src/share/vm/runtime/sharedRuntime.cpp

Wed, 10 Sep 2014 00:44:16 -0400

author
dholmes
date
Wed, 10 Sep 2014 00:44:16 -0400
changeset 7273
c12e6bac4ad0
parent 7193
07e01043ade7
child 7419
d3f3f7677537
permissions
-rw-r--r--

8056183: os::is_MP() always reports true when NMT is enabled
Reviewed-by: shade, coleenp, bdelsart

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
twisti@4318 34 #include "compiler/disassembler.hpp"
stefank@2314 35 #include "interpreter/interpreter.hpp"
stefank@2314 36 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 37 #include "memory/gcLocker.inline.hpp"
stefank@2314 38 #include "memory/universe.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "prims/forte.hpp"
stefank@2314 41 #include "prims/jvmtiExport.hpp"
stefank@2314 42 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 43 #include "prims/methodHandles.hpp"
stefank@2314 44 #include "prims/nativeLookup.hpp"
stefank@2314 45 #include "runtime/arguments.hpp"
stefank@2314 46 #include "runtime/biasedLocking.hpp"
stefank@2314 47 #include "runtime/handles.inline.hpp"
stefank@2314 48 #include "runtime/init.hpp"
stefank@2314 49 #include "runtime/interfaceSupport.hpp"
stefank@2314 50 #include "runtime/javaCalls.hpp"
stefank@2314 51 #include "runtime/sharedRuntime.hpp"
stefank@2314 52 #include "runtime/stubRoutines.hpp"
stefank@2314 53 #include "runtime/vframe.hpp"
stefank@2314 54 #include "runtime/vframeArray.hpp"
stefank@2314 55 #include "utilities/copy.hpp"
stefank@2314 56 #include "utilities/dtrace.hpp"
stefank@2314 57 #include "utilities/events.hpp"
stefank@2314 58 #include "utilities/hashtable.inline.hpp"
jprovino@4542 59 #include "utilities/macros.hpp"
stefank@2314 60 #include "utilities/xmlstream.hpp"
stefank@2314 61 #ifdef TARGET_ARCH_x86
stefank@2314 62 # include "nativeInst_x86.hpp"
stefank@2314 63 # include "vmreg_x86.inline.hpp"
stefank@2314 64 #endif
stefank@2314 65 #ifdef TARGET_ARCH_sparc
stefank@2314 66 # include "nativeInst_sparc.hpp"
stefank@2314 67 # include "vmreg_sparc.inline.hpp"
stefank@2314 68 #endif
stefank@2314 69 #ifdef TARGET_ARCH_zero
stefank@2314 70 # include "nativeInst_zero.hpp"
stefank@2314 71 # include "vmreg_zero.inline.hpp"
stefank@2314 72 #endif
bobv@2508 73 #ifdef TARGET_ARCH_arm
bobv@2508 74 # include "nativeInst_arm.hpp"
bobv@2508 75 # include "vmreg_arm.inline.hpp"
bobv@2508 76 #endif
bobv@2508 77 #ifdef TARGET_ARCH_ppc
bobv@2508 78 # include "nativeInst_ppc.hpp"
bobv@2508 79 # include "vmreg_ppc.inline.hpp"
bobv@2508 80 #endif
stefank@2314 81 #ifdef COMPILER1
stefank@2314 82 #include "c1/c1_Runtime1.hpp"
stefank@2314 83 #endif
stefank@2314 84
drchase@6680 85 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
drchase@6680 86
never@2950 87 // Shared stub locations
never@2950 88 RuntimeStub* SharedRuntime::_wrong_method_blob;
morris@6113 89 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
never@2950 90 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 91 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 92 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 93 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 94
never@2950 95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
kvn@4103 96 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
never@2950 97 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 98 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 99
never@2950 100 #ifdef COMPILER2
never@2950 101 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 102 #endif // COMPILER2
never@2950 103
never@2950 104
never@2950 105 //----------------------------generate_stubs-----------------------------------
never@2950 106 void SharedRuntime::generate_stubs() {
morris@6113 107 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
morris@6113 108 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
morris@6113 109 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
morris@6113 110 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
morris@6113 111 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
morris@6113 112 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 113
kvn@4103 114 #ifdef COMPILER2
kvn@4103 115 // Vectors are generated only by C2.
kvn@4103 116 if (is_wide_vector(MaxVectorSize)) {
kvn@4103 117 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
kvn@4103 118 }
kvn@4103 119 #endif // COMPILER2
kvn@4103 120 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
kvn@4103 121 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
never@2950 122
never@2950 123 generate_deopt_blob();
never@2950 124
never@2950 125 #ifdef COMPILER2
never@2950 126 generate_uncommon_trap_blob();
never@2950 127 #endif // COMPILER2
never@2950 128 }
never@2950 129
duke@435 130 #include <math.h>
duke@435 131
dcubed@3202 132 #ifndef USDT2
duke@435 133 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 134 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 135 char*, int, char*, int, char*, int);
duke@435 136 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 137 char*, int, char*, int, char*, int);
dcubed@3202 138 #endif /* !USDT2 */
duke@435 139
duke@435 140 // Implementation of SharedRuntime
duke@435 141
duke@435 142 #ifndef PRODUCT
duke@435 143 // For statistics
duke@435 144 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 145 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 146 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 147 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 148 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 149 int SharedRuntime::_implicit_null_throws = 0;
duke@435 150 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 151 int SharedRuntime::_throw_null_ctr = 0;
duke@435 152
duke@435 153 int SharedRuntime::_nof_normal_calls = 0;
duke@435 154 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 155 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 156 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 157 int SharedRuntime::_nof_static_calls = 0;
duke@435 158 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 159 int SharedRuntime::_nof_interface_calls = 0;
duke@435 160 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 161 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 162 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 163 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 164
duke@435 165 int SharedRuntime::_new_instance_ctr=0;
duke@435 166 int SharedRuntime::_new_array_ctr=0;
duke@435 167 int SharedRuntime::_multi1_ctr=0;
duke@435 168 int SharedRuntime::_multi2_ctr=0;
duke@435 169 int SharedRuntime::_multi3_ctr=0;
duke@435 170 int SharedRuntime::_multi4_ctr=0;
duke@435 171 int SharedRuntime::_multi5_ctr=0;
duke@435 172 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 173 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 174 int SharedRuntime::_mon_enter_ctr=0;
duke@435 175 int SharedRuntime::_mon_exit_ctr=0;
duke@435 176 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 177 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 178 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 179 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 180 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 181 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 182 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 183 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 184 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 185 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 186 int SharedRuntime::_find_handler_ctr=0;
duke@435 187 int SharedRuntime::_rethrow_ctr=0;
duke@435 188
duke@435 189 int SharedRuntime::_ICmiss_index = 0;
duke@435 190 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 191 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 192
never@2950 193
duke@435 194 void SharedRuntime::trace_ic_miss(address at) {
duke@435 195 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 196 if (_ICmiss_at[i] == at) {
duke@435 197 _ICmiss_count[i]++;
duke@435 198 return;
duke@435 199 }
duke@435 200 }
duke@435 201 int index = _ICmiss_index++;
duke@435 202 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 203 _ICmiss_at[index] = at;
duke@435 204 _ICmiss_count[index] = 1;
duke@435 205 }
duke@435 206
duke@435 207 void SharedRuntime::print_ic_miss_histogram() {
duke@435 208 if (ICMissHistogram) {
duke@435 209 tty->print_cr ("IC Miss Histogram:");
duke@435 210 int tot_misses = 0;
duke@435 211 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 212 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 213 tot_misses += _ICmiss_count[i];
duke@435 214 }
duke@435 215 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 216 }
duke@435 217 }
duke@435 218 #endif // PRODUCT
duke@435 219
jprovino@4542 220 #if INCLUDE_ALL_GCS
ysr@777 221
ysr@777 222 // G1 write-barrier pre: executed before a pointer store.
ysr@777 223 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 224 if (orig == NULL) {
ysr@777 225 assert(false, "should be optimized out");
ysr@777 226 return;
ysr@777 227 }
ysr@1280 228 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 229 // store the original value that was in the field reference
ysr@777 230 thread->satb_mark_queue().enqueue(orig);
ysr@777 231 JRT_END
ysr@777 232
ysr@777 233 // G1 write-barrier post: executed after a pointer store.
ysr@777 234 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 235 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 236 JRT_END
ysr@777 237
jprovino@4542 238 #endif // INCLUDE_ALL_GCS
ysr@777 239
duke@435 240
duke@435 241 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 242 return x * y;
duke@435 243 JRT_END
duke@435 244
duke@435 245
duke@435 246 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 247 if (x == min_jlong && y == CONST64(-1)) {
duke@435 248 return x;
duke@435 249 } else {
duke@435 250 return x / y;
duke@435 251 }
duke@435 252 JRT_END
duke@435 253
duke@435 254
duke@435 255 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 256 if (x == min_jlong && y == CONST64(-1)) {
duke@435 257 return 0;
duke@435 258 } else {
duke@435 259 return x % y;
duke@435 260 }
duke@435 261 JRT_END
duke@435 262
duke@435 263
duke@435 264 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 265 const juint float_infinity = 0x7F800000;
duke@435 266 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 267 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 268
duke@435 269 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 270 #ifdef _WIN64
duke@435 271 // 64-bit Windows on amd64 returns the wrong values for
duke@435 272 // infinity operands.
duke@435 273 union { jfloat f; juint i; } xbits, ybits;
duke@435 274 xbits.f = x;
duke@435 275 ybits.f = y;
duke@435 276 // x Mod Infinity == x unless x is infinity
duke@435 277 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 278 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 279 return x;
duke@435 280 }
duke@435 281 #endif
duke@435 282 return ((jfloat)fmod((double)x,(double)y));
duke@435 283 JRT_END
duke@435 284
duke@435 285
duke@435 286 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 287 #ifdef _WIN64
duke@435 288 union { jdouble d; julong l; } xbits, ybits;
duke@435 289 xbits.d = x;
duke@435 290 ybits.d = y;
duke@435 291 // x Mod Infinity == x unless x is infinity
duke@435 292 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 293 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 294 return x;
duke@435 295 }
duke@435 296 #endif
duke@435 297 return ((jdouble)fmod((double)x,(double)y));
duke@435 298 JRT_END
duke@435 299
bobv@2036 300 #ifdef __SOFTFP__
bobv@2036 301 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 302 return x + y;
bobv@2036 303 JRT_END
bobv@2036 304
bobv@2036 305 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 306 return x - y;
bobv@2036 307 JRT_END
bobv@2036 308
bobv@2036 309 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 310 return x * y;
bobv@2036 311 JRT_END
bobv@2036 312
bobv@2036 313 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 314 return x / y;
bobv@2036 315 JRT_END
bobv@2036 316
bobv@2036 317 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 318 return x + y;
bobv@2036 319 JRT_END
bobv@2036 320
bobv@2036 321 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 322 return x - y;
bobv@2036 323 JRT_END
bobv@2036 324
bobv@2036 325 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 326 return x * y;
bobv@2036 327 JRT_END
bobv@2036 328
bobv@2036 329 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 330 return x / y;
bobv@2036 331 JRT_END
bobv@2036 332
bobv@2036 333 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 334 return (jfloat)x;
bobv@2036 335 JRT_END
bobv@2036 336
bobv@2036 337 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 338 return (jdouble)x;
bobv@2036 339 JRT_END
bobv@2036 340
bobv@2036 341 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 342 return (jdouble)x;
bobv@2036 343 JRT_END
bobv@2036 344
bobv@2036 345 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 346 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 347 JRT_END
bobv@2036 348
bobv@2036 349 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 350 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 351 JRT_END
bobv@2036 352
bobv@2036 353 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 354 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 355 JRT_END
bobv@2036 356
bobv@2036 357 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 358 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 359 JRT_END
bobv@2036 360
bobv@2036 361 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 362 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 363 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 364 JRT_END
bobv@2036 365
bobv@2036 366 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 367 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 368 JRT_END
bobv@2036 369
bobv@2036 370 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 371 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 372 JRT_END
bobv@2036 373
bobv@2036 374 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 375 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 376 JRT_END
bobv@2036 377
bobv@2036 378 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 379 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 380 JRT_END
bobv@2036 381
bobv@2036 382 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 383 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 384 JRT_END
bobv@2036 385
bobv@2036 386 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 387 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 388 JRT_END
bobv@2036 389
bobv@2036 390 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 391 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 392 JRT_END
bobv@2036 393
bobv@2036 394 // Intrinsics make gcc generate code for these.
bobv@2036 395 float SharedRuntime::fneg(float f) {
bobv@2036 396 return -f;
bobv@2036 397 }
bobv@2036 398
bobv@2036 399 double SharedRuntime::dneg(double f) {
bobv@2036 400 return -f;
bobv@2036 401 }
bobv@2036 402
bobv@2036 403 #endif // __SOFTFP__
bobv@2036 404
bobv@2036 405 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 406 // Intrinsics make gcc generate code for these.
