src/share/vm/runtime/sharedRuntime.cpp

Wed, 06 Jul 2011 13:02:54 -0700

author
jcoomes
date
Wed, 06 Jul 2011 13:02:54 -0700
changeset 2997
bf6481e5f96d
parent 2950
cba7b5c2d53f
child 2978
d83ac25d0304
permissions
-rw-r--r--

7061225: os::print_cpu_info() should support os-specific data
Reviewed-by: dholmes, never, jwilhelm, kvn

duke@435 1 /*
never@2462 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
stefank@2314 34 #include "interpreter/interpreter.hpp"
stefank@2314 35 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 36 #include "memory/gcLocker.inline.hpp"
stefank@2314 37 #include "memory/universe.inline.hpp"
stefank@2314 38 #include "oops/oop.inline.hpp"
stefank@2314 39 #include "prims/forte.hpp"
stefank@2314 40 #include "prims/jvmtiExport.hpp"
stefank@2314 41 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 42 #include "prims/methodHandles.hpp"
stefank@2314 43 #include "prims/nativeLookup.hpp"
stefank@2314 44 #include "runtime/arguments.hpp"
stefank@2314 45 #include "runtime/biasedLocking.hpp"
stefank@2314 46 #include "runtime/handles.inline.hpp"
stefank@2314 47 #include "runtime/init.hpp"
stefank@2314 48 #include "runtime/interfaceSupport.hpp"
stefank@2314 49 #include "runtime/javaCalls.hpp"
stefank@2314 50 #include "runtime/sharedRuntime.hpp"
stefank@2314 51 #include "runtime/stubRoutines.hpp"
stefank@2314 52 #include "runtime/vframe.hpp"
stefank@2314 53 #include "runtime/vframeArray.hpp"
stefank@2314 54 #include "utilities/copy.hpp"
stefank@2314 55 #include "utilities/dtrace.hpp"
stefank@2314 56 #include "utilities/events.hpp"
stefank@2314 57 #include "utilities/hashtable.inline.hpp"
stefank@2314 58 #include "utilities/xmlstream.hpp"
stefank@2314 59 #ifdef TARGET_ARCH_x86
stefank@2314 60 # include "nativeInst_x86.hpp"
stefank@2314 61 # include "vmreg_x86.inline.hpp"
stefank@2314 62 #endif
stefank@2314 63 #ifdef TARGET_ARCH_sparc
stefank@2314 64 # include "nativeInst_sparc.hpp"
stefank@2314 65 # include "vmreg_sparc.inline.hpp"
stefank@2314 66 #endif
stefank@2314 67 #ifdef TARGET_ARCH_zero
stefank@2314 68 # include "nativeInst_zero.hpp"
stefank@2314 69 # include "vmreg_zero.inline.hpp"
stefank@2314 70 #endif
bobv@2508 71 #ifdef TARGET_ARCH_arm
bobv@2508 72 # include "nativeInst_arm.hpp"
bobv@2508 73 # include "vmreg_arm.inline.hpp"
bobv@2508 74 #endif
bobv@2508 75 #ifdef TARGET_ARCH_ppc
bobv@2508 76 # include "nativeInst_ppc.hpp"
bobv@2508 77 # include "vmreg_ppc.inline.hpp"
bobv@2508 78 #endif
stefank@2314 79 #ifdef COMPILER1
stefank@2314 80 #include "c1/c1_Runtime1.hpp"
stefank@2314 81 #endif
stefank@2314 82
never@2950 83 // Shared stub locations
never@2950 84 RuntimeStub* SharedRuntime::_wrong_method_blob;
never@2950 85 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 86 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 87 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 88 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 89
never@2950 90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
never@2950 91 RicochetBlob* SharedRuntime::_ricochet_blob;
never@2950 92
never@2950 93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 95
never@2950 96 #ifdef COMPILER2
never@2950 97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 98 #endif // COMPILER2
never@2950 99
never@2950 100
never@2950 101 //----------------------------generate_stubs-----------------------------------
never@2950 102 void SharedRuntime::generate_stubs() {
never@2950 103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
never@2950 104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
never@2950 105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
never@2950 106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
never@2950 107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 108
never@2950 109 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
never@2950 110 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
never@2950 111
never@2950 112 generate_ricochet_blob();
never@2950 113 generate_deopt_blob();
never@2950 114
never@2950 115 #ifdef COMPILER2
never@2950 116 generate_uncommon_trap_blob();
never@2950 117 #endif // COMPILER2
never@2950 118 }
never@2950 119
never@2950 120 //----------------------------generate_ricochet_blob---------------------------
never@2950 121 void SharedRuntime::generate_ricochet_blob() {
never@2950 122 if (!EnableInvokeDynamic) return; // leave it as a null
never@2950 123
never@2950 124 #ifndef TARGET_ARCH_NYI_6939861
never@2950 125 // allocate space for the code
never@2950 126 ResourceMark rm;
never@2950 127 // setup code generation tools
never@2950 128 CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256); // XXX x86 LP64L: 512, 512
never@2950 129 MacroAssembler* masm = new MacroAssembler(&buffer);
never@2950 130
never@2950 131 int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
never@2950 132 MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
never@2950 133
never@2950 134 // -------------
never@2950 135 // make sure all code is generated
never@2950 136 masm->flush();
never@2950 137
never@2950 138 // failed to generate?
