresov@1804 2640 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
iveresov@1804 2641 #endif
iveresov@1804 2642 #ifdef SPARC
iveresov@1804 2643 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
iveresov@1804 2644 #endif
iveresov@1804 2645
iveresov@1804 2646 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
iveresov@1804 2647 #ifdef _LP64
iveresov@1804 2648 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
iveresov@1804 2649 second = &_int_0_scope_value;
iveresov@1804 2650 #else
duke@435 2651 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
duke@435 2652 // %%% This is probably a waste but we'll keep things as they were for now
duke@435 2653 if (true) {
duke@435 2654 VMReg rname_second = rname_first->next();
duke@435 2655 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
duke@435 2656 }
duke@435 2657 #endif
duke@435 2658
duke@435 2659 } else {
duke@435 2660 ShouldNotReachHere();
duke@435 2661 first = NULL;
duke@435 2662 second = NULL;
duke@435 2663 }
duke@435 2664
duke@435 2665 assert(first != NULL && second != NULL, "must be set");
duke@435 2666 // The convention the interpreter uses is that the second local
duke@435 2667 // holds the first raw word of the native double representation.
duke@435 2668 // This is actually reasonable, since locals and stack arrays
duke@435 2669 // grow downwards in all implementations.
duke@435 2670 // (If, on some machine, the interpreter's Java locals or stack
duke@435 2671 // were to grow upwards, the embedded doubles would be word-swapped.)
duke@435 2672 scope_values->append(second);
duke@435 2673 scope_values->append(first);
duke@435 2674 return 2;
duke@435 2675 }
duke@435 2676 }
duke@435 2677
duke@435 2678
duke@435 2679 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
duke@435 2680 if (value != NULL) {
duke@435 2681 LIR_Opr opr = value->operand();
duke@435 2682 Constant* con = value->as_Constant();
duke@435 2683
duke@435 2684 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
duke@435 2685 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
duke@435 2686
duke@435 2687 if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
duke@435 2688 // Unpinned constants may have a virtual operand for a part of the lifetime
duke@435 2689 // or may be illegal when it was optimized away,
duke@435 2690 // so always use a constant operand
duke@435 2691 opr = LIR_OprFact::value_type(con->type());
duke@435 2692 }
duke@435 2693 assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
duke@435 2694
duke@435 2695 if (opr->is_virtual()) {
duke@435 2696 LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
duke@435 2697
duke@435 2698 BlockBegin* block = block_of_op_with_id(op_id);
duke@435 2699 if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
duke@435 2700 // generating debug information for the last instruction of a block.
duke@435 2701 // if this instruction is a branch, spill moves are inserted before this branch
duke@435 2702 // and so the wrong operand would be returned (spill moves at block boundaries are not
duke@435 2703 // considered in the live ranges of intervals)
duke@435 2704 // Solution: use the first op_id of the branch target block instead.
duke@435 2705 if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
duke@435 2706 if (block->live_out().at(opr->vreg_number())) {
duke@435 2707 op_id = block->sux_at(0)->first_lir_instruction_id();
duke@435 2708 mode = LIR_OpVisitState::outputMode;
duke@435 2709 }
duke@435 2710 }
duke@435 2711 }
duke@435 2712
duke@435 2713 // Get current location of operand
duke@435 2714 // The operand must be live because debug information is considered when building the intervals
duke@435 2715 // if the interval is not live, color_lir_opr will cause an assertion failure
duke@435 2716 opr = color_lir_opr(opr, op_id, mode);
duke@435 2717 assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
duke@435 2718
duke@435 2719 // Append to ScopeValue array
duke@435 2720 return append_scope_value_for_operand(opr, scope_values);
duke@435 2721
duke@435 2722 } else {
duke@435 2723 assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
duke@435 2724 assert(opr->is_constant(), "operand must be constant");
duke@435 2725
duke@435 2726 return append_scope_value_for_constant(opr, scope_values);
duke@435 2727 }
duke@435 2728 } else {
duke@435 2729 // append a dummy value because real value not needed
duke@435 2730 scope_values->append(&_illegal_value);
duke@435 2731 return 1;
duke@435 2732 }
duke@435 2733 }
duke@435 2734
duke@435 2735
duke@435 2736 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
duke@435 2737 IRScopeDebugInfo* caller_debug_info = NULL;
duke@435 2738 int stack_begin, locks_begin;
duke@435 2739
duke@435 2740 ValueStack* caller_state = cur_scope->caller_state();
duke@435 2741 if (caller_state != NULL) {
duke@435 2742 // process recursively to compute outermost scope first
duke@435 2743 stack_begin = caller_state->stack_size();
duke@435 2744 locks_begin = caller_state->locks_size();
duke@435 2745 caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
duke@435 2746 } else {
duke@435 2747 stack_begin = 0;
duke@435 2748 locks_begin = 0;
duke@435 2749 }
duke@435 2750
duke@435 2751 // initialize these to null.
duke@435 2752 // If we don't need deopt info or there are no locals, expressions or monitors,
duke@435 2753 // then these get recorded as no information and avoids the allocation of 0 length arrays.
duke@435 2754 GrowableArray<ScopeValue*>* locals = NULL;
duke@435 2755 GrowableArray<ScopeValue*>* expressions = NULL;
duke@435 2756 GrowableArray<MonitorValue*>* monitors = NULL;
duke@435 2757
duke@435 2758 // describe local variable values
duke@435 2759 int nof_locals = cur_scope->method()->max_locals();
duke@435 2760 if (nof_locals > 0) {
duke@435 2761 locals = new GrowableArray<ScopeValue*>(nof_locals);
duke@435 2762
duke@435 2763 int pos = 0;
duke@435 2764 while (pos < nof_locals) {
duke@435 2765 assert(pos < cur_state->locals_size(), "why not?");
duke@435 2766
duke@435 2767 Value local = cur_state->local_at(pos);
duke@435 2768 pos += append_scope_value(op_id, local, locals);
duke@435 2769
duke@435 2770 assert(locals->length() == pos, "must match");
duke@435 2771 }
duke@435 2772 assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
duke@435 2773 assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
duke@435 2774 }
duke@435 2775
duke@435 2776
duke@435 2777 // describe expression stack
duke@435 2778 //
duke@435 2779 // When we inline methods containing exception handlers, the
duke@435 2780 // "lock_stacks" are changed to preserve expression stack values
duke@435 2781 // in caller scopes when exception handlers are present. This
duke@435 2782 // can cause callee stacks to be smaller than caller stacks.
duke@435 2783 if (stack_end > innermost_state->stack_size()) {
duke@435 2784 stack_end = innermost_state->stack_size();
duke@435 2785 }
duke@435 2786
duke@435 2787
duke@435 2788
duke@435 2789 int nof_stack = stack_end - stack_begin;
duke@435 2790 if (nof_stack > 0) {
duke@435 2791 expressions = new GrowableArray<ScopeValue*>(nof_stack);
duke@435 2792
duke@435 2793 int pos = stack_begin;
duke@435 2794 while (pos < stack_end) {
duke@435 2795 Value expression = innermost_state->stack_at_inc(pos);
duke@435 2796 append_scope_value(op_id, expression, expressions);
duke@435 2797
duke@435 2798 assert(expressions->length() + stack_begin == pos, "must match");
duke@435 2799 }
duke@435 2800 }
duke@435 2801
duke@435 2802 // describe monitors
duke@435 2803 assert(locks_begin <= locks_end, "error in scope iteration");
duke@435 2804 int nof_locks = locks_end - locks_begin;
duke@435 2805 if (nof_locks > 0) {
duke@435 2806 monitors = new GrowableArray<MonitorValue*>(nof_locks);
duke@435 2807 for (int i = locks_begin; i < locks_end; i++) {
duke@435 2808 monitors->append(location_for_monitor_index(i));
duke@435 2809 }
duke@435 2810 }
duke@435 2811
duke@435 2812 return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
duke@435 2813 }
duke@435 2814
duke@435 2815
duke@435 2816 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
duke@435 2817 TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
duke@435 2818
duke@435 2819 IRScope* innermost_scope = info->scope();
duke@435 2820 ValueStack* innermost_state = info->stack();
duke@435 2821
duke@435 2822 assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
duke@435 2823
duke@435 2824 int stack_end = innermost_state->stack_size();
duke@435 2825 int locks_end = innermost_state->locks_size();
duke@435 2826
duke@435 2827 DEBUG_ONLY(check_stack_depth(info, stack_end));
duke@435 2828
duke@435 2829 if (info->_scope_debug_info == NULL) {
duke@435 2830 // compute debug information
duke@435 2831 info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
duke@435 2832 } else {
duke@435 2833 // debug information already set. Check that it is correct from the current point of view
duke@435 2834 DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
duke@435 2835 }
duke@435 2836 }
duke@435 2837
duke@435 2838
duke@435 2839 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
duke@435 2840 LIR_OpVisitState visitor;
duke@435 2841 int num_inst = instructions->length();
duke@435 2842 bool has_dead = false;
duke@435 2843
duke@435 2844 for (int j = 0; j < num_inst; j++) {
duke@435 2845 LIR_Op* op = instructions->at(j);
duke@435 2846 if (op == NULL) { // this can happen when spill-moves are removed in eliminate_spill_moves
duke@435 2847 has_dead = true;
duke@435 2848 continue;
duke@435 2849 }
duke@435 2850 int op_id = op->id();
duke@435 2851
duke@435 2852 // visit instruction to get list of operands
duke@435 2853 visitor.visit(op);
duke@435 2854
duke@435 2855 // iterate all modes of the visitor and process all virtual operands
duke@435 2856 for_each_visitor_mode(mode) {
duke@435 2857 int n = visitor.opr_count(mode);
duke@435 2858 for (int k = 0; k < n; k++) {
duke@435 2859 LIR_Opr opr = visitor.opr_at(mode, k);
duke@435 2860 if (opr->is_virtual_register()) {
duke@435 2861 visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
duke@435 2862 }
duke@435 2863 }
duke@435 2864 }
duke@435 2865
duke@435 2866 if (visitor.info_count() > 0) {
duke@435 2867 // exception handling
duke@435 2868 if (compilation()->has_exception_handlers()) {
duke@435 2869 XHandlers* xhandlers = visitor.all_xhandler();
duke@435 2870 int n = xhandlers->length();
duke@435 2871 for (int k = 0; k < n; k++) {
duke@435 2872 XHandler* handler = xhandlers->handler_at(k);
duke@435 2873 if (handler->entry_code() != NULL) {
duke@435 2874 assign_reg_num(handler->entry_code()->instructions_list(), NULL);
duke@435 2875 }
duke@435 2876 }
duke@435 2877 } else {
duke@435 2878 assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
duke@435 2879 }
duke@435 2880
duke@435 2881 // compute oop map
duke@435 2882 assert(iw != NULL, "needed for compute_oop_map");
duke@435 2883 compute_oop_map(iw, visitor, op);
duke@435 2884
duke@435 2885 // compute debug information
duke@435 2886 if (!use_fpu_stack_allocation()) {
duke@435 2887 // compute debug information if fpu stack allocation is not needed.
duke@435 2888 // when fpu stack allocation is needed, the debug information can not
duke@435 2889 // be computed here because the exact location of fpu operands is not known
duke@435 2890 // -> debug information is created inside the fpu stack allocator
duke@435 2891 int n = visitor.info_count();
duke@435 2892 for (int k = 0; k < n; k++) {
duke@435 2893 compute_debug_info(visitor.info_at(k), op_id);
duke@435 2894 }
duke@435 2895 }
duke@435 2896 }
duke@435 2897
duke@435 2898 #ifdef ASSERT
duke@435 2899 // make sure we haven't made the op invalid.
duke@435 2900 op->verify();
duke@435 2901 #endif
duke@435 2902
duke@435 2903 // remove useless moves
duke@435 2904 if (op->code() == lir_move) {
duke@435 2905 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
duke@435 2906 LIR_Op1* move = (LIR_Op1*)op;
duke@435 2907 LIR_Opr src = move->in_opr();
duke@435 2908 LIR_Opr dst = move->result_opr();
duke@435 2909 if (dst == src ||
duke@435 2910 !dst->is_pointer() && !src->is_pointer() &&
duke@435 2911 src->is_same_register(dst)) {
duke@435 2912 instructions->at_put(j, NULL);
duke@435 2913 has_dead = true;
duke@435 2914 }
duke@435 2915 }
duke@435 2916 }
duke@435 2917
duke@435 2918 if (has_dead) {
duke@435 2919 // iterate all instructions of the block and remove all null-values.
duke@435 2920 int insert_point = 0;
duke@435 2921 for (int j = 0; j < num_inst; j++) {
duke@435 2922 LIR_Op* op = instructions->at(j);
duke@435 2923 if (op != NULL) {
duke@435 2924 if (insert_point != j) {
duke@435 2925 instructions->at_put(insert_point, op);
duke@435 2926 }
duke@435 2927 insert_point++;
duke@435 2928 }
duke@435 2929 }
duke@435 2930 instructions->truncate(insert_point);
duke@435 2931 }
duke@435 2932 }
duke@435 2933
duke@435 2934 void LinearScan::assign_reg_num() {
duke@435 2935 TIME_LINEAR_SCAN(timer_assign_reg_num);
duke@435 2936
duke@435 2937 init_compute_debug_info();
duke@435 2938 IntervalWalker* iw = init_compute_oop_maps();
duke@435 2939
duke@435 2940 int num_blocks = block_count();
duke@435 2941 for (int i = 0; i < num_blocks; i++) {
duke@435 2942 BlockBegin* block = block_at(i);
duke@435 2943 assign_reg_num(block->lir()->instructions_list(), iw);
duke@435 2944 }
duke@435 2945 }
duke@435 2946
duke@435 2947
duke@435 2948 void LinearScan::do_linear_scan() {
duke@435 2949 NOT_PRODUCT(_total_timer.begin_method());
duke@435 2950
duke@435 2951 number_instructions();
duke@435 2952
duke@435 2953 NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
duke@435 2954
duke@435 2955 compute_local_live_sets();
duke@435 2956 compute_global_live_sets();
duke@435 2957 CHECK_BAILOUT();
duke@435 2958
duke@435 2959 build_intervals();
duke@435 2960 CHECK_BAILOUT();
duke@435 2961 sort_intervals_before_allocation();
duke@435 2962
duke@435 2963 NOT_PRODUCT(print_intervals("Before Register Allocation"));
duke@435 2964 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
duke@435 2965
duke@435 2966 allocate_registers();
duke@435 2967 CHECK_BAILOUT();
duke@435 2968
duke@435 2969 resolve_data_flow();
duke@435 2970 if (compilation()->has_exception_handlers()) {
duke@435 2971 resolve_exception_handlers();
duke@435 2972 }
duke@435 2973 // fill in number of spill slots into frame_map
duke@435 2974 propagate_spill_slots();
duke@435 2975 CHECK_BAILOUT();
duke@435 2976
duke@435 2977 NOT_PRODUCT(print_intervals("After Register Allocation"));
duke@435 2978 NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
never@1157 2979
never@1157 2980 sort_intervals_after_allocation();
never@1157 2981
duke@435 2982 DEBUG_ONLY(verify());
duke@435 2983
duke@435 2984 eliminate_spill_moves();
duke@435 2985 assign_reg_num();
duke@435 2986 CHECK_BAILOUT();
duke@435 2987
duke@435 2988 NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
duke@435 2989 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
duke@435 2990
duke@435 2991 { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
duke@435 2992
duke@435 2993 if (use_fpu_stack_allocation()) {
duke@435 2994 allocate_fpu_stack(); // Only has effect on Intel
duke@435 2995 NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
duke@435 2996 }
duke@435 2997 }
duke@435 2998
duke@435 2999 { TIME_LINEAR_SCAN(timer_optimize_lir);
duke@435 3000
duke@435 3001 EdgeMoveOptimizer::optimize(ir()->code());
duke@435 3002 ControlFlowOptimizer::optimize(ir()->code());
duke@435 3003 // check that cfg is still correct after optimizations
duke@435 3004 ir()->verify();
duke@435 3005 }
duke@435 3006
duke@435 3007 NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
duke@435 3008 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
duke@435 3009 NOT_PRODUCT(_total_timer.end_method(this));
duke@435 3010 }
duke@435 3011
duke@435 3012
duke@435 3013 // ********** Printing functions
duke@435 3014
duke@435 3015 #ifndef PRODUCT
duke@435 3016
duke@435 3017 void LinearScan::print_timers(double total) {
duke@435 3018 _total_timer.print(total);
duke@435 3019 }
duke@435 3020
duke@435 3021 void LinearScan::print_statistics() {
duke@435 3022 _stat_before_alloc.print("before allocation");
duke@435 3023 _stat_after_asign.print("after assignment of register");
duke@435 3024 _stat_final.print("after optimization");
duke@435 3025 }
duke@435 3026
duke@435 3027 void LinearScan::print_bitmap(BitMap& b) {
duke@435 3028 for (unsigned int i = 0; i < b.size(); i++) {
duke@435 3029 if (b.at(i)) tty->print("%d ", i);
duke@435 3030 }
duke@435 3031 tty->cr();
duke@435 3032 }
duke@435 3033
duke@435 3034 void LinearScan::print_intervals(const char* label) {
duke@435 3035 if (TraceLinearScanLevel >= 1) {
duke@435 3036 int i;
duke@435 3037 tty->cr();
duke@435 3038 tty->print_cr("%s", label);
duke@435 3039
duke@435 3040 for (i = 0; i < interval_count(); i++) {
duke@435 3041 Interval* interval = interval_at(i);
duke@435 3042 if (interval != NULL) {
duke@435 3043 interval->print();
duke@435 3044 }
duke@435 3045 }
duke@435 3046
duke@435 3047 tty->cr();
duke@435 3048 tty->print_cr("--- Basic Blocks ---");
duke@435 3049 for (i = 0; i < block_count(); i++) {
duke@435 3050 BlockBegin* block = block_at(i);
duke@435 3051 tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
duke@435 3052 }
duke@435 3053 tty->cr();
duke@435 3054 tty->cr();
duke@435 3055 }
duke@435 3056
duke@435 3057 if (PrintCFGToFile) {
duke@435 3058 CFGPrinter::print_intervals(&_intervals, label);
duke@435 3059 }
duke@435 3060 }
duke@435 3061
duke@435 3062 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
duke@435 3063 if (TraceLinearScanLevel >= level) {
duke@435 3064 tty->cr();
duke@435 3065 tty->print_cr("%s", label);
duke@435 3066 print_LIR(ir()->linear_scan_order());
duke@435 3067 tty->cr();
duke@435 3068 }
duke@435 3069
duke@435 3070 if (level == 1 && PrintCFGToFile) {
duke@435 3071 CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
duke@435 3072 }
duke@435 3073 }
duke@435 3074
duke@435 3075 #endif //PRODUCT
duke@435 3076
duke@435 3077
duke@435 3078 // ********** verification functions for allocation
duke@435 3079 // (check that all intervals have a correct register and that no registers are overwritten)
duke@435 3080 #ifdef ASSERT
duke@435 3081
duke@435 3082 void LinearScan::verify() {
duke@435 3083 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
duke@435 3084 verify_intervals();
duke@435 3085
duke@435 3086 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
duke@435 3087 verify_no_oops_in_fixed_intervals();
duke@435 3088
duke@435 3089 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
duke@435 3090 verify_constants();
duke@435 3091
duke@435 3092 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
duke@435 3093 verify_registers();
duke@435 3094
duke@435 3095 TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
duke@435 3096 }
duke@435 3097
duke@435 3098 void LinearScan::verify_intervals() {
duke@435 3099 int len = interval_count();
duke@435 3100 bool has_error = false;
duke@435 3101
duke@435 3102 for (int i = 0; i < len; i++) {
duke@435 3103 Interval* i1 = interval_at(i);
duke@435 3104 if (i1 == NULL) continue;
duke@435 3105
duke@435 3106 i1->check_split_children();
duke@435 3107
duke@435 3108 if (i1->reg_num() != i) {
duke@435 3109 tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
duke@435 3110 has_error = true;
duke@435 3111 }
duke@435 3112
duke@435 3113 if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
duke@435 3114 tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
duke@435 3115 has_error = true;
duke@435 3116 }
duke@435 3117
duke@435 3118 if (i1->assigned_reg() == any_reg) {
duke@435 3119 tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
duke@435 3120 has_error = true;
duke@435 3121 }
duke@435 3122
duke@435 3123 if (i1->assigned_reg() == i1->assigned_regHi()) {
duke@435 3124 tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
duke@435 3125 has_error = true;
duke@435 3126 }
duke@435 3127
duke@435 3128 if (!is_processed_reg_num(i1->assigned_reg())) {
duke@435 3129 tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
duke@435 3130 has_error = true;
duke@435 3131 }
duke@435 3132
duke@435 3133 if (i1->first() == Range::end()) {
duke@435 3134 tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
duke@435 3135 has_error = true;
duke@435 3136 }
duke@435 3137
duke@435 3138 for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
duke@435 3139 if (r->from() >= r->to()) {
duke@435 3140 tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
duke@435 3141 has_error = true;
duke@435 3142 }
duke@435 3143 }
duke@435 3144
duke@435 3145 for (int j = i + 1; j < len; j++) {
duke@435 3146 Interval* i2 = interval_at(j);
duke@435 3147 if (i2 == NULL) continue;
duke@435 3148
duke@435 3149 // special intervals that are created in MoveResolver
duke@435 3150 // -> ignore them because the range information has no meaning there
duke@435 3151 if (i1->from() == 1 && i1->to() == 2) continue;
duke@435 3152 if (i2->from() == 1 && i2->to() == 2) continue;
duke@435 3153
duke@435 3154 int r1 = i1->assigned_reg();
duke@435 3155 int r1Hi = i1->assigned_regHi();
duke@435 3156 int r2 = i2->assigned_reg();
duke@435 3157 int r2Hi = i2->assigned_regHi();
duke@435 3158 if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
duke@435 3159 tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
duke@435 3160 i1->print(); tty->cr();
duke@435 3161 i2->print(); tty->cr();
duke@435 3162 has_error = true;
duke@435 3163 }
duke@435 3164 }
duke@435 3165 }
duke@435 3166
duke@435 3167 assert(has_error == false, "register allocation invalid");
duke@435 3168 }
duke@435 3169
duke@435 3170
duke@435 3171 void LinearScan::verify_no_oops_in_fixed_intervals() {
never@1157 3172 Interval* fixed_intervals;
never@1157 3173 Interval* other_intervals;
never@1157 3174 create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
never@1157 3175
never@1157 3176 // to ensure a walking until the last instruction id, add a dummy interval
never@1157 3177 // with a high operation id
never@1157 3178 other_intervals = new Interval(any_reg);
never@1157 3179 other_intervals->add_range(max_jint - 2, max_jint - 1);
never@1157 3180 IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
never@1157 3181
duke@435 3182 LIR_OpVisitState visitor;
duke@435 3183 for (int i = 0; i < block_count(); i++) {
duke@435 3184 BlockBegin* block = block_at(i);
duke@435 3185
duke@435 3186 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 3187
duke@435 3188 for (int j = 0; j < instructions->length(); j++) {
duke@435 3189 LIR_Op* op = instructions->at(j);
duke@435 3190 int op_id = op->id();
duke@435 3191
duke@435 3192 visitor.visit(op);
duke@435 3193
never@1157 3194 if (visitor.info_count() > 0) {
never@1157 3195 iw->walk_before(op->id());
never@1157 3196 bool check_live = true;
never@1157 3197 if (op->code() == lir_move) {
never@1157 3198 LIR_Op1* move = (LIR_Op1*)op;
never@1157 3199 check_live = (move->patch_code() == lir_patch_none);
never@1157 3200 }
never@1157 3201 LIR_OpBranch* branch = op->as_OpBranch();
never@1157 3202 if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
never@1157 3203 // Don't bother checking the stub in this case since the
never@1157 3204 // exception stub will never return to normal control flow.