bobv@2036 407 double SharedRuntime::dabs(double f) {
bobv@2036 408 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 409 }
bobv@2036 410
bobv@2223 411 #endif
bobv@2223 412
goetz@6440 413 #if defined(__SOFTFP__) || defined(PPC32)
bobv@2036 414 double SharedRuntime::dsqrt(double f) {
bobv@2036 415 return sqrt(f);
bobv@2036 416 }
bobv@2036 417 #endif
duke@435 418
duke@435 419 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 420 if (g_isnan(x))
kvn@943 421 return 0;
kvn@943 422 if (x >= (jfloat) max_jint)
kvn@943 423 return max_jint;
kvn@943 424 if (x <= (jfloat) min_jint)
kvn@943 425 return min_jint;
kvn@943 426 return (jint) x;
duke@435 427 JRT_END
duke@435 428
duke@435 429
duke@435 430 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 431 if (g_isnan(x))
kvn@943 432 return 0;
kvn@943 433 if (x >= (jfloat) max_jlong)
kvn@943 434 return max_jlong;
kvn@943 435 if (x <= (jfloat) min_jlong)
kvn@943 436 return min_jlong;
kvn@943 437 return (jlong) x;
duke@435 438 JRT_END
duke@435 439
duke@435 440
duke@435 441 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 442 if (g_isnan(x))
kvn@943 443 return 0;
kvn@943 444 if (x >= (jdouble) max_jint)
kvn@943 445 return max_jint;
kvn@943 446 if (x <= (jdouble) min_jint)
kvn@943 447 return min_jint;
kvn@943 448 return (jint) x;
duke@435 449 JRT_END
duke@435 450
duke@435 451
duke@435 452 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 453 if (g_isnan(x))
kvn@943 454 return 0;
kvn@943 455 if (x >= (jdouble) max_jlong)
kvn@943 456 return max_jlong;
kvn@943 457 if (x <= (jdouble) min_jlong)
kvn@943 458 return min_jlong;
kvn@943 459 return (jlong) x;
duke@435 460 JRT_END
duke@435 461
duke@435 462
duke@435 463 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 464 return (jfloat)x;
duke@435 465 JRT_END
duke@435 466
duke@435 467
duke@435 468 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 469 return (jfloat)x;
duke@435 470 JRT_END
duke@435 471
duke@435 472
duke@435 473 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 474 return (jdouble)x;
duke@435 475 JRT_END
duke@435 476
duke@435 477 // Exception handling accross interpreter/compiler boundaries
duke@435 478 //
duke@435 479 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 480 // The continuation address is the entry point of the exception handler of the
duke@435 481 // previous frame depending on the return address.
duke@435 482
twisti@1730 483 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 484 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 485
twisti@2603 486 // Reset method handle flag.
twisti@1803 487 thread->set_is_method_handle_return(false);
twisti@1803 488
twisti@2603 489 // The fastest case first
duke@435 490 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 491 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 492 if (nm != NULL) {
twisti@2603 493 // Set flag if return address is a method handle call site.
twisti@2603 494 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 495 // native nmethods don't have exception handlers
twisti@2603 496 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 497 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 498 if (nm->is_deopt_pc(return_address)) {
roland@6215 499 // If we come here because of a stack overflow, the stack may be
roland@6215 500 // unguarded. Reguard the stack otherwise if we return to the
roland@6215 501 // deopt blob and the stack bang causes a stack overflow we
roland@6215 502 // crash.
roland@6215 503 bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
roland@6215 504 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
roland@6215 505 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
duke@435 506 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 507 } else {
twisti@2603 508 return nm->exception_begin();
duke@435 509 }
duke@435 510 }
duke@435 511
duke@435 512 // Entry code
duke@435 513 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 514 return StubRoutines::catch_exception_entry();
duke@435 515 }
duke@435 516 // Interpreted code
duke@435 517 if (Interpreter::contains(return_address)) {
duke@435 518 return Interpreter::rethrow_exception_entry();
duke@435 519 }
duke@435 520
twisti@2603 521 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 522 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 523
duke@435 524 #ifndef PRODUCT
duke@435 525 { ResourceMark rm;
duke@435 526 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 527 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 528 tty->print_cr("b) other problem");
duke@435 529 }
duke@435 530 #endif // PRODUCT
twisti@2603 531
duke@435 532 ShouldNotReachHere();
duke@435 533 return NULL;
duke@435 534 }
duke@435 535
duke@435 536
twisti@1730 537 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 538 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 539 JRT_END
duke@435 540
twisti@1730 541
duke@435 542 address SharedRuntime::get_poll_stub(address pc) {
duke@435 543 address stub;
duke@435 544 // Look up the code blob
duke@435 545 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 546
duke@435 547 // Should be an nmethod
duke@435 548 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 549
duke@435 550 // Look up the relocation information
duke@435 551 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 552 "safepoint polling: type must be poll" );
duke@435 553
duke@435 554 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 555 "Only polling locations are used for safepoint");
duke@435 556
duke@435 557 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
kvn@4103 558 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
duke@435 559 if (at_poll_return) {
duke@435 560 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 561 "polling page return stub not created yet");
twisti@2103 562 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
kvn@4103 563 } else if (has_wide_vectors) {
kvn@4103 564 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
kvn@4103 565 "polling page vectors safepoint stub not created yet");
kvn@4103 566 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
duke@435 567 } else {
duke@435 568 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 569 "polling page safepoint stub not created yet");
twisti@2103 570 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 571 }
duke@435 572 #ifndef PRODUCT
duke@435 573 if( TraceSafepoint ) {
duke@435 574 char buf[256];
duke@435 575 jio_snprintf(buf, sizeof(buf),
duke@435 576 "... found polling page %s exception at pc = "
duke@435 577 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 578 at_poll_return ? "return" : "loop",
duke@435 579 (intptr_t)pc, (intptr_t)stub);
duke@435 580 tty->print_raw_cr(buf);
duke@435 581 }
duke@435 582 #endif // PRODUCT
duke@435 583 return stub;
duke@435 584 }
duke@435 585
duke@435 586
coleenp@2497 587 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 588 assert(caller.is_interpreted_frame(), "");
duke@435 589 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 590 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
hseigel@5784 591 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
duke@435 592 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 593 return result;
duke@435 594 }
duke@435 595
duke@435 596
duke@435 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 598 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 599 vframeStream vfst(thread, true);
duke@435 600 methodHandle method = methodHandle(thread, vfst.method());
duke@435 601 address bcp = method()->bcp_from(vfst.bci());
duke@435 602 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 603 }
duke@435 604 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 605 }
duke@435 606
coleenp@2497 607 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 608 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 609 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 610 }
duke@435 611
dcubed@1045 612 // The interpreter code to call this tracing function is only
dcubed@1045 613 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 614 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 615 // to modify the compilers to generate calls to this function.
dcubed@1045 616 //
dcubed@1045 617 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
coleenp@4037 618 JavaThread* thread, Method* method))
dcubed@1045 619 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 620
dcubed@1045 621 if (method->is_obsolete()) {
dcubed@1045 622 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 623 // an error. Our method could have been redefined just after we
coleenp@4037 624 // fetched the Method* from the constant pool.
dcubed@1045 625
dcubed@1045 626 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 627 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 628 ("calling obsolete method '%s'",
dcubed@1045 629 method->name_and_sig_as_C_string()));
dcubed@1045 630 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 631 // this option is provided to debug calls to obsolete methods
dcubed@1045 632 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 633 }
dcubed@1045 634 }
dcubed@1045 635 return 0;
dcubed@1045 636 JRT_END
dcubed@1045 637
duke@435 638 // ret_pc points into caller; we are returning caller's exception handler
duke@435 639 // for given exception
duke@435 640 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 641 bool force_unwind, bool top_frame_only) {
duke@435 642 assert(nm != NULL, "must exist");
duke@435 643 ResourceMark rm;
duke@435 644
duke@435 645 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 646 // determine handler bci, if any
duke@435 647 EXCEPTION_MARK;
duke@435 648
duke@435 649 int handler_bci = -1;
duke@435 650 int scope_depth = 0;
duke@435 651 if (!force_unwind) {
duke@435 652 int bci = sd->bci();
kvn@3194 653 bool recursive_exception = false;
duke@435 654 do {
duke@435 655 bool skip_scope_increment = false;
duke@435 656 // exception handler lookup
duke@435 657 KlassHandle ek (THREAD, exception->klass());
jiangli@4405 658 methodHandle mh(THREAD, sd->method());
jiangli@4405 659 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
duke@435 660 if (HAS_PENDING_EXCEPTION) {
kvn@3194 661 recursive_exception = true;
duke@435 662 // We threw an exception while trying to find the exception handler.
duke@435 663 // Transfer the new exception to the exception handle which will
duke@435 664 // be set into thread local storage, and do another lookup for an
duke@435 665 // exception handler for this exception, this time starting at the
duke@435 666 // BCI of the exception handler which caused the exception to be
duke@435 667 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 668 // argument to ensure that the correct exception is thrown (4870175).
duke@435 669 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 670 CLEAR_PENDING_EXCEPTION;
duke@435 671 if (handler_bci >= 0) {
duke@435 672 bci = handler_bci;
duke@435 673 handler_bci = -1;
duke@435 674 skip_scope_increment = true;
duke@435 675 }
duke@435 676 }
kvn@3194 677 else {
kvn@3194 678 recursive_exception = false;
kvn@3194 679 }
duke@435 680 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 681 sd = sd->sender();
duke@435 682 if (sd != NULL) {
duke@435 683 bci = sd->bci();
duke@435 684 }
duke@435 685 ++scope_depth;
duke@435 686 }
kvn@3194 687 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
duke@435 688 }
duke@435 689
duke@435 690 // found handling method => lookup exception handler
twisti@2103 691 int catch_pco = ret_pc - nm->code_begin();
duke@435 692
duke@435 693 ExceptionHandlerTable table(nm);
duke@435 694 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 695 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 696 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 697 // to materialize its exceptions without committing to the exact
duke@435 698 // routing of exceptions. In particular this is needed for adding
duke@435 699 // a synthethic handler to unlock monitors when inlining
duke@435 700 // synchonized methods since the unlock path isn't represented in
duke@435 701 // the bytecodes.
duke@435 702 t = table.entry_for(catch_pco, -1, 0);
duke@435 703 }
duke@435 704
never@1813 705 #ifdef COMPILER1
never@1813 706 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 707 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 708 return nm->unwind_handler_begin();
never@1813 709 }
never@1813 710 #endif
never@1813 711
duke@435 712 if (t == NULL) {
duke@435 713 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 714 tty->print_cr(" Exception:");
duke@435 715 exception->print();
duke@435 716 tty->cr();
duke@435 717 tty->print_cr(" Compiled exception table :");
duke@435 718 table.print();
duke@435 719 nm->print_code();
duke@435 720 guarantee(false, "missing exception handler");
duke@435 721 return NULL;
duke@435 722 }
duke@435 723
twisti@2103 724 return nm->code_begin() + t->pco();
duke@435 725 }
duke@435 726
duke@435 727 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 728 // These errors occur only at call sites
duke@435 729 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 730 JRT_END
duke@435 731
dcubed@451 732 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 733 // These errors occur only at call sites
dcubed@451 734 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 735 JRT_END
dcubed@451 736
duke@435 737 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 738 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 739 JRT_END
duke@435 740
duke@435 741 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 742 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 743 JRT_END
duke@435 744
duke@435 745 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 746 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 747 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 748 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 749 JRT_END
duke@435 750
duke@435 751 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 752 // We avoid using the normal exception construction in this case because
duke@435 753 // it performs an upcall to Java, and we're already out of stack space.
coleenp@4037 754 Klass* k = SystemDictionary::StackOverflowError_klass();
coleenp@4037 755 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 756 Handle exception (thread, exception_oop);
duke@435 757 if (StackTraceInThrowable) {
duke@435 758 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 759 }
duke@435 760 throw_and_post_jvmti_exception(thread, exception);
duke@435 761 JRT_END
duke@435 762
duke@435 763 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 764 address pc,
duke@435 765 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 766 {
duke@435 767 address target_pc = NULL;
duke@435 768
duke@435 769 if (Interpreter::contains(pc)) {
duke@435 770 #ifdef CC_INTERP
duke@435 771 // C++ interpreter doesn't throw implicit exceptions
duke@435 772 ShouldNotReachHere();
duke@435 773 #else
duke@435 774 switch (exception_kind) {
duke@435 775 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 776 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 777 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 778 default: ShouldNotReachHere();
duke@435 779 }
duke@435 780 #endif // !CC_INTERP
duke@435 781 } else {
duke@435 782 switch (exception_kind) {
duke@435 783 case STACK_OVERFLOW: {
duke@435 784 // Stack overflow only occurs upon frame setup; the callee is
duke@435 785 // going to be unwound. Dispatch to a shared runtime stub
duke@435 786 // which will cause the StackOverflowError to be fabricated
duke@435 787 // and processed.
roland@6723 788 // Stack overflow should never occur during deoptimization:
roland@6723 789 // the compiled method bangs the stack by as much as the
roland@6723 790 // interpreter would need in case of a deoptimization. The
roland@6723 791 // deoptimization blob and uncommon trap blob bang the stack
roland@6723 792 // in a debug VM to verify the correctness of the compiled
roland@6723 793 // method stack banging.
roland@6723 794 assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
never@3571 795 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
duke@435 796 return StubRoutines::throw_StackOverflowError_entry();
duke@435 797 }
duke@435 798
duke@435 799 case IMPLICIT_NULL: {
duke@435 800 if (VtableStubs::contains(pc)) {
duke@435 801 // We haven't yet entered the callee frame. Fabricate an
duke@435 802 // exception and begin dispatching it in the caller. Since
duke@435 803 // the caller was at a call site, it's safe to destroy all
duke@435 804 // caller-saved registers, as these entry points do.
duke@435 805 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 806
poonam@900 807 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 808 if (vt_stub == NULL) return NULL;
poonam@900 809
duke@435 810 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 811 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
never@3571 812 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
duke@435 813 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 814 } else {
never@3571 815 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
duke@435 816 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 817 }
duke@435 818 } else {
duke@435 819 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 820
poonam@900 821 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 822 if (cb == NULL) return NULL;
duke@435 823
duke@435 824 // Exception happened in CodeCache. Must be either:
duke@435 825 // 1. Inline-cache check in C2I handler blob,
duke@435 826 // 2. Inline-cache check in nmethod, or
duke@435 827 // 3. Implict null exception in nmethod
duke@435 828
duke@435 829 if (!cb->is_nmethod()) {
coleenp@5302 830 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
coleenp@5302 831 if (!is_in_blob) {
coleenp@5302 832 cb->print();
coleenp@5302 833 fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
coleenp@5302 834 }
never@3571 835 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
duke@435 836 // There is no handler here, so we will simply unwind.