never@2950 139 if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
never@2950 140 assert(false, "bad ricochet blob");
never@2950 141 return;
never@2950 142 }
never@2950 143
never@2950 144 _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
never@2950 145 #endif
never@2950 146 }
never@2950 147
never@2950 148
duke@435 149 #include <math.h>
duke@435 150
duke@435 151 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 152 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 153 char*, int, char*, int, char*, int);
duke@435 154 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 155 char*, int, char*, int, char*, int);
duke@435 156
duke@435 157 // Implementation of SharedRuntime
duke@435 158
duke@435 159 #ifndef PRODUCT
duke@435 160 // For statistics
duke@435 161 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 162 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 163 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 164 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 166 int SharedRuntime::_implicit_null_throws = 0;
duke@435 167 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 168 int SharedRuntime::_throw_null_ctr = 0;
duke@435 169
duke@435 170 int SharedRuntime::_nof_normal_calls = 0;
duke@435 171 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 172 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 173 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 174 int SharedRuntime::_nof_static_calls = 0;
duke@435 175 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 176 int SharedRuntime::_nof_interface_calls = 0;
duke@435 177 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 178 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 180 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 181
duke@435 182 int SharedRuntime::_new_instance_ctr=0;
duke@435 183 int SharedRuntime::_new_array_ctr=0;
duke@435 184 int SharedRuntime::_multi1_ctr=0;
duke@435 185 int SharedRuntime::_multi2_ctr=0;
duke@435 186 int SharedRuntime::_multi3_ctr=0;
duke@435 187 int SharedRuntime::_multi4_ctr=0;
duke@435 188 int SharedRuntime::_multi5_ctr=0;
duke@435 189 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 190 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 191 int SharedRuntime::_mon_enter_ctr=0;
duke@435 192 int SharedRuntime::_mon_exit_ctr=0;
duke@435 193 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 194 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 195 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 196 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 197 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 198 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 199 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 200 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 201 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 202 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 203 int SharedRuntime::_find_handler_ctr=0;
duke@435 204 int SharedRuntime::_rethrow_ctr=0;
duke@435 205
duke@435 206 int SharedRuntime::_ICmiss_index = 0;
duke@435 207 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 209
never@2950 210
duke@435 211 void SharedRuntime::trace_ic_miss(address at) {
duke@435 212 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 213 if (_ICmiss_at[i] == at) {
duke@435 214 _ICmiss_count[i]++;
duke@435 215 return;
duke@435 216 }
duke@435 217 }
duke@435 218 int index = _ICmiss_index++;
duke@435 219 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 220 _ICmiss_at[index] = at;
duke@435 221 _ICmiss_count[index] = 1;
duke@435 222 }
duke@435 223
duke@435 224 void SharedRuntime::print_ic_miss_histogram() {
duke@435 225 if (ICMissHistogram) {
duke@435 226 tty->print_cr ("IC Miss Histogram:");
duke@435 227 int tot_misses = 0;
duke@435 228 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 229 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 230 tot_misses += _ICmiss_count[i];
duke@435 231 }
duke@435 232 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 233 }
duke@435 234 }
duke@435 235 #endif // PRODUCT
duke@435 236
ysr@777 237 #ifndef SERIALGC
ysr@777 238
ysr@777 239 // G1 write-barrier pre: executed before a pointer store.
ysr@777 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 241 if (orig == NULL) {
ysr@777 242 assert(false, "should be optimized out");
ysr@777 243 return;
ysr@777 244 }
ysr@1280 245 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 246 // store the original value that was in the field reference
ysr@777 247 thread->satb_mark_queue().enqueue(orig);
ysr@777 248 JRT_END
ysr@777 249
ysr@777 250 // G1 write-barrier post: executed after a pointer store.
ysr@777 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 252 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 253 JRT_END
ysr@777 254
ysr@777 255 #endif // !SERIALGC
ysr@777 256
duke@435 257
duke@435 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 259 return x * y;
duke@435 260 JRT_END
duke@435 261
duke@435 262
duke@435 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 264 if (x == min_jlong && y == CONST64(-1)) {
duke@435 265 return x;
duke@435 266 } else {
duke@435 267 return x / y;
duke@435 268 }
duke@435 269 JRT_END
duke@435 270
duke@435 271
duke@435 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 273 if (x == min_jlong && y == CONST64(-1)) {
duke@435 274 return 0;
duke@435 275 } else {
duke@435 276 return x % y;
duke@435 277 }
duke@435 278 JRT_END
duke@435 279
duke@435 280
duke@435 281 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 282 const juint float_infinity = 0x7F800000;
duke@435 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 284 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 285
duke@435 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 287 #ifdef _WIN64
duke@435 288 // 64-bit Windows on amd64 returns the wrong values for
duke@435 289 // infinity operands.