never@1157 3205 check_live = false;
never@1157 3206 }
never@1157 3207
never@1157 3208 // Make sure none of the fixed registers is live across an
never@1157 3209 // oopmap since we can't handle that correctly.
never@1157 3210 if (check_live) {
never@1157 3211 for (Interval* interval = iw->active_first(fixedKind);
never@1157 3212 interval != Interval::end();
never@1157 3213 interval = interval->next()) {
never@1157 3214 if (interval->current_to() > op->id() + 1) {
never@1157 3215 // This interval is live out of this op so make sure
never@1157 3216 // that this interval represents some value that's
never@1157 3217 // referenced by this op either as an input or output.
never@1157 3218 bool ok = false;
never@1157 3219 for_each_visitor_mode(mode) {
never@1157 3220 int n = visitor.opr_count(mode);
never@1157 3221 for (int k = 0; k < n; k++) {
never@1157 3222 LIR_Opr opr = visitor.opr_at(mode, k);
never@1157 3223 if (opr->is_fixed_cpu()) {
never@1157 3224 if (interval_at(reg_num(opr)) == interval) {
never@1157 3225 ok = true;
never@1157 3226 break;
never@1157 3227 }
never@1157 3228 int hi = reg_numHi(opr);
never@1157 3229 if (hi != -1 && interval_at(hi) == interval) {
never@1157 3230 ok = true;
never@1157 3231 break;
never@1157 3232 }
never@1157 3233 }
never@1157 3234 }
never@1157 3235 }
never@1157 3236 assert(ok, "fixed intervals should never be live across an oopmap point");
never@1157 3237 }
never@1157 3238 }
never@1157 3239 }
never@1157 3240 }
never@1157 3241
duke@435 3242 // oop-maps at calls do not contain registers, so check is not needed
duke@435 3243 if (!visitor.has_call()) {
duke@435 3244
duke@435 3245 for_each_visitor_mode(mode) {
duke@435 3246 int n = visitor.opr_count(mode);
duke@435 3247 for (int k = 0; k < n; k++) {
duke@435 3248 LIR_Opr opr = visitor.opr_at(mode, k);
duke@435 3249
duke@435 3250 if (opr->is_fixed_cpu() && opr->is_oop()) {
duke@435 3251 // operand is a non-virtual cpu register and contains an oop
duke@435 3252 TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
duke@435 3253
duke@435 3254 Interval* interval = interval_at(reg_num(opr));
duke@435 3255 assert(interval != NULL, "no interval");
duke@435 3256
duke@435 3257 if (mode == LIR_OpVisitState::inputMode) {
duke@435 3258 if (interval->to() >= op_id + 1) {
duke@435 3259 assert(interval->to() < op_id + 2 ||
duke@435 3260 interval->has_hole_between(op_id, op_id + 2),
duke@435 3261 "oop input operand live after instruction");
duke@435 3262 }
duke@435 3263 } else if (mode == LIR_OpVisitState::outputMode) {
duke@435 3264 if (interval->from() <= op_id - 1) {
duke@435 3265 assert(interval->has_hole_between(op_id - 1, op_id),
duke@435 3266 "oop input operand live after instruction");
duke@435 3267 }
duke@435 3268 }
duke@435 3269 }
duke@435 3270 }
duke@435 3271 }
duke@435 3272 }
duke@435 3273 }
duke@435 3274 }
duke@435 3275 }
duke@435 3276
duke@435 3277
duke@435 3278 void LinearScan::verify_constants() {
duke@435 3279 int num_regs = num_virtual_regs();
duke@435 3280 int size = live_set_size();
duke@435 3281 int num_blocks = block_count();
duke@435 3282
duke@435 3283 for (int i = 0; i < num_blocks; i++) {
duke@435 3284 BlockBegin* block = block_at(i);
duke@435 3285 BitMap live_at_edge = block->live_in();
duke@435 3286
duke@435 3287 // visit all registers where the live_at_edge bit is set
never@739 3288 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
duke@435 3289 TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
duke@435 3290
duke@435 3291 Value value = gen()->instruction_for_vreg(r);
duke@435 3292
duke@435 3293 assert(value != NULL, "all intervals live across block boundaries must have Value");
duke@435 3294 assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
duke@435 3295 assert(value->operand()->vreg_number() == r, "register number must match");
duke@435 3296 // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
duke@435 3297 }
duke@435 3298 }
duke@435 3299 }
duke@435 3300
duke@435 3301
duke@435 3302 class RegisterVerifier: public StackObj {
duke@435 3303 private:
duke@435 3304 LinearScan* _allocator;
duke@435 3305 BlockList _work_list; // all blocks that must be processed
duke@435 3306 IntervalsList _saved_states; // saved information of previous check
duke@435 3307
duke@435 3308 // simplified access to methods of LinearScan
duke@435 3309 Compilation* compilation() const { return _allocator->compilation(); }
duke@435 3310 Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); }
duke@435 3311 int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); }
duke@435 3312
duke@435 3313 // currently, only registers are processed
duke@435 3314 int state_size() { return LinearScan::nof_regs; }
duke@435 3315
duke@435 3316 // accessors
duke@435 3317 IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
duke@435 3318 void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
duke@435 3319 void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
duke@435 3320
duke@435 3321 // helper functions
duke@435 3322 IntervalList* copy(IntervalList* input_state);
duke@435 3323 void state_put(IntervalList* input_state, int reg, Interval* interval);
duke@435 3324 bool check_state(IntervalList* input_state, int reg, Interval* interval);
duke@435 3325
duke@435 3326 void process_block(BlockBegin* block);
duke@435 3327 void process_xhandler(XHandler* xhandler, IntervalList* input_state);
duke@435 3328 void process_successor(BlockBegin* block, IntervalList* input_state);
duke@435 3329 void process_operations(LIR_List* ops, IntervalList* input_state);
duke@435 3330
duke@435 3331 public:
duke@435 3332 RegisterVerifier(LinearScan* allocator)
duke@435 3333 : _allocator(allocator)
duke@435 3334 , _work_list(16)
duke@435 3335 , _saved_states(BlockBegin::number_of_blocks(), NULL)
duke@435 3336 { }
duke@435 3337
duke@435 3338 void verify(BlockBegin* start);
duke@435 3339 };
duke@435 3340
duke@435 3341
duke@435 3342 // entry function from LinearScan that starts the verification
duke@435 3343 void LinearScan::verify_registers() {
duke@435 3344 RegisterVerifier verifier(this);
duke@435 3345 verifier.verify(block_at(0));
duke@435 3346 }
duke@435 3347
duke@435 3348
duke@435 3349 void RegisterVerifier::verify(BlockBegin* start) {
duke@435 3350 // setup input registers (method arguments) for first block
duke@435 3351 IntervalList* input_state = new IntervalList(state_size(), NULL);
duke@435 3352 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
duke@435 3353 for (int n = 0; n < args->length(); n++) {
duke@435 3354 LIR_Opr opr = args->at(n);
duke@435 3355 if (opr->is_register()) {
duke@435 3356 Interval* interval = interval_at(reg_num(opr));
duke@435 3357
duke@435 3358 if (interval->assigned_reg() < state_size()) {
duke@435 3359 input_state->at_put(interval->assigned_reg(), interval);
duke@435 3360 }
duke@435 3361 if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
duke@435 3362 input_state->at_put(interval->assigned_regHi(), interval);
duke@435 3363 }
duke@435 3364 }
duke@435 3365 }
duke@435 3366
duke@435 3367 set_state_for_block(start, input_state);
duke@435 3368 add_to_work_list(start);
duke@435 3369
duke@435 3370 // main loop for verification
duke@435 3371 do {
duke@435 3372 BlockBegin* block = _work_list.at(0);
duke@435 3373 _work_list.remove_at(0);
duke@435 3374
duke@435 3375 process_block(block);
duke@435 3376 } while (!_work_list.is_empty());
duke@435 3377 }
duke@435 3378
duke@435 3379 void RegisterVerifier::process_block(BlockBegin* block) {
duke@435 3380 TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
duke@435 3381
duke@435 3382 // must copy state because it is modified
duke@435 3383 IntervalList* input_state = copy(state_for_block(block));
duke@435 3384
duke@435 3385 if (TraceLinearScanLevel >= 4) {
duke@435 3386 tty->print_cr("Input-State of intervals:");
duke@435 3387 tty->print(" ");
duke@435 3388 for (int i = 0; i < state_size(); i++) {
duke@435 3389 if (input_state->at(i) != NULL) {
duke@435 3390 tty->print(" %4d", input_state->at(i)->reg_num());
duke@435 3391 } else {
duke@435 3392 tty->print(" __");
duke@435 3393 }
duke@435 3394 }
duke@435 3395 tty->cr();
duke@435 3396 tty->cr();
duke@435 3397 }
duke@435 3398
duke@435 3399 // process all operations of the block
duke@435 3400 process_operations(block->lir(), input_state);
duke@435 3401
duke@435 3402 // iterate all successors
duke@435 3403 for (int i = 0; i < block->number_of_sux(); i++) {
duke@435 3404 process_successor(block->sux_at(i), input_state);
duke@435 3405 }
duke@435 3406 }
duke@435 3407
duke@435 3408 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
duke@435 3409 TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
duke@435 3410
duke@435 3411 // must copy state because it is modified
duke@435 3412 input_state = copy(input_state);
duke@435 3413
duke@435 3414 if (xhandler->entry_code() != NULL) {
duke@435 3415 process_operations(xhandler->entry_code(), input_state);
duke@435 3416 }
duke@435 3417 process_successor(xhandler->entry_block(), input_state);
duke@435 3418 }
duke@435 3419
duke@435 3420 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
duke@435 3421 IntervalList* saved_state = state_for_block(block);
duke@435 3422
duke@435 3423 if (saved_state != NULL) {
duke@435 3424 // this block was already processed before.
duke@435 3425 // check if new input_state is consistent with saved_state
duke@435 3426
duke@435 3427 bool saved_state_correct = true;
duke@435 3428 for (int i = 0; i < state_size(); i++) {
duke@435 3429 if (input_state->at(i) != saved_state->at(i)) {
duke@435 3430 // current input_state and previous saved_state assume a different
duke@435 3431 // interval in this register -> assume that this register is invalid
duke@435 3432 if (saved_state->at(i) != NULL) {
duke@435 3433 // invalidate old calculation only if it assumed that
duke@435 3434 // register was valid. when the register was already invalid,
duke@435 3435 // then the old calculation was correct.
duke@435 3436 saved_state_correct = false;
duke@435 3437 saved_state->at_put(i, NULL);
duke@435 3438
duke@435 3439 TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
duke@435 3440 }
duke@435 3441 }
duke@435 3442 }
duke@435 3443
duke@435 3444 if (saved_state_correct) {
duke@435 3445 // already processed block with correct input_state
duke@435 3446 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
duke@435 3447 } else {
duke@435 3448 // must re-visit this block
duke@435 3449 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
duke@435 3450 add_to_work_list(block);
duke@435 3451 }
duke@435 3452
duke@435 3453 } else {
duke@435 3454 // block was not processed before, so set initial input_state
duke@435 3455 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
duke@435 3456
duke@435 3457 set_state_for_block(block, copy(input_state));
duke@435 3458 add_to_work_list(block);
duke@435 3459 }
duke@435 3460 }
duke@435 3461
duke@435 3462
duke@435 3463 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
duke@435 3464 IntervalList* copy_state = new IntervalList(input_state->length());
duke@435 3465 copy_state->push_all(input_state);
duke@435 3466 return copy_state;
duke@435 3467 }
duke@435 3468
duke@435 3469 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
duke@435 3470 if (reg != LinearScan::any_reg && reg < state_size()) {
duke@435 3471 if (interval != NULL) {
duke@435 3472 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d", reg, interval->reg_num()));
duke@435 3473 } else if (input_state->at(reg) != NULL) {
duke@435 3474 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = NULL", reg));
duke@435 3475 }
duke@435 3476
duke@435 3477 input_state->at_put(reg, interval);
duke@435 3478 }
duke@435 3479 }
duke@435 3480
duke@435 3481 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
duke@435 3482 if (reg != LinearScan::any_reg && reg < state_size()) {
duke@435 3483 if (input_state->at(reg) != interval) {
duke@435 3484 tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
duke@435 3485 return true;
duke@435 3486 }
duke@435 3487 }
duke@435 3488 return false;
duke@435 3489 }
duke@435 3490
duke@435 3491 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
duke@435 3492 // visit all instructions of the block
duke@435 3493 LIR_OpVisitState visitor;
duke@435 3494 bool has_error = false;
duke@435 3495
duke@435 3496 for (int i = 0; i < ops->length(); i++) {
duke@435 3497 LIR_Op* op = ops->at(i);
duke@435 3498 visitor.visit(op);
duke@435 3499
duke@435 3500 TRACE_LINEAR_SCAN(4, op->print_on(tty));
duke@435 3501
duke@435 3502 // check if input operands are correct
duke@435 3503 int j;
duke@435 3504 int n = visitor.opr_count(LIR_OpVisitState::inputMode);
duke@435 3505 for (j = 0; j < n; j++) {
duke@435 3506 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
duke@435 3507 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
duke@435 3508 Interval* interval = interval_at(reg_num(opr));
duke@435 3509 if (op->id() != -1) {
duke@435 3510 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
duke@435 3511 }
duke@435 3512
duke@435 3513 has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent());
duke@435 3514 has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
duke@435 3515
duke@435 3516 // When an operand is marked with is_last_use, then the fpu stack allocator
duke@435 3517 // removes the register from the fpu stack -> the register contains no value
duke@435 3518 if (opr->is_last_use()) {
duke@435 3519 state_put(input_state, interval->assigned_reg(), NULL);
duke@435 3520 state_put(input_state, interval->assigned_regHi(), NULL);
duke@435 3521 }
duke@435 3522 }
duke@435 3523 }
duke@435 3524
duke@435 3525 // invalidate all caller save registers at calls
duke@435 3526 if (visitor.has_call()) {
duke@435 3527 for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
duke@435 3528 state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
duke@435 3529 }
duke@435 3530 for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
duke@435 3531 state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
duke@435 3532 }
duke@435 3533
never@739 3534 #ifdef X86
duke@435 3535 for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
duke@435 3536 state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
duke@435 3537 }
duke@435 3538 #endif
duke@435 3539 }
duke@435 3540
duke@435 3541 // process xhandler before output and temp operands
duke@435 3542 XHandlers* xhandlers = visitor.all_xhandler();
duke@435 3543 n = xhandlers->length();
duke@435 3544 for (int k = 0; k < n; k++) {
duke@435 3545 process_xhandler(xhandlers->handler_at(k), input_state);
duke@435 3546 }
duke@435 3547
duke@435 3548 // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
duke@435 3549 n = visitor.opr_count(LIR_OpVisitState::tempMode);
duke@435 3550 for (j = 0; j < n; j++) {
duke@435 3551 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
duke@435 3552 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
duke@435 3553 Interval* interval = interval_at(reg_num(opr));
duke@435 3554 if (op->id() != -1) {
duke@435 3555 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
duke@435 3556 }
duke@435 3557
duke@435 3558 state_put(input_state, interval->assigned_reg(), interval->split_parent());
duke@435 3559 state_put(input_state, interval->assigned_regHi(), interval->split_parent());
duke@435 3560 }
duke@435 3561 }
duke@435 3562
duke@435 3563 // set output operands
duke@435 3564 n = visitor.opr_count(LIR_OpVisitState::outputMode);
duke@435 3565 for (j = 0; j < n; j++) {
duke@435 3566 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
duke@435 3567 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
duke@435 3568 Interval* interval = interval_at(reg_num(opr));
duke@435 3569 if (op->id() != -1) {
duke@435 3570 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
duke@435 3571 }
duke@435 3572
duke@435 3573 state_put(input_state, interval->assigned_reg(), interval->split_parent());
duke@435 3574 state_put(input_state, interval->assigned_regHi(), interval->split_parent());
duke@435 3575 }
duke@435 3576 }
duke@435 3577 }
duke@435 3578 assert(has_error == false, "Error in register allocation");
duke@435 3579 }
duke@435 3580
duke@435 3581 #endif // ASSERT
duke@435 3582
duke@435 3583
duke@435 3584
duke@435 3585 // **** Implementation of MoveResolver ******************************
duke@435 3586
duke@435 3587 MoveResolver::MoveResolver(LinearScan* allocator) :
duke@435 3588 _allocator(allocator),
duke@435 3589 _multiple_reads_allowed(false),
duke@435 3590 _mapping_from(8),
duke@435 3591 _mapping_from_opr(8),
duke@435 3592 _mapping_to(8),
duke@435 3593 _insert_list(NULL),
duke@435 3594 _insert_idx(-1),
duke@435 3595 _insertion_buffer()
duke@435 3596 {
duke@435 3597 for (int i = 0; i < LinearScan::nof_regs; i++) {
duke@435 3598 _register_blocked[i] = 0;
duke@435 3599 }
duke@435 3600 DEBUG_ONLY(check_empty());
duke@435 3601 }
duke@435 3602
duke@435 3603
duke@435 3604 #ifdef ASSERT
duke@435 3605
duke@435 3606 void MoveResolver::check_empty() {
duke@435 3607 assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
duke@435 3608 for (int i = 0; i < LinearScan::nof_regs; i++) {
duke@435 3609 assert(register_blocked(i) == 0, "register map must be empty before and after processing");
duke@435 3610 }
duke@435 3611 assert(_multiple_reads_allowed == false, "must have default value");
duke@435 3612 }
duke@435 3613
duke@435 3614 void MoveResolver::verify_before_resolve() {
duke@435 3615 assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
duke@435 3616 assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
duke@435 3617 assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
duke@435 3618
duke@435 3619 int i, j;
duke@435 3620 if (!_multiple_reads_allowed) {
duke@435 3621 for (i = 0; i < _mapping_from.length(); i++) {
duke@435 3622 for (j = i + 1; j < _mapping_from.length(); j++) {
duke@435 3623 assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
duke@435 3624 }
duke@435 3625 }
duke@435 3626 }
duke@435 3627
duke@435 3628 for (i = 0; i < _mapping_to.length(); i++) {
duke@435 3629 for (j = i + 1; j < _mapping_to.length(); j++) {
duke@435 3630 assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
duke@435 3631 }
duke@435 3632 }
duke@435 3633
duke@435 3634
duke@435 3635 BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
duke@435 3636 used_regs.clear();
duke@435 3637 if (!_multiple_reads_allowed) {
duke@435 3638 for (i = 0; i < _mapping_from.length(); i++) {
duke@435 3639 Interval* it = _mapping_from.at(i);
duke@435 3640 if (it != NULL) {
duke@435 3641 assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
duke@435 3642 used_regs.set_bit(it->assigned_reg());
duke@435 3643
duke@435 3644 if (it->assigned_regHi() != LinearScan::any_reg) {
duke@435 3645 assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
duke@435 3646 used_regs.set_bit(it->assigned_regHi());
duke@435 3647 }
duke@435 3648 }
duke@435 3649 }
duke@435 3650 }
duke@435 3651
duke@435 3652 used_regs.clear();
duke@435 3653 for (i = 0; i < _mapping_to.length(); i++) {
duke@435 3654 Interval* it = _mapping_to.at(i);
duke@435 3655 assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
duke@435 3656 used_regs.set_bit(it->assigned_reg());
duke@435 3657
duke@435 3658 if (it->assigned_regHi() != LinearScan::any_reg) {
duke@435 3659 assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
duke@435 3660 used_regs.set_bit(it->assigned_regHi());
duke@435 3661 }
duke@435 3662 }
duke@435 3663
duke@435 3664 used_regs.clear();
duke@435 3665 for (i = 0; i < _mapping_from.length(); i++) {
duke@435 3666 Interval* it = _mapping_from.at(i);
duke@435 3667 if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
duke@435 3668 used_regs.set_bit(it->assigned_reg());
duke@435 3669 }
duke@435 3670 }
duke@435 3671 for (i = 0; i < _mapping_to.length(); i++) {
duke@435 3672 Interval* it = _mapping_to.at(i);
duke@435 3673 assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
duke@435 3674 }
duke@435 3675 }
duke@435 3676
duke@435 3677 #endif // ASSERT
duke@435 3678
duke@435 3679
duke@435 3680 // mark assigned_reg and assigned_regHi of the interval as blocked
duke@435 3681 void MoveResolver::block_registers(Interval* it) {
duke@435 3682 int reg = it->assigned_reg();
duke@435 3683 if (reg < LinearScan::nof_regs) {
duke@435 3684 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
duke@435 3685 set_register_blocked(reg, 1);
duke@435 3686 }
duke@435 3687 reg = it->assigned_regHi();
duke@435 3688 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
duke@435 3689 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
duke@435 3690 set_register_blocked(reg, 1);
duke@435 3691 }
duke@435 3692 }
duke@435 3693
duke@435 3694 // mark assigned_reg and assigned_regHi of the interval as unblocked
duke@435 3695 void MoveResolver::unblock_registers(Interval* it) {
duke@435 3696 int reg = it->assigned_reg();
duke@435 3697 if (reg < LinearScan::nof_regs) {
duke@435 3698 assert(register_blocked(reg) > 0, "register already marked as unused");
duke@435 3699 set_register_blocked(reg, -1);
duke@435 3700 }
duke@435 3701 reg = it->assigned_regHi();
duke@435 3702 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
duke@435 3703 assert(register_blocked(reg) > 0, "register already marked as unused");
duke@435 3704 set_register_blocked(reg, -1);
duke@435 3705 }
duke@435 3706 }
duke@435 3707
duke@435 3708 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
duke@435 3709 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
duke@435 3710 int from_reg = -1;
duke@435 3711 int from_regHi = -1;
duke@435 3712 if (from != NULL) {
duke@435 3713 from_reg = from->assigned_reg();
duke@435 3714 from_regHi = from->assigned_regHi();
duke@435 3715 }
duke@435 3716
duke@435 3717 int reg = to->assigned_reg();
duke@435 3718 if (reg < LinearScan::nof_regs) {
duke@435 3719 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
duke@435 3720 return false;
duke@435 3721 }
duke@435 3722 }
duke@435 3723 reg = to->assigned_regHi();
duke@435 3724 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
duke@435 3725 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
duke@435 3726 return false;
duke@435 3727 }
duke@435 3728 }
duke@435 3729
duke@435 3730 return true;
duke@435 3731 }
duke@435 3732
duke@435 3733
duke@435 3734 void MoveResolver::create_insertion_buffer(LIR_List* list) {
duke@435 3735 assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
duke@435 3736 _insertion_buffer.init(list);
duke@435 3737 }
duke@435 3738
duke@435 3739 void MoveResolver::append_insertion_buffer() {
duke@435 3740 if (_insertion_buffer.initialized()) {
duke@435 3741 _insertion_buffer.lir_list()->append(&_insertion_buffer);
duke@435 3742 }
duke@435 3743 assert(!_insertion_buffer.initialized(), "must be uninitialized now");
duke@435 3744
duke@435 3745 _insert_list = NULL;
duke@435 3746 _insert_idx = -1;
duke@435 3747 }
duke@435 3748
duke@435 3749 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
duke@435 3750 assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
duke@435 3751 assert(from_interval->type() == to_interval->type(), "move between different types");
duke@435 3752 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
duke@435 3753 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
duke@435 3754
duke@435 3755 LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
duke@435 3756 LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
duke@435 3757
duke@435 3758 if (!_multiple_reads_allowed) {
duke@435 3759 // the last_use flag is an optimization for FPU stack allocation. When the same
duke@435 3760 // input interval is used in more than one move, then it is too difficult to determine
duke@435 3761 // if this move is really the last use.