duke@435 837 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 838 }
duke@435 839
duke@435 840 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 841 nmethod* nm = (nmethod*)cb;
duke@435 842 if (nm->inlinecache_check_contains(pc)) {
duke@435 843 // exception happened inside inline-cache check code
duke@435 844 // => the nmethod is not yet active (i.e., the frame
duke@435 845 // is not set up yet) => use return address pushed by
duke@435 846 // caller => don't push another return address
never@3571 847 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
duke@435 848 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 849 }
duke@435 850
twisti@3969 851 if (nm->method()->is_method_handle_intrinsic()) {
twisti@3969 852 // exception happened inside MH dispatch code, similar to a vtable stub
twisti@3969 853 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
twisti@3969 854 return StubRoutines::throw_NullPointerException_at_call_entry();
twisti@3969 855 }
twisti@3969 856
duke@435 857 #ifndef PRODUCT
duke@435 858 _implicit_null_throws++;
duke@435 859 #endif
duke@435 860 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 861 // If there's an unexpected fault, target_pc might be NULL,
never@1685 862 // in which case we want to fall through into the normal
never@1685 863 // error handling code.
duke@435 864 }
duke@435 865
duke@435 866 break; // fall through
duke@435 867 }
duke@435 868
duke@435 869
duke@435 870 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 871 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 872 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 873 #ifndef PRODUCT
duke@435 874 _implicit_div0_throws++;
duke@435 875 #endif
duke@435 876 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 877 // If there's an unexpected fault, target_pc might be NULL,
never@1685 878 // in which case we want to fall through into the normal
never@1685 879 // error handling code.
duke@435 880 break; // fall through
duke@435 881 }
duke@435 882
duke@435 883 default: ShouldNotReachHere();
duke@435 884 }
duke@435 885
duke@435 886 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 887
duke@435 888 // for AbortVMOnException flag
duke@435 889 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 890 if (exception_kind == IMPLICIT_NULL) {
never@3499 891 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 892 } else {
never@3499 893 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 894 }
duke@435 895 return target_pc;
duke@435 896 }
duke@435 897
duke@435 898 ShouldNotReachHere();
duke@435 899 return NULL;
duke@435 900 }
duke@435 901
duke@435 902
twisti@5108 903 /**
twisti@5108 904 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
twisti@5108 905 * installed in the native function entry of all native Java methods before
twisti@5108 906 * they get linked to their actual native methods.
twisti@5108 907 *
twisti@5108 908 * \note
twisti@5108 909 * This method actually never gets called! The reason is because
twisti@5108 910 * the interpreter's native entries call NativeLookup::lookup() which
twisti@5108 911 * throws the exception when the lookup fails. The exception is then
twisti@5108 912 * caught and forwarded on the return from NativeLookup::lookup() call
twisti@5108 913 * before the call to the native function. This might change in the future.
twisti@5108 914 */
twisti@5108 915 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 916 {
twisti@5108 917 // We return a bad value here to make sure that the exception is
twisti@5108 918 // forwarded before we look at the return value.
twisti@5108 919 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
duke@435 920 }
duke@435 921 JNI_END
duke@435 922
duke@435 923 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 924 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 925 }
duke@435 926
duke@435 927
duke@435 928 #ifndef PRODUCT
duke@435 929 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 930 const frame f = thread->last_frame();
duke@435 931 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 932 #ifndef PRODUCT
duke@435 933 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 934 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 935 #endif // !PRODUCT
duke@435 936 return preserve_this_value;
duke@435 937 JRT_END
duke@435 938 #endif // !PRODUCT
duke@435 939
duke@435 940
duke@435 941 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 942 os::yield_all(attempts);
duke@435 943 JRT_END
duke@435 944
duke@435 945
duke@435 946 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 947 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 948 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 949 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 950 JRT_END
duke@435 951
duke@435 952
duke@435 953 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 954 if (thread != NULL) {
duke@435 955 if (thread->is_Java_thread()) {
duke@435 956 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 957 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 958 }
duke@435 959 }
duke@435 960 return 0;
duke@435 961 }
duke@435 962
duke@435 963 /**
duke@435 964 * This function ought to be a void function, but cannot be because
duke@435 965 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 966 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 967 */
coleenp@6627 968 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
coleenp@6627 969 return dtrace_object_alloc_base(Thread::current(), o, size);
duke@435 970 }
duke@435 971
coleenp@6627 972 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
duke@435 973 assert(DTraceAllocProbes, "wrong call");
coleenp@4037 974 Klass* klass = o->klass();
coleenp@2497 975 Symbol* name = klass->name();
dcubed@3202 976 #ifndef USDT2
duke@435 977 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 978 name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 979 #else /* USDT2 */
dcubed@3202 980 HOTSPOT_OBJECT_ALLOC(
dcubed@3202 981 get_java_tid(thread),
dcubed@3202 982 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 983 #endif /* USDT2 */
duke@435 984 return 0;
duke@435 985 }
duke@435 986
duke@435 987 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
coleenp@4037 988 JavaThread* thread, Method* method))
duke@435 989 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 990 Symbol* kname = method->klass_name();
coleenp@2497 991 Symbol* name = method->name();
coleenp@2497 992 Symbol* sig = method->signature();
dcubed@3202 993 #ifndef USDT2
duke@435 994 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 995 kname->bytes(), kname->utf8_length(),
duke@435 996 name->bytes(), name->utf8_length(),
duke@435 997 sig->bytes(), sig->utf8_length());
dcubed@3202 998 #else /* USDT2 */
dcubed@3202 999 HOTSPOT_METHOD_ENTRY(
dcubed@3202 1000 get_java_tid(thread),
dcubed@3202 1001 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 1002 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 1003 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 1004 #endif /* USDT2 */
duke@435 1005 return 0;
duke@435 1006 JRT_END
duke@435 1007
duke@435 1008 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
coleenp@4037 1009 JavaThread* thread, Method* method))
duke@435 1010 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 1011 Symbol* kname = method->klass_name();
coleenp@2497 1012 Symbol* name = method->name();
coleenp@2497 1013 Symbol* sig = method->signature();
dcubed@3202 1014 #ifndef USDT2
duke@435 1015 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 1016 kname->bytes(), kname->utf8_length(),
duke@435 1017 name->bytes(), name->utf8_length(),
duke@435 1018 sig->bytes(), sig->utf8_length());
dcubed@3202 1019 #else /* USDT2 */
dcubed@3202 1020 HOTSPOT_METHOD_RETURN(
dcubed@3202 1021 get_java_tid(thread),
dcubed@3202 1022 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 1023 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 1024 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 1025 #endif /* USDT2 */
duke@435 1026 return 0;
duke@435 1027 JRT_END
duke@435 1028
duke@435 1029
duke@435 1030 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 1031 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1032 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 1033 // vtable updates, etc. Caller frame must be compiled.
duke@435 1034 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 1035 ResourceMark rm(THREAD);
duke@435 1036
duke@435 1037 // last java frame on stack (which includes native call frames)
duke@435 1038 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 1039
duke@435 1040 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 1041 }
duke@435 1042
duke@435 1043
duke@435 1044 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 1045 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1046 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 1047 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1048 vframeStream& vfst,
duke@435 1049 Bytecodes::Code& bc,
duke@435 1050 CallInfo& callinfo, TRAPS) {
duke@435 1051 Handle receiver;
duke@435 1052 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1053
duke@435 1054 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1055
duke@435 1056 // Find caller and bci from vframe
twisti@3969 1057 methodHandle caller(THREAD, vfst.method());
twisti@3969 1058 int bci = vfst.bci();
duke@435 1059
duke@435 1060 // Find bytecode
never@2462 1061 Bytecode_invoke bytecode(caller, bci);
twisti@3969 1062 bc = bytecode.invoke_code();
never@2462 1063 int bytecode_index = bytecode.index();
duke@435 1064
duke@435 1065 // Find receiver for non-static call
twisti@3969 1066 if (bc != Bytecodes::_invokestatic &&
roland@5628 1067 bc != Bytecodes::_invokedynamic &&
roland@5628 1068 bc != Bytecodes::_invokehandle) {
duke@435 1069 // This register map must be update since we need to find the receiver for
duke@435 1070 // compiled frames. The receiver might be in a register.
duke@435 1071 RegisterMap reg_map2(thread);
duke@435 1072 frame stubFrame = thread->last_frame();
duke@435 1073 // Caller-frame is a compiled frame
duke@435 1074 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1075
never@2462 1076 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1077 if (callee.is_null()) {
duke@435 1078 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1079 }
duke@435 1080 // Retrieve from a compiled argument list
duke@435 1081 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1082
duke@435 1083 if (receiver.is_null()) {
duke@435 1084 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1085 }
duke@435 1086 }
duke@435 1087
duke@435 1088 // Resolve method. This is parameterized by bytecode.
twisti@3969 1089 constantPoolHandle constants(THREAD, caller->constants());
twisti@3969 1090 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1091 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1092
duke@435 1093 #ifdef ASSERT
duke@435 1094 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
roland@5628 1095 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
duke@435 1096 assert(receiver.not_null(), "should have thrown exception");
twisti@3969 1097 KlassHandle receiver_klass(THREAD, receiver->klass());
coleenp@4037 1098 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1099 // klass is already loaded
twisti@3969 1100 KlassHandle static_receiver_klass(THREAD, rk);
twisti@3969 1101 // Method handle invokes might have been optimized to a direct call
twisti@3969 1102 // so don't check for the receiver class.
twisti@3969 1103 // FIXME this weakens the assert too much
twisti@3969 1104 methodHandle callee = callinfo.selected_method();
twisti@3969 1105 assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
twisti@3969 1106 callee->is_method_handle_intrinsic() ||
twisti@3969 1107 callee->is_compiled_lambda_form(),
twisti@3969 1108 "actual receiver must be subclass of static receiver klass");
duke@435 1109 if (receiver_klass->oop_is_instance()) {
coleenp@4037 1110 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1111 tty->print_cr("ERROR: Klass not yet initialized!!");
coleenp@4037 1112 receiver_klass()->print();
duke@435 1113 }
coleenp@4037 1114 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1115 }
duke@435 1116 }
duke@435 1117 #endif
duke@435 1118
duke@435 1119 return receiver;
duke@435 1120 }
duke@435 1121
duke@435 1122 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1123 ResourceMark rm(THREAD);
duke@435 1124 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1125 // exist on the stack since last JavaCall. If not, we need
duke@435 1126 // to get the target method from the JavaCall wrapper.
duke@435 1127 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1128 methodHandle callee_method;
duke@435 1129 if (vfst.at_end()) {
duke@435 1130 // No Java frames were found on stack since we did the JavaCall.
duke@435 1131 // Hence the stack can only contain an entry_frame. We need to
duke@435 1132 // find the target method from the stub frame.
duke@435 1133 RegisterMap reg_map(thread, false);
duke@435 1134 frame fr = thread->last_frame();
duke@435 1135 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1136 fr = fr.sender(&reg_map);
duke@435 1137 assert(fr.is_entry_frame(), "must be");
duke@435 1138 // fr is now pointing to the entry frame.
duke@435 1139 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1140 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1141 } else {
duke@435 1142 Bytecodes::Code bc;
duke@435 1143 CallInfo callinfo;
duke@435 1144 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1145 callee_method = callinfo.selected_method();
duke@435 1146 }
duke@435 1147 assert(callee_method()->is_method(), "must be");
duke@435 1148 return callee_method;
duke@435 1149 }
duke@435 1150
duke@435 1151 // Resolves a call.
duke@435 1152 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1153 bool is_virtual,
duke@435 1154 bool is_optimized, TRAPS) {
duke@435 1155 methodHandle callee_method;
duke@435 1156 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1157 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1158 int retry_count = 0;
duke@435 1159 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1160 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1161 // If has a pending exception then there is no need to re-try to
duke@435 1162 // resolve this method.
duke@435 1163 // If the method has been redefined, we need to try again.
duke@435 1164 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1165 // require that java.lang.Object has been updated.
duke@435 1166
duke@435 1167 // It is very unlikely that method is redefined more than 100 times
duke@435 1168 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1169 // means then there could be a bug here.
duke@435 1170 guarantee((retry_count++ < 100),
duke@435 1171 "Could not resolve to latest version of redefined method");
duke@435 1172 // method is redefined in the middle of resolve so re-try.
duke@435 1173 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1174 }
duke@435 1175 }
duke@435 1176 return callee_method;
duke@435 1177 }
duke@435 1178
duke@435 1179 // Resolves a call. The compilers generate code for calls that go here
duke@435 1180 // and are patched with the real destination of the call.
duke@435 1181 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1182 bool is_virtual,
duke@435 1183 bool is_optimized, TRAPS) {
duke@435 1184
duke@435 1185 ResourceMark rm(thread);
duke@435 1186 RegisterMap cbl_map(thread, false);
duke@435 1187 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1188
twisti@1730 1189 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1190 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1191 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
kvn@6172 1192
duke@435 1193 // make sure caller is not getting deoptimized
duke@435 1194 // and removed before we are done with it.