duke@435 290 union { jfloat f; juint i; } xbits, ybits;
duke@435 291 xbits.f = x;
duke@435 292 ybits.f = y;
duke@435 293 // x Mod Infinity == x unless x is infinity
duke@435 294 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 295 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 296 return x;
duke@435 297 }
duke@435 298 #endif
duke@435 299 return ((jfloat)fmod((double)x,(double)y));
duke@435 300 JRT_END
duke@435 301
duke@435 302
duke@435 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 304 #ifdef _WIN64
duke@435 305 union { jdouble d; julong l; } xbits, ybits;
duke@435 306 xbits.d = x;
duke@435 307 ybits.d = y;
duke@435 308 // x Mod Infinity == x unless x is infinity
duke@435 309 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 310 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 311 return x;
duke@435 312 }
duke@435 313 #endif
duke@435 314 return ((jdouble)fmod((double)x,(double)y));
duke@435 315 JRT_END
duke@435 316
bobv@2036 317 #ifdef __SOFTFP__
bobv@2036 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 319 return x + y;
bobv@2036 320 JRT_END
bobv@2036 321
bobv@2036 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 323 return x - y;
bobv@2036 324 JRT_END
bobv@2036 325
bobv@2036 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 327 return x * y;
bobv@2036 328 JRT_END
bobv@2036 329
bobv@2036 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 331 return x / y;
bobv@2036 332 JRT_END
bobv@2036 333
bobv@2036 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 335 return x + y;
bobv@2036 336 JRT_END
bobv@2036 337
bobv@2036 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 339 return x - y;
bobv@2036 340 JRT_END
bobv@2036 341
bobv@2036 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 343 return x * y;
bobv@2036 344 JRT_END
bobv@2036 345
bobv@2036 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 347 return x / y;
bobv@2036 348 JRT_END
bobv@2036 349
bobv@2036 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 351 return (jfloat)x;
bobv@2036 352 JRT_END
bobv@2036 353
bobv@2036 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 355 return (jdouble)x;
bobv@2036 356 JRT_END
bobv@2036 357
bobv@2036 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 359 return (jdouble)x;
bobv@2036 360 JRT_END
bobv@2036 361
bobv@2036 362 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 363 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 364 JRT_END
bobv@2036 365
bobv@2036 366 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 367 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 368 JRT_END
bobv@2036 369
bobv@2036 370 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 371 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 372 JRT_END
bobv@2036 373
bobv@2036 374 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 375 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 376 JRT_END
bobv@2036 377
bobv@2036 378 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 380 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 381 JRT_END
bobv@2036 382
bobv@2036 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 384 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 385 JRT_END
bobv@2036 386
bobv@2036 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 388 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 389 JRT_END
bobv@2036 390
bobv@2036 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 392 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 393 JRT_END
bobv@2036 394
bobv@2036 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 396 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 397 JRT_END
bobv@2036 398
bobv@2036 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 400 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 401 JRT_END
bobv@2036 402
bobv@2036 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 404 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 405 JRT_END
bobv@2036 406
bobv@2036 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 408 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 409 JRT_END
bobv@2036 410
bobv@2036 411 // Intrinsics make gcc generate code for these.
bobv@2036 412 float SharedRuntime::fneg(float f) {
bobv@2036 413 return -f;
bobv@2036 414 }
bobv@2036 415
bobv@2036 416 double SharedRuntime::dneg(double f) {
bobv@2036 417 return -f;
bobv@2036 418 }
bobv@2036 419
bobv@2036 420 #endif // __SOFTFP__
bobv@2036 421
bobv@2036 422 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 423 // Intrinsics make gcc generate code for these.
bobv@2036 424 double SharedRuntime::dabs(double f) {
bobv@2036 425 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 426 }
bobv@2036 427
bobv@2223 428 #endif
bobv@2223 429
bobv@2223 430 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 431 double SharedRuntime::dsqrt(double f) {
bobv@2036 432 return sqrt(f);
bobv@2036 433 }
bobv@2036 434 #endif
duke@435 435
duke@435 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 437 if (g_isnan(x))
kvn@943 438 return 0;
kvn@943 439 if (x >= (jfloat) max_jint)
kvn@943 440 return max_jint;
kvn@943 441 if (x <= (jfloat) min_jint)
kvn@943 442 return min_jint;
kvn@943 443 return (jint) x;
duke@435 444 JRT_END
duke@435 445
duke@435 446
duke@435 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 448 if (g_isnan(x))
kvn@943 449 return 0;
kvn@943 450 if (x >= (jfloat) max_jlong)
kvn@943 451 return max_jlong;
kvn@943 452 if (x <= (jfloat) min_jlong)
kvn@943 453 return min_jlong;
kvn@943 454 return (jlong) x;
duke@435 455 JRT_END
duke@435 456
duke@435 457
duke@435 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 459 if (g_isnan(x))
kvn@943 460 return 0;
kvn@943 461 if (x >= (jdouble) max_jint)
kvn@943 462 return max_jint;
kvn@943 463 if (x <= (jdouble) min_jint)
kvn@943 464 return min_jint;
kvn@943 465 return (jint) x;
duke@435 466 JRT_END
duke@435 467
duke@435 468
duke@435 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 470 if (g_isnan(x))
kvn@943 471 return 0;
kvn@943 472 if (x >= (jdouble) max_jlong)
kvn@943 473 return max_jlong;
kvn@943 474 if (x <= (jdouble) min_jlong)
kvn@943 475 return min_jlong;
kvn@943 476 return (jlong) x;
duke@435 477 JRT_END
duke@435 478
duke@435 479
duke@435 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 481 return (jfloat)x;
duke@435 482 JRT_END
duke@435 483
duke@435 484
duke@435 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 486 return (jfloat)x;
duke@435 487 JRT_END
duke@435 488
duke@435 489
duke@435 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 491 return (jdouble)x;
duke@435 492 JRT_END
duke@435 493
duke@435 494 // Exception handling accross interpreter/compiler boundaries
duke@435 495 //
duke@435 496 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 497 // The continuation address is the entry point of the exception handler of the
duke@435 498 // previous frame depending on the return address.