duke@435 3762 from_opr = from_opr->make_last_use();
duke@435 3763 }
duke@435 3764 _insertion_buffer.move(_insert_idx, from_opr, to_opr);
duke@435 3765
duke@435 3766 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
duke@435 3767 }
duke@435 3768
duke@435 3769 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
duke@435 3770 assert(from_opr->type() == to_interval->type(), "move between different types");
duke@435 3771 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
duke@435 3772 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
duke@435 3773
duke@435 3774 LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
duke@435 3775 _insertion_buffer.move(_insert_idx, from_opr, to_opr);
duke@435 3776
duke@435 3777 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
duke@435 3778 }
duke@435 3779
duke@435 3780
duke@435 3781 void MoveResolver::resolve_mappings() {
duke@435 3782 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
duke@435 3783 DEBUG_ONLY(verify_before_resolve());
duke@435 3784
duke@435 3785 // Block all registers that are used as input operands of a move.
duke@435 3786 // When a register is blocked, no move to this register is emitted.
duke@435 3787 // This is necessary for detecting cycles in moves.
duke@435 3788 int i;
duke@435 3789 for (i = _mapping_from.length() - 1; i >= 0; i--) {
duke@435 3790 Interval* from_interval = _mapping_from.at(i);
duke@435 3791 if (from_interval != NULL) {
duke@435 3792 block_registers(from_interval);
duke@435 3793 }
duke@435 3794 }
duke@435 3795
duke@435 3796 int spill_candidate = -1;
duke@435 3797 while (_mapping_from.length() > 0) {
duke@435 3798 bool processed_interval = false;
duke@435 3799
duke@435 3800 for (i = _mapping_from.length() - 1; i >= 0; i--) {
duke@435 3801 Interval* from_interval = _mapping_from.at(i);
duke@435 3802 Interval* to_interval = _mapping_to.at(i);
duke@435 3803
duke@435 3804 if (save_to_process_move(from_interval, to_interval)) {
duke@435 3805 // this inverval can be processed because target is free
duke@435 3806 if (from_interval != NULL) {
duke@435 3807 insert_move(from_interval, to_interval);
duke@435 3808 unblock_registers(from_interval);
duke@435 3809 } else {
duke@435 3810 insert_move(_mapping_from_opr.at(i), to_interval);
duke@435 3811 }
duke@435 3812 _mapping_from.remove_at(i);
duke@435 3813 _mapping_from_opr.remove_at(i);
duke@435 3814 _mapping_to.remove_at(i);
duke@435 3815
duke@435 3816 processed_interval = true;
duke@435 3817 } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
duke@435 3818 // this interval cannot be processed now because target is not free
duke@435 3819 // it starts in a register, so it is a possible candidate for spilling
duke@435 3820 spill_candidate = i;
duke@435 3821 }
duke@435 3822 }
duke@435 3823
duke@435 3824 if (!processed_interval) {
duke@435 3825 // no move could be processed because there is a cycle in the move list
duke@435 3826 // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
duke@435 3827 assert(spill_candidate != -1, "no interval in register for spilling found");
duke@435 3828
duke@435 3829 // create a new spill interval and assign a stack slot to it
duke@435 3830 Interval* from_interval = _mapping_from.at(spill_candidate);
duke@435 3831 Interval* spill_interval = new Interval(-1);
duke@435 3832 spill_interval->set_type(from_interval->type());
duke@435 3833
duke@435 3834 // add a dummy range because real position is difficult to calculate
duke@435 3835 // Note: this range is a special case when the integrity of the allocation is checked
duke@435 3836 spill_interval->add_range(1, 2);
duke@435 3837
duke@435 3838 // do not allocate a new spill slot for temporary interval, but
duke@435 3839 // use spill slot assigned to from_interval. Otherwise moves from
duke@435 3840 // one stack slot to another can happen (not allowed by LIR_Assembler
duke@435 3841 int spill_slot = from_interval->canonical_spill_slot();
duke@435 3842 if (spill_slot < 0) {
duke@435 3843 spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
duke@435 3844 from_interval->set_canonical_spill_slot(spill_slot);
duke@435 3845 }
duke@435 3846 spill_interval->assign_reg(spill_slot);
duke@435 3847 allocator()->append_interval(spill_interval);
duke@435 3848
duke@435 3849 TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
duke@435 3850
duke@435 3851 // insert a move from register to stack and update the mapping
duke@435 3852 insert_move(from_interval, spill_interval);
duke@435 3853 _mapping_from.at_put(spill_candidate, spill_interval);
duke@435 3854 unblock_registers(from_interval);
duke@435 3855 }
duke@435 3856 }
duke@435 3857
duke@435 3858 // reset to default value
duke@435 3859 _multiple_reads_allowed = false;
duke@435 3860
duke@435 3861 // check that all intervals have been processed
duke@435 3862 DEBUG_ONLY(check_empty());
duke@435 3863 }
duke@435 3864
duke@435 3865
duke@435 3866 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
duke@435 3867 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
duke@435 3868 assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
duke@435 3869
duke@435 3870 create_insertion_buffer(insert_list);
duke@435 3871 _insert_list = insert_list;
duke@435 3872 _insert_idx = insert_idx;
duke@435 3873 }
duke@435 3874
duke@435 3875 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
duke@435 3876 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
duke@435 3877
duke@435 3878 if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
duke@435 3879 // insert position changed -> resolve current mappings
duke@435 3880 resolve_mappings();
duke@435 3881 }
duke@435 3882
duke@435 3883 if (insert_list != _insert_list) {
duke@435 3884 // block changed -> append insertion_buffer because it is
duke@435 3885 // bound to a specific block and create a new insertion_buffer
duke@435 3886 append_insertion_buffer();
duke@435 3887 create_insertion_buffer(insert_list);
duke@435 3888 }
duke@435 3889
duke@435 3890 _insert_list = insert_list;
duke@435 3891 _insert_idx = insert_idx;
duke@435 3892 }
duke@435 3893
duke@435 3894 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
duke@435 3895 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
duke@435 3896
duke@435 3897 _mapping_from.append(from_interval);
duke@435 3898 _mapping_from_opr.append(LIR_OprFact::illegalOpr);
duke@435 3899 _mapping_to.append(to_interval);
duke@435 3900 }
duke@435 3901
duke@435 3902
duke@435 3903 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
duke@435 3904 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
duke@435 3905 assert(from_opr->is_constant(), "only for constants");
duke@435 3906
duke@435 3907 _mapping_from.append(NULL);
duke@435 3908 _mapping_from_opr.append(from_opr);
duke@435 3909 _mapping_to.append(to_interval);
duke@435 3910 }
duke@435 3911
duke@435 3912 void MoveResolver::resolve_and_append_moves() {
duke@435 3913 if (has_mappings()) {
duke@435 3914 resolve_mappings();
duke@435 3915 }
duke@435 3916 append_insertion_buffer();
duke@435 3917 }
duke@435 3918
duke@435 3919
duke@435 3920
duke@435 3921 // **** Implementation of Range *************************************
duke@435 3922
duke@435 3923 Range::Range(int from, int to, Range* next) :
duke@435 3924 _from(from),
duke@435 3925 _to(to),
duke@435 3926 _next(next)
duke@435 3927 {
duke@435 3928 }
duke@435 3929
duke@435 3930 // initialize sentinel
duke@435 3931 Range* Range::_end = NULL;
duke@435 3932 void Range::initialize() {
duke@435 3933 _end = new Range(max_jint, max_jint, NULL);
duke@435 3934 }
duke@435 3935
duke@435 3936 int Range::intersects_at(Range* r2) const {
duke@435 3937 const Range* r1 = this;
duke@435 3938
duke@435 3939 assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
duke@435 3940 assert(r1 != _end && r2 != _end, "empty ranges not allowed");
duke@435 3941
duke@435 3942 do {
duke@435 3943 if (r1->from() < r2->from()) {
duke@435 3944 if (r1->to() <= r2->from()) {
duke@435 3945 r1 = r1->next(); if (r1 == _end) return -1;
duke@435 3946 } else {
duke@435 3947 return r2->from();
duke@435 3948 }
duke@435 3949 } else if (r2->from() < r1->from()) {
duke@435 3950 if (r2->to() <= r1->from()) {
duke@435 3951 r2 = r2->next(); if (r2 == _end) return -1;
duke@435 3952 } else {
duke@435 3953 return r1->from();
duke@435 3954 }
duke@435 3955 } else { // r1->from() == r2->from()
duke@435 3956 if (r1->from() == r1->to()) {
duke@435 3957 r1 = r1->next(); if (r1 == _end) return -1;
duke@435 3958 } else if (r2->from() == r2->to()) {
duke@435 3959 r2 = r2->next(); if (r2 == _end) return -1;
duke@435 3960 } else {
duke@435 3961 return r1->from();
duke@435 3962 }
duke@435 3963 }
duke@435 3964 } while (true);
duke@435 3965 }
duke@435 3966
duke@435 3967 #ifndef PRODUCT
duke@435 3968 void Range::print(outputStream* out) const {
duke@435 3969 out->print("[%d, %d[ ", _from, _to);
duke@435 3970 }
duke@435 3971 #endif
duke@435 3972
duke@435 3973
duke@435 3974
duke@435 3975 // **** Implementation of Interval **********************************
duke@435 3976
duke@435 3977 // initialize sentinel
duke@435 3978 Interval* Interval::_end = NULL;
duke@435 3979 void Interval::initialize() {
duke@435 3980 Range::initialize();
duke@435 3981 _end = new Interval(-1);
duke@435 3982 }
duke@435 3983
duke@435 3984 Interval::Interval(int reg_num) :
duke@435 3985 _reg_num(reg_num),
duke@435 3986 _type(T_ILLEGAL),
duke@435 3987 _first(Range::end()),
duke@435 3988 _use_pos_and_kinds(12),
duke@435 3989 _current(Range::end()),
duke@435 3990 _next(_end),
duke@435 3991 _state(invalidState),
duke@435 3992 _assigned_reg(LinearScan::any_reg),
duke@435 3993 _assigned_regHi(LinearScan::any_reg),
duke@435 3994 _cached_to(-1),
duke@435 3995 _cached_opr(LIR_OprFact::illegalOpr),
duke@435 3996 _cached_vm_reg(VMRegImpl::Bad()),
duke@435 3997 _split_children(0),
duke@435 3998 _canonical_spill_slot(-1),
duke@435 3999 _insert_move_when_activated(false),
duke@435 4000 _register_hint(NULL),
duke@435 4001 _spill_state(noDefinitionFound),
duke@435 4002 _spill_definition_pos(-1)
duke@435 4003 {
duke@435 4004 _split_parent = this;
duke@435 4005 _current_split_child = this;
duke@435 4006 }
duke@435 4007
duke@435 4008 int Interval::calc_to() {
duke@435 4009 assert(_first != Range::end(), "interval has no range");
duke@435 4010
duke@435 4011 Range* r = _first;
duke@435 4012 while (r->next() != Range::end()) {
duke@435 4013 r = r->next();
duke@435 4014 }
duke@435 4015 return r->to();
duke@435 4016 }
duke@435 4017
duke@435 4018
duke@435 4019 #ifdef ASSERT
duke@435 4020 // consistency check of split-children
duke@435 4021 void Interval::check_split_children() {
duke@435 4022 if (_split_children.length() > 0) {
duke@435 4023 assert(is_split_parent(), "only split parents can have children");
duke@435 4024
duke@435 4025 for (int i = 0; i < _split_children.length(); i++) {
duke@435 4026 Interval* i1 = _split_children.at(i);
duke@435 4027
duke@435 4028 assert(i1->split_parent() == this, "not a split child of this interval");
duke@435 4029 assert(i1->type() == type(), "must be equal for all split children");
duke@435 4030 assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
duke@435 4031
duke@435 4032 for (int j = i + 1; j < _split_children.length(); j++) {
duke@435 4033 Interval* i2 = _split_children.at(j);
duke@435 4034
duke@435 4035 assert(i1->reg_num() != i2->reg_num(), "same register number");
duke@435 4036
duke@435 4037 if (i1->from() < i2->from()) {
duke@435 4038 assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
duke@435 4039 } else {
duke@435 4040 assert(i2->from() < i1->from(), "intervals start at same op_id");
duke@435 4041 assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
duke@435 4042 }
duke@435 4043 }
duke@435 4044 }
duke@435 4045 }
duke@435 4046 }
duke@435 4047 #endif // ASSERT
duke@435 4048
duke@435 4049 Interval* Interval::register_hint(bool search_split_child) const {
duke@435 4050 if (!search_split_child) {
duke@435 4051 return _register_hint;
duke@435 4052 }
duke@435 4053
duke@435 4054 if (_register_hint != NULL) {
duke@435 4055 assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
duke@435 4056
duke@435 4057 if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
duke@435 4058 return _register_hint;
duke@435 4059
duke@435 4060 } else if (_register_hint->_split_children.length() > 0) {
duke@435 4061 // search the first split child that has a register assigned
duke@435 4062 int len = _register_hint->_split_children.length();
duke@435 4063 for (int i = 0; i < len; i++) {
duke@435 4064 Interval* cur = _register_hint->_split_children.at(i);
duke@435 4065
duke@435 4066 if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
duke@435 4067 return cur;
duke@435 4068 }
duke@435 4069 }
duke@435 4070 }
duke@435 4071 }
duke@435 4072
duke@435 4073 // no hint interval found that has a register assigned
duke@435 4074 return NULL;
duke@435 4075 }
duke@435 4076
duke@435 4077
duke@435 4078 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
duke@435 4079 assert(is_split_parent(), "can only be called for split parents");
duke@435 4080 assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
duke@435 4081
duke@435 4082 Interval* result;
duke@435 4083 if (_split_children.length() == 0) {
duke@435 4084 result = this;
duke@435 4085 } else {
duke@435 4086 result = NULL;
duke@435 4087 int len = _split_children.length();
duke@435 4088
duke@435 4089 // in outputMode, the end of the interval (op_id == cur->to()) is not valid
duke@435 4090 int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
duke@435 4091
duke@435 4092 int i;
duke@435 4093 for (i = 0; i < len; i++) {
duke@435 4094 Interval* cur = _split_children.at(i);
duke@435 4095 if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
duke@435 4096 if (i > 0) {
duke@435 4097 // exchange current split child to start of list (faster access for next call)
duke@435 4098 _split_children.at_put(i, _split_children.at(0));
duke@435 4099 _split_children.at_put(0, cur);
duke@435 4100 }
duke@435 4101
duke@435 4102 // interval found
duke@435 4103 result = cur;
duke@435 4104 break;
duke@435 4105 }
duke@435 4106 }
duke@435 4107
duke@435 4108 #ifdef ASSERT
duke@435 4109 for (i = 0; i < len; i++) {
duke@435 4110 Interval* tmp = _split_children.at(i);
duke@435 4111 if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
duke@435 4112 tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
duke@435 4113 result->print();
duke@435 4114 tmp->print();
duke@435 4115 assert(false, "two valid result intervals found");
duke@435 4116 }
duke@435 4117 }
duke@435 4118 #endif
duke@435 4119 }
duke@435 4120
duke@435 4121 assert(result != NULL, "no matching interval found");
duke@435 4122 assert(result->covers(op_id, mode), "op_id not covered by interval");
duke@435 4123
duke@435 4124 return result;
duke@435 4125 }
duke@435 4126
duke@435 4127
duke@435 4128 // returns the last split child that ends before the given op_id
duke@435 4129 Interval* Interval::split_child_before_op_id(int op_id) {
duke@435 4130 assert(op_id >= 0, "invalid op_id");
duke@435 4131
duke@435 4132 Interval* parent = split_parent();
duke@435 4133 Interval* result = NULL;
duke@435 4134
duke@435 4135 int len = parent->_split_children.length();
duke@435 4136 assert(len > 0, "no split children available");
duke@435 4137
duke@435 4138 for (int i = len - 1; i >= 0; i--) {
duke@435 4139 Interval* cur = parent->_split_children.at(i);
duke@435 4140 if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
duke@435 4141 result = cur;
duke@435 4142 }
duke@435 4143 }
duke@435 4144
duke@435 4145 assert(result != NULL, "no split child found");
duke@435 4146 return result;
duke@435 4147 }
duke@435 4148
duke@435 4149
duke@435 4150 // checks if op_id is covered by any split child
duke@435 4151 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
duke@435 4152 assert(is_split_parent(), "can only be called for split parents");
duke@435 4153 assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
duke@435 4154
duke@435 4155 if (_split_children.length() == 0) {
duke@435 4156 // simple case if interval was not split
duke@435 4157 return covers(op_id, mode);
duke@435 4158
duke@435 4159 } else {
duke@435 4160 // extended case: check all split children
duke@435 4161 int len = _split_children.length();
duke@435 4162 for (int i = 0; i < len; i++) {
duke@435 4163 Interval* cur = _split_children.at(i);
duke@435 4164 if (cur->covers(op_id, mode)) {
duke@435 4165 return true;
duke@435 4166 }
duke@435 4167 }
duke@435 4168 return false;
duke@435 4169 }
duke@435 4170 }
duke@435 4171
duke@435 4172
duke@435 4173 // Note: use positions are sorted descending -> first use has highest index
duke@435 4174 int Interval::first_usage(IntervalUseKind min_use_kind) const {
duke@435 4175 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
duke@435 4176
duke@435 4177 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
duke@435 4178 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
duke@435 4179 return _use_pos_and_kinds.at(i);
duke@435 4180 }
duke@435 4181 }
duke@435 4182 return max_jint;
duke@435 4183 }
duke@435 4184
duke@435 4185 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
duke@435 4186 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
duke@435 4187
duke@435 4188 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
duke@435 4189 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
duke@435 4190 return _use_pos_and_kinds.at(i);
duke@435 4191 }
duke@435 4192 }
duke@435 4193 return max_jint;
duke@435 4194 }
duke@435 4195
duke@435 4196 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
duke@435 4197 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
duke@435 4198
duke@435 4199 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
duke@435 4200 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
duke@435 4201 return _use_pos_and_kinds.at(i);
duke@435 4202 }
duke@435 4203 }
duke@435 4204 return max_jint;
duke@435 4205 }
duke@435 4206
duke@435 4207 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
duke@435 4208 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
duke@435 4209
duke@435 4210 int prev = 0;
duke@435 4211 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
duke@435 4212 if (_use_pos_and_kinds.at(i) > from) {
duke@435 4213 return prev;
duke@435 4214 }
duke@435 4215 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
duke@435 4216 prev = _use_pos_and_kinds.at(i);
duke@435 4217 }
duke@435 4218 }
duke@435 4219 return prev;
duke@435 4220 }
duke@435 4221
duke@435 4222 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
duke@435 4223 assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
duke@435 4224
duke@435 4225 // do not add use positions for precolored intervals because
duke@435 4226 // they are never used
duke@435 4227 if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
duke@435 4228 #ifdef ASSERT
duke@435 4229 assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
duke@435 4230 for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
duke@435 4231 assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
duke@435 4232 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
duke@435 4233 if (i > 0) {
duke@435 4234 assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
duke@435 4235 }
duke@435 4236 }
duke@435 4237 #endif
duke@435 4238
duke@435 4239 // Note: add_use is called in descending order, so list gets sorted
duke@435 4240 // automatically by just appending new use positions
duke@435 4241 int len = _use_pos_and_kinds.length();
duke@435 4242 if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
duke@435 4243 _use_pos_and_kinds.append(pos);
duke@435 4244 _use_pos_and_kinds.append(use_kind);
duke@435 4245 } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
duke@435 4246 assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
duke@435 4247 _use_pos_and_kinds.at_put(len - 1, use_kind);
duke@435 4248 }
duke@435 4249 }
duke@435 4250 }
duke@435 4251
duke@435 4252 void Interval::add_range(int from, int to) {
duke@435 4253 assert(from < to, "invalid range");
duke@435 4254 assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
duke@435 4255 assert(from <= first()->to(), "not inserting at begin of interval");
duke@435 4256
duke@435 4257 if (first()->from() <= to) {
duke@435 4258 // join intersecting ranges
duke@435 4259 first()->set_from(MIN2(from, first()->from()));
duke@435 4260 first()->set_to (MAX2(to, first()->to()));
duke@435 4261 } else {
duke@435 4262 // insert new range
duke@435 4263 _first = new Range(from, to, first());
duke@435 4264 }
duke@435 4265 }
duke@435 4266
duke@435 4267 Interval* Interval::new_split_child() {
duke@435 4268 // allocate new interval
duke@435 4269 Interval* result = new Interval(-1);
duke@435 4270 result->set_type(type());
duke@435 4271
duke@435 4272 Interval* parent = split_parent();
duke@435 4273 result->_split_parent = parent;
duke@435 4274 result->set_register_hint(parent);
duke@435 4275
duke@435 4276 // insert new interval in children-list of parent
duke@435 4277 if (parent->_split_children.length() == 0) {
duke@435 4278 assert(is_split_parent(), "list must be initialized at first split");
duke@435 4279
duke@435 4280 parent->_split_children = IntervalList(4);
duke@435 4281 parent->_split_children.append(this);
duke@435 4282 }
duke@435 4283 parent->_split_children.append(result);
duke@435 4284
duke@435 4285 return result;
duke@435 4286 }
duke@435 4287
duke@435 4288 // split this interval at the specified position and return
duke@435 4289 // the remainder as a new interval.