duke@435 1195 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1196 nmethodLocker caller_lock(caller_nm);
duke@435 1197
duke@435 1198 // determine call info & receiver
duke@435 1199 // note: a) receiver is NULL for static calls
duke@435 1200 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1201 CallInfo call_info;
duke@435 1202 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1203 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1204 call_info, CHECK_(methodHandle()));
duke@435 1205 methodHandle callee_method = call_info.selected_method();
duke@435 1206
twisti@3969 1207 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
twisti@3969 1208 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
twisti@3969 1209 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
twisti@3969 1210 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
duke@435 1211
thartmann@7193 1212 assert(caller_nm->is_alive(), "It should be alive");
kvn@6172 1213
duke@435 1214 #ifndef PRODUCT
duke@435 1215 // tracing/debugging/statistics
duke@435 1216 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1217 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1218 (&_resolve_static_ctr);
duke@435 1219 Atomic::inc(addr);
duke@435 1220
duke@435 1221 if (TraceCallFixup) {
duke@435 1222 ResourceMark rm(thread);
duke@435 1223 tty->print("resolving %s%s (%s) call to",
duke@435 1224 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1225 Bytecodes::name(invoke_code));
duke@435 1226 callee_method->print_short_name(tty);
twisti@3969 1227 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
duke@435 1228 }
duke@435 1229 #endif
duke@435 1230
twisti@3969 1231 // JSR 292 key invariant:
twisti@1730 1232 // If the resolved method is a MethodHandle invoke target the call
twisti@3969 1233 // site must be a MethodHandle call site, because the lambda form might tail-call
twisti@3969 1234 // leaving the stack in a state unknown to either caller or callee
twisti@3969 1235 // TODO detune for now but we might need it again
twisti@3969 1236 // assert(!callee_method->is_compiled_lambda_form() ||
twisti@3969 1237 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1238
duke@435 1239 // Compute entry points. This might require generation of C2I converter
duke@435 1240 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1241 // computation of the entry points is independent of patching the call. We
duke@435 1242 // always return the entry-point, but we only patch the stub if the call has
duke@435 1243 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1244 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1245 // virtual this is just a destination address.
duke@435 1246
duke@435 1247 StaticCallInfo static_call_info;
duke@435 1248 CompiledICInfo virtual_call_info;
duke@435 1249
duke@435 1250 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1251 // we are done patching the code.
twisti@1730 1252 nmethod* callee_nm = callee_method->code();
kvn@6172 1253 if (callee_nm != NULL && !callee_nm->is_in_use()) {
kvn@6172 1254 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
kvn@6172 1255 callee_nm = NULL;
kvn@6172 1256 }
twisti@1730 1257 nmethodLocker nl_callee(callee_nm);
duke@435 1258 #ifdef ASSERT
twisti@1730 1259 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1260 #endif
duke@435 1261
duke@435 1262 if (is_virtual) {
roland@5628 1263 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
duke@435 1264 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
roland@5628 1265 KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
duke@435 1266 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1267 is_optimized, static_bound, virtual_call_info,
duke@435 1268 CHECK_(methodHandle()));
duke@435 1269 } else {
duke@435 1270 // static call
duke@435 1271 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1272 }
duke@435 1273
duke@435 1274 // grab lock, check for deoptimization and potentially patch caller
duke@435 1275 {
duke@435 1276 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1277
kvn@6172 1278 // Lock blocks for safepoint during which both nmethods can change state.
kvn@6172 1279
coleenp@4037 1280 // Now that we are ready to patch if the Method* was redefined then
duke@435 1281 // don't update call site and let the caller retry.
kvn@6172 1282 // Don't update call site if callee nmethod was unloaded or deoptimized.
kvn@6172 1283 // Don't update call site if callee nmethod was replaced by an other nmethod
kvn@6172 1284 // which may happen when multiply alive nmethod (tiered compilation)
kvn@6172 1285 // will be supported.
thartmann@7193 1286 if (!callee_method->is_old() &&
kvn@6172 1287 (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
duke@435 1288 #ifdef ASSERT
duke@435 1289 // We must not try to patch to jump to an already unloaded method.
duke@435 1290 if (dest_entry_point != 0) {
kvn@6172 1291 CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
kvn@6172 1292 assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
kvn@6172 1293 "should not call unloaded nmethod");
duke@435 1294 }
duke@435 1295 #endif
duke@435 1296 if (is_virtual) {
coleenp@4037 1297 nmethod* nm = callee_nm;
coleenp@4037 1298 if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
coleenp@4037 1299 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
duke@435 1300 if (inline_cache->is_clean()) {
duke@435 1301 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1302 }
duke@435 1303 } else {
duke@435 1304 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1305 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1306 }
duke@435 1307 }
duke@435 1308
duke@435 1309 } // unlock CompiledIC_lock
duke@435 1310
duke@435 1311 return callee_method;
duke@435 1312 }
duke@435 1313
duke@435 1314
duke@435 1315 // Inline caches exist only in compiled code
duke@435 1316 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1317 #ifdef ASSERT
duke@435 1318 RegisterMap reg_map(thread, false);
duke@435 1319 frame stub_frame = thread->last_frame();
duke@435 1320 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1321 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1322 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1323 #endif /* ASSERT */
duke@435 1324
duke@435 1325 methodHandle callee_method;
duke@435 1326 JRT_BLOCK
duke@435 1327 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
coleenp@4037 1328 // Return Method* through TLS
coleenp@4037 1329 thread->set_vm_result_2(callee_method());
duke@435 1330 JRT_BLOCK_END
duke@435 1331 // return compiled code entry point after potential safepoints
duke@435 1332 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1333 return callee_method->verified_code_entry();
duke@435 1334 JRT_END
duke@435 1335
duke@435 1336
duke@435 1337 // Handle call site that has been made non-entrant
duke@435 1338 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1339 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1340 // as we race to call it. We don't want to take a safepoint if
duke@435 1341 // the caller was interpreted because the caller frame will look
duke@435 1342 // interpreted to the stack walkers and arguments are now
duke@435 1343 // "compiled" so it is much better to make this transition
duke@435 1344 // invisible to the stack walking code. The i2c path will
duke@435 1345 // place the callee method in the callee_target. It is stashed
duke@435 1346 // there because if we try and find the callee by normal means a
duke@435 1347 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1348 RegisterMap reg_map(thread, false);
duke@435 1349 frame stub_frame = thread->last_frame();
duke@435 1350 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1351 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1352
twisti@1570 1353 if (caller_frame.is_interpreted_frame() ||
twisti@3969 1354 caller_frame.is_entry_frame()) {
coleenp@4037 1355 Method* callee = thread->callee_target();
duke@435 1356 guarantee(callee != NULL && callee->is_method(), "bad handshake");
coleenp@4037 1357 thread->set_vm_result_2(callee);
duke@435 1358 thread->set_callee_target(NULL);
duke@435 1359 return callee->get_c2i_entry();
duke@435 1360 }
duke@435 1361
duke@435 1362 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1363 methodHandle callee_method;
duke@435 1364 JRT_BLOCK
duke@435 1365 // Force resolving of caller (if we called from compiled frame)
duke@435 1366 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
coleenp@4037 1367 thread->set_vm_result_2(callee_method());
duke@435 1368 JRT_BLOCK_END
duke@435 1369 // return compiled code entry point after potential safepoints
duke@435 1370 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1371 return callee_method->verified_code_entry();
duke@435 1372 JRT_END
duke@435 1373
morris@6113 1374 // Handle abstract method call
morris@6113 1375 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
morris@6113 1376 return StubRoutines::throw_AbstractMethodError_entry();
morris@6113 1377 JRT_END
morris@6113 1378
duke@435 1379
duke@435 1380 // resolve a static call and patch code
duke@435 1381 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1382 methodHandle callee_method;
duke@435 1383 JRT_BLOCK
duke@435 1384 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
coleenp@4037 1385 thread->set_vm_result_2(callee_method());
duke@435 1386 JRT_BLOCK_END
duke@435 1387 // return compiled code entry point after potential safepoints
duke@435 1388 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1389 return callee_method->verified_code_entry();
duke@435 1390 JRT_END
duke@435 1391
duke@435 1392
duke@435 1393 // resolve virtual call and update inline cache to monomorphic
duke@435 1394 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1395 methodHandle callee_method;
duke@435 1396 JRT_BLOCK
duke@435 1397 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
coleenp@4037 1398 thread->set_vm_result_2(callee_method());
duke@435 1399 JRT_BLOCK_END
duke@435 1400 // return compiled code entry point after potential safepoints
duke@435 1401 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1402 return callee_method->verified_code_entry();
duke@435 1403 JRT_END
duke@435 1404
duke@435 1405
duke@435 1406 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1407 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1408 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1409 methodHandle callee_method;
duke@435 1410 JRT_BLOCK
duke@435 1411 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
coleenp@4037 1412 thread->set_vm_result_2(callee_method());
duke@435 1413 JRT_BLOCK_END
duke@435 1414 // return compiled code entry point after potential safepoints
duke@435 1415 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1416 return callee_method->verified_code_entry();
duke@435 1417 JRT_END
duke@435 1418
duke@435 1419
duke@435 1420
duke@435 1421
duke@435 1422
duke@435 1423 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1424 ResourceMark rm(thread);
duke@435 1425 CallInfo call_info;
duke@435 1426 Bytecodes::Code bc;
duke@435 1427
duke@435 1428 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1429 // receivers for non-static calls
duke@435 1430 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1431 CHECK_(methodHandle()));
duke@435 1432 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1433 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1434 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1435 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1436 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1437 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1438 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1439 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1440 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1441 //
duke@435 1442 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1443 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1444 if (TraceCallFixup) {
duke@435 1445 RegisterMap reg_map(thread, false);
duke@435 1446 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1447 ResourceMark rm(thread);
duke@435 1448 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1449 callee_method->print_short_name(tty);
duke@435 1450 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1451 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1452 }
duke@435 1453 return callee_method;
duke@435 1454 }
duke@435 1455
duke@435 1456 methodHandle callee_method = call_info.selected_method();
duke@435 1457
duke@435 1458 bool should_be_mono = false;
duke@435 1459
duke@435 1460 #ifndef PRODUCT
duke@435 1461 Atomic::inc(&_ic_miss_ctr);
duke@435 1462
duke@435 1463 // Statistics & Tracing
duke@435 1464 if (TraceCallFixup) {
duke@435 1465 ResourceMark rm(thread);
duke@435 1466 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1467 callee_method->print_short_name(tty);
duke@435 1468 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1469 }
duke@435 1470
duke@435 1471 if (ICMissHistogram) {
duke@435 1472 MutexLocker m(VMStatistic_lock);
duke@435 1473 RegisterMap reg_map(thread, false);
duke@435 1474 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1475 // produce statistics under the lock
duke@435 1476 trace_ic_miss(f.pc());
duke@435 1477 }
duke@435 1478 #endif
duke@435 1479
duke@435 1480 // install an event collector so that when a vtable stub is created the
duke@435 1481 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1482 // event can't be posted when the stub is created as locks are held
duke@435 1483 // - instead the event will be deferred until the event collector goes
duke@435 1484 // out of scope.
duke@435 1485 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1486
thartmann@7193 1487 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
duke@435 1488 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1489 RegisterMap reg_map(thread, false);
duke@435 1490 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1491 CodeBlob* cb = caller_frame.cb();
thartmann@7193 1492 if (cb->is_nmethod()) {
coleenp@4037 1493 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
duke@435 1494 bool should_be_mono = false;
duke@435 1495 if (inline_cache->is_optimized()) {
duke@435 1496 if (TraceCallFixup) {
duke@435 1497 ResourceMark rm(thread);
duke@435 1498 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1499 callee_method->print_short_name(tty);
duke@435 1500 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1501 }
duke@435 1502 should_be_mono = true;
coleenp@4037 1503 } else if (inline_cache->is_icholder_call()) {
coleenp@4037 1504 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
coleenp@4037 1505 if ( ic_oop != NULL) {
duke@435 1506
duke@435 1507 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1508 // This isn't a real miss. We must have seen that compiled code
duke@435 1509 // is now available and we want the call site converted to a
duke@435 1510 // monomorphic compiled call site.
duke@435 1511 // We can't assert for callee_method->code() != NULL because it
duke@435 1512 // could have been deoptimized in the meantime
duke@435 1513 if (TraceCallFixup) {
duke@435 1514 ResourceMark rm(thread);
duke@435 1515 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1516 callee_method->print_short_name(tty);
duke@435 1517 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1518 }
duke@435 1519 should_be_mono = true;
duke@435 1520 }
duke@435 1521 }
duke@435 1522 }
duke@435 1523
duke@435 1524 if (should_be_mono) {
duke@435 1525
duke@435 1526 // We have a path that was monomorphic but was going interpreted
duke@435 1527 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1528 // by using a new icBuffer.
duke@435 1529 CompiledICInfo info;
duke@435 1530 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1531 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1532 receiver_klass,
duke@435 1533 inline_cache->is_optimized(),
duke@435 1534 false,
duke@435 1535 info, CHECK_(methodHandle()));
duke@435 1536 inline_cache->set_to_monomorphic(info);
duke@435 1537 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
anoll@5762 1538 // Potential change to megamorphic
anoll@5762 1539 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
anoll@5762 1540 if (!successful) {
anoll@5762 1541 inline_cache->set_to_clean();
anoll@5762 1542 }
duke@435 1543 } else {
duke@435 1544 // Either clean or megamorphic
duke@435 1545 }
duke@435 1546 }
duke@435 1547 } // Release CompiledIC_lock
duke@435 1548
duke@435 1549 return callee_method;
duke@435 1550 }
duke@435 1551
duke@435 1552 //
duke@435 1553 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1554 // This routines handles both virtual call sites, optimized virtual call
duke@435 1555 // sites, and static call sites. Typically used to change a call sites
duke@435 1556 // destination from compiled to interpreted.