duke@435 499
twisti@1730 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 501 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 502
twisti@2603 503 // Reset method handle flag.
twisti@1803 504 thread->set_is_method_handle_return(false);
twisti@1803 505
twisti@2603 506 // The fastest case first
duke@435 507 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 508 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 509 if (nm != NULL) {
twisti@2603 510 // Set flag if return address is a method handle call site.
twisti@2603 511 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 512 // native nmethods don't have exception handlers
twisti@2603 513 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 514 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 515 if (nm->is_deopt_pc(return_address)) {
duke@435 516 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 517 } else {
twisti@2603 518 return nm->exception_begin();
duke@435 519 }
duke@435 520 }
duke@435 521
duke@435 522 // Entry code
duke@435 523 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 524 return StubRoutines::catch_exception_entry();
duke@435 525 }
duke@435 526 // Interpreted code
duke@435 527 if (Interpreter::contains(return_address)) {
duke@435 528 return Interpreter::rethrow_exception_entry();
duke@435 529 }
never@2895 530 // Ricochet frame unwind code
never@2895 531 if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
never@2895 532 return SharedRuntime::ricochet_blob()->exception_addr();
never@2895 533 }
duke@435 534
twisti@2603 535 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 536 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 537
duke@435 538 #ifndef PRODUCT
duke@435 539 { ResourceMark rm;
duke@435 540 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 541 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 542 tty->print_cr("b) other problem");
duke@435 543 }
duke@435 544 #endif // PRODUCT
twisti@2603 545
duke@435 546 ShouldNotReachHere();
duke@435 547 return NULL;
duke@435 548 }
duke@435 549
duke@435 550
twisti@1730 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 552 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 553 JRT_END
duke@435 554
twisti@1730 555
duke@435 556 address SharedRuntime::get_poll_stub(address pc) {
duke@435 557 address stub;
duke@435 558 // Look up the code blob
duke@435 559 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 560
duke@435 561 // Should be an nmethod
duke@435 562 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 563
duke@435 564 // Look up the relocation information
duke@435 565 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 566 "safepoint polling: type must be poll" );
duke@435 567
duke@435 568 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 569 "Only polling locations are used for safepoint");
duke@435 570
duke@435 571 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
duke@435 572 if (at_poll_return) {
duke@435 573 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 574 "polling page return stub not created yet");
twisti@2103 575 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
duke@435 576 } else {
duke@435 577 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 578 "polling page safepoint stub not created yet");
twisti@2103 579 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 580 }
duke@435 581 #ifndef PRODUCT
duke@435 582 if( TraceSafepoint ) {
duke@435 583 char buf[256];
duke@435 584 jio_snprintf(buf, sizeof(buf),
duke@435 585 "... found polling page %s exception at pc = "
duke@435 586 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 587 at_poll_return ? "return" : "loop",
duke@435 588 (intptr_t)pc, (intptr_t)stub);
duke@435 589 tty->print_raw_cr(buf);
duke@435 590 }
duke@435 591 #endif // PRODUCT
duke@435 592 return stub;
duke@435 593 }
duke@435 594
duke@435 595
coleenp@2497 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 597 assert(caller.is_interpreted_frame(), "");
duke@435 598 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 599 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 600 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 601 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 602 return result;
duke@435 603 }
duke@435 604
duke@435 605
duke@435 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 607 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 608 vframeStream vfst(thread, true);
duke@435 609 methodHandle method = methodHandle(thread, vfst.method());
duke@435 610 address bcp = method()->bcp_from(vfst.bci());
duke@435 611 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 612 }
duke@435 613 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 614 }
duke@435 615
coleenp@2497 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 617 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 618 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 619 }
duke@435 620
dcubed@1045 621 // The interpreter code to call this tracing function is only
dcubed@1045 622 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 623 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 624 // to modify the compilers to generate calls to this function.
dcubed@1045 625 //
dcubed@1045 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
dcubed@1045 627 JavaThread* thread, methodOopDesc* method))
dcubed@1045 628 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 629
dcubed@1045 630 if (method->is_obsolete()) {
dcubed@1045 631 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 632 // an error. Our method could have been redefined just after we
dcubed@1045 633 // fetched the methodOop from the constant pool.
dcubed@1045 634
dcubed@1045 635 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 636 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 637 ("calling obsolete method '%s'",
dcubed@1045 638 method->name_and_sig_as_C_string()));
dcubed@1045 639 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 640 // this option is provided to debug calls to obsolete methods
dcubed@1045 641 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 642 }
dcubed@1045 643 }
dcubed@1045 644 return 0;
dcubed@1045 645 JRT_END
dcubed@1045 646
duke@435 647 // ret_pc points into caller; we are returning caller's exception handler
duke@435 648 // for given exception
duke@435 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 650 bool force_unwind, bool top_frame_only) {
duke@435 651 assert(nm != NULL, "must exist");
duke@435 652 ResourceMark rm;
duke@435 653
duke@435 654 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 655 // determine handler bci, if any
duke@435 656 EXCEPTION_MARK;
duke@435 657
duke@435 658 int handler_bci = -1;
duke@435 659 int scope_depth = 0;
duke@435 660 if (!force_unwind) {
duke@435 661 int bci = sd->bci();
duke@435 662 do {
duke@435 663 bool skip_scope_increment = false;
duke@435 664 // exception handler lookup
duke@435 665 KlassHandle ek (THREAD, exception->klass());
duke@435 666 handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
duke@435 667 if (HAS_PENDING_EXCEPTION) {
duke@435 668 // We threw an exception while trying to find the exception handler.