duke@435 4290 //
duke@435 4291 // when an interval is split, a bi-directional link is established between the original interval
duke@435 4292 // (the split parent) and the intervals that are split off this interval (the split children)
duke@435 4293 // When a split child is split again, the new created interval is also a direct child
duke@435 4294 // of the original parent (there is no tree of split children stored, but a flat list)
duke@435 4295 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
duke@435 4296 //
duke@435 4297 // Note: The new interval has no valid reg_num
duke@435 4298 Interval* Interval::split(int split_pos) {
duke@435 4299 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
duke@435 4300
duke@435 4301 // allocate new interval
duke@435 4302 Interval* result = new_split_child();
duke@435 4303
duke@435 4304 // split the ranges
duke@435 4305 Range* prev = NULL;
duke@435 4306 Range* cur = _first;
duke@435 4307 while (cur != Range::end() && cur->to() <= split_pos) {
duke@435 4308 prev = cur;
duke@435 4309 cur = cur->next();
duke@435 4310 }
duke@435 4311 assert(cur != Range::end(), "split interval after end of last range");
duke@435 4312
duke@435 4313 if (cur->from() < split_pos) {
duke@435 4314 result->_first = new Range(split_pos, cur->to(), cur->next());
duke@435 4315 cur->set_to(split_pos);
duke@435 4316 cur->set_next(Range::end());
duke@435 4317
duke@435 4318 } else {
duke@435 4319 assert(prev != NULL, "split before start of first range");
duke@435 4320 result->_first = cur;
duke@435 4321 prev->set_next(Range::end());
duke@435 4322 }
duke@435 4323 result->_current = result->_first;
duke@435 4324 _cached_to = -1; // clear cached value
duke@435 4325
duke@435 4326 // split list of use positions
duke@435 4327 int total_len = _use_pos_and_kinds.length();
duke@435 4328 int start_idx = total_len - 2;
duke@435 4329 while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
duke@435 4330 start_idx -= 2;
duke@435 4331 }
duke@435 4332
duke@435 4333 intStack new_use_pos_and_kinds(total_len - start_idx);
duke@435 4334 int i;
duke@435 4335 for (i = start_idx + 2; i < total_len; i++) {
duke@435 4336 new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
duke@435 4337 }
duke@435 4338
duke@435 4339 _use_pos_and_kinds.truncate(start_idx + 2);
duke@435 4340 result->_use_pos_and_kinds = _use_pos_and_kinds;
duke@435 4341 _use_pos_and_kinds = new_use_pos_and_kinds;
duke@435 4342
duke@435 4343 #ifdef ASSERT
duke@435 4344 assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
duke@435 4345 assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
duke@435 4346 assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
duke@435 4347
duke@435 4348 for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
duke@435 4349 assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
duke@435 4350 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
duke@435 4351 }
duke@435 4352 for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
duke@435 4353 assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
duke@435 4354 assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
duke@435 4355 }
duke@435 4356 #endif
duke@435 4357
duke@435 4358 return result;
duke@435 4359 }
duke@435 4360
duke@435 4361 // split this interval at the specified position and return
duke@435 4362 // the head as a new interval (the original interval is the tail)
duke@435 4363 //
duke@435 4364 // Currently, only the first range can be split, and the new interval
duke@435 4365 // must not have split positions
duke@435 4366 Interval* Interval::split_from_start(int split_pos) {
duke@435 4367 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
duke@435 4368 assert(split_pos > from() && split_pos < to(), "can only split inside interval");
duke@435 4369 assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
duke@435 4370 assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
duke@435 4371
duke@435 4372 // allocate new interval
duke@435 4373 Interval* result = new_split_child();
duke@435 4374
duke@435 4375 // the new created interval has only one range (checked by assertion above),
duke@435 4376 // so the splitting of the ranges is very simple
duke@435 4377 result->add_range(_first->from(), split_pos);
duke@435 4378
duke@435 4379 if (split_pos == _first->to()) {
duke@435 4380 assert(_first->next() != Range::end(), "must not be at end");
duke@435 4381 _first = _first->next();
duke@435 4382 } else {
duke@435 4383 _first->set_from(split_pos);
duke@435 4384 }
duke@435 4385
duke@435 4386 return result;
duke@435 4387 }
duke@435 4388
duke@435 4389
duke@435 4390 // returns true if the op_id is inside the interval
duke@435 4391 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
duke@435 4392 Range* cur = _first;
duke@435 4393
duke@435 4394 while (cur != Range::end() && cur->to() < op_id) {
duke@435 4395 cur = cur->next();
duke@435 4396 }
duke@435 4397 if (cur != Range::end()) {
duke@435 4398 assert(cur->to() != cur->next()->from(), "ranges not separated");
duke@435 4399
duke@435 4400 if (mode == LIR_OpVisitState::outputMode) {
duke@435 4401 return cur->from() <= op_id && op_id < cur->to();
duke@435 4402 } else {
duke@435 4403 return cur->from() <= op_id && op_id <= cur->to();
duke@435 4404 }
duke@435 4405 }
duke@435 4406 return false;
duke@435 4407 }
duke@435 4408
duke@435 4409 // returns true if the interval has any hole between hole_from and hole_to
duke@435 4410 // (even if the hole has only the length 1)
duke@435 4411 bool Interval::has_hole_between(int hole_from, int hole_to) {
duke@435 4412 assert(hole_from < hole_to, "check");
duke@435 4413 assert(from() <= hole_from && hole_to <= to(), "index out of interval");
duke@435 4414
duke@435 4415 Range* cur = _first;
duke@435 4416 while (cur != Range::end()) {
duke@435 4417 assert(cur->to() < cur->next()->from(), "no space between ranges");
duke@435 4418
duke@435 4419 // hole-range starts before this range -> hole
duke@435 4420 if (hole_from < cur->from()) {
duke@435 4421 return true;
duke@435 4422
duke@435 4423 // hole-range completely inside this range -> no hole
duke@435 4424 } else if (hole_to <= cur->to()) {
duke@435 4425 return false;
duke@435 4426
duke@435 4427 // overlapping of hole-range with this range -> hole
duke@435 4428 } else if (hole_from <= cur->to()) {
duke@435 4429 return true;
duke@435 4430 }
duke@435 4431
duke@435 4432 cur = cur->next();
duke@435 4433 }
duke@435 4434
duke@435 4435 return false;
duke@435 4436 }
duke@435 4437
duke@435 4438
duke@435 4439 #ifndef PRODUCT
duke@435 4440 void Interval::print(outputStream* out) const {
duke@435 4441 const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
duke@435 4442 const char* UseKind2Name[] = { "N", "L", "S", "M" };
duke@435 4443
duke@435 4444 const char* type_name;
duke@435 4445 LIR_Opr opr = LIR_OprFact::illegal();
duke@435 4446 if (reg_num() < LIR_OprDesc::vreg_base) {
duke@435 4447 type_name = "fixed";
duke@435 4448 // need a temporary operand for fixed intervals because type() cannot be called
duke@435 4449 if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
duke@435 4450 opr = LIR_OprFact::single_cpu(assigned_reg());
duke@435 4451 } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
duke@435 4452 opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
never@739 4453 #ifdef X86
duke@435 4454 } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
duke@435 4455 opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
duke@435 4456 #endif
duke@435 4457 } else {
duke@435 4458 ShouldNotReachHere();
duke@435 4459 }
duke@435 4460 } else {
duke@435 4461 type_name = type2name(type());
duke@435 4462 if (assigned_reg() != -1) {
duke@435 4463 opr = LinearScan::calc_operand_for_interval(this);
duke@435 4464 }
duke@435 4465 }
duke@435 4466
duke@435 4467 out->print("%d %s ", reg_num(), type_name);
duke@435 4468 if (opr->is_valid()) {
duke@435 4469 out->print("\"");
duke@435 4470 opr->print(out);
duke@435 4471 out->print("\" ");
duke@435 4472 }
duke@435 4473 out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
duke@435 4474
duke@435 4475 // print ranges
duke@435 4476 Range* cur = _first;
duke@435 4477 while (cur != Range::end()) {
duke@435 4478 cur->print(out);
duke@435 4479 cur = cur->next();
duke@435 4480 assert(cur != NULL, "range list not closed with range sentinel");
duke@435 4481 }
duke@435 4482
duke@435 4483 // print use positions
duke@435 4484 int prev = 0;
duke@435 4485 assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
duke@435 4486 for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
duke@435 4487 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
duke@435 4488 assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
duke@435 4489
duke@435 4490 out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
duke@435 4491 prev = _use_pos_and_kinds.at(i);
duke@435 4492 }
duke@435 4493
duke@435 4494 out->print(" \"%s\"", SpillState2Name[spill_state()]);
duke@435 4495 out->cr();
duke@435 4496 }
duke@435 4497 #endif
duke@435 4498
duke@435 4499
duke@435 4500
duke@435 4501 // **** Implementation of IntervalWalker ****************************
duke@435 4502
duke@435 4503 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
duke@435 4504 : _compilation(allocator->compilation())
duke@435 4505 , _allocator(allocator)
duke@435 4506 {
duke@435 4507 _unhandled_first[fixedKind] = unhandled_fixed_first;
duke@435 4508 _unhandled_first[anyKind] = unhandled_any_first;
duke@435 4509 _active_first[fixedKind] = Interval::end();
duke@435 4510 _inactive_first[fixedKind] = Interval::end();
duke@435 4511 _active_first[anyKind] = Interval::end();
duke@435 4512 _inactive_first[anyKind] = Interval::end();
duke@435 4513 _current_position = -1;
duke@435 4514 _current = NULL;
duke@435 4515 next_interval();
duke@435 4516 }
duke@435 4517
duke@435 4518
duke@435 4519 // append interval at top of list
duke@435 4520 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
duke@435 4521 interval->set_next(*list); *list = interval;
duke@435 4522 }
duke@435 4523
duke@435 4524
duke@435 4525 // append interval in order of current range from()
duke@435 4526 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
duke@435 4527 Interval* prev = NULL;
duke@435 4528 Interval* cur = *list;
duke@435 4529 while (cur->current_from() < interval->current_from()) {
duke@435 4530 prev = cur; cur = cur->next();
duke@435 4531 }
duke@435 4532 if (prev == NULL) {
duke@435 4533 *list = interval;
duke@435 4534 } else {
duke@435 4535 prev->set_next(interval);
duke@435 4536 }
duke@435 4537 interval->set_next(cur);
duke@435 4538 }
duke@435 4539
duke@435 4540 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
duke@435 4541 assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
duke@435 4542
duke@435 4543 Interval* prev = NULL;
duke@435 4544 Interval* cur = *list;
duke@435 4545 while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
duke@435 4546 prev = cur; cur = cur->next();
duke@435 4547 }
duke@435 4548 if (prev == NULL) {
duke@435 4549 *list = interval;
duke@435 4550 } else {
duke@435 4551 prev->set_next(interval);
duke@435 4552 }
duke@435 4553 interval->set_next(cur);
duke@435 4554 }
duke@435 4555
duke@435 4556
duke@435 4557 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
duke@435 4558 while (*list != Interval::end() && *list != i) {
duke@435 4559 list = (*list)->next_addr();
duke@435 4560 }
duke@435 4561 if (*list != Interval::end()) {
duke@435 4562 assert(*list == i, "check");
duke@435 4563 *list = (*list)->next();
duke@435 4564 return true;
duke@435 4565 } else {
duke@435 4566 return false;
duke@435 4567 }
duke@435 4568 }
duke@435 4569
duke@435 4570 void IntervalWalker::remove_from_list(Interval* i) {
duke@435 4571 bool deleted;
duke@435 4572
duke@435 4573 if (i->state() == activeState) {
duke@435 4574 deleted = remove_from_list(active_first_addr(anyKind), i);
duke@435 4575 } else {
duke@435 4576 assert(i->state() == inactiveState, "invalid state");
duke@435 4577 deleted = remove_from_list(inactive_first_addr(anyKind), i);
duke@435 4578 }
duke@435 4579
duke@435 4580 assert(deleted, "interval has not been found in list");
duke@435 4581 }
duke@435 4582
duke@435 4583
duke@435 4584 void IntervalWalker::walk_to(IntervalState state, int from) {
duke@435 4585 assert (state == activeState || state == inactiveState, "wrong state");
duke@435 4586 for_each_interval_kind(kind) {
duke@435 4587 Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
duke@435 4588 Interval* next = *prev;
duke@435 4589 while (next->current_from() <= from) {
duke@435 4590 Interval* cur = next;
duke@435 4591 next = cur->next();
duke@435 4592
duke@435 4593 bool range_has_changed = false;
duke@435 4594 while (cur->current_to() <= from) {
duke@435 4595 cur->next_range();
duke@435 4596 range_has_changed = true;
duke@435 4597 }
duke@435 4598
duke@435 4599 // also handle move from inactive list to active list
duke@435 4600 range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
duke@435 4601
duke@435 4602 if (range_has_changed) {
duke@435 4603 // remove cur from list
duke@435 4604 *prev = next;
duke@435 4605 if (cur->current_at_end()) {
duke@435 4606 // move to handled state (not maintained as a list)
duke@435 4607 cur->set_state(handledState);
duke@435 4608 interval_moved(cur, kind, state, handledState);
duke@435 4609 } else if (cur->current_from() <= from){
duke@435 4610 // sort into active list
duke@435 4611 append_sorted(active_first_addr(kind), cur);
duke@435 4612 cur->set_state(activeState);
duke@435 4613 if (*prev == cur) {
duke@435 4614 assert(state == activeState, "check");
duke@435 4615 prev = cur->next_addr();
duke@435 4616 }
duke@435 4617 interval_moved(cur, kind, state, activeState);
duke@435 4618 } else {
duke@435 4619 // sort into inactive list
duke@435 4620 append_sorted(inactive_first_addr(kind), cur);
duke@435 4621 cur->set_state(inactiveState);
duke@435 4622 if (*prev == cur) {
duke@435 4623 assert(state == inactiveState, "check");
duke@435 4624 prev = cur->next_addr();
duke@435 4625 }
duke@435 4626 interval_moved(cur, kind, state, inactiveState);
duke@435 4627 }
duke@435 4628 } else {
duke@435 4629 prev = cur->next_addr();
duke@435 4630 continue;
duke@435 4631 }
duke@435 4632 }
duke@435 4633 }
duke@435 4634 }
duke@435 4635
duke@435 4636
duke@435 4637 void IntervalWalker::next_interval() {
duke@435 4638 IntervalKind kind;
duke@435 4639 Interval* any = _unhandled_first[anyKind];
duke@435 4640 Interval* fixed = _unhandled_first[fixedKind];
duke@435 4641
duke@435 4642 if (any != Interval::end()) {
duke@435 4643 // intervals may start at same position -> prefer fixed interval
duke@435 4644 kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
duke@435 4645
duke@435 4646 assert (kind == fixedKind && fixed->from() <= any->from() ||
duke@435 4647 kind == anyKind && any->from() <= fixed->from(), "wrong interval!!!");
duke@435 4648 assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
duke@435 4649
duke@435 4650 } else if (fixed != Interval::end()) {
duke@435 4651 kind = fixedKind;
duke@435 4652 } else {
duke@435 4653 _current = NULL; return;
duke@435 4654 }
duke@435 4655 _current_kind = kind;
duke@435 4656 _current = _unhandled_first[kind];
duke@435 4657 _unhandled_first[kind] = _current->next();
duke@435 4658 _current->set_next(Interval::end());
duke@435 4659 _current->rewind_range();
duke@435 4660 }
duke@435 4661
duke@435 4662
duke@435 4663 void IntervalWalker::walk_to(int lir_op_id) {
duke@435 4664 assert(_current_position <= lir_op_id, "can not walk backwards");
duke@435 4665 while (current() != NULL) {
duke@435 4666 bool is_active = current()->from() <= lir_op_id;
duke@435 4667 int id = is_active ? current()->from() : lir_op_id;
duke@435 4668
duke@435 4669 TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
duke@435 4670
duke@435 4671 // set _current_position prior to call of walk_to
duke@435 4672 _current_position = id;
duke@435 4673
duke@435 4674 // call walk_to even if _current_position == id
duke@435 4675 walk_to(activeState, id);
duke@435 4676 walk_to(inactiveState, id);
duke@435 4677
duke@435 4678 if (is_active) {
duke@435 4679 current()->set_state(activeState);
duke@435 4680 if (activate_current()) {
duke@435 4681 append_sorted(active_first_addr(current_kind()), current());
duke@435 4682 interval_moved(current(), current_kind(), unhandledState, activeState);
duke@435 4683 }
duke@435 4684
duke@435 4685 next_interval();
duke@435 4686 } else {
duke@435 4687 return;
duke@435 4688 }
duke@435 4689 }
duke@435 4690 }
duke@435 4691
duke@435 4692 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
duke@435 4693 #ifndef PRODUCT
duke@435 4694 if (TraceLinearScanLevel >= 4) {
duke@435 4695 #define print_state(state) \
duke@435 4696 switch(state) {\
duke@435 4697 case unhandledState: tty->print("unhandled"); break;\
duke@435 4698 case activeState: tty->print("active"); break;\
duke@435 4699 case inactiveState: tty->print("inactive"); break;\
duke@435 4700 case handledState: tty->print("handled"); break;\
duke@435 4701 default: ShouldNotReachHere(); \
duke@435 4702 }
duke@435 4703
duke@435 4704 print_state(from); tty->print(" to "); print_state(to);
duke@435 4705 tty->fill_to(23);
duke@435 4706 interval->print();
duke@435 4707
duke@435 4708 #undef print_state
duke@435 4709 }
duke@435 4710 #endif
duke@435 4711 }
duke@435 4712
duke@435 4713
duke@435 4714
duke@435 4715 // **** Implementation of LinearScanWalker **************************
duke@435 4716
duke@435 4717 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
duke@435 4718 : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
duke@435 4719 , _move_resolver(allocator)
duke@435 4720 {
duke@435 4721 for (int i = 0; i < LinearScan::nof_regs; i++) {
duke@435 4722 _spill_intervals[i] = new IntervalList(2);
duke@435 4723 }
duke@435 4724 }
duke@435 4725
duke@435 4726
duke@435 4727 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
duke@435 4728 for (int i = _first_reg; i <= _last_reg; i++) {
duke@435 4729 _use_pos[i] = max_jint;
duke@435 4730
duke@435 4731 if (!only_process_use_pos) {
duke@435 4732 _block_pos[i] = max_jint;
duke@435 4733 _spill_intervals[i]->clear();
duke@435 4734 }
duke@435 4735 }
duke@435 4736 }
duke@435 4737
duke@435 4738 inline void LinearScanWalker::exclude_from_use(int reg) {
duke@435 4739 assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
duke@435 4740 if (reg >= _first_reg && reg <= _last_reg) {
duke@435 4741 _use_pos[reg] = 0;
duke@435 4742 }
duke@435 4743 }
duke@435 4744 inline void LinearScanWalker::exclude_from_use(Interval* i) {
duke@435 4745 assert(i->assigned_reg() != any_reg, "interval has no register assigned");
duke@435 4746
duke@435 4747 exclude_from_use(i->assigned_reg());
duke@435 4748 exclude_from_use(i->assigned_regHi());
duke@435 4749 }
duke@435 4750
duke@435 4751 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
duke@435 4752 assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
duke@435 4753
duke@435 4754 if (reg >= _first_reg && reg <= _last_reg) {
duke@435 4755 if (_use_pos[reg] > use_pos) {
duke@435 4756 _use_pos[reg] = use_pos;
duke@435 4757 }
duke@435 4758 if (!only_process_use_pos) {
duke@435 4759 _spill_intervals[reg]->append(i);
duke@435 4760 }
duke@435 4761 }
duke@435 4762 }
duke@435 4763 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
duke@435 4764 assert(i->assigned_reg() != any_reg, "interval has no register assigned");
duke@435 4765 if (use_pos != -1) {
duke@435 4766 set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
duke@435 4767 set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
duke@435 4768 }
duke@435 4769 }
duke@435 4770
duke@435 4771 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
duke@435 4772 if (reg >= _first_reg && reg <= _last_reg) {
duke@435 4773 if (_block_pos[reg] > block_pos) {
duke@435 4774 _block_pos[reg] = block_pos;
duke@435 4775 }
duke@435 4776 if (_use_pos[reg] > block_pos) {
duke@435 4777 _use_pos[reg] = block_pos;
duke@435 4778 }
duke@435 4779 }
duke@435 4780 }
duke@435 4781 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