duke@435 1557 //
duke@435 1558 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1559 ResourceMark rm(thread);
duke@435 1560 RegisterMap reg_map(thread, false);
duke@435 1561 frame stub_frame = thread->last_frame();
duke@435 1562 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1563 frame caller = stub_frame.sender(&reg_map);
duke@435 1564
duke@435 1565 // Do nothing if the frame isn't a live compiled frame.
duke@435 1566 // nmethod could be deoptimized by the time we get here
duke@435 1567 // so no update to the caller is needed.
duke@435 1568
duke@435 1569 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1570
duke@435 1571 address pc = caller.pc();
duke@435 1572
duke@435 1573 // Default call_addr is the location of the "basic" call.
duke@435 1574 // Determine the address of the call we a reresolving. With
duke@435 1575 // Inline Caches we will always find a recognizable call.
duke@435 1576 // With Inline Caches disabled we may or may not find a
duke@435 1577 // recognizable call. We will always find a call for static
duke@435 1578 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1579 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1580 //
duke@435 1581 // With Inline Caches disabled we can get here for a virtual call
duke@435 1582 // for two reasons:
duke@435 1583 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1584 // will run us thru handle_wrong_method and we will eventually
duke@435 1585 // end up in the interpreter to throw the ame.
duke@435 1586 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1587 // call and between the time we fetch the entry address and
duke@435 1588 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1589 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1590 //
duke@435 1591 address call_addr = NULL;
duke@435 1592 {
duke@435 1593 // Get call instruction under lock because another thread may be
duke@435 1594 // busy patching it.
duke@435 1595 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1596 // Location of call instruction
duke@435 1597 if (NativeCall::is_call_before(pc)) {
duke@435 1598 NativeCall *ncall = nativeCall_before(pc);
duke@435 1599 call_addr = ncall->instruction_address();
duke@435 1600 }
duke@435 1601 }
duke@435 1602
duke@435 1603 // Check for static or virtual call
duke@435 1604 bool is_static_call = false;
duke@435 1605 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1606 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1607 // this is done with it.
duke@435 1608 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1609 nmethodLocker nmlock(caller_nm);
duke@435 1610
duke@435 1611 if (call_addr != NULL) {
duke@435 1612 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1613 int ret = iter.next(); // Get item
duke@435 1614 if (ret) {
duke@435 1615 assert(iter.addr() == call_addr, "must find call");
duke@435 1616 if (iter.type() == relocInfo::static_call_type) {
duke@435 1617 is_static_call = true;
duke@435 1618 } else {
duke@435 1619 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1620 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1621 , "unexpected relocInfo. type");
duke@435 1622 }
duke@435 1623 } else {
duke@435 1624 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1625 }
duke@435 1626
duke@435 1627 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1628 // than directly setting it to the new destination, since resolving of calls
duke@435 1629 // is always done through the same code path. (experience shows that it
duke@435 1630 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1631 // to a wrong method). It should not be performance critical, since the
duke@435 1632 // resolve is only done once.
duke@435 1633
duke@435 1634 MutexLocker ml(CompiledIC_lock);
thartmann@7193 1635 if (is_static_call) {
thartmann@7193 1636 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
thartmann@7193 1637 ssc->set_to_clean();
thartmann@7193 1638 } else {
thartmann@7193 1639 // compiled, dispatched call (which used to call an interpreted method)
thartmann@7193 1640 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
thartmann@7193 1641 inline_cache->set_to_clean();
duke@435 1642 }
duke@435 1643 }
duke@435 1644
duke@435 1645 }
duke@435 1646
duke@435 1647 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1648
duke@435 1649
duke@435 1650 #ifndef PRODUCT
duke@435 1651 Atomic::inc(&_wrong_method_ctr);
duke@435 1652
duke@435 1653 if (TraceCallFixup) {
duke@435 1654 ResourceMark rm(thread);
duke@435 1655 tty->print("handle_wrong_method reresolving call to");
duke@435 1656 callee_method->print_short_name(tty);
duke@435 1657 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1658 }
duke@435 1659 #endif
duke@435 1660
duke@435 1661 return callee_method;
duke@435 1662 }
duke@435 1663
twisti@4101 1664 #ifdef ASSERT
twisti@4101 1665 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
twisti@4101 1666 const BasicType* sig_bt,
twisti@4101 1667 const VMRegPair* regs) {
twisti@4101 1668 ResourceMark rm;
twisti@4101 1669 const int total_args_passed = method->size_of_parameters();
twisti@4101 1670 const VMRegPair* regs_with_member_name = regs;
twisti@4101 1671 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
twisti@4101 1672
twisti@4101 1673 const int member_arg_pos = total_args_passed - 1;
twisti@4101 1674 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
twisti@4101 1675 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
twisti@4101 1676
twisti@4101 1677 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@4101 1678 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
twisti@4101 1679
twisti@4101 1680 for (int i = 0; i < member_arg_pos; i++) {
twisti@4101 1681 VMReg a = regs_with_member_name[i].first();
twisti@4101 1682 VMReg b = regs_without_member_name[i].first();
twisti@4101 1683 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
twisti@4101 1684 }
twisti@4101 1685 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
twisti@4101 1686 }
twisti@4101 1687 #endif
twisti@4101 1688
duke@435 1689 // ---------------------------------------------------------------------------
duke@435 1690 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1691 // we were called by a compiled method. However we could have lost a race
duke@435 1692 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1693 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1694 // so he no longer calls into the interpreter.
coleenp@4037 1695 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
coleenp@4037 1696 Method* moop(method);
duke@435 1697
duke@435 1698 address entry_point = moop->from_compiled_entry();
duke@435 1699
duke@435 1700 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1701 // been resolved yet, in which case this function will be called from
duke@435 1702 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1703 // request for a fixup.
duke@435 1704 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1705 // is now back to the i2c in that case we don't need to patch and if
duke@435 1706 // we did we'd leap into space because the callsite needs to use
coleenp@4037 1707 // "to interpreter" stub in order to load up the Method*. Don't
duke@435 1708 // ask me how I know this...
duke@435 1709
duke@435 1710 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1711 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1712 return;
twisti@1640 1713 }
twisti@1640 1714
twisti@1640 1715 // The check above makes sure this is a nmethod.
twisti@1640 1716 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1717 assert(nm, "must be");
twisti@1640 1718
twisti@3240 1719 // Get the return PC for the passed caller PC.
twisti@3240 1720 address return_pc = caller_pc + frame::pc_return_offset;
twisti@3240 1721
duke@435 1722 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1723 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1724 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1725 // call site with the same old data. clear_code will set code() to NULL
duke@435 1726 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1727 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1728 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1729 // and patch the code with the same old data. Asi es la vida.
duke@435 1730
duke@435 1731 if (moop->code() == NULL) return;
duke@435 1732
twisti@1640 1733 if (nm->is_in_use()) {
duke@435 1734
duke@435 1735 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1736 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
twisti@3240 1737 if (NativeCall::is_call_before(return_pc)) {
twisti@3240 1738 NativeCall *call = nativeCall_before(return_pc);
duke@435 1739 //
duke@435 1740 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1741 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1742 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1743 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1744 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1745 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1746 // for the rest of its life! Just another racing bug in the life of
duke@435 1747 // fixup_callers_callsite ...
duke@435 1748 //
twisti@1918 1749 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1750 iter.next();
duke@435 1751 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1752 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1753 if ( typ != relocInfo::static_call_type &&
duke@435 1754 typ != relocInfo::opt_virtual_call_type &&
duke@435 1755 typ != relocInfo::static_stub_type) {
duke@435 1756 return;
duke@435 1757 }
duke@435 1758 address destination = call->destination();
duke@435 1759 if (destination != entry_point) {
duke@435 1760 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1761 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1762 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1763 // static call or optimized virtual
duke@435 1764 if (TraceCallFixup) {
twisti@1639 1765 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1766 moop->print_short_name(tty);
duke@435 1767 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1768 }
duke@435 1769 call->set_destination_mt_safe(entry_point);
duke@435 1770 } else {
duke@435 1771 if (TraceCallFixup) {
duke@435 1772 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1773 moop->print_short_name(tty);
duke@435 1774 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1775 }
duke@435 1776 // assert is too strong could also be resolve destinations.
duke@435 1777 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1778 }
duke@435 1779 } else {
duke@435 1780 if (TraceCallFixup) {
twisti@1639 1781 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1782 moop->print_short_name(tty);
duke@435 1783 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1784 }
duke@435 1785 }
duke@435 1786 }
duke@435 1787 }
duke@435 1788 IRT_END
duke@435 1789
duke@435 1790
duke@435 1791 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1792 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1793 oopDesc* dest, jint dest_pos,
duke@435 1794 jint length,
duke@435 1795 JavaThread* thread)) {
duke@435 1796 #ifndef PRODUCT
duke@435 1797 _slow_array_copy_ctr++;
duke@435 1798 #endif
duke@435 1799 // Check if we have null pointers
duke@435 1800 if (src == NULL || dest == NULL) {
duke@435 1801 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1802 }
duke@435 1803 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1804 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1805 // that src and dest are truly arrays (and are conformable).
duke@435 1806 // The copy_array mechanism is awkward and could be removed, but
duke@435 1807 // the compilers don't call this function except as a last resort,
duke@435 1808 // so it probably doesn't matter.
hseigel@4278 1809 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1810 (arrayOopDesc*)dest, dest_pos,
duke@435 1811 length, thread);
duke@435 1812 }
duke@435 1813 JRT_END
duke@435 1814
duke@435 1815 char* SharedRuntime::generate_class_cast_message(
duke@435 1816 JavaThread* thread, const char* objName) {
duke@435 1817
duke@435 1818 // Get target class name from the checkcast instruction
duke@435 1819 vframeStream vfst(thread, true);
duke@435 1820 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1821 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
hseigel@4278 1822 Klass* targetKlass = vfst.method()->constants()->klass_at(
hseigel@4278 1823 cc.index(), thread);
duke@435 1824 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1825 }
duke@435 1826
duke@435 1827 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1828 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1829 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1830
kamg@488 1831 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1832 if (NULL == message) {
kamg@488 1833 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1834 message = const_cast<char*>(objName);
duke@435 1835 } else {
duke@435 1836 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1837 }
duke@435 1838 return message;
duke@435 1839 }
duke@435 1840
duke@435 1841 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1842 (void) JavaThread::current()->reguard_stack();
duke@435 1843 JRT_END
duke@435 1844
duke@435 1845
duke@435 1846 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1847 #ifndef PRODUCT
duke@435 1848 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1849 #endif
duke@435 1850 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1851 oop obj(_obj);
duke@435 1852 #ifndef PRODUCT
duke@435 1853 _monitor_enter_ctr++; // monitor enter slow
duke@435 1854 #endif
duke@435 1855 if (PrintBiasedLockingStatistics) {
duke@435 1856 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1857 }
duke@435 1858 Handle h_obj(THREAD, obj);
duke@435 1859 if (UseBiasedLocking) {
duke@435 1860 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1861 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1862 } else {
duke@435 1863 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1864 }
duke@435 1865 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1866 JRT_END
duke@435 1867
duke@435 1868 #ifndef PRODUCT
duke@435 1869 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1870 #endif
duke@435 1871 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1872 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1873 oop obj(_obj);
duke@435 1874 #ifndef PRODUCT
duke@435 1875 _monitor_exit_ctr++; // monitor exit slow
duke@435 1876 #endif
duke@435 1877 Thread* THREAD = JavaThread::current();
duke@435 1878 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1879 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1880 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1881 #undef MIGHT_HAVE_PENDING
duke@435 1882 #ifdef MIGHT_HAVE_PENDING
duke@435 1883 // Save and restore any pending_exception around the exception mark.
duke@435 1884 // While the slow_exit must not throw an exception, we could come into
duke@435 1885 // this routine with one set.