duke@435 669 // Transfer the new exception to the exception handle which will
duke@435 670 // be set into thread local storage, and do another lookup for an
duke@435 671 // exception handler for this exception, this time starting at the
duke@435 672 // BCI of the exception handler which caused the exception to be
duke@435 673 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 674 // argument to ensure that the correct exception is thrown (4870175).
duke@435 675 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 676 CLEAR_PENDING_EXCEPTION;
duke@435 677 if (handler_bci >= 0) {
duke@435 678 bci = handler_bci;
duke@435 679 handler_bci = -1;
duke@435 680 skip_scope_increment = true;
duke@435 681 }
duke@435 682 }
duke@435 683 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 684 sd = sd->sender();
duke@435 685 if (sd != NULL) {
duke@435 686 bci = sd->bci();
duke@435 687 }
duke@435 688 ++scope_depth;
duke@435 689 }
duke@435 690 } while (!top_frame_only && handler_bci < 0 && sd != NULL);
duke@435 691 }
duke@435 692
duke@435 693 // found handling method => lookup exception handler
twisti@2103 694 int catch_pco = ret_pc - nm->code_begin();
duke@435 695
duke@435 696 ExceptionHandlerTable table(nm);
duke@435 697 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 698 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 699 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 700 // to materialize its exceptions without committing to the exact
duke@435 701 // routing of exceptions. In particular this is needed for adding
duke@435 702 // a synthethic handler to unlock monitors when inlining
duke@435 703 // synchonized methods since the unlock path isn't represented in
duke@435 704 // the bytecodes.
duke@435 705 t = table.entry_for(catch_pco, -1, 0);
duke@435 706 }
duke@435 707
never@1813 708 #ifdef COMPILER1
never@1813 709 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 710 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 711 return nm->unwind_handler_begin();
never@1813 712 }
never@1813 713 #endif
never@1813 714
duke@435 715 if (t == NULL) {
duke@435 716 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 717 tty->print_cr(" Exception:");
duke@435 718 exception->print();
duke@435 719 tty->cr();
duke@435 720 tty->print_cr(" Compiled exception table :");
duke@435 721 table.print();
duke@435 722 nm->print_code();
duke@435 723 guarantee(false, "missing exception handler");
duke@435 724 return NULL;
duke@435 725 }
duke@435 726
twisti@2103 727 return nm->code_begin() + t->pco();
duke@435 728 }
duke@435 729
duke@435 730 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 731 // These errors occur only at call sites
duke@435 732 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 733 JRT_END
duke@435 734
dcubed@451 735 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 736 // These errors occur only at call sites
dcubed@451 737 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 738 JRT_END
dcubed@451 739
duke@435 740 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 741 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 742 JRT_END
duke@435 743
duke@435 744 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 745 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 746 JRT_END
duke@435 747
duke@435 748 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 749 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 750 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 751 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 752 JRT_END
duke@435 753
duke@435 754 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 755 // We avoid using the normal exception construction in this case because
duke@435 756 // it performs an upcall to Java, and we're already out of stack space.
duke@435 757 klassOop k = SystemDictionary::StackOverflowError_klass();
duke@435 758 oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 759 Handle exception (thread, exception_oop);
duke@435 760 if (StackTraceInThrowable) {
duke@435 761 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 762 }
duke@435 763 throw_and_post_jvmti_exception(thread, exception);
duke@435 764 JRT_END
duke@435 765
duke@435 766 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 767 address pc,
duke@435 768 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 769 {
duke@435 770 address target_pc = NULL;
duke@435 771
duke@435 772 if (Interpreter::contains(pc)) {
duke@435 773 #ifdef CC_INTERP
duke@435 774 // C++ interpreter doesn't throw implicit exceptions
duke@435 775 ShouldNotReachHere();
duke@435 776 #else
duke@435 777 switch (exception_kind) {
duke@435 778 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 779 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 780 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 781 default: ShouldNotReachHere();
duke@435 782 }
duke@435 783 #endif // !CC_INTERP
duke@435 784 } else {
duke@435 785 switch (exception_kind) {
duke@435 786 case STACK_OVERFLOW: {
duke@435 787 // Stack overflow only occurs upon frame setup; the callee is
duke@435 788 // going to be unwound. Dispatch to a shared runtime stub
duke@435 789 // which will cause the StackOverflowError to be fabricated
duke@435 790 // and processed.
duke@435 791 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 792 if (thread->deopt_mark() != NULL) {
duke@435 793 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 794 }
duke@435 795 return StubRoutines::throw_StackOverflowError_entry();
duke@435 796 }
duke@435 797
duke@435 798 case IMPLICIT_NULL: {
duke@435 799 if (VtableStubs::contains(pc)) {
duke@435 800 // We haven't yet entered the callee frame. Fabricate an
duke@435 801 // exception and begin dispatching it in the caller. Since
duke@435 802 // the caller was at a call site, it's safe to destroy all
duke@435 803 // caller-saved registers, as these entry points do.