duke@435 4782 assert(i->assigned_reg() != any_reg, "interval has no register assigned");
duke@435 4783 if (block_pos != -1) {
duke@435 4784 set_block_pos(i->assigned_reg(), i, block_pos);
duke@435 4785 set_block_pos(i->assigned_regHi(), i, block_pos);
duke@435 4786 }
duke@435 4787 }
duke@435 4788
duke@435 4789
duke@435 4790 void LinearScanWalker::free_exclude_active_fixed() {
duke@435 4791 Interval* list = active_first(fixedKind);
duke@435 4792 while (list != Interval::end()) {
duke@435 4793 assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
duke@435 4794 exclude_from_use(list);
duke@435 4795 list = list->next();
duke@435 4796 }
duke@435 4797 }
duke@435 4798
duke@435 4799 void LinearScanWalker::free_exclude_active_any() {
duke@435 4800 Interval* list = active_first(anyKind);
duke@435 4801 while (list != Interval::end()) {
duke@435 4802 exclude_from_use(list);
duke@435 4803 list = list->next();
duke@435 4804 }
duke@435 4805 }
duke@435 4806
duke@435 4807 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
duke@435 4808 Interval* list = inactive_first(fixedKind);
duke@435 4809 while (list != Interval::end()) {
duke@435 4810 if (cur->to() <= list->current_from()) {
duke@435 4811 assert(list->current_intersects_at(cur) == -1, "must not intersect");
duke@435 4812 set_use_pos(list, list->current_from(), true);
duke@435 4813 } else {
duke@435 4814 set_use_pos(list, list->current_intersects_at(cur), true);
duke@435 4815 }
duke@435 4816 list = list->next();
duke@435 4817 }
duke@435 4818 }
duke@435 4819
duke@435 4820 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
duke@435 4821 Interval* list = inactive_first(anyKind);
duke@435 4822 while (list != Interval::end()) {
duke@435 4823 set_use_pos(list, list->current_intersects_at(cur), true);
duke@435 4824 list = list->next();
duke@435 4825 }
duke@435 4826 }
duke@435 4827
duke@435 4828 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
duke@435 4829 Interval* list = unhandled_first(kind);
duke@435 4830 while (list != Interval::end()) {
duke@435 4831 set_use_pos(list, list->intersects_at(cur), true);
duke@435 4832 if (kind == fixedKind && cur->to() <= list->from()) {
duke@435 4833 set_use_pos(list, list->from(), true);
duke@435 4834 }
duke@435 4835 list = list->next();
duke@435 4836 }
duke@435 4837 }
duke@435 4838
duke@435 4839 void LinearScanWalker::spill_exclude_active_fixed() {
duke@435 4840 Interval* list = active_first(fixedKind);
duke@435 4841 while (list != Interval::end()) {
duke@435 4842 exclude_from_use(list);
duke@435 4843 list = list->next();
duke@435 4844 }
duke@435 4845 }
duke@435 4846
duke@435 4847 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
duke@435 4848 Interval* list = unhandled_first(fixedKind);
duke@435 4849 while (list != Interval::end()) {
duke@435 4850 set_block_pos(list, list->intersects_at(cur));
duke@435 4851 list = list->next();
duke@435 4852 }
duke@435 4853 }
duke@435 4854
duke@435 4855 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
duke@435 4856 Interval* list = inactive_first(fixedKind);
duke@435 4857 while (list != Interval::end()) {
duke@435 4858 if (cur->to() > list->current_from()) {
duke@435 4859 set_block_pos(list, list->current_intersects_at(cur));
duke@435 4860 } else {
duke@435 4861 assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
duke@435 4862 }
duke@435 4863
duke@435 4864 list = list->next();
duke@435 4865 }
duke@435 4866 }
duke@435 4867
duke@435 4868 void LinearScanWalker::spill_collect_active_any() {
duke@435 4869 Interval* list = active_first(anyKind);
duke@435 4870 while (list != Interval::end()) {
duke@435 4871 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
duke@435 4872 list = list->next();
duke@435 4873 }
duke@435 4874 }
duke@435 4875
duke@435 4876 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
duke@435 4877 Interval* list = inactive_first(anyKind);
duke@435 4878 while (list != Interval::end()) {
duke@435 4879 if (list->current_intersects(cur)) {
duke@435 4880 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
duke@435 4881 }
duke@435 4882 list = list->next();
duke@435 4883 }
duke@435 4884 }
duke@435 4885
duke@435 4886
duke@435 4887 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
duke@435 4888 // output all moves here. When source and target are equal, the move is
duke@435 4889 // optimized away later in assign_reg_nums
duke@435 4890
duke@435 4891 op_id = (op_id + 1) & ~1;
duke@435 4892 BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
duke@435 4893 assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
duke@435 4894
duke@435 4895 // calculate index of instruction inside instruction list of current block
duke@435 4896 // the minimal index (for a block with no spill moves) can be calculated because the
duke@435 4897 // numbering of instructions is known.
duke@435 4898 // When the block already contains spill moves, the index must be increased until the
duke@435 4899 // correct index is reached.
duke@435 4900 LIR_OpList* list = op_block->lir()->instructions_list();
duke@435 4901 int index = (op_id - list->at(0)->id()) / 2;
duke@435 4902 assert(list->at(index)->id() <= op_id, "error in calculation");
duke@435 4903
duke@435 4904 while (list->at(index)->id() != op_id) {
duke@435 4905 index++;
duke@435 4906 assert(0 <= index && index < list->length(), "index out of bounds");
duke@435 4907 }
duke@435 4908 assert(1 <= index && index < list->length(), "index out of bounds");
duke@435 4909 assert(list->at(index)->id() == op_id, "error in calculation");
duke@435 4910
duke@435 4911 // insert new instruction before instruction at position index
duke@435 4912 _move_resolver.move_insert_position(op_block->lir(), index - 1);
duke@435 4913 _move_resolver.add_mapping(src_it, dst_it);
duke@435 4914 }
duke@435 4915
duke@435 4916
duke@435 4917 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
duke@435 4918 int from_block_nr = min_block->linear_scan_number();
duke@435 4919 int to_block_nr = max_block->linear_scan_number();
duke@435 4920
duke@435 4921 assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
duke@435 4922 assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
duke@435 4923 assert(from_block_nr < to_block_nr, "must cross block boundary");
duke@435 4924
duke@435 4925 // Try to split at end of max_block. If this would be after
duke@435 4926 // max_split_pos, then use the begin of max_block
duke@435 4927 int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
duke@435 4928 if (optimal_split_pos > max_split_pos) {
duke@435 4929 optimal_split_pos = max_block->first_lir_instruction_id();
duke@435 4930 }
duke@435 4931
duke@435 4932 int min_loop_depth = max_block->loop_depth();
duke@435 4933 for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
duke@435 4934 BlockBegin* cur = block_at(i);
duke@435 4935
duke@435 4936 if (cur->loop_depth() < min_loop_depth) {
duke@435 4937 // block with lower loop-depth found -> split at the end of this block
duke@435 4938 min_loop_depth = cur->loop_depth();
duke@435 4939 optimal_split_pos = cur->last_lir_instruction_id() + 2;
duke@435 4940 }
duke@435 4941 }
duke@435 4942 assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
duke@435 4943
duke@435 4944 return optimal_split_pos;
duke@435 4945 }
duke@435 4946
duke@435 4947
duke@435 4948 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
duke@435 4949 int optimal_split_pos = -1;
duke@435 4950 if (min_split_pos == max_split_pos) {
duke@435 4951 // trivial case, no optimization of split position possible
duke@435 4952 TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible"));
duke@435 4953 optimal_split_pos = min_split_pos;
duke@435 4954
duke@435 4955 } else {
duke@435 4956 assert(min_split_pos < max_split_pos, "must be true then");
duke@435 4957 assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
duke@435 4958
duke@435 4959 // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
duke@435 4960 // beginning of a block, then min_split_pos is also a possible split position.
duke@435 4961 // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
duke@435 4962 BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
duke@435 4963
duke@435 4964 // reason for using max_split_pos - 1: otherwise there would be an assertion failure
duke@435 4965 // when an interval ends at the end of the last block of the method
duke@435 4966 // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
duke@435 4967 // block at this op_id)
duke@435 4968 BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
duke@435 4969
duke@435 4970 assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
duke@435 4971 if (min_block == max_block) {
duke@435 4972 // split position cannot be moved to block boundary, so split as late as possible
duke@435 4973 TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block"));
duke@435 4974 optimal_split_pos = max_split_pos;
duke@435 4975
duke@435 4976 } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
duke@435 4977 // Do not move split position if the interval has a hole before max_split_pos.
duke@435 4978 // Intervals resulting from Phi-Functions have more than one definition (marked
duke@435 4979 // as mustHaveRegister) with a hole before each definition. When the register is needed
duke@435 4980 // for the second definition, an earlier reloading is unnecessary.
duke@435 4981 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos"));
duke@435 4982 optimal_split_pos = max_split_pos;
duke@435 4983
duke@435 4984 } else {
duke@435 4985 // seach optimal block boundary between min_split_pos and max_split_pos
duke@435 4986 TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
duke@435 4987
duke@435 4988 if (do_loop_optimization) {
duke@435 4989 // Loop optimization: if a loop-end marker is found between min- and max-position,
duke@435 4990 // then split before this loop
duke@435 4991 int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
duke@435 4992 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d", loop_end_pos));
duke@435 4993
duke@435 4994 assert(loop_end_pos > min_split_pos, "invalid order");
duke@435 4995 if (loop_end_pos < max_split_pos) {
duke@435 4996 // loop-end marker found between min- and max-position
duke@435 4997 // if it is not the end marker for the same loop as the min-position, then move
duke@435 4998 // the max-position to this loop block.
duke@435 4999 // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
duke@435 5000 // of the interval (normally, only mustHaveRegister causes a reloading)
duke@435 5001 BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
duke@435 5002
duke@435 5003 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
duke@435 5004 assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
duke@435 5005
duke@435 5006 optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
duke@435 5007 if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
duke@435 5008 optimal_split_pos = -1;
duke@435 5009 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary"));
duke@435 5010 } else {
duke@435 5011 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful"));
duke@435 5012 }
duke@435 5013 }
duke@435 5014 }
duke@435 5015
duke@435 5016 if (optimal_split_pos == -1) {
duke@435 5017 // not calculated by loop optimization
duke@435 5018 optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
duke@435 5019 }
duke@435 5020 }
duke@435 5021 }
duke@435 5022 TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d", optimal_split_pos));
duke@435 5023
duke@435 5024 return optimal_split_pos;
duke@435 5025 }
duke@435 5026
duke@435 5027
duke@435 5028 /*
duke@435 5029 split an interval at the optimal position between min_split_pos and
duke@435 5030 max_split_pos in two parts:
duke@435 5031 1) the left part has already a location assigned
duke@435 5032 2) the right part is sorted into to the unhandled-list
duke@435 5033 */
duke@435 5034 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
duke@435 5035 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: "); it->print());
duke@435 5036 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos));
duke@435 5037
duke@435 5038 assert(it->from() < min_split_pos, "cannot split at start of interval");
duke@435 5039 assert(current_position() < min_split_pos, "cannot split before current position");
duke@435 5040 assert(min_split_pos <= max_split_pos, "invalid order");
duke@435 5041 assert(max_split_pos <= it->to(), "cannot split after end of interval");
duke@435 5042
duke@435 5043 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
duke@435 5044
duke@435 5045 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
duke@435 5046 assert(optimal_split_pos <= it->to(), "cannot split after end of interval");
duke@435 5047 assert(optimal_split_pos > it->from(), "cannot split at start of interval");
duke@435 5048
duke@435 5049 if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
duke@435 5050 // the split position would be just before the end of the interval
duke@435 5051 // -> no split at all necessary
duke@435 5052 TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval"));
duke@435 5053 return;
duke@435 5054 }
duke@435 5055
duke@435 5056 // must calculate this before the actual split is performed and before split position is moved to odd op_id
duke@435 5057 bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
duke@435 5058
duke@435 5059 if (!allocator()->is_block_begin(optimal_split_pos)) {
duke@435 5060 // move position before actual instruction (odd op_id)
duke@435 5061 optimal_split_pos = (optimal_split_pos - 1) | 1;
duke@435 5062 }
duke@435 5063
duke@435 5064 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos));
duke@435 5065 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
duke@435 5066 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
duke@435 5067
duke@435 5068 Interval* split_part = it->split(optimal_split_pos);
duke@435 5069
duke@435 5070 allocator()->append_interval(split_part);
duke@435 5071 allocator()->copy_register_flags(it, split_part);
duke@435 5072 split_part->set_insert_move_when_activated(move_necessary);
duke@435 5073 append_to_unhandled(unhandled_first_addr(anyKind), split_part);
duke@435 5074
duke@435 5075 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)", move_necessary));
duke@435 5076 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print());
duke@435 5077 TRACE_LINEAR_SCAN(2, tty->print (" "); split_part->print());
duke@435 5078 }
duke@435 5079
duke@435 5080 /*
duke@435 5081 split an interval at the optimal position between min_split_pos and
duke@435 5082 max_split_pos in two parts:
duke@435 5083 1) the left part has already a location assigned
duke@435 5084 2) the right part is always on the stack and therefore ignored in further processing
duke@435 5085 */
duke@435 5086 void LinearScanWalker::split_for_spilling(Interval* it) {
duke@435 5087 // calculate allowed range of splitting position
duke@435 5088 int max_split_pos = current_position();
duke@435 5089 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
duke@435 5090
duke@435 5091 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: "); it->print());
duke@435 5092 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos));
duke@435 5093
duke@435 5094 assert(it->state() == activeState, "why spill interval that is not active?");
duke@435 5095 assert(it->from() <= min_split_pos, "cannot split before start of interval");
duke@435 5096 assert(min_split_pos <= max_split_pos, "invalid order");
duke@435 5097 assert(max_split_pos < it->to(), "cannot split at end end of interval");
duke@435 5098 assert(current_position() < it->to(), "interval must not end before current position");
duke@435 5099
duke@435 5100 if (min_split_pos == it->from()) {
duke@435 5101 // the whole interval is never used, so spill it entirely to memory
duke@435 5102 TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval"));
duke@435 5103 assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
duke@435 5104
duke@435 5105 allocator()->assign_spill_slot(it);
duke@435 5106 allocator()->change_spill_state(it, min_split_pos);
duke@435 5107
duke@435 5108 // Also kick parent intervals out of register to memory when they have no use
duke@435 5109 // position. This avoids short interval in register surrounded by intervals in
duke@435 5110 // memory -> avoid useless moves from memory to register and back
duke@435 5111 Interval* parent = it;
duke@435 5112 while (parent != NULL && parent->is_split_child()) {
duke@435 5113 parent = parent->split_child_before_op_id(parent->from());
duke@435 5114
duke@435 5115 if (parent->assigned_reg() < LinearScan::nof_regs) {
duke@435 5116 if (parent->first_usage(shouldHaveRegister) == max_jint) {
duke@435 5117 // parent is never used, so kick it out of its assigned register
duke@435 5118 TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used", parent->reg_num()));
duke@435 5119 allocator()->assign_spill_slot(parent);
duke@435 5120 } else {
duke@435 5121 // do not go further back because the register is actually used by the interval
duke@435 5122 parent = NULL;
duke@435 5123 }
duke@435 5124 }
duke@435 5125 }
duke@435 5126
duke@435 5127 } else {
duke@435 5128 // search optimal split pos, split interval and spill only the right hand part
duke@435 5129 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
duke@435 5130
duke@435 5131 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
duke@435 5132 assert(optimal_split_pos < it->to(), "cannot split at end of interval");
duke@435 5133 assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
duke@435 5134
duke@435 5135 if (!allocator()->is_block_begin(optimal_split_pos)) {
duke@435 5136 // move position before actual instruction (odd op_id)
duke@435 5137 optimal_split_pos = (optimal_split_pos - 1) | 1;
duke@435 5138 }
duke@435 5139
duke@435 5140 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos));
duke@435 5141 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
duke@435 5142 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
duke@435 5143
duke@435 5144 Interval* spilled_part = it->split(optimal_split_pos);
duke@435 5145 allocator()->append_interval(spilled_part);
duke@435 5146 allocator()->assign_spill_slot(spilled_part);
duke@435 5147 allocator()->change_spill_state(spilled_part, optimal_split_pos);
duke@435 5148
duke@435 5149 if (!allocator()->is_block_begin(optimal_split_pos)) {
duke@435 5150 TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
duke@435 5151 insert_move(optimal_split_pos, it, spilled_part);
duke@435 5152 }
duke@435 5153
duke@435 5154 // the current_split_child is needed later when moves are inserted for reloading
duke@435 5155 assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
duke@435 5156 spilled_part->make_current_split_child();
duke@435 5157
duke@435 5158 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts"));
duke@435 5159 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print());
duke@435 5160 TRACE_LINEAR_SCAN(2, tty->print (" "); spilled_part->print());
duke@435 5161 }
duke@435 5162 }
duke@435 5163
duke@435 5164
duke@435 5165 void LinearScanWalker::split_stack_interval(Interval* it) {
duke@435 5166 int min_split_pos = current_position() + 1;
duke@435 5167 int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
duke@435 5168
duke@435 5169 split_before_usage(it, min_split_pos, max_split_pos);
duke@435 5170 }
duke@435 5171
duke@435 5172 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
duke@435 5173 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
duke@435 5174 int max_split_pos = register_available_until;
duke@435 5175
duke@435 5176 split_before_usage(it, min_split_pos, max_split_pos);
duke@435 5177 }
duke@435 5178
duke@435 5179 void LinearScanWalker::split_and_spill_interval(Interval* it) {
duke@435 5180 assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
duke@435 5181
duke@435 5182 int current_pos = current_position();
duke@435 5183 if (it->state() == inactiveState) {
duke@435 5184 // the interval is currently inactive, so no spill slot is needed for now.