duke@435 1886 oop pending_excep = NULL;
duke@435 1887 const char* pending_file;
duke@435 1888 int pending_line;
duke@435 1889 if (HAS_PENDING_EXCEPTION) {
duke@435 1890 pending_excep = PENDING_EXCEPTION;
duke@435 1891 pending_file = THREAD->exception_file();
duke@435 1892 pending_line = THREAD->exception_line();
duke@435 1893 CLEAR_PENDING_EXCEPTION;
duke@435 1894 }
duke@435 1895 #endif /* MIGHT_HAVE_PENDING */
duke@435 1896
duke@435 1897 {
duke@435 1898 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1899 EXCEPTION_MARK;
duke@435 1900 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1901 }
duke@435 1902
duke@435 1903 #ifdef MIGHT_HAVE_PENDING
duke@435 1904 if (pending_excep != NULL) {
duke@435 1905 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1906 }
duke@435 1907 #endif /* MIGHT_HAVE_PENDING */
duke@435 1908 JRT_END
duke@435 1909
duke@435 1910 #ifndef PRODUCT
duke@435 1911
duke@435 1912 void SharedRuntime::print_statistics() {
duke@435 1913 ttyLocker ttyl;
duke@435 1914 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1915
duke@435 1916 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1917 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1918 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1919
duke@435 1920 SharedRuntime::print_ic_miss_histogram();
duke@435 1921
duke@435 1922 if (CountRemovableExceptions) {
duke@435 1923 if (_nof_removable_exceptions > 0) {
duke@435 1924 Unimplemented(); // this counter is not yet incremented
duke@435 1925 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1926 }
duke@435 1927 }
duke@435 1928
duke@435 1929 // Dump the JRT_ENTRY counters
duke@435 1930 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1931 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1932 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1933 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1934 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1935 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1936 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1937
duke@435 1938 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1939 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1940 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1941 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1942 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1943
duke@435 1944 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1945 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1946 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1947 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1948 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1949 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1950 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1951 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1952 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1953 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1954 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1955 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1956 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1957 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1958 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1959 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1960
never@1622 1961 AdapterHandlerLibrary::print_statistics();
never@1622 1962
duke@435 1963 if (xtty != NULL) xtty->tail("statistics");
duke@435 1964 }
duke@435 1965
duke@435 1966 inline double percent(int x, int y) {
duke@435 1967 return 100.0 * x / MAX2(y, 1);
duke@435 1968 }
duke@435 1969
duke@435 1970 class MethodArityHistogram {
duke@435 1971 public:
duke@435 1972 enum { MAX_ARITY = 256 };
duke@435 1973 private:
duke@435 1974 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1975 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1976 static int _max_arity; // max. arity seen
duke@435 1977 static int _max_size; // max. arg size seen
duke@435 1978
duke@435 1979 static void add_method_to_histogram(nmethod* nm) {
coleenp@4037 1980 Method* m = nm->method();
duke@435 1981 ArgumentCount args(m->signature());
duke@435 1982 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1983 int argsize = m->size_of_parameters();
duke@435 1984 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1985 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1986 int count = nm->method()->compiled_invocation_count();
duke@435 1987 _arity_histogram[arity] += count;
duke@435 1988 _size_histogram[argsize] += count;
duke@435 1989 _max_arity = MAX2(_max_arity, arity);
duke@435 1990 _max_size = MAX2(_max_size, argsize);
duke@435 1991 }
duke@435 1992
duke@435 1993 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1994 const int N = MIN2(5, n);
duke@435 1995 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1996 double sum = 0;
duke@435 1997 double weighted_sum = 0;
duke@435 1998 int i;
duke@435 1999 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 2000 double rest = sum;
duke@435 2001 double percent = sum / 100;
duke@435 2002 for (i = 0; i <= N; i++) {
duke@435 2003 rest -= histo[i];
duke@435 2004 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 2005 }
duke@435 2006 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 2007 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 2008 }
duke@435 2009
duke@435 2010 void print_histogram() {
duke@435 2011 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2012 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 2013 tty->print_cr("\nSame for parameter size (in words):");
duke@435 2014 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 2015 tty->cr();
duke@435 2016 }
duke@435 2017
duke@435 2018 public:
duke@435 2019 MethodArityHistogram() {
duke@435 2020 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 2021 _max_arity = _max_size = 0;
duke@435 2022 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 2023 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 2024 print_histogram();
duke@435 2025 }
duke@435 2026 };
duke@435 2027
duke@435 2028 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2029 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2030 int MethodArityHistogram::_max_arity;
duke@435 2031 int MethodArityHistogram::_max_size;
duke@435 2032
duke@435 2033 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2034 tty->print_cr("Calls from compiled code:");
duke@435 2035 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2036 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2037 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2038 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2039 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2040 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2041 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2042 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2043 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2044 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2045 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2046 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2047 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2048 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2049 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2050 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2051 tty->cr();
duke@435 2052 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2053 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2054 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2055 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2056 tty->cr();
duke@435 2057
duke@435 2058 MethodArityHistogram h;
duke@435 2059 }
duke@435 2060 #endif
duke@435 2061
duke@435 2062
never@1622 2063 // A simple wrapper class around the calling convention information
never@1622 2064 // that allows sharing of adapters for the same calling convention.
zgu@3900 2065 class AdapterFingerPrint : public CHeapObj<mtCode> {
never@1622 2066 private:
twisti@3969 2067 enum {
twisti@3969 2068 _basic_type_bits = 4,
twisti@3969 2069 _basic_type_mask = right_n_bits(_basic_type_bits),
twisti@3969 2070 _basic_types_per_int = BitsPerInt / _basic_type_bits,
twisti@3969 2071 _compact_int_count = 3
twisti@3969 2072 };
twisti@3969 2073 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
twisti@3969 2074 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
twisti@3969 2075
never@1622 2076 union {
twisti@3969 2077 int _compact[_compact_int_count];
never@1642 2078 int* _fingerprint;
never@1622 2079 } _value;
never@1642 2080 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2081 // Otherwise _value._fingerprint is the array.
never@1622 2082
never@1642 2083 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2084 // These are correct for the current system but someday it might be
never@1642 2085 // necessary to make this mapping platform dependent.
twisti@3969 2086 static int adapter_encoding(BasicType in) {
never@1642 2087 switch(in) {
never@1642 2088 case T_BOOLEAN:
never@1642 2089 case T_BYTE:
never@1642 2090 case T_SHORT:
never@1642 2091 case T_CHAR:
never@1642 2092 // There are all promoted to T_INT in the calling convention
never@1642 2093 return T_INT;
never@1642 2094
never@1642 2095 case T_OBJECT:
never@1642 2096 case T_ARRAY:
twisti@3969 2097 // In other words, we assume that any register good enough for
twisti@3969 2098 // an int or long is good enough for a managed pointer.
never@1642 2099 #ifdef _LP64
twisti@1861 2100 return T_LONG;
never@1642 2101 #else
twisti@1861 2102 return T_INT;
never@1642 2103 #endif
never@1642 2104
never@1642 2105 case T_INT:
never@1642 2106 case T_LONG:
never@1642 2107 case T_FLOAT:
never@1642 2108 case T_DOUBLE:
never@1642 2109 case T_VOID:
never@1642 2110 return in;
never@1642 2111
never@1642 2112 default:
never@1642 2113 ShouldNotReachHere();
never@1642 2114 return T_CONFLICT;
never@1622 2115 }
never@1622 2116 }
never@1622 2117
never@1642 2118 public:
never@1642 2119 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2120 // The fingerprint is based on the BasicType signature encoded
never@3039 2121 // into an array of ints with eight entries per int.
never@1642 2122 int* ptr;
twisti@3969 2123 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
twisti@3969 2124 if (len <= _compact_int_count) {
twisti@3969 2125 assert(_compact_int_count == 3, "else change next line");
never@1642 2126 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2127 // Storing the signature encoded as signed chars hits about 98%
never@1642 2128 // of the time.
never@1642 2129 _length = -len;
never@1642 2130 ptr = _value._compact;
never@1642 2131 } else {
never@1642 2132 _length = len;
zgu@3900 2133 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
never@1642 2134 ptr = _value._fingerprint;
never@1642 2135 }
never@1642 2136
never@3039 2137 // Now pack the BasicTypes with 8 per int
never@1642 2138 int sig_index = 0;
never@1642 2139 for (int index = 0; index < len; index++) {
never@1642 2140 int value = 0;
twisti@3969 2141 for (int byte = 0; byte < _basic_types_per_int; byte++) {
twisti@3969 2142 int bt = ((sig_index < total_args_passed)
twisti@3969 2143 ? adapter_encoding(sig_bt[sig_index++])
twisti@3969 2144 : 0);
twisti@3969 2145 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
twisti@3969 2146 value = (value << _basic_type_bits) | bt;
never@1642 2147 }
never@1642 2148 ptr[index] = value;
never@1642 2149 }
never@1622 2150 }
never@1622 2151
never@1622 2152 ~AdapterFingerPrint() {
never@1622 2153 if (_length > 0) {
zgu@3900 2154 FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
never@1622 2155 }
never@1622 2156 }
never@1622 2157
never@1642 2158 int value(int index) {
never@1622 2159 if (_length < 0) {
never@1622 2160 return _value._compact[index];
never@1622 2161 }
never@1622 2162 return _value._fingerprint[index];
never@1622 2163 }
never@1622 2164 int length() {
never@1622 2165 if (_length < 0) return -_length;
never@1622 2166 return _length;
never@1622 2167 }
never@1622 2168
never@1622 2169 bool is_compact() {
never@1622 2170 return _length <= 0;
never@1622 2171 }
never@1622 2172
never@1622 2173 unsigned int compute_hash() {
never@1642 2174 int hash = 0;
never@1622 2175 for (int i = 0; i < length(); i++) {
never@1642 2176 int v = value(i);
never@1622 2177 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2178 }
never@1622 2179 return (unsigned int)hash;
never@1622 2180 }
never@1622 2181
never@1622 2182 const char* as_string() {
never@1622 2183 stringStream st;
never@3039 2184 st.print("0x");
never@1622 2185 for (int i = 0; i < length(); i++) {
never@3039 2186 st.print("%08x", value(i));
never@1622 2187 }
never@1622 2188 return st.as_string();
never@1622 2189 }
never@1622 2190
never@1622 2191 bool equals(AdapterFingerPrint* other) {
never@1622 2192 if (other->_length != _length) {
never@1622 2193 return false;
never@1622 2194 }
never@1622 2195 if (_length < 0) {
twisti@3969 2196 assert(_compact_int_count == 3, "else change next line");
never@1642 2197 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2198 _value._compact[1] == other->_value._compact[1] &&
never@1642 2199 _value._compact[2] == other->_value._compact[2];
never@1622 2200 } else {
never@1622 2201 for (int i = 0; i < _length; i++) {
never@1622 2202 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2203 return false;
never@1622 2204 }
never@1622 2205 }
never@1622 2206 }
never@1622 2207 return true;
never@1622 2208 }
never@1622 2209 };
never@1622 2210
never@1622 2211
never@1622 2212 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
zgu@3900 2213 class AdapterHandlerTable : public BasicHashtable<mtCode> {
never@1622 2214 friend class AdapterHandlerTableIterator;
never@1622 2215
never@1622 2216 private:
never@1622 2217
kvn@1698 2218 #ifndef PRODUCT
never@1622 2219 static int _lookups; // number of calls to lookup
never@1622 2220 static int _buckets; // number of buckets checked
never@1622 2221 static int _equals; // number of buckets checked with matching hash
never@1622 2222 static int _hits; // number of successful lookups
never@1622 2223 static int _compact; // number of equals calls with compact signature
never@1622 2224 #endif
never@1622 2225
never@1622 2226 AdapterHandlerEntry* bucket(int i) {
zgu@3900 2227 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
never@1622 2228 }
never@1622 2229
never@1622 2230 public:
never@1622 2231 AdapterHandlerTable()
zgu@3900 2232 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2233
never@1622 2234 // Create a new entry suitable for insertion in the table
never@1622 2235 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
zgu@3900 2236 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
never@1622 2237 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2238 return entry;
never@1622 2239 }
never@1622 2240
never@1622 2241 // Insert an entry into the table
never@1622 2242 void add(AdapterHandlerEntry* entry) {
never@1622 2243 int index = hash_to_index(entry->hash());
never@1622 2244 add_entry(index, entry);
never@1622 2245 }
never@1622 2246
never@1642 2247 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2248 entry->deallocate();
zgu@3900 2249 BasicHashtable<mtCode>::free_entry(entry);
never@1642 2250 }
never@1642 2251
never@1622 2252 // Find a entry with the same fingerprint if it exists
never@1642 2253 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2254 NOT_PRODUCT(_lookups++);
never@1642 2255 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2256 unsigned int hash = fp.compute_hash();
never@1622 2257 int index = hash_to_index(hash);
never@1622 2258 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2259 NOT_PRODUCT(_buckets++);
never@1622 2260 if (e->hash() == hash) {
kvn@1698 2261 NOT_PRODUCT(_equals++);
never@1622 2262 if (fp.equals(e->fingerprint())) {
kvn@1698 2263 #ifndef PRODUCT
never@1622 2264 if (fp.is_compact()) _compact++;
never@1622 2265 _hits++;
never@1622 2266 #endif
never@1622 2267 return e;
never@1622 2268 }
never@1622 2269 }
never@1622 2270 }
never@1622 2271 return NULL;
never@1622 2272 }
never@1622 2273
kvn@1698 2274 #ifndef PRODUCT
never@1622 2275 void print_statistics() {
never@1622 2276 ResourceMark rm;
never@1622 2277 int longest = 0;
never@1622 2278 int empty = 0;
never@1622 2279 int total = 0;
never@1622 2280 int nonempty = 0;
never@1622 2281 for (int index = 0; index < table_size(); index++) {
never@1622 2282 int count = 0;
never@1622 2283 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2284 count++;
never@1622 2285 }
never@1622 2286 if (count != 0) nonempty++;
never@1622 2287 if (count == 0) empty++;
never@1622 2288 if (count > longest) longest = count;
never@1622 2289 total += count;
never@1622 2290 }
never@1622 2291 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2292 empty, longest, total, total / (double)nonempty);
never@1622 2293 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2294 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2295 }
never@1622 2296 #endif
never@1622 2297 };
never@1622 2298
never@1622 2299
kvn@1698 2300 #ifndef PRODUCT
never@1622 2301
never@1622 2302 int AdapterHandlerTable::_lookups;
never@1622 2303 int AdapterHandlerTable::_buckets;
never@1622 2304 int AdapterHandlerTable::_equals;
never@1622 2305 int AdapterHandlerTable::_hits;
never@1622 2306 int AdapterHandlerTable::_compact;
never@1622 2307
bobv@2036 2308 #endif
bobv@2036 2309
never@1622 2310 class AdapterHandlerTableIterator : public StackObj {
never@1622 2311 private:
never@1622 2312 AdapterHandlerTable* _table;
never@1622 2313 int _index;
never@1622 2314 AdapterHandlerEntry* _current;
never@1622 2315
never@1622 2316 void scan() {
never@1622 2317 while (_index < _table->table_size()) {
never@1622 2318 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2319 _index++;
never@1622 2320 if (a != NULL) {
never@1622 2321 _current = a;
never@1622 2322 return;
never@1622 2323 }
never@1622 2324 }
never@1622 2325 }
never@1622 2326
never@1622 2327 public:
never@1622 2328 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2329 scan();
never@1622 2330 }
never@1622 2331 bool has_next() {
never@1622 2332 return _current != NULL;
never@1622 2333 }
never@1622 2334 AdapterHandlerEntry* next() {
never@1622 2335 if (_current != NULL) {
never@1622 2336 AdapterHandlerEntry* result = _current;
never@1622 2337 _current = _current->next();
never@1622 2338 if (_current == NULL) scan();
never@1622 2339 return result;
never@1622 2340 } else {
never@1622 2341 return NULL;
never@1622 2342 }
never@1622 2343 }
never@1622 2344 };
never@1622 2345
never@1622 2346
duke@435 2347 // ---------------------------------------------------------------------------
duke@435 2348 // Implementation of AdapterHandlerLibrary
never@1622 2349 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2350 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2351 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2352 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2353
kvn@1177 2354 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2355 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2356 if (_buffer == NULL) // Initialize lazily
kvn@1177 2357 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2358 return _buffer;
kvn@1177 2359 }
duke@435 2360
duke@435 2361 void AdapterHandlerLibrary::initialize() {
never@1622 2362 if (_adapters != NULL) return;
never@1622 2363 _adapters = new AdapterHandlerTable();
duke@435 2364
duke@435 2365 // Create a special handler for abstract methods. Abstract methods
duke@435 2366 // are never compiled so an i2c entry is somewhat meaningless, but
morris@6113 2367 // throw AbstractMethodError just in case.