duke@435 804 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 805
poonam@900 806 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 807 if (vt_stub == NULL) return NULL;
poonam@900 808
duke@435 809 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 810 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
duke@435 811 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 812 } else {
duke@435 813 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 814 }
duke@435 815 } else {
duke@435 816 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 817
poonam@900 818 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 819 if (cb == NULL) return NULL;
duke@435 820
duke@435 821 // Exception happened in CodeCache. Must be either:
duke@435 822 // 1. Inline-cache check in C2I handler blob,
duke@435 823 // 2. Inline-cache check in nmethod, or
duke@435 824 // 3. Implict null exception in nmethod
duke@435 825
duke@435 826 if (!cb->is_nmethod()) {
twisti@1734 827 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 828 "exception happened outside interpreter, nmethods and vtable stubs (1)");
duke@435 829 // There is no handler here, so we will simply unwind.
duke@435 830 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 831 }
duke@435 832
duke@435 833 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 834 nmethod* nm = (nmethod*)cb;
duke@435 835 if (nm->inlinecache_check_contains(pc)) {
duke@435 836 // exception happened inside inline-cache check code
duke@435 837 // => the nmethod is not yet active (i.e., the frame
duke@435 838 // is not set up yet) => use return address pushed by
duke@435 839 // caller => don't push another return address
duke@435 840 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 841 }
duke@435 842
duke@435 843 #ifndef PRODUCT
duke@435 844 _implicit_null_throws++;
duke@435 845 #endif
duke@435 846 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 847 // If there's an unexpected fault, target_pc might be NULL,
never@1685 848 // in which case we want to fall through into the normal
never@1685 849 // error handling code.
duke@435 850 }
duke@435 851
duke@435 852 break; // fall through
duke@435 853 }
duke@435 854
duke@435 855
duke@435 856 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 857 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 858 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 859 #ifndef PRODUCT
duke@435 860 _implicit_div0_throws++;
duke@435 861 #endif
duke@435 862 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 863 // If there's an unexpected fault, target_pc might be NULL,
never@1685 864 // in which case we want to fall through into the normal
never@1685 865 // error handling code.
duke@435 866 break; // fall through
duke@435 867 }
duke@435 868
duke@435 869 default: ShouldNotReachHere();
duke@435 870 }
duke@435 871
duke@435 872 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 873
duke@435 874 // for AbortVMOnException flag
duke@435 875 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 876 if (exception_kind == IMPLICIT_NULL) {
duke@435 877 Events::log("Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 878 } else {
duke@435 879 Events::log("Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 880 }
duke@435 881 return target_pc;
duke@435 882 }
duke@435 883
duke@435 884 ShouldNotReachHere();
duke@435 885 return NULL;
duke@435 886 }
duke@435 887
duke@435 888
duke@435 889 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 890 {
duke@435 891 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 892 }
duke@435 893 JNI_END
duke@435 894
duke@435 895
duke@435 896 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 897 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 898 }
duke@435 899
duke@435 900
duke@435 901 #ifndef PRODUCT
duke@435 902 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 903 const frame f = thread->last_frame();
duke@435 904 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 905 #ifndef PRODUCT
duke@435 906 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 907 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 908 #endif // !PRODUCT
duke@435 909 return preserve_this_value;
duke@435 910 JRT_END
duke@435 911 #endif // !PRODUCT
duke@435 912
duke@435 913
duke@435 914 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 915 os::yield_all(attempts);
duke@435 916 JRT_END
duke@435 917
duke@435 918
duke@435 919 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 920 assert(obj->is_oop(), "must be a valid oop");
duke@435 921 assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
duke@435 922 instanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 923 JRT_END
duke@435 924
duke@435 925
duke@435 926 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 927 if (thread != NULL) {
duke@435 928 if (thread->is_Java_thread()) {
duke@435 929 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 930 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 931 }
duke@435 932 }
duke@435 933 return 0;
duke@435 934 }
duke@435 935
duke@435 936 /**
duke@435 937 * This function ought to be a void function, but cannot be because
duke@435 938 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 939 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 940 */
duke@435 941 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 942 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 943 }
duke@435 944
duke@435 945 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 946 assert(DTraceAllocProbes, "wrong call");
duke@435 947 Klass* klass = o->blueprint();
duke@435 948 int size = o->size();
coleenp@2497 949 Symbol* name = klass->name();
duke@435 950 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 951 name->bytes(), name->utf8_length(), size * HeapWordSize);
duke@435 952 return 0;
duke@435 953 }
duke@435 954
duke@435 955 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
duke@435 956 JavaThread* thread, methodOopDesc* method))
duke@435 957 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 958 Symbol* kname = method->klass_name();
coleenp@2497 959 Symbol* name = method->name();
coleenp@2497 960 Symbol* sig = method->signature();
duke@435 961 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 962 kname->bytes(), kname->utf8_length(),
duke@435 963 name->bytes(), name->utf8_length(),
duke@435 964 sig->bytes(), sig->utf8_length());
duke@435 965 return 0;
duke@435 966 JRT_END
duke@435 967
duke@435 968 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
duke@435 969 JavaThread* thread, methodOopDesc* method))
duke@435 970 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 971 Symbol* kname = method->klass_name();
coleenp@2497 972 Symbol* name = method->name();
coleenp@2497 973 Symbol* sig = method->signature();
duke@435 974 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 975 kname->bytes(), kname->utf8_length(),
duke@435 976 name->bytes(), name->utf8_length(),
duke@435 977 sig->bytes(), sig->utf8_length());
duke@435 978 return 0;
duke@435 979 JRT_END
duke@435 980
duke@435 981
duke@435 982 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 983 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 984 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 985 // vtable updates, etc. Caller frame must be compiled.