duke@435 5185 // when the split part is activated, the interval has a new chance to get a register,
duke@435 5186 // so in the best case no stack slot is necessary
duke@435 5187 assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
duke@435 5188 split_before_usage(it, current_pos + 1, current_pos + 1);
duke@435 5189
duke@435 5190 } else {
duke@435 5191 // search the position where the interval must have a register and split
duke@435 5192 // at the optimal position before.
duke@435 5193 // The new created part is added to the unhandled list and will get a register
duke@435 5194 // when it is activated
duke@435 5195 int min_split_pos = current_pos + 1;
duke@435 5196 int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
duke@435 5197
duke@435 5198 split_before_usage(it, min_split_pos, max_split_pos);
duke@435 5199
duke@435 5200 assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
duke@435 5201 split_for_spilling(it);
duke@435 5202 }
duke@435 5203 }
duke@435 5204
duke@435 5205
duke@435 5206 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
duke@435 5207 int min_full_reg = any_reg;
duke@435 5208 int max_partial_reg = any_reg;
duke@435 5209
duke@435 5210 for (int i = _first_reg; i <= _last_reg; i++) {
duke@435 5211 if (i == ignore_reg) {
duke@435 5212 // this register must be ignored
duke@435 5213
duke@435 5214 } else if (_use_pos[i] >= interval_to) {
duke@435 5215 // this register is free for the full interval
duke@435 5216 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
duke@435 5217 min_full_reg = i;
duke@435 5218 }
duke@435 5219 } else if (_use_pos[i] > reg_needed_until) {
duke@435 5220 // this register is at least free until reg_needed_until
duke@435 5221 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
duke@435 5222 max_partial_reg = i;
duke@435 5223 }
duke@435 5224 }
duke@435 5225 }
duke@435 5226
duke@435 5227 if (min_full_reg != any_reg) {
duke@435 5228 return min_full_reg;
duke@435 5229 } else if (max_partial_reg != any_reg) {
duke@435 5230 *need_split = true;
duke@435 5231 return max_partial_reg;
duke@435 5232 } else {
duke@435 5233 return any_reg;
duke@435 5234 }
duke@435 5235 }
duke@435 5236
duke@435 5237 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
duke@435 5238 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
duke@435 5239
duke@435 5240 int min_full_reg = any_reg;
duke@435 5241 int max_partial_reg = any_reg;
duke@435 5242
duke@435 5243 for (int i = _first_reg; i < _last_reg; i+=2) {
duke@435 5244 if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
duke@435 5245 // this register is free for the full interval
duke@435 5246 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
duke@435 5247 min_full_reg = i;
duke@435 5248 }
duke@435 5249 } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
duke@435 5250 // this register is at least free until reg_needed_until
duke@435 5251 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
duke@435 5252 max_partial_reg = i;
duke@435 5253 }
duke@435 5254 }
duke@435 5255 }
duke@435 5256
duke@435 5257 if (min_full_reg != any_reg) {
duke@435 5258 return min_full_reg;
duke@435 5259 } else if (max_partial_reg != any_reg) {
duke@435 5260 *need_split = true;
duke@435 5261 return max_partial_reg;
duke@435 5262 } else {
duke@435 5263 return any_reg;
duke@435 5264 }
duke@435 5265 }
duke@435 5266
duke@435 5267
duke@435 5268 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
duke@435 5269 TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
duke@435 5270
duke@435 5271 init_use_lists(true);
duke@435 5272 free_exclude_active_fixed();
duke@435 5273 free_exclude_active_any();
duke@435 5274 free_collect_inactive_fixed(cur);
duke@435 5275 free_collect_inactive_any(cur);
duke@435 5276 // free_collect_unhandled(fixedKind, cur);
duke@435 5277 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
duke@435 5278
duke@435 5279 // _use_pos contains the start of the next interval that has this register assigned
duke@435 5280 // (either as a fixed register or a normal allocated register in the past)
duke@435 5281 // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
duke@435 5282 TRACE_LINEAR_SCAN(4, tty->print_cr(" state of registers:"));
duke@435 5283 TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr(" reg %d: use_pos: %d", i, _use_pos[i]));
duke@435 5284
duke@435 5285 int hint_reg, hint_regHi;
duke@435 5286 Interval* register_hint = cur->register_hint();
duke@435 5287 if (register_hint != NULL) {
duke@435 5288 hint_reg = register_hint->assigned_reg();
duke@435 5289 hint_regHi = register_hint->assigned_regHi();
duke@435 5290
duke@435 5291 if (allocator()->is_precolored_cpu_interval(register_hint)) {
duke@435 5292 assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
duke@435 5293 hint_regHi = hint_reg + 1; // connect e.g. eax-edx
duke@435 5294 }
duke@435 5295 TRACE_LINEAR_SCAN(4, tty->print(" hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
duke@435 5296
duke@435 5297 } else {
duke@435 5298 hint_reg = any_reg;
duke@435 5299 hint_regHi = any_reg;
duke@435 5300 }
duke@435 5301 assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
duke@435 5302 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
duke@435 5303
duke@435 5304 // the register must be free at least until this position
duke@435 5305 int reg_needed_until = cur->from() + 1;
duke@435 5306 int interval_to = cur->to();
duke@435 5307
duke@435 5308 bool need_split = false;
duke@435 5309 int split_pos = -1;
duke@435 5310 int reg = any_reg;
duke@435 5311 int regHi = any_reg;
duke@435 5312
duke@435 5313 if (_adjacent_regs) {
duke@435 5314 reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
duke@435 5315 regHi = reg + 1;
duke@435 5316 if (reg == any_reg) {
duke@435 5317 return false;
duke@435 5318 }
duke@435 5319 split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
duke@435 5320
duke@435 5321 } else {
duke@435 5322 reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
duke@435 5323 if (reg == any_reg) {
duke@435 5324 return false;
duke@435 5325 }
duke@435 5326 split_pos = _use_pos[reg];
duke@435 5327
duke@435 5328 if (_num_phys_regs == 2) {
duke@435 5329 regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
duke@435 5330
duke@435 5331 if (_use_pos[reg] < interval_to && regHi == any_reg) {
duke@435 5332 // do not split interval if only one register can be assigned until the split pos
duke@435 5333 // (when one register is found for the whole interval, split&spill is only
duke@435 5334 // performed for the hi register)
duke@435 5335 return false;
duke@435 5336
duke@435 5337 } else if (regHi != any_reg) {
duke@435 5338 split_pos = MIN2(split_pos, _use_pos[regHi]);
duke@435 5339
duke@435 5340 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
duke@435 5341 if (reg > regHi) {
duke@435 5342 int temp = reg;
duke@435 5343 reg = regHi;
duke@435 5344 regHi = temp;
duke@435 5345 }
duke@435 5346 }
duke@435 5347 }
duke@435 5348 }
duke@435 5349
duke@435 5350 cur->assign_reg(reg, regHi);
duke@435 5351 TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
duke@435 5352
duke@435 5353 assert(split_pos > 0, "invalid split_pos");
duke@435 5354 if (need_split) {
duke@435 5355 // register not available for full interval, so split it
duke@435 5356 split_when_partial_register_available(cur, split_pos);
duke@435 5357 }
duke@435 5358
duke@435 5359 // only return true if interval is completely assigned
duke@435 5360 return _num_phys_regs == 1 || regHi != any_reg;
duke@435 5361 }
duke@435 5362
duke@435 5363
duke@435 5364 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
duke@435 5365 int max_reg = any_reg;
duke@435 5366
duke@435 5367 for (int i = _first_reg; i <= _last_reg; i++) {
duke@435 5368 if (i == ignore_reg) {
duke@435 5369 // this register must be ignored
duke@435 5370
duke@435 5371 } else if (_use_pos[i] > reg_needed_until) {
duke@435 5372 if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
duke@435 5373 max_reg = i;
duke@435 5374 }
duke@435 5375 }
duke@435 5376 }
duke@435 5377
duke@435 5378 if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
duke@435 5379 *need_split = true;
duke@435 5380 }
duke@435 5381
duke@435 5382 return max_reg;
duke@435 5383 }
duke@435 5384
duke@435 5385 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
duke@435 5386 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
duke@435 5387
duke@435 5388 int max_reg = any_reg;
duke@435 5389
duke@435 5390 for (int i = _first_reg; i < _last_reg; i+=2) {
duke@435 5391 if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
duke@435 5392 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
duke@435 5393 max_reg = i;
duke@435 5394 }
duke@435 5395 }
duke@435 5396 }
duke@435 5397
duke@435 5398 if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
duke@435 5399 *need_split = true;
duke@435 5400 }
duke@435 5401
duke@435 5402 return max_reg;
duke@435 5403 }
duke@435 5404
duke@435 5405 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
duke@435 5406 assert(reg != any_reg, "no register assigned");
duke@435 5407
duke@435 5408 for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
duke@435 5409 Interval* it = _spill_intervals[reg]->at(i);
duke@435 5410 remove_from_list(it);
duke@435 5411 split_and_spill_interval(it);
duke@435 5412 }
duke@435 5413
duke@435 5414 if (regHi != any_reg) {
duke@435 5415 IntervalList* processed = _spill_intervals[reg];
duke@435 5416 for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
duke@435 5417 Interval* it = _spill_intervals[regHi]->at(i);
duke@435 5418 if (processed->index_of(it) == -1) {
duke@435 5419 remove_from_list(it);
duke@435 5420 split_and_spill_interval(it);
duke@435 5421 }
duke@435 5422 }
duke@435 5423 }
duke@435 5424 }
duke@435 5425
duke@435 5426
duke@435 5427 // Split an Interval and spill it to memory so that cur can be placed in a register
duke@435 5428 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
duke@435 5429 TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
duke@435 5430
duke@435 5431 // collect current usage of registers
duke@435 5432 init_use_lists(false);
duke@435 5433 spill_exclude_active_fixed();
duke@435 5434 // spill_block_unhandled_fixed(cur);
duke@435 5435 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
duke@435 5436 spill_block_inactive_fixed(cur);
duke@435 5437 spill_collect_active_any();
duke@435 5438 spill_collect_inactive_any(cur);
duke@435 5439
duke@435 5440 #ifndef PRODUCT
duke@435 5441 if (TraceLinearScanLevel >= 4) {
duke@435 5442 tty->print_cr(" state of registers:");
duke@435 5443 for (int i = _first_reg; i <= _last_reg; i++) {
duke@435 5444 tty->print(" reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
duke@435 5445 for (int j = 0; j < _spill_intervals[i]->length(); j++) {
duke@435 5446 tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
duke@435 5447 }
duke@435 5448 tty->cr();
duke@435 5449 }
duke@435 5450 }
duke@435 5451 #endif
duke@435 5452
duke@435 5453 // the register must be free at least until this position
duke@435 5454 int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
duke@435 5455 int interval_to = cur->to();
duke@435 5456 assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
duke@435 5457
duke@435 5458 int split_pos = 0;
duke@435 5459 int use_pos = 0;
duke@435 5460 bool need_split = false;
duke@435 5461 int reg, regHi;
duke@435 5462
duke@435 5463 if (_adjacent_regs) {
duke@435 5464 reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
duke@435 5465 regHi = reg + 1;
duke@435 5466
duke@435 5467 if (reg != any_reg) {
duke@435 5468 use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
duke@435 5469 split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
duke@435 5470 }
duke@435 5471 } else {
duke@435 5472 reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
duke@435 5473 regHi = any_reg;
duke@435 5474
duke@435 5475 if (reg != any_reg) {
duke@435 5476 use_pos = _use_pos[reg];
duke@435 5477 split_pos = _block_pos[reg];
duke@435 5478
duke@435 5479 if (_num_phys_regs == 2) {
duke@435 5480 if (cur->assigned_reg() != any_reg) {
duke@435 5481 regHi = reg;
duke@435 5482 reg = cur->assigned_reg();
duke@435 5483 } else {
duke@435 5484 regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
duke@435 5485 if (regHi != any_reg) {
duke@435 5486 use_pos = MIN2(use_pos, _use_pos[regHi]);
duke@435 5487 split_pos = MIN2(split_pos, _block_pos[regHi]);
duke@435 5488 }
duke@435 5489 }
duke@435 5490
duke@435 5491 if (regHi != any_reg && reg > regHi) {
duke@435 5492 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
duke@435 5493 int temp = reg;
duke@435 5494 reg = regHi;
duke@435 5495 regHi = temp;
duke@435 5496 }
duke@435 5497 }
duke@435 5498 }
duke@435 5499 }
duke@435 5500
duke@435 5501 if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
duke@435 5502 // the first use of cur is later than the spilling position -> spill cur
duke@435 5503 TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
duke@435 5504
duke@435 5505 if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
duke@435 5506 assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
duke@435 5507 // assign a reasonable register and do a bailout in product mode to avoid errors
duke@435 5508 allocator()->assign_spill_slot(cur);
duke@435 5509 BAILOUT("LinearScan: no register found");
duke@435 5510 }
duke@435 5511
duke@435 5512 split_and_spill_interval(cur);
duke@435 5513 } else {
duke@435 5514 TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
duke@435 5515 assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
duke@435 5516 assert(split_pos > 0, "invalid split_pos");
duke@435 5517 assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
duke@435 5518
duke@435 5519 cur->assign_reg(reg, regHi);
duke@435 5520 if (need_split) {
duke@435 5521 // register not available for full interval, so split it
duke@435 5522 split_when_partial_register_available(cur, split_pos);
duke@435 5523 }
duke@435 5524
duke@435 5525 // perform splitting and spilling for all affected intervalls
duke@435 5526 split_and_spill_intersecting_intervals(reg, regHi);
duke@435 5527 }
duke@435 5528 }
duke@435 5529
duke@435 5530 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
never@739 5531 #ifdef X86
duke@435 5532 // fast calculation of intervals that can never get a register because the
duke@435 5533 // the next instruction is a call that blocks all registers
duke@435 5534 // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
duke@435 5535
duke@435 5536 // check if this interval is the result of a split operation
duke@435 5537 // (an interval got a register until this position)
duke@435 5538 int pos = cur->from();
duke@435 5539 if ((pos & 1) == 1) {
duke@435 5540 // the current instruction is a call that blocks all registers
duke@435 5541 if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
duke@435 5542 TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call"));
duke@435 5543
duke@435 5544 // safety check that there is really no register available
duke@435 5545 assert(alloc_free_reg(cur) == false, "found a register for this interval");
duke@435 5546 return true;
duke@435 5547 }
duke@435 5548
duke@435 5549 }
duke@435 5550 #endif
duke@435 5551 return false;
duke@435 5552 }
duke@435 5553
duke@435 5554 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
duke@435 5555 BasicType type = cur->type();
duke@435 5556 _num_phys_regs = LinearScan::num_physical_regs(type);
duke@435 5557 _adjacent_regs = LinearScan::requires_adjacent_regs(type);
duke@435 5558
duke@435 5559 if (pd_init_regs_for_alloc(cur)) {
duke@435 5560 // the appropriate register range was selected.
duke@435 5561 } else if (type == T_FLOAT || type == T_DOUBLE) {
duke@435 5562 _first_reg = pd_first_fpu_reg;
duke@435 5563 _last_reg = pd_last_fpu_reg;
duke@435 5564 } else {
duke@435 5565 _first_reg = pd_first_cpu_reg;
duke@435 5566 _last_reg = pd_last_cpu_reg;
duke@435 5567 }
duke@435 5568
duke@435 5569 assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
duke@435 5570 assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
duke@435 5571 }
duke@435 5572
duke@435 5573
duke@435 5574 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
duke@435 5575 if (op->code() != lir_move) {
duke@435 5576 return false;
duke@435 5577 }
duke@435 5578 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
duke@435 5579
duke@435 5580 LIR_Opr in = ((LIR_Op1*)op)->in_opr();
duke@435 5581 LIR_Opr res = ((LIR_Op1*)op)->result_opr();
duke@435 5582 return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
duke@435 5583 }
duke@435 5584
duke@435 5585 // optimization (especially for phi functions of nested loops):
duke@435 5586 // assign same spill slot to non-intersecting intervals
duke@435 5587 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
duke@435 5588 if (cur->is_split_child()) {
duke@435 5589 // optimization is only suitable for split parents
duke@435 5590 return;
duke@435 5591 }
duke@435 5592
duke@435 5593 Interval* register_hint = cur->register_hint(false);
duke@435 5594 if (register_hint == NULL) {
duke@435 5595 // cur is not the target of a move, otherwise register_hint would be set
duke@435 5596 return;
duke@435 5597 }
duke@435 5598 assert(register_hint->is_split_parent(), "register hint must be split parent");
duke@435 5599
duke@435 5600 if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
duke@435 5601 // combining the stack slots for intervals where spill move optimization is applied
duke@435 5602 // is not benefitial and would cause problems
duke@435 5603 return;
duke@435 5604 }
duke@435 5605
duke@435 5606 int begin_pos = cur->from();
duke@435 5607 int end_pos = cur->to();
duke@435 5608 if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
duke@435 5609 // safety check that lir_op_with_id is allowed
duke@435 5610 return;
duke@435 5611 }
duke@435 5612
duke@435 5613 if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
duke@435 5614 // cur and register_hint are not connected with two moves
duke@435 5615 return;
duke@435 5616 }
duke@435 5617
duke@435 5618 Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
duke@435 5619 Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
duke@435 5620 if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
duke@435 5621 // register_hint must be split, otherwise the re-writing of use positions does not work
duke@435 5622 return;
duke@435 5623 }
duke@435 5624
duke@435 5625 assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
duke@435 5626 assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
duke@435 5627 assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
duke@435 5628 assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
duke@435 5629
duke@435 5630 if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
duke@435 5631 // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
duke@435 5632 return;
duke@435 5633 }
duke@435 5634 assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
duke@435 5635
duke@435 5636 // modify intervals such that cur gets the same stack slot as register_hint
duke@435 5637 // delete use positions to prevent the intervals to get a register at beginning
duke@435 5638 cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
duke@435 5639 cur->remove_first_use_pos();
duke@435 5640 end_hint->remove_first_use_pos();
duke@435 5641 }
duke@435 5642
duke@435 5643
duke@435 5644 // allocate a physical register or memory location to an interval
duke@435 5645 bool LinearScanWalker::activate_current() {
duke@435 5646 Interval* cur = current();
duke@435 5647 bool result = true;
duke@435 5648
duke@435 5649 TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval "); cur->print());
duke@435 5650 TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
duke@435 5651
duke@435 5652 if (cur->assigned_reg() >= LinearScan::nof_regs) {
duke@435 5653 // activating an interval that has a stack slot assigned -> split it at first use position
duke@435 5654 // used for method parameters
duke@435 5655 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use"));
duke@435 5656
duke@435 5657 split_stack_interval(cur);
duke@435 5658 result = false;
duke@435 5659
duke@435 5660 } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
duke@435 5661 // activating an interval that must start in a stack slot, but may get a register later
duke@435 5662 // used for lir_roundfp: rounding is done by store to stack and reload later
duke@435 5663 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use"));
duke@435 5664 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
duke@435 5665
duke@435 5666 allocator()->assign_spill_slot(cur);
duke@435 5667 split_stack_interval(cur);
duke@435 5668 result = false;
duke@435 5669
duke@435 5670 } else if (cur->assigned_reg() == any_reg) {
duke@435 5671 // interval has not assigned register -> normal allocation
duke@435 5672 // (this is the normal case for most intervals)
duke@435 5673 TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register"));
duke@435 5674
duke@435 5675 // assign same spill slot to non-intersecting intervals
duke@435 5676 combine_spilled_intervals(cur);
duke@435 5677
duke@435 5678 init_vars_for_alloc(cur);
duke@435 5679 if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
duke@435 5680 // no empty register available.