morris@6113 2368 // Pass wrong_method_abstract for the c2i transitions to return
morris@6113 2369 // AbstractMethodError for invalid invocations.
morris@6113 2370 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
never@1622 2371 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2372 StubRoutines::throw_AbstractMethodError_entry(),
morris@6113 2373 wrong_method_abstract, wrong_method_abstract);
duke@435 2374 }
duke@435 2375
never@1622 2376 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2377 address i2c_entry,
never@1622 2378 address c2i_entry,
never@1622 2379 address c2i_unverified_entry) {
never@1622 2380 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2381 }
never@1622 2382
never@1622 2383 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2384 // Use customized signature handler. Need to lock around updates to
never@1622 2385 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2386 // and a single writer: this could be fixed if it becomes a
never@1622 2387 // problem).
duke@435 2388
duke@435 2389 // Get the address of the ic_miss handlers before we grab the
duke@435 2390 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2391 // was caused by the initialization of the stubs happening
duke@435 2392 // while we held the lock and then notifying jvmti while
duke@435 2393 // holding it. This just forces the initialization to be a little
duke@435 2394 // earlier.
duke@435 2395 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2396 assert(ic_miss != NULL, "must have handler");
duke@435 2397
never@1622 2398 ResourceMark rm;
never@1622 2399
twisti@2103 2400 NOT_PRODUCT(int insts_size);
anoll@6206 2401 AdapterBlob* new_adapter = NULL;
kvn@1177 2402 AdapterHandlerEntry* entry = NULL;
never@1622 2403 AdapterFingerPrint* fingerprint = NULL;
duke@435 2404 {
duke@435 2405 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2406 // make sure data structure is initialized
duke@435 2407 initialize();
duke@435 2408
duke@435 2409 if (method->is_abstract()) {
never@1622 2410 return _abstract_method_handler;
duke@435 2411 }
duke@435 2412
never@1622 2413 // Fill in the signature array, for the calling-convention call.
never@1622 2414 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2415
never@1622 2416 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2417 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2418 int i = 0;
never@1622 2419 if (!method->is_static()) // Pass in receiver first
never@1622 2420 sig_bt[i++] = T_OBJECT;
never@1622 2421 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2422 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2423 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2424 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2425 }
never@1622 2426 assert(i == total_args_passed, "");
never@1622 2427
never@1642 2428 // Lookup method signature's fingerprint
never@1642 2429 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2430
never@1642 2431 #ifdef ASSERT
never@1642 2432 AdapterHandlerEntry* shared_entry = NULL;
anoll@6206 2433 // Start adapter sharing verification only after the VM is booted.
anoll@6206 2434 if (VerifyAdapterSharing && (entry != NULL)) {
never@1642 2435 shared_entry = entry;
never@1642 2436 entry = NULL;
never@1642 2437 }
never@1642 2438 #endif
never@1642 2439
never@1622 2440 if (entry != NULL) {
never@1622 2441 return entry;
duke@435 2442 }
duke@435 2443
never@1642 2444 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2445 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2446
never@1622 2447 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2448 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2449
anoll@6206 2450 // StubRoutines::code2() is initialized after this function can be called. As a result,
anoll@6206 2451 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
anoll@6206 2452 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
anoll@6206 2453 // stub that ensure that an I2C stub is called from an interpreter frame.
anoll@6206 2454 bool contains_all_checks = StubRoutines::code2() != NULL;
anoll@6206 2455
duke@435 2456 // Create I2C & C2I handlers
twisti@1734 2457 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2458 if (buf != NULL) {
twisti@2103 2459 CodeBuffer buffer(buf);
kvn@1177 2460 short buffer_locs[20];
kvn@1177 2461 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2462 sizeof(buffer_locs)/sizeof(relocInfo));
anoll@6206 2463
kvn@1177 2464 MacroAssembler _masm(&buffer);
kvn@1177 2465 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2466 total_args_passed,
kvn@1177 2467 comp_args_on_stack,
kvn@1177 2468 sig_bt,
never@1622 2469 regs,
never@1622 2470 fingerprint);
never@1642 2471 #ifdef ASSERT
never@1642 2472 if (VerifyAdapterSharing) {
never@1642 2473 if (shared_entry != NULL) {
anoll@6206 2474 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
never@1642 2475 // Release the one just created and return the original
never@1642 2476 _adapters->free_entry(entry);
never@1642 2477 return shared_entry;
never@1642 2478 } else {
anoll@6206 2479 entry->save_code(buf->code_begin(), buffer.insts_size());
never@1642 2480 }
never@1642 2481 }
never@1642 2482 #endif
never@1642 2483
anoll@6206 2484 new_adapter = AdapterBlob::create(&buffer);
twisti@2103 2485 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2486 }
anoll@6206 2487 if (new_adapter == NULL) {
kvn@463 2488 // CodeCache is full, disable compilation
kvn@463 2489 // Ought to log this but compile log is only per compile thread
kvn@463 2490 // and we're some non descript Java thread.
kvn@1637 2491 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2492 CompileBroker::handle_full_code_cache();
never@1622 2493 return NULL; // Out of CodeCache space
kvn@463 2494 }
anoll@6206 2495 entry->relocate(new_adapter->content_begin());
duke@435 2496 #ifndef PRODUCT
duke@435 2497 // debugging suppport
twisti@3969 2498 if (PrintAdapterHandlers || PrintStubCode) {
kvn@4107 2499 ttyLocker ttyl;
twisti@3969 2500 entry->print_adapter_on(tty);
twisti@3969 2501 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
never@1622 2502 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@3969 2503 method->signature()->as_C_string(), insts_size);
duke@435 2504 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@3969 2505 if (Verbose || PrintStubCode) {
twisti@3969 2506 address first_pc = entry->base_address();
kvn@4107 2507 if (first_pc != NULL) {
twisti@3969 2508 Disassembler::decode(first_pc, first_pc + insts_size);
kvn@4107 2509 tty->cr();
kvn@4107 2510 }
twisti@3969 2511 }
duke@435 2512 }
duke@435 2513 #endif
anoll@6206 2514 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
anoll@6206 2515 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
anoll@6206 2516 if (contains_all_checks || !VerifyAdapterCalls) {
anoll@6206 2517 _adapters->add(entry);
anoll@6206 2518 }
duke@435 2519 }
duke@435 2520 // Outside of the lock
anoll@6206 2521 if (new_adapter != NULL) {
duke@435 2522 char blob_id[256];
duke@435 2523 jio_snprintf(blob_id,
duke@435 2524 sizeof(blob_id),
never@1622 2525 "%s(%s)@" PTR_FORMAT,
anoll@6206 2526 new_adapter->name(),
never@1622 2527 fingerprint->as_string(),
anoll@6206 2528 new_adapter->content_begin());
anoll@6206 2529 Forte::register_stub(blob_id, new_adapter->content_begin(),new_adapter->content_end());
duke@435 2530
duke@435 2531 if (JvmtiExport::should_post_dynamic_code_generated()) {
anoll@6206 2532 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
duke@435 2533 }
duke@435 2534 }
never@1622 2535 return entry;
duke@435 2536 }
duke@435 2537
twisti@3969 2538 address AdapterHandlerEntry::base_address() {
twisti@3969 2539 address base = _i2c_entry;
twisti@3969 2540 if (base == NULL) base = _c2i_entry;
twisti@3969 2541 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
twisti@3969 2542 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
twisti@3969 2543 return base;
twisti@3969 2544 }
twisti@3969 2545
duke@435 2546 void AdapterHandlerEntry::relocate(address new_base) {
twisti@3969 2547 address old_base = base_address();
twisti@3969 2548 assert(old_base != NULL, "");
twisti@3969 2549 ptrdiff_t delta = new_base - old_base;
twisti@3969 2550 if (_i2c_entry != NULL)
duke@435 2551 _i2c_entry += delta;
twisti@3969 2552 if (_c2i_entry != NULL)
duke@435 2553 _c2i_entry += delta;
twisti@3969 2554 if (_c2i_unverified_entry != NULL)
duke@435 2555 _c2i_unverified_entry += delta;
twisti@3969 2556 assert(base_address() == new_base, "");
duke@435 2557 }
duke@435 2558
never@1642 2559
never@1642 2560 void AdapterHandlerEntry::deallocate() {
never@1642 2561 delete _fingerprint;
never@1642 2562 #ifdef ASSERT
zgu@3900 2563 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
never@1642 2564 #endif
never@1642 2565 }
never@1642 2566
never@1642 2567
never@1642 2568 #ifdef ASSERT
never@1642 2569 // Capture the code before relocation so that it can be compared
never@1642 2570 // against other versions. If the code is captured after relocation
never@1642 2571 // then relative instructions won't be equivalent.
anoll@6206 2572 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
zgu@3900 2573 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
anoll@6206 2574 _saved_code_length = length;
never@1642 2575 memcpy(_saved_code, buffer, length);
never@1642 2576 }
never@1642 2577
never@1642 2578
anoll@6206 2579 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
anoll@6206 2580 if (length != _saved_code_length) {
never@1642 2581 return false;
never@1642 2582 }
anoll@6206 2583
anoll@6206 2584 return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
never@1642 2585 }
never@1642 2586 #endif
never@1642 2587
never@1642 2588
anoll@6220 2589 /**
anoll@6220 2590 * Create a native wrapper for this native method. The wrapper converts the
anoll@6220 2591 * Java-compiled calling convention to the native convention, handles
anoll@6220 2592 * arguments, and transitions to native. On return from the native we transition
anoll@6220 2593 * back to java blocking if a safepoint is in progress.
anoll@6220 2594 */
anoll@6220 2595 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
duke@435 2596 ResourceMark rm;
duke@435 2597 nmethod* nm = NULL;
duke@435 2598
twisti@3969 2599 assert(method->is_native(), "must be native");
twisti@3969 2600 assert(method->is_method_handle_intrinsic() ||
twisti@3969 2601 method->has_native_function(), "must have something valid to call!");
duke@435 2602
duke@435 2603 {
anoll@6220 2604 // Perform the work while holding the lock, but perform any printing outside the lock
duke@435 2605 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2606 // See if somebody beat us to it
duke@435 2607 nm = method->code();
anoll@6220 2608 if (nm != NULL) {
anoll@6220 2609 return;
duke@435 2610 }
duke@435 2611
anoll@6220 2612 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
anoll@6220 2613 assert(compile_id > 0, "Must generate native wrapper");
anoll@6220 2614
anoll@6220 2615
kvn@1177 2616 ResourceMark rm;
kvn@1177 2617 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2618 if (buf != NULL) {
twisti@2103 2619 CodeBuffer buffer(buf);
kvn@1177 2620 double locs_buf[20];
kvn@1177 2621 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2622 MacroAssembler _masm(&buffer);
duke@435 2623
kvn@1177 2624 // Fill in the signature array, for the calling-convention call.
twisti@4101 2625 const int total_args_passed = method->size_of_parameters();
twisti@4101 2626
twisti@4101 2627 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
twisti@4101 2628 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kvn@1177 2629 int i=0;
kvn@1177 2630 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2631 sig_bt[i++] = T_OBJECT;
kvn@1177 2632 SignatureStream ss(method->signature());
kvn@1177 2633 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2634 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2635 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2636 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2637 }
twisti@4101 2638 assert(i == total_args_passed, "");
kvn@1177 2639 BasicType ret_type = ss.type();
kvn@1177 2640
twisti@3969 2641 // Now get the compiled-Java layout as input (or output) arguments.
twisti@3969 2642 // NOTE: Stubs for compiled entry points of method handle intrinsics
twisti@3969 2643 // are just trampolines so the argument registers must be outgoing ones.
twisti@3969 2644 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@3969 2645 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
kvn@1177 2646
kvn@1177 2647 // Generate the compiled-to-native wrapper code
anoll@6220 2648 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
anoll@6220 2649
anoll@6220 2650 if (nm != NULL) {
anoll@6220 2651 method->set_code(method, nm);
anoll@6220 2652 }
duke@435 2653 }
anoll@6220 2654 } // Unlock AdapterHandlerLibrary_lock
anoll@6220 2655
never@2083 2656
duke@435 2657 // Install the generated code.
duke@435 2658 if (nm != NULL) {
twisti@2687 2659 if (PrintCompilation) {
twisti@2687 2660 ttyLocker ttyl;
twisti@2687 2661 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2662 }
duke@435 2663 nm->post_compiled_method_load_event();
duke@435 2664 } else {
duke@435 2665 // CodeCache is full, disable compilation
kvn@1637 2666 CompileBroker::handle_full_code_cache();
duke@435 2667 }
duke@435 2668 }
duke@435 2669
never@3500 2670 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
never@3500 2671 assert(thread == JavaThread::current(), "must be");
never@3500 2672 // The code is about to enter a JNI lazy critical native method and
never@3500 2673 // _needs_gc is true, so if this thread is already in a critical
never@3500 2674 // section then just return, otherwise this thread should block
never@3500 2675 // until needs_gc has been cleared.