duke@435 986 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 987 ResourceMark rm(THREAD);
duke@435 988
duke@435 989 // last java frame on stack (which includes native call frames)
duke@435 990 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 991
duke@435 992 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 993 }
duke@435 994
duke@435 995
duke@435 996 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 997 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 998 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 999 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1000 vframeStream& vfst,
duke@435 1001 Bytecodes::Code& bc,
duke@435 1002 CallInfo& callinfo, TRAPS) {
duke@435 1003 Handle receiver;
duke@435 1004 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1005
duke@435 1006 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1007
duke@435 1008 // Find caller and bci from vframe
duke@435 1009 methodHandle caller (THREAD, vfst.method());
duke@435 1010 int bci = vfst.bci();
duke@435 1011
duke@435 1012 // Find bytecode
never@2462 1013 Bytecode_invoke bytecode(caller, bci);
never@2462 1014 bc = bytecode.java_code();
never@2462 1015 int bytecode_index = bytecode.index();
duke@435 1016
duke@435 1017 // Find receiver for non-static call
duke@435 1018 if (bc != Bytecodes::_invokestatic) {
duke@435 1019 // This register map must be update since we need to find the receiver for
duke@435 1020 // compiled frames. The receiver might be in a register.
duke@435 1021 RegisterMap reg_map2(thread);
duke@435 1022 frame stubFrame = thread->last_frame();
duke@435 1023 // Caller-frame is a compiled frame
duke@435 1024 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1025
never@2462 1026 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1027 if (callee.is_null()) {
duke@435 1028 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1029 }
duke@435 1030 // Retrieve from a compiled argument list
duke@435 1031 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1032
duke@435 1033 if (receiver.is_null()) {
duke@435 1034 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1035 }
duke@435 1036 }
duke@435 1037
duke@435 1038 // Resolve method. This is parameterized by bytecode.
duke@435 1039 constantPoolHandle constants (THREAD, caller->constants());
duke@435 1040 assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1041 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1042
duke@435 1043 #ifdef ASSERT
duke@435 1044 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 1045 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 1046 assert(receiver.not_null(), "should have thrown exception");
duke@435 1047 KlassHandle receiver_klass (THREAD, receiver->klass());
duke@435 1048 klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1049 // klass is already loaded
duke@435 1050 KlassHandle static_receiver_klass (THREAD, rk);
duke@435 1051 assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
duke@435 1052 if (receiver_klass->oop_is_instance()) {
duke@435 1053 if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1054 tty->print_cr("ERROR: Klass not yet initialized!!");
duke@435 1055 receiver_klass.print();
duke@435 1056 }
duke@435 1057 assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1058 }
duke@435 1059 }
duke@435 1060 #endif
duke@435 1061
duke@435 1062 return receiver;
duke@435 1063 }
duke@435 1064
duke@435 1065 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1066 ResourceMark rm(THREAD);
duke@435 1067 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1068 // exist on the stack since last JavaCall. If not, we need
duke@435 1069 // to get the target method from the JavaCall wrapper.
duke@435 1070 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1071 methodHandle callee_method;
duke@435 1072 if (vfst.at_end()) {
duke@435 1073 // No Java frames were found on stack since we did the JavaCall.
duke@435 1074 // Hence the stack can only contain an entry_frame. We need to
duke@435 1075 // find the target method from the stub frame.
duke@435 1076 RegisterMap reg_map(thread, false);
duke@435 1077 frame fr = thread->last_frame();
duke@435 1078 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1079 fr = fr.sender(&reg_map);
duke@435 1080 assert(fr.is_entry_frame(), "must be");
duke@435 1081 // fr is now pointing to the entry frame.
duke@435 1082 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1083 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1084 } else {
duke@435 1085 Bytecodes::Code bc;
duke@435 1086 CallInfo callinfo;
duke@435 1087 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1088 callee_method = callinfo.selected_method();
duke@435 1089 }
duke@435 1090 assert(callee_method()->is_method(), "must be");
duke@435 1091 return callee_method;
duke@435 1092 }
duke@435 1093
duke@435 1094 // Resolves a call.
duke@435 1095 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1096 bool is_virtual,
duke@435 1097 bool is_optimized, TRAPS) {
duke@435 1098 methodHandle callee_method;
duke@435 1099 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1100 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1101 int retry_count = 0;
duke@435 1102 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1103 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1104 // If has a pending exception then there is no need to re-try to
duke@435 1105 // resolve this method.
duke@435 1106 // If the method has been redefined, we need to try again.
duke@435 1107 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1108 // require that java.lang.Object has been updated.
duke@435 1109
duke@435 1110 // It is very unlikely that method is redefined more than 100 times
duke@435 1111 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1112 // means then there could be a bug here.
duke@435 1113 guarantee((retry_count++ < 100),
duke@435 1114 "Could not resolve to latest version of redefined method");
duke@435 1115 // method is redefined in the middle of resolve so re-try.
duke@435 1116 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1117 }
duke@435 1118 }
duke@435 1119 return callee_method;
duke@435 1120 }
duke@435 1121
duke@435 1122 // Resolves a call. The compilers generate code for calls that go here
duke@435 1123 // and are patched with the real destination of the call.
duke@435 1124 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1125 bool is_virtual,
duke@435 1126 bool is_optimized, TRAPS) {
duke@435 1127
duke@435 1128 ResourceMark rm(thread);
duke@435 1129 RegisterMap cbl_map(thread, false);
duke@435 1130 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1131
twisti@1730 1132 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1133 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1134 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1135 // make sure caller is not getting deoptimized
duke@435 1136 // and removed before we are done with it.