duke@435 5681 // split and spill another interval so that this interval gets a register
duke@435 5682 alloc_locked_reg(cur);
duke@435 5683 }
duke@435 5684
duke@435 5685 // spilled intervals need not be move to active-list
duke@435 5686 if (cur->assigned_reg() >= LinearScan::nof_regs) {
duke@435 5687 result = false;
duke@435 5688 }
duke@435 5689 }
duke@435 5690
duke@435 5691 // load spilled values that become active from stack slot to register
duke@435 5692 if (cur->insert_move_when_activated()) {
duke@435 5693 assert(cur->is_split_child(), "must be");
duke@435 5694 assert(cur->current_split_child() != NULL, "must be");
duke@435 5695 assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
duke@435 5696 TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
duke@435 5697
duke@435 5698 insert_move(cur->from(), cur->current_split_child(), cur);
duke@435 5699 }
duke@435 5700 cur->make_current_split_child();
duke@435 5701
duke@435 5702 return result; // true = interval is moved to active list
duke@435 5703 }
duke@435 5704
duke@435 5705
duke@435 5706 // Implementation of EdgeMoveOptimizer
duke@435 5707
duke@435 5708 EdgeMoveOptimizer::EdgeMoveOptimizer() :
duke@435 5709 _edge_instructions(4),
duke@435 5710 _edge_instructions_idx(4)
duke@435 5711 {
duke@435 5712 }
duke@435 5713
duke@435 5714 void EdgeMoveOptimizer::optimize(BlockList* code) {
duke@435 5715 EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
duke@435 5716
duke@435 5717 // ignore the first block in the list (index 0 is not processed)
duke@435 5718 for (int i = code->length() - 1; i >= 1; i--) {
duke@435 5719 BlockBegin* block = code->at(i);
duke@435 5720
duke@435 5721 if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
duke@435 5722 optimizer.optimize_moves_at_block_end(block);
duke@435 5723 }
duke@435 5724 if (block->number_of_sux() == 2) {
duke@435 5725 optimizer.optimize_moves_at_block_begin(block);
duke@435 5726 }
duke@435 5727 }
duke@435 5728 }
duke@435 5729
duke@435 5730
duke@435 5731 // clear all internal data structures
duke@435 5732 void EdgeMoveOptimizer::init_instructions() {
duke@435 5733 _edge_instructions.clear();
duke@435 5734 _edge_instructions_idx.clear();
duke@435 5735 }
duke@435 5736
duke@435 5737 // append a lir-instruction-list and the index of the current operation in to the list
duke@435 5738 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
duke@435 5739 _edge_instructions.append(instructions);
duke@435 5740 _edge_instructions_idx.append(instructions_idx);
duke@435 5741 }
duke@435 5742
duke@435 5743 // return the current operation of the given edge (predecessor or successor)
duke@435 5744 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
duke@435 5745 LIR_OpList* instructions = _edge_instructions.at(edge);
duke@435 5746 int idx = _edge_instructions_idx.at(edge);
duke@435 5747
duke@435 5748 if (idx < instructions->length()) {
duke@435 5749 return instructions->at(idx);
duke@435 5750 } else {
duke@435 5751 return NULL;
duke@435 5752 }
duke@435 5753 }
duke@435 5754
duke@435 5755 // removes the current operation of the given edge (predecessor or successor)
duke@435 5756 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
duke@435 5757 LIR_OpList* instructions = _edge_instructions.at(edge);
duke@435 5758 int idx = _edge_instructions_idx.at(edge);
duke@435 5759 instructions->remove_at(idx);
duke@435 5760
duke@435 5761 if (decrement_index) {
duke@435 5762 _edge_instructions_idx.at_put(edge, idx - 1);
duke@435 5763 }
duke@435 5764 }
duke@435 5765
duke@435 5766
duke@435 5767 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
duke@435 5768 if (op1 == NULL || op2 == NULL) {
duke@435 5769 // at least one block is already empty -> no optimization possible
duke@435 5770 return true;
duke@435 5771 }
duke@435 5772
duke@435 5773 if (op1->code() == lir_move && op2->code() == lir_move) {
duke@435 5774 assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
duke@435 5775 assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
duke@435 5776 LIR_Op1* move1 = (LIR_Op1*)op1;
duke@435 5777 LIR_Op1* move2 = (LIR_Op1*)op2;
duke@435 5778 if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
duke@435 5779 // these moves are exactly equal and can be optimized
duke@435 5780 return false;
duke@435 5781 }
duke@435 5782
duke@435 5783 } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
duke@435 5784 assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
duke@435 5785 assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
duke@435 5786 LIR_Op1* fxch1 = (LIR_Op1*)op1;
duke@435 5787 LIR_Op1* fxch2 = (LIR_Op1*)op2;
duke@435 5788 if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
duke@435 5789 // equal FPU stack operations can be optimized
duke@435 5790 return false;
duke@435 5791 }
duke@435 5792
duke@435 5793 } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
duke@435 5794 // equal FPU stack operations can be optimized
duke@435 5795 return false;
duke@435 5796 }
duke@435 5797
duke@435 5798 // no optimization possible
duke@435 5799 return true;
duke@435 5800 }
duke@435 5801
duke@435 5802 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
duke@435 5803 TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
duke@435 5804
duke@435 5805 if (block->is_predecessor(block)) {
duke@435 5806 // currently we can't handle this correctly.
duke@435 5807 return;
duke@435 5808 }
duke@435 5809
duke@435 5810 init_instructions();
duke@435 5811 int num_preds = block->number_of_preds();
duke@435 5812 assert(num_preds > 1, "do not call otherwise");
duke@435 5813 assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
duke@435 5814
duke@435 5815 // setup a list with the lir-instructions of all predecessors
duke@435 5816 int i;
duke@435 5817 for (i = 0; i < num_preds; i++) {
duke@435 5818 BlockBegin* pred = block->pred_at(i);
duke@435 5819 LIR_OpList* pred_instructions = pred->lir()->instructions_list();
duke@435 5820
duke@435 5821 if (pred->number_of_sux() != 1) {
duke@435 5822 // this can happen with switch-statements where multiple edges are between
duke@435 5823 // the same blocks.
duke@435 5824 return;
duke@435 5825 }
duke@435 5826
duke@435 5827 assert(pred->number_of_sux() == 1, "can handle only one successor");
duke@435 5828 assert(pred->sux_at(0) == block, "invalid control flow");
duke@435 5829 assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
duke@435 5830 assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
duke@435 5831 assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
duke@435 5832
duke@435 5833 if (pred_instructions->last()->info() != NULL) {
duke@435 5834 // can not optimize instructions when debug info is needed
duke@435 5835 return;
duke@435 5836 }
duke@435 5837
duke@435 5838 // ignore the unconditional branch at the end of the block
duke@435 5839 append_instructions(pred_instructions, pred_instructions->length() - 2);
duke@435 5840 }
duke@435 5841
duke@435 5842
duke@435 5843 // process lir-instructions while all predecessors end with the same instruction
duke@435 5844 while (true) {
duke@435 5845 LIR_Op* op = instruction_at(0);
duke@435 5846 for (i = 1; i < num_preds; i++) {
duke@435 5847 if (operations_different(op, instruction_at(i))) {
duke@435 5848 // these instructions are different and cannot be optimized ->
duke@435 5849 // no further optimization possible
duke@435 5850 return;
duke@435 5851 }
duke@435 5852 }
duke@435 5853
duke@435 5854 TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
duke@435 5855
duke@435 5856 // insert the instruction at the beginning of the current block
duke@435 5857 block->lir()->insert_before(1, op);
duke@435 5858
duke@435 5859 // delete the instruction at the end of all predecessors
duke@435 5860 for (i = 0; i < num_preds; i++) {
duke@435 5861 remove_cur_instruction(i, true);
duke@435 5862 }
duke@435 5863 }
duke@435 5864 }
duke@435 5865
duke@435 5866
duke@435 5867 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
duke@435 5868 TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
duke@435 5869
duke@435 5870 init_instructions();
duke@435 5871 int num_sux = block->number_of_sux();
duke@435 5872
duke@435 5873 LIR_OpList* cur_instructions = block->lir()->instructions_list();
duke@435 5874
duke@435 5875 assert(num_sux == 2, "method should not be called otherwise");
duke@435 5876 assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
duke@435 5877 assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
duke@435 5878 assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
duke@435 5879
duke@435 5880 if (cur_instructions->last()->info() != NULL) {
duke@435 5881 // can no optimize instructions when debug info is needed
duke@435 5882 return;
duke@435 5883 }
duke@435 5884
duke@435 5885 LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
duke@435 5886 if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
duke@435 5887 // not a valid case for optimization
duke@435 5888 // currently, only blocks that end with two branches (conditional branch followed
duke@435 5889 // by unconditional branch) are optimized
duke@435 5890 return;
duke@435 5891 }
duke@435 5892
duke@435 5893 // now it is guaranteed that the block ends with two branch instructions.
duke@435 5894 // the instructions are inserted at the end of the block before these two branches
duke@435 5895 int insert_idx = cur_instructions->length() - 2;
duke@435 5896
duke@435 5897 int i;
duke@435 5898 #ifdef ASSERT
duke@435 5899 for (i = insert_idx - 1; i >= 0; i--) {
duke@435 5900 LIR_Op* op = cur_instructions->at(i);
duke@435 5901 if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
duke@435 5902 assert(false, "block with two successors can have only two branch instructions");
duke@435 5903 }
duke@435 5904 }
duke@435 5905 #endif
duke@435 5906
duke@435 5907 // setup a list with the lir-instructions of all successors
duke@435 5908 for (i = 0; i < num_sux; i++) {
duke@435 5909 BlockBegin* sux = block->sux_at(i);
duke@435 5910 LIR_OpList* sux_instructions = sux->lir()->instructions_list();
duke@435 5911
duke@435 5912 assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
duke@435 5913
duke@435 5914 if (sux->number_of_preds() != 1) {
duke@435 5915 // this can happen with switch-statements where multiple edges are between
duke@435 5916 // the same blocks.
duke@435 5917 return;
duke@435 5918 }
duke@435 5919 assert(sux->pred_at(0) == block, "invalid control flow");
duke@435 5920 assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
duke@435 5921
duke@435 5922 // ignore the label at the beginning of the block
duke@435 5923 append_instructions(sux_instructions, 1);
duke@435 5924 }
duke@435 5925
duke@435 5926 // process lir-instructions while all successors begin with the same instruction
duke@435 5927 while (true) {
duke@435 5928 LIR_Op* op = instruction_at(0);
duke@435 5929 for (i = 1; i < num_sux; i++) {
duke@435 5930 if (operations_different(op, instruction_at(i))) {
duke@435 5931 // these instructions are different and cannot be optimized ->
duke@435 5932 // no further optimization possible
duke@435 5933 return;
duke@435 5934 }
duke@435 5935 }
duke@435 5936
duke@435 5937 TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
duke@435 5938
duke@435 5939 // insert instruction at end of current block
duke@435 5940 block->lir()->insert_before(insert_idx, op);
duke@435 5941 insert_idx++;
duke@435 5942
duke@435 5943 // delete the instructions at the beginning of all successors
duke@435 5944 for (i = 0; i < num_sux; i++) {
duke@435 5945 remove_cur_instruction(i, false);
duke@435 5946 }
duke@435 5947 }
duke@435 5948 }
duke@435 5949
duke@435 5950
duke@435 5951 // Implementation of ControlFlowOptimizer
duke@435 5952
duke@435 5953 ControlFlowOptimizer::ControlFlowOptimizer() :
duke@435 5954 _original_preds(4)
duke@435 5955 {
duke@435 5956 }
duke@435 5957
duke@435 5958 void ControlFlowOptimizer::optimize(BlockList* code) {
duke@435 5959 ControlFlowOptimizer optimizer = ControlFlowOptimizer();
duke@435 5960
duke@435 5961 // push the OSR entry block to the end so that we're not jumping over it.
duke@435 5962 BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
duke@435 5963 if (osr_entry) {
duke@435 5964 int index = osr_entry->linear_scan_number();
duke@435 5965 assert(code->at(index) == osr_entry, "wrong index");
duke@435 5966 code->remove_at(index);
duke@435 5967 code->append(osr_entry);
duke@435 5968 }
duke@435 5969
duke@435 5970 optimizer.reorder_short_loops(code);
duke@435 5971 optimizer.delete_empty_blocks(code);
duke@435 5972 optimizer.delete_unnecessary_jumps(code);
duke@435 5973 optimizer.delete_jumps_to_return(code);
duke@435 5974 }
duke@435 5975
duke@435 5976 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
duke@435 5977 int i = header_idx + 1;
duke@435 5978 int max_end = MIN2(header_idx + ShortLoopSize, code->length());
duke@435 5979 while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
duke@435 5980 i++;
duke@435 5981 }
duke@435 5982
duke@435 5983 if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
duke@435 5984 int end_idx = i - 1;
duke@435 5985 BlockBegin* end_block = code->at(end_idx);
duke@435 5986
duke@435 5987 if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
duke@435 5988 // short loop from header_idx to end_idx found -> reorder blocks such that
duke@435 5989 // the header_block is the last block instead of the first block of the loop
duke@435 5990 TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
duke@435 5991 end_idx - header_idx + 1,
duke@435 5992 header_block->block_id(), end_block->block_id()));
duke@435 5993
duke@435 5994 for (int j = header_idx; j < end_idx; j++) {
duke@435 5995 code->at_put(j, code->at(j + 1));
duke@435 5996 }
duke@435 5997 code->at_put(end_idx, header_block);
duke@435 5998
duke@435 5999 // correct the flags so that any loop alignment occurs in the right place.
duke@435 6000 assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
duke@435 6001 code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
duke@435 6002 code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
duke@435 6003 }
duke@435 6004 }
duke@435 6005 }
duke@435 6006
duke@435 6007 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
duke@435 6008 for (int i = code->length() - 1; i >= 0; i--) {
duke@435 6009 BlockBegin* block = code->at(i);
duke@435 6010
duke@435 6011 if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
duke@435 6012 reorder_short_loop(code, block, i);
duke@435 6013 }
duke@435 6014 }
duke@435 6015
duke@435 6016 DEBUG_ONLY(verify(code));
duke@435 6017 }
duke@435 6018
duke@435 6019 // only blocks with exactly one successor can be deleted. Such blocks
duke@435 6020 // must always end with an unconditional branch to this successor
duke@435 6021 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
duke@435 6022 if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
duke@435 6023 return false;
duke@435 6024 }
duke@435 6025
duke@435 6026 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 6027
duke@435 6028 assert(instructions->length() >= 2, "block must have label and branch");
duke@435 6029 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
duke@435 6030 assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
duke@435 6031 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
duke@435 6032 assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
duke@435 6033
duke@435 6034 // block must have exactly one successor
duke@435 6035
duke@435 6036 if (instructions->length() == 2 && instructions->last()->info() == NULL) {
duke@435 6037 return true;
duke@435 6038 }
duke@435 6039 return false;
duke@435 6040 }
duke@435 6041
duke@435 6042 // substitute branch targets in all branch-instructions of this blocks
duke@435 6043 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
duke@435 6044 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
duke@435 6045
duke@435 6046 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 6047
duke@435 6048 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
duke@435 6049 for (int i = instructions->length() - 1; i >= 1; i--) {
duke@435 6050 LIR_Op* op = instructions->at(i);
duke@435 6051
duke@435 6052 if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
duke@435 6053 assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
duke@435 6054 LIR_OpBranch* branch = (LIR_OpBranch*)op;
duke@435 6055
duke@435 6056 if (branch->block() == target_from) {
duke@435 6057 branch->change_block(target_to);
duke@435 6058 }
duke@435 6059 if (branch->ublock() == target_from) {
duke@435 6060 branch->change_ublock(target_to);
duke@435 6061 }
duke@435 6062 }
duke@435 6063 }
duke@435 6064 }
duke@435 6065
duke@435 6066 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
duke@435 6067 int old_pos = 0;
duke@435 6068 int new_pos = 0;
duke@435 6069 int num_blocks = code->length();
duke@435 6070
duke@435 6071 while (old_pos < num_blocks) {
duke@435 6072 BlockBegin* block = code->at(old_pos);
duke@435 6073
duke@435 6074 if (can_delete_block(block)) {
duke@435 6075 BlockBegin* new_target = block->sux_at(0);
duke@435 6076
duke@435 6077 // propagate backward branch target flag for correct code alignment
duke@435 6078 if (block->is_set(BlockBegin::backward_branch_target_flag)) {
duke@435 6079 new_target->set(BlockBegin::backward_branch_target_flag);
duke@435 6080 }
duke@435 6081
duke@435 6082 // collect a list with all predecessors that contains each predecessor only once
duke@435 6083 // the predecessors of cur are changed during the substitution, so a copy of the
duke@435 6084 // predecessor list is necessary
duke@435 6085 int j;
duke@435 6086 _original_preds.clear();
duke@435 6087 for (j = block->number_of_preds() - 1; j >= 0; j--) {
duke@435 6088 BlockBegin* pred = block->pred_at(j);
duke@435 6089 if (_original_preds.index_of(pred) == -1) {
duke@435 6090 _original_preds.append(pred);
duke@435 6091 }
duke@435 6092 }
duke@435 6093
duke@435 6094 for (j = _original_preds.length() - 1; j >= 0; j--) {
duke@435 6095 BlockBegin* pred = _original_preds.at(j);
duke@435 6096 substitute_branch_target(pred, block, new_target);
duke@435 6097 pred->substitute_sux(block, new_target);
duke@435 6098 }
duke@435 6099 } else {
duke@435 6100 // adjust position of this block in the block list if blocks before
duke@435 6101 // have been deleted
duke@435 6102 if (new_pos != old_pos) {
duke@435 6103 code->at_put(new_pos, code->at(old_pos));
duke@435 6104 }
duke@435 6105 new_pos++;
duke@435 6106 }
duke@435 6107 old_pos++;
duke@435 6108 }
duke@435 6109 code->truncate(new_pos);
duke@435 6110
duke@435 6111 DEBUG_ONLY(verify(code));
duke@435 6112 }
duke@435 6113
duke@435 6114 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
duke@435 6115 // skip the last block because there a branch is always necessary
duke@435 6116 for (int i = code->length() - 2; i >= 0; i--) {
duke@435 6117 BlockBegin* block = code->at(i);
duke@435 6118 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 6119
duke@435 6120 LIR_Op* last_op = instructions->last();
duke@435 6121 if (last_op->code() == lir_branch) {
duke@435 6122 assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
duke@435 6123 LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
duke@435 6124
duke@435 6125 assert(last_branch->block() != NULL, "last branch must always have a block as target");
duke@435 6126 assert(last_branch->label() == last_branch->block()->label(), "must be equal");
duke@435 6127
duke@435 6128 if (last_branch->info() == NULL) {
duke@435 6129 if (last_branch->block() == code->at(i + 1)) {
duke@435 6130
duke@435 6131 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
duke@435 6132
duke@435 6133 // delete last branch instruction
duke@435 6134 instructions->truncate(instructions->length() - 1);
duke@435 6135
duke@435 6136 } else {
duke@435 6137 LIR_Op* prev_op = instructions->at(instructions->length() - 2);
duke@435 6138 if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
duke@435 6139 assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
duke@435 6140 LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
duke@435 6141
duke@435 6142 if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
duke@435 6143
duke@435 6144 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
duke@435 6145