never@3500 2676 if (thread->in_critical()) {
never@3500 2677 return;
never@3500 2678 }
never@3500 2679 // Lock and unlock a critical section to give the system a chance to block
never@3500 2680 GC_locker::lock_critical(thread);
never@3500 2681 GC_locker::unlock_critical(thread);
never@3500 2682 JRT_END
never@3500 2683
kamg@551 2684 #ifdef HAVE_DTRACE_H
anoll@6658 2685 /**
anoll@6658 2686 * Create a dtrace nmethod for this method. The wrapper converts the
anoll@6658 2687 * Java-compiled calling convention to the native convention, makes a dummy call
anoll@6658 2688 * (actually nops for the size of the call instruction, which become a trap if
anoll@6658 2689 * probe is enabled), and finally returns to the caller. Since this all looks like a
anoll@6658 2690 * leaf, no thread transition is needed.
anoll@6658 2691 */
kamg@551 2692 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2693 ResourceMark rm;
kamg@551 2694 nmethod* nm = NULL;
kamg@551 2695
kamg@551 2696 if (PrintCompilation) {
kamg@551 2697 ttyLocker ttyl;
anoll@6658 2698 tty->print("--- n ");
kamg@551 2699 method->print_short_name(tty);
kamg@551 2700 if (method->is_static()) {
kamg@551 2701 tty->print(" (static)");
kamg@551 2702 }
kamg@551 2703 tty->cr();
kamg@551 2704 }
kamg@551 2705
kamg@551 2706 {
kamg@551 2707 // perform the work while holding the lock, but perform any printing
kamg@551 2708 // outside the lock
kamg@551 2709 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2710 // See if somebody beat us to it
kamg@551 2711 nm = method->code();
kamg@551 2712 if (nm) {
kamg@551 2713 return nm;
kamg@551 2714 }
kamg@551 2715
kvn@1177 2716 ResourceMark rm;
kvn@1177 2717
kvn@1177 2718 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2719 if (buf != NULL) {
twisti@2103 2720 CodeBuffer buffer(buf);
kvn@1177 2721 // Need a few relocation entries
kvn@1177 2722 double locs_buf[20];
kvn@1177 2723 buffer.insts()->initialize_shared_locs(
kamg@551 2724 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2725 MacroAssembler _masm(&buffer);
kamg@551 2726
kvn@1177 2727 // Generate the compiled-to-native wrapper code
kvn@1177 2728 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2729 }
kamg@551 2730 }
kamg@551 2731 return nm;
kamg@551 2732 }
kamg@551 2733
kamg@551 2734 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2735 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2736 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2737 int jlsOffset = java_lang_String::offset(src);
kamg@551 2738 int jlsLen = java_lang_String::length(src);
kamg@551 2739 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2740 jlsValue->char_at_addr(jlsOffset);
coleenp@4142 2741 assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2742 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2743 }
kamg@551 2744 #endif // ndef HAVE_DTRACE_H
kamg@551 2745
goetz@6468 2746 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
goetz@6468 2747 int argcnt = in_args_count;
goetz@6468 2748 if (CCallingConventionRequiresIntsAsLongs) {
goetz@6468 2749 for (int in = 0; in < in_args_count; in++) {
goetz@6468 2750 BasicType bt = in_sig_bt[in];
goetz@6468 2751 switch (bt) {
goetz@6468 2752 case T_BOOLEAN:
goetz@6468 2753 case T_CHAR:
goetz@6468 2754 case T_BYTE:
goetz@6468 2755 case T_SHORT:
goetz@6468 2756 case T_INT:
goetz@6468 2757 argcnt++;
goetz@6468 2758 break;
goetz@6468 2759 default:
goetz@6468 2760 break;
goetz@6468 2761 }
goetz@6468 2762 }
goetz@6468 2763 } else {
goetz@6468 2764 assert(0, "This should not be needed on this platform");
goetz@6468 2765 }
goetz@6468 2766
goetz@6468 2767 return argcnt;
goetz@6468 2768 }
goetz@6468 2769
goetz@6468 2770 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
goetz@6468 2771 BasicType*& in_sig_bt, VMRegPair*& in_regs) {
goetz@6468 2772 if (CCallingConventionRequiresIntsAsLongs) {
goetz@6468 2773 VMRegPair *new_in_regs = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
goetz@6468 2774 BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
goetz@6468 2775
goetz@6468 2776 int argcnt = 0;
goetz@6468 2777 for (int in = 0; in < in_args_count; in++, argcnt++) {
goetz@6468 2778 BasicType bt = in_sig_bt[in];
goetz@6468 2779 VMRegPair reg = in_regs[in];
goetz@6468 2780 switch (bt) {
goetz@6468 2781 case T_BOOLEAN:
goetz@6468 2782 case T_CHAR:
goetz@6468 2783 case T_BYTE:
goetz@6468 2784 case T_SHORT:
goetz@6468 2785 case T_INT:
goetz@6468 2786 // Convert (bt) to (T_LONG,bt).
goetz@6468 2787 new_in_sig_bt[argcnt ] = T_LONG;
goetz@6468 2788 new_in_sig_bt[argcnt+1] = bt;
goetz@6468 2789 assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
goetz@6468 2790 new_in_regs[argcnt ].set2(reg.first());
goetz@6468 2791 new_in_regs[argcnt+1].set_bad();
goetz@6468 2792 argcnt++;
goetz@6468 2793 break;
goetz@6468 2794 default:
goetz@6468 2795 // No conversion needed.
goetz@6468 2796 new_in_sig_bt[argcnt] = bt;
goetz@6468 2797 new_in_regs[argcnt] = reg;
goetz@6468 2798 break;
goetz@6468 2799 }
goetz@6468 2800 }
goetz@6468 2801 assert(argcnt == i2l_argcnt, "must match");
goetz@6468 2802
goetz@6468 2803 in_regs = new_in_regs;
goetz@6468 2804 in_sig_bt = new_in_sig_bt;
goetz@6468 2805 in_args_count = i2l_argcnt;
goetz@6468 2806 } else {
goetz@6468 2807 assert(0, "This should not be needed on this platform");
goetz@6468 2808 }
goetz@6468 2809 }
goetz@6468 2810
duke@435 2811 // -------------------------------------------------------------------------
duke@435 2812 // Java-Java calling convention
duke@435 2813 // (what you use when Java calls Java)
duke@435 2814
duke@435 2815 //------------------------------name_for_receiver----------------------------------
duke@435 2816 // For a given signature, return the VMReg for parameter 0.
duke@435 2817 VMReg SharedRuntime::name_for_receiver() {
duke@435 2818 VMRegPair regs;
duke@435 2819 BasicType sig_bt = T_OBJECT;
duke@435 2820 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2821 // Return argument 0 register. In the LP64 build pointers
duke@435 2822 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2823 return regs.first();
duke@435 2824 }
duke@435 2825
roland@5222 2826 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
duke@435 2827 // This method is returning a data structure allocating as a
duke@435 2828 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2829 char *s = sig->as_C_string();
duke@435 2830 int len = (int)strlen(s);
ccheung@5259 2831 s++; len--; // Skip opening paren
duke@435 2832 char *t = s+len;
duke@435 2833 while( *(--t) != ')' ) ; // Find close paren
duke@435 2834
duke@435 2835 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2836 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2837 int cnt = 0;
twisti@1573 2838 if (has_receiver) {
duke@435 2839 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2840 }
duke@435 2841
duke@435 2842 while( s < t ) {
duke@435 2843 switch( *s++ ) { // Switch on signature character
duke@435 2844 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2845 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2846 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2847 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2848 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2849 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2850 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2851 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2852 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2853 case 'L': // Oop
duke@435 2854 while( *s++ != ';' ) ; // Skip signature
duke@435 2855 sig_bt[cnt++] = T_OBJECT;
duke@435 2856 break;
duke@435 2857 case '[': { // Array
duke@435 2858 do { // Skip optional size
duke@435 2859 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2860 } while( *s++ == '[' ); // Nested arrays?
duke@435 2861 // Skip element type
duke@435 2862 if( s[-1] == 'L' )
duke@435 2863 while( *s++ != ';' ) ; // Skip signature
duke@435 2864 sig_bt[cnt++] = T_ARRAY;
duke@435 2865 break;
duke@435 2866 }
duke@435 2867 default : ShouldNotReachHere();
duke@435 2868 }
duke@435 2869 }
roland@5222 2870
roland@5222 2871 if (has_appendix) {
roland@5222 2872 sig_bt[cnt++] = T_OBJECT;
roland@5222 2873 }
roland@5222 2874
duke@435 2875 assert( cnt < 256, "grow table size" );
duke@435 2876
duke@435 2877 int comp_args_on_stack;
duke@435 2878 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2879
duke@435 2880 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2881 // we must add that in to get "true" stack offsets.
duke@435 2882
duke@435 2883 if (comp_args_on_stack) {
duke@435 2884 for (int i = 0; i < cnt; i++) {
duke@435 2885 VMReg reg1 = regs[i].first();
duke@435 2886 if( reg1->is_stack()) {
duke@435 2887 // Yuck
duke@435 2888 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2889 }
duke@435 2890 VMReg reg2 = regs[i].second();
duke@435 2891 if( reg2->is_stack()) {
duke@435 2892 // Yuck
duke@435 2893 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2894 }
duke@435 2895 regs[i].set_pair(reg2, reg1);
duke@435 2896 }
duke@435 2897 }
duke@435 2898
duke@435 2899 // results
duke@435 2900 *arg_size = cnt;
duke@435 2901 return regs;
duke@435 2902 }
duke@435 2903
duke@435 2904 // OSR Migration Code
duke@435 2905 //
duke@435 2906 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2907 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2908 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2909 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2910 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2911 // back to the compiled code. The compiled code then pops the current
duke@435 2912 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2913 // copies the interpreter locals and displaced headers where it wants.
duke@435 2914 // Finally it calls back to free the temp buffer.
duke@435 2915 //
duke@435 2916 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2917
duke@435 2918 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2919
duke@435 2920 //
duke@435 2921 // This code is dependent on the memory layout of the interpreter local
duke@435 2922 // array and the monitors. On all of our platforms the layout is identical
duke@435 2923 // so this code is shared. If some platform lays the their arrays out
duke@435 2924 // differently then this code could move to platform specific code or
duke@435 2925 // the code here could be modified to copy items one at a time using
duke@435 2926 // frame accessor methods and be platform independent.
duke@435 2927
duke@435 2928 frame fr = thread->last_frame();
duke@435 2929 assert( fr.is_interpreted_frame(), "" );
duke@435 2930 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2931
duke@435 2932 // Figure out how many monitors are active.
duke@435 2933 int active_monitor_count = 0;
duke@435 2934 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2935 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2936 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2937 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2938 }
duke@435 2939
duke@435 2940 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2941 // could double check it.
duke@435 2942
coleenp@4037 2943 Method* moop = fr.interpreter_frame_method();
duke@435 2944 int max_locals = moop->max_locals();
duke@435 2945 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2946 int buf_size_words = max_locals + active_monitor_count*2;
zgu@3900 2947 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
duke@435 2948
duke@435 2949 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2950 // Since there's no GC I can copy the oops blindly.
duke@435 2951 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2952 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2953 (HeapWord*)&buf[0],
duke@435 2954 max_locals);
duke@435 2955
duke@435 2956 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2957 int i = max_locals;
duke@435 2958 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2959 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2960 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2961 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2962 BasicLock *lock = kptr2->lock();
duke@435 2963 // Inflate so the displaced header becomes position-independent
duke@435 2964 if (lock->displaced_header()->is_unlocked())
duke@435 2965 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2966 // Now the displaced header is free to move
duke@435 2967 buf[i++] = (intptr_t)lock->displaced_header();
hseigel@5784 2968 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
duke@435 2969 }
duke@435 2970 }
duke@435 2971 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2972
duke@435 2973 return buf;
duke@435 2974 JRT_END
duke@435 2975
duke@435 2976 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
zgu@3900 2977 FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
duke@435 2978 JRT_END
duke@435 2979
duke@435 2980 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2981 AdapterHandlerTableIterator iter(_adapters);
never@1622 2982 while (iter.has_next()) {
never@1622 2983 AdapterHandlerEntry* a = iter.next();
never@1622 2984 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2985 }
duke@435 2986 return false;
duke@435 2987 }
duke@435 2988
bobv@2036 2989 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2990 AdapterHandlerTableIterator iter(_adapters);
never@1622 2991 while (iter.has_next()) {
never@1622 2992 AdapterHandlerEntry* a = iter.next();
twisti@3969 2993 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
bobv@2036 2994 st->print("Adapter for signature: ");
twisti@3969 2995 a->print_adapter_on(tty);
duke@435 2996 return;
duke@435 2997 }
duke@435 2998 }
duke@435 2999 assert(false, "Should have found handler");
duke@435 3000 }
never@1622 3001
twisti@3969 3002 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
twisti@3969 3003 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
twisti@3969 3004 (intptr_t) this, fingerprint()->as_string(),
twisti@3969 3005 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
twisti@3969 3006
twisti@3969 3007 }
twisti@3969 3008
bobv@2036 3009 #ifndef PRODUCT
bobv@2036 3010
never@1622 3011 void AdapterHandlerLibrary::print_statistics() {
never@1622 3012 _adapters->print_statistics();
never@1622 3013 }
never@1622 3014
duke@435 3015 #endif /* PRODUCT */

mercurial