duke@435 6146 // eliminate a conditional branch to the immediate successor
duke@435 6147 prev_branch->change_block(last_branch->block());
duke@435 6148 prev_branch->negate_cond();
duke@435 6149 instructions->truncate(instructions->length() - 1);
duke@435 6150 }
duke@435 6151 }
duke@435 6152 }
duke@435 6153 }
duke@435 6154 }
duke@435 6155 }
duke@435 6156
duke@435 6157 DEBUG_ONLY(verify(code));
duke@435 6158 }
duke@435 6159
duke@435 6160 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
duke@435 6161 #ifdef ASSERT
duke@435 6162 BitMap return_converted(BlockBegin::number_of_blocks());
duke@435 6163 return_converted.clear();
duke@435 6164 #endif
duke@435 6165
duke@435 6166 for (int i = code->length() - 1; i >= 0; i--) {
duke@435 6167 BlockBegin* block = code->at(i);
duke@435 6168 LIR_OpList* cur_instructions = block->lir()->instructions_list();
duke@435 6169 LIR_Op* cur_last_op = cur_instructions->last();
duke@435 6170
duke@435 6171 assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
duke@435 6172 if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
duke@435 6173 // the block contains only a label and a return
duke@435 6174 // if a predecessor ends with an unconditional jump to this block, then the jump
duke@435 6175 // can be replaced with a return instruction
duke@435 6176 //
duke@435 6177 // Note: the original block with only a return statement cannot be deleted completely
duke@435 6178 // because the predecessors might have other (conditional) jumps to this block
duke@435 6179 // -> this may lead to unnecesary return instructions in the final code
duke@435 6180
duke@435 6181 assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
duke@435 6182 assert(block->number_of_sux() == 0 ||
duke@435 6183 (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
duke@435 6184 "blocks that end with return must not have successors");
duke@435 6185
duke@435 6186 assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
duke@435 6187 LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
duke@435 6188
duke@435 6189 for (int j = block->number_of_preds() - 1; j >= 0; j--) {
duke@435 6190 BlockBegin* pred = block->pred_at(j);
duke@435 6191 LIR_OpList* pred_instructions = pred->lir()->instructions_list();
duke@435 6192 LIR_Op* pred_last_op = pred_instructions->last();
duke@435 6193
duke@435 6194 if (pred_last_op->code() == lir_branch) {
duke@435 6195 assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
duke@435 6196 LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
duke@435 6197
duke@435 6198 if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
duke@435 6199 // replace the jump to a return with a direct return
duke@435 6200 // Note: currently the edge between the blocks is not deleted
duke@435 6201 pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
duke@435 6202 #ifdef ASSERT
duke@435 6203 return_converted.set_bit(pred->block_id());
duke@435 6204 #endif
duke@435 6205 }
duke@435 6206 }
duke@435 6207 }
duke@435 6208 }
duke@435 6209 }
duke@435 6210 }
duke@435 6211
duke@435 6212
duke@435 6213 #ifdef ASSERT
duke@435 6214 void ControlFlowOptimizer::verify(BlockList* code) {
duke@435 6215 for (int i = 0; i < code->length(); i++) {
duke@435 6216 BlockBegin* block = code->at(i);
duke@435 6217 LIR_OpList* instructions = block->lir()->instructions_list();
duke@435 6218
duke@435 6219 int j;
duke@435 6220 for (j = 0; j < instructions->length(); j++) {
duke@435 6221 LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
duke@435 6222
duke@435 6223 if (op_branch != NULL) {
duke@435 6224 assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
duke@435 6225 assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
duke@435 6226 }
duke@435 6227 }
duke@435 6228
duke@435 6229 for (j = 0; j < block->number_of_sux() - 1; j++) {
duke@435 6230 BlockBegin* sux = block->sux_at(j);
duke@435 6231 assert(code->index_of(sux) != -1, "successor not valid");
duke@435 6232 }
duke@435 6233
duke@435 6234 for (j = 0; j < block->number_of_preds() - 1; j++) {
duke@435 6235 BlockBegin* pred = block->pred_at(j);
duke@435 6236 assert(code->index_of(pred) != -1, "successor not valid");
duke@435 6237 }
duke@435 6238 }
duke@435 6239 }
duke@435 6240 #endif
duke@435 6241
duke@435 6242
duke@435 6243 #ifndef PRODUCT
duke@435 6244
duke@435 6245 // Implementation of LinearStatistic
duke@435 6246
duke@435 6247 const char* LinearScanStatistic::counter_name(int counter_idx) {
duke@435 6248 switch (counter_idx) {
duke@435 6249 case counter_method: return "compiled methods";
duke@435 6250 case counter_fpu_method: return "methods using fpu";
duke@435 6251 case counter_loop_method: return "methods with loops";
duke@435 6252 case counter_exception_method:return "methods with xhandler";
duke@435 6253
duke@435 6254 case counter_loop: return "loops";
duke@435 6255 case counter_block: return "blocks";
duke@435 6256 case counter_loop_block: return "blocks inside loop";
duke@435 6257 case counter_exception_block: return "exception handler entries";
duke@435 6258 case counter_interval: return "intervals";
duke@435 6259 case counter_fixed_interval: return "fixed intervals";
duke@435 6260 case counter_range: return "ranges";
duke@435 6261 case counter_fixed_range: return "fixed ranges";
duke@435 6262 case counter_use_pos: return "use positions";
duke@435 6263 case counter_fixed_use_pos: return "fixed use positions";
duke@435 6264 case counter_spill_slots: return "spill slots";
duke@435 6265
duke@435 6266 // counter for classes of lir instructions
duke@435 6267 case counter_instruction: return "total instructions";
duke@435 6268 case counter_label: return "labels";
duke@435 6269 case counter_entry: return "method entries";
duke@435 6270 case counter_return: return "method returns";
duke@435 6271 case counter_call: return "method calls";
duke@435 6272 case counter_move: return "moves";
duke@435 6273 case counter_cmp: return "compare";
duke@435 6274 case counter_cond_branch: return "conditional branches";
duke@435 6275 case counter_uncond_branch: return "unconditional branches";
duke@435 6276 case counter_stub_branch: return "branches to stub";
duke@435 6277 case counter_alu: return "artithmetic + logic";
duke@435 6278 case counter_alloc: return "allocations";
duke@435 6279 case counter_sync: return "synchronisation";
duke@435 6280 case counter_throw: return "throw";
duke@435 6281 case counter_unwind: return "unwind";
duke@435 6282 case counter_typecheck: return "type+null-checks";
duke@435 6283 case counter_fpu_stack: return "fpu-stack";
duke@435 6284 case counter_misc_inst: return "other instructions";
duke@435 6285 case counter_other_inst: return "misc. instructions";
duke@435 6286
duke@435 6287 // counter for different types of moves
duke@435 6288 case counter_move_total: return "total moves";
duke@435 6289 case counter_move_reg_reg: return "register->register";
duke@435 6290 case counter_move_reg_stack: return "register->stack";
duke@435 6291 case counter_move_stack_reg: return "stack->register";
duke@435 6292 case counter_move_stack_stack:return "stack->stack";
duke@435 6293 case counter_move_reg_mem: return "register->memory";
duke@435 6294 case counter_move_mem_reg: return "memory->register";
duke@435 6295 case counter_move_const_any: return "constant->any";
duke@435 6296
duke@435 6297 case blank_line_1: return "";
duke@435 6298 case blank_line_2: return "";
duke@435 6299
duke@435 6300 default: ShouldNotReachHere(); return "";
duke@435 6301 }
duke@435 6302 }
duke@435 6303
duke@435 6304 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
duke@435 6305 if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
duke@435 6306 return counter_method;
duke@435 6307 } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
duke@435 6308 return counter_block;
duke@435 6309 } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
duke@435 6310 return counter_instruction;
duke@435 6311 } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
duke@435 6312 return counter_move_total;
duke@435 6313 }
duke@435 6314 return invalid_counter;
duke@435 6315 }
duke@435 6316
duke@435 6317 LinearScanStatistic::LinearScanStatistic() {
duke@435 6318 for (int i = 0; i < number_of_counters; i++) {
duke@435 6319 _counters_sum[i] = 0;
duke@435 6320 _counters_max[i] = -1;
duke@435 6321 }
duke@435 6322
duke@435 6323 }
duke@435 6324
duke@435 6325 // add the method-local numbers to the total sum
duke@435 6326 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
duke@435 6327 for (int i = 0; i < number_of_counters; i++) {
duke@435 6328 _counters_sum[i] += method_statistic._counters_sum[i];
duke@435 6329 _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
duke@435 6330 }
duke@435 6331 }
duke@435 6332
duke@435 6333 void LinearScanStatistic::print(const char* title) {
duke@435 6334 if (CountLinearScan || TraceLinearScanLevel > 0) {
duke@435 6335 tty->cr();
duke@435 6336 tty->print_cr("***** LinearScan statistic - %s *****", title);
duke@435 6337
duke@435 6338 for (int i = 0; i < number_of_counters; i++) {
duke@435 6339 if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
duke@435 6340 tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
duke@435 6341
duke@435 6342 if (base_counter(i) != invalid_counter) {
duke@435 6343 tty->print(" (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
duke@435 6344 } else {
duke@435 6345 tty->print(" ");
duke@435 6346 }
duke@435 6347
duke@435 6348 if (_counters_max[i] >= 0) {
duke@435 6349 tty->print("%8d", _counters_max[i]);
duke@435 6350 }
duke@435 6351 }
duke@435 6352 tty->cr();
duke@435 6353 }
duke@435 6354 }
duke@435 6355 }
duke@435 6356
duke@435 6357 void LinearScanStatistic::collect(LinearScan* allocator) {
duke@435 6358 inc_counter(counter_method);
duke@435 6359 if (allocator->has_fpu_registers()) {
duke@435 6360 inc_counter(counter_fpu_method);
duke@435 6361 }
duke@435 6362 if (allocator->num_loops() > 0) {
duke@435 6363 inc_counter(counter_loop_method);
duke@435 6364 }
duke@435 6365 inc_counter(counter_loop, allocator->num_loops());
duke@435 6366 inc_counter(counter_spill_slots, allocator->max_spills());
duke@435 6367
duke@435 6368 int i;
duke@435 6369 for (i = 0; i < allocator->interval_count(); i++) {
duke@435 6370 Interval* cur = allocator->interval_at(i);
duke@435 6371
duke@435 6372 if (cur != NULL) {
duke@435 6373 inc_counter(counter_interval);
duke@435 6374 inc_counter(counter_use_pos, cur->num_use_positions());
duke@435 6375 if (LinearScan::is_precolored_interval(cur)) {
duke@435 6376 inc_counter(counter_fixed_interval);
duke@435 6377 inc_counter(counter_fixed_use_pos, cur->num_use_positions());
duke@435 6378 }
duke@435 6379
duke@435 6380 Range* range = cur->first();
duke@435 6381 while (range != Range::end()) {
duke@435 6382 inc_counter(counter_range);
duke@435 6383 if (LinearScan::is_precolored_interval(cur)) {
duke@435 6384 inc_counter(counter_fixed_range);
duke@435 6385 }
duke@435 6386 range = range->next();
duke@435 6387 }
duke@435 6388 }
duke@435 6389 }
duke@435 6390
duke@435 6391 bool has_xhandlers = false;
duke@435 6392 // Note: only count blocks that are in code-emit order
duke@435 6393 for (i = 0; i < allocator->ir()->code()->length(); i++) {
duke@435 6394 BlockBegin* cur = allocator->ir()->code()->at(i);
duke@435 6395
duke@435 6396 inc_counter(counter_block);
duke@435 6397 if (cur->loop_depth() > 0) {
duke@435 6398 inc_counter(counter_loop_block);
duke@435 6399 }
duke@435 6400 if (cur->is_set(BlockBegin::exception_entry_flag)) {
duke@435 6401 inc_counter(counter_exception_block);
duke@435 6402 has_xhandlers = true;
duke@435 6403 }
duke@435 6404
duke@435 6405 LIR_OpList* instructions = cur->lir()->instructions_list();
duke@435 6406 for (int j = 0; j < instructions->length(); j++) {
duke@435 6407 LIR_Op* op = instructions->at(j);
duke@435 6408
duke@435 6409 inc_counter(counter_instruction);
duke@435 6410
duke@435 6411 switch (op->code()) {
duke@435 6412 case lir_label: inc_counter(counter_label); break;
duke@435 6413 case lir_std_entry:
duke@435 6414 case lir_osr_entry: inc_counter(counter_entry); break;
duke@435 6415 case lir_return: inc_counter(counter_return); break;
duke@435 6416
duke@435 6417 case lir_rtcall:
duke@435 6418 case lir_static_call:
duke@435 6419 case lir_optvirtual_call:
duke@435 6420 case lir_virtual_call: inc_counter(counter_call); break;
duke@435 6421
duke@435 6422 case lir_move: {
duke@435 6423 inc_counter(counter_move);
duke@435 6424 inc_counter(counter_move_total);
duke@435 6425
duke@435 6426 LIR_Opr in = op->as_Op1()->in_opr();
duke@435 6427 LIR_Opr res = op->as_Op1()->result_opr();
duke@435 6428 if (in->is_register()) {
duke@435 6429 if (res->is_register()) {
duke@435 6430 inc_counter(counter_move_reg_reg);
duke@435 6431 } else if (res->is_stack()) {
duke@435 6432 inc_counter(counter_move_reg_stack);
duke@435 6433 } else if (res->is_address()) {
duke@435 6434 inc_counter(counter_move_reg_mem);
duke@435 6435 } else {
duke@435 6436 ShouldNotReachHere();
duke@435 6437 }
duke@435 6438 } else if (in->is_stack()) {
duke@435 6439 if (res->is_register()) {
duke@435 6440 inc_counter(counter_move_stack_reg);
duke@435 6441 } else {
duke@435 6442 inc_counter(counter_move_stack_stack);
duke@435 6443 }
duke@435 6444 } else if (in->is_address()) {
duke@435 6445 assert(res->is_register(), "must be");
duke@435 6446 inc_counter(counter_move_mem_reg);
duke@435 6447 } else if (in->is_constant()) {
duke@435 6448 inc_counter(counter_move_const_any);
duke@435 6449 } else {
duke@435 6450 ShouldNotReachHere();
duke@435 6451 }
duke@435 6452 break;
duke@435 6453 }
duke@435 6454
duke@435 6455 case lir_cmp: inc_counter(counter_cmp); break;
duke@435 6456
duke@435 6457 case lir_branch:
duke@435 6458 case lir_cond_float_branch: {
duke@435 6459 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 6460 if (branch->block() == NULL) {
duke@435 6461 inc_counter(counter_stub_branch);
duke@435 6462 } else if (branch->cond() == lir_cond_always) {
duke@435 6463 inc_counter(counter_uncond_branch);
duke@435 6464 } else {
duke@435 6465 inc_counter(counter_cond_branch);
duke@435 6466 }
duke@435 6467 break;
duke@435 6468 }
duke@435 6469
duke@435 6470 case lir_neg:
duke@435 6471 case lir_add:
duke@435 6472 case lir_sub:
duke@435 6473 case lir_mul:
duke@435 6474 case lir_mul_strictfp:
duke@435 6475 case lir_div:
duke@435 6476 case lir_div_strictfp:
duke@435 6477 case lir_rem:
duke@435 6478 case lir_sqrt:
duke@435 6479 case lir_sin:
duke@435 6480 case lir_cos:
duke@435 6481 case lir_abs:
duke@435 6482 case lir_log10:
duke@435 6483 case lir_log:
duke@435 6484 case lir_logic_and:
duke@435 6485 case lir_logic_or:
duke@435 6486 case lir_logic_xor:
duke@435 6487 case lir_shl:
duke@435 6488 case lir_shr:
duke@435 6489 case lir_ushr: inc_counter(counter_alu); break;
duke@435 6490
duke@435 6491 case lir_alloc_object:
duke@435 6492 case lir_alloc_array: inc_counter(counter_alloc); break;
duke@435 6493
duke@435 6494 case lir_monaddr:
duke@435 6495 case lir_lock:
duke@435 6496 case lir_unlock: inc_counter(counter_sync); break;
duke@435 6497
duke@435 6498 case lir_throw: inc_counter(counter_throw); break;
duke@435 6499
duke@435 6500 case lir_unwind: inc_counter(counter_unwind); break;
duke@435 6501
duke@435 6502 case lir_null_check:
duke@435 6503 case lir_leal:
duke@435 6504 case lir_instanceof:
duke@435 6505 case lir_checkcast:
duke@435 6506 case lir_store_check: inc_counter(counter_typecheck); break;
duke@435 6507
duke@435 6508 case lir_fpop_raw:
duke@435 6509 case lir_fxch:
duke@435 6510 case lir_fld: inc_counter(counter_fpu_stack); break;
duke@435 6511
duke@435 6512 case lir_nop:
duke@435 6513 case lir_push:
duke@435 6514 case lir_pop:
duke@435 6515 case lir_convert:
duke@435 6516 case lir_roundfp:
duke@435 6517 case lir_cmove: inc_counter(counter_misc_inst); break;
duke@435 6518
duke@435 6519 default: inc_counter(counter_other_inst); break;
duke@435 6520 }
duke@435 6521 }
duke@435 6522 }
duke@435 6523
duke@435 6524 if (has_xhandlers) {
duke@435 6525 inc_counter(counter_exception_method);
duke@435 6526 }
duke@435 6527 }
duke@435 6528
duke@435 6529 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
duke@435 6530 if (CountLinearScan || TraceLinearScanLevel > 0) {
duke@435 6531
duke@435 6532 LinearScanStatistic local_statistic = LinearScanStatistic();
duke@435 6533
duke@435 6534 local_statistic.collect(allocator);
duke@435 6535 global_statistic.sum_up(local_statistic);
duke@435 6536
duke@435 6537 if (TraceLinearScanLevel > 2) {
duke@435 6538 local_statistic.print("current local statistic");
duke@435 6539 }
duke@435 6540 }
duke@435 6541 }
duke@435 6542
duke@435 6543
duke@435 6544 // Implementation of LinearTimers
duke@435 6545
duke@435 6546 LinearScanTimers::LinearScanTimers() {
duke@435 6547 for (int i = 0; i < number_of_timers; i++) {
duke@435 6548 timer(i)->reset();
duke@435 6549 }
duke@435 6550 }
duke@435 6551
duke@435 6552 const char* LinearScanTimers::timer_name(int idx) {
duke@435 6553 switch (idx) {
duke@435 6554 case timer_do_nothing: return "Nothing (Time Check)";
duke@435 6555 case timer_number_instructions: return "Number Instructions";
duke@435 6556 case timer_compute_local_live_sets: return "Local Live Sets";
duke@435 6557 case timer_compute_global_live_sets: return "Global Live Sets";
duke@435 6558 case timer_build_intervals: return "Build Intervals";
duke@435 6559 case timer_sort_intervals_before: return "Sort Intervals Before";
duke@435 6560 case timer_allocate_registers: return "Allocate Registers";
duke@435 6561 case timer_resolve_data_flow: return "Resolve Data Flow";
duke@435 6562 case timer_sort_intervals_after: return "Sort Intervals After";
duke@435 6563 case timer_eliminate_spill_moves: return "Spill optimization";
duke@435 6564 case timer_assign_reg_num: return "Assign Reg Num";
duke@435 6565 case timer_allocate_fpu_stack: return "Allocate FPU Stack";
duke@435 6566 case timer_optimize_lir: return "Optimize LIR";
duke@435 6567 default: ShouldNotReachHere(); return "";
duke@435 6568 }
duke@435 6569 }
duke@435 6570
duke@435 6571 void LinearScanTimers::begin_method() {
duke@435 6572 if (TimeEachLinearScan) {
duke@435 6573 // reset all timers to measure only current method
duke@435 6574 for (int i = 0; i < number_of_timers; i++) {
duke@435 6575 timer(i)->reset();
duke@435 6576 }
duke@435 6577 }
duke@435 6578 }
duke@435 6579
duke@435 6580 void LinearScanTimers::end_method(LinearScan* allocator) {
duke@435 6581 if (TimeEachLinearScan) {
duke@435 6582
duke@435 6583 double c = timer(timer_do_nothing)->seconds();
duke@435 6584 double total = 0;
duke@435 6585 for (int i = 1; i < number_of_timers; i++) {
duke@435 6586 total += timer(i)->seconds() - c;
duke@435 6587 }
duke@435 6588
duke@435 6589 if (total >= 0.0005) {
duke@435 6590 // print all information in one line for automatic processing
duke@435 6591 tty->print("@"); allocator->compilation()->method()->print_name();
duke@435 6592
duke@435 6593 tty->print("@ %d ", allocator->compilation()->method()->code_size());
duke@435 6594 tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
duke@435 6595 tty->print("@ %d ", allocator->block_count());
duke@435 6596 tty->print("@ %d ", allocator->num_virtual_regs());
duke@435 6597 tty->print("@ %d ", allocator->interval_count());
duke@435 6598 tty->print("@ %d ", allocator->_num_calls);
duke@435 6599 tty->print("@ %d ", allocator->num_loops());
duke@435 6600
duke@435 6601 tty->print("@ %6.6f ", total);
duke@435 6602 for (int i = 1; i < number_of_timers; i++) {
duke@435 6603 tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
duke@435 6604 }
duke@435 6605 tty->cr();
duke@435 6606 }
duke@435 6607 }
duke@435 6608 }
duke@435 6609
duke@435 6610 void LinearScanTimers::print(double total_time) {
duke@435 6611 if (TimeLinearScan) {
duke@435 6612 // correction value: sum of dummy-timer that only measures the time that
duke@435 6613 // is necesary to start and stop itself
duke@435 6614 double c = timer(timer_do_nothing)->seconds();
duke@435 6615
duke@435 6616 for (int i = 0; i < number_of_timers; i++) {
duke@435 6617 double t = timer(i)->seconds();
duke@435 6618 tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
duke@435 6619 }
duke@435 6620 }
duke@435 6621 }
duke@435 6622
duke@435 6623 #endif // #ifndef PRODUCT

mercurial