duke@435 1137 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1138 nmethodLocker caller_lock(caller_nm);
duke@435 1139
duke@435 1140
duke@435 1141 // determine call info & receiver
duke@435 1142 // note: a) receiver is NULL for static calls
duke@435 1143 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1144 CallInfo call_info;
duke@435 1145 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1146 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1147 call_info, CHECK_(methodHandle()));
duke@435 1148 methodHandle callee_method = call_info.selected_method();
duke@435 1149
duke@435 1150 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
duke@435 1151 ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
duke@435 1152
duke@435 1153 #ifndef PRODUCT
duke@435 1154 // tracing/debugging/statistics
duke@435 1155 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1156 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1157 (&_resolve_static_ctr);
duke@435 1158 Atomic::inc(addr);
duke@435 1159
duke@435 1160 if (TraceCallFixup) {
duke@435 1161 ResourceMark rm(thread);
duke@435 1162 tty->print("resolving %s%s (%s) call to",
duke@435 1163 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1164 Bytecodes::name(invoke_code));
duke@435 1165 callee_method->print_short_name(tty);
duke@435 1166 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1167 }
duke@435 1168 #endif
duke@435 1169
twisti@1730 1170 // JSR 292
twisti@1730 1171 // If the resolved method is a MethodHandle invoke target the call
twisti@1730 1172 // site must be a MethodHandle call site.
twisti@1730 1173 if (callee_method->is_method_handle_invoke()) {
twisti@1730 1174 assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1175 }
twisti@1730 1176
duke@435 1177 // Compute entry points. This might require generation of C2I converter
duke@435 1178 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1179 // computation of the entry points is independent of patching the call. We
duke@435 1180 // always return the entry-point, but we only patch the stub if the call has
duke@435 1181 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1182 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1183 // virtual this is just a destination address.
duke@435 1184
duke@435 1185 StaticCallInfo static_call_info;
duke@435 1186 CompiledICInfo virtual_call_info;
duke@435 1187
duke@435 1188 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1189 // we are done patching the code.
twisti@1730 1190 nmethod* callee_nm = callee_method->code();
twisti@1730 1191 nmethodLocker nl_callee(callee_nm);
duke@435 1192 #ifdef ASSERT
twisti@1730 1193 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1194 #endif
duke@435 1195
duke@435 1196 if (is_virtual) {
duke@435 1197 assert(receiver.not_null(), "sanity check");
duke@435 1198 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1199 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1200 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1201 is_optimized, static_bound, virtual_call_info,
duke@435 1202 CHECK_(methodHandle()));
duke@435 1203 } else {
duke@435 1204 // static call
duke@435 1205 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1206 }
duke@435 1207
duke@435 1208 // grab lock, check for deoptimization and potentially patch caller
duke@435 1209 {
duke@435 1210 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1211
duke@435 1212 // Now that we are ready to patch if the methodOop was redefined then
duke@435 1213 // don't update call site and let the caller retry.
duke@435 1214
duke@435 1215 if (!callee_method->is_old()) {
duke@435 1216 #ifdef ASSERT
duke@435 1217 // We must not try to patch to jump to an already unloaded method.
duke@435 1218 if (dest_entry_point != 0) {
duke@435 1219 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1220 "should not unload nmethod while locked");
duke@435 1221 }
duke@435 1222 #endif
duke@435 1223 if (is_virtual) {
duke@435 1224 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1225 if (inline_cache->is_clean()) {
duke@435 1226 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1227 }
duke@435 1228 } else {
duke@435 1229 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1230 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1231 }
duke@435 1232 }
duke@435 1233
duke@435 1234 } // unlock CompiledIC_lock
duke@435 1235
duke@435 1236 return callee_method;
duke@435 1237 }
duke@435 1238
duke@435 1239
duke@435 1240 // Inline caches exist only in compiled code
duke@435 1241 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1242 #ifdef ASSERT
duke@435 1243 RegisterMap reg_map(thread, false);
duke@435 1244 frame stub_frame = thread->last_frame();
duke@435 1245 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1246 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1247 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
never@2895 1248 assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
duke@435 1249 #endif /* ASSERT */
duke@435 1250
duke@435 1251 methodHandle callee_method;
duke@435 1252 JRT_BLOCK
duke@435 1253 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
duke@435 1254 // Return methodOop through TLS
duke@435 1255 thread->set_vm_result(callee_method());
duke@435 1256 JRT_BLOCK_END
duke@435 1257 // return compiled code entry point after potential safepoints
duke@435 1258 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1259 return callee_method->verified_code_entry();
duke@435 1260 JRT_END
duke@435 1261
duke@435 1262
duke@435 1263 // Handle call site that has been made non-entrant
duke@435 1264 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1265 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1266 // as we race to call it. We don't want to take a safepoint if
duke@435 1267 // the caller was interpreted because the caller frame will look
duke@435 1268 // interpreted to the stack walkers and arguments are now
duke@435 1269 // "compiled" so it is much better to make this transition
duke@435 1270 // invisible to the stack walking code. The i2c path will
duke@435 1271 // place the callee method in the callee_target. It is stashed
duke@435 1272 // there because if we try and find the callee by normal means a
duke@435 1273 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1274 RegisterMap reg_map(thread, false);
duke@435 1275 frame stub_frame = thread->last_frame();
duke@435 1276 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1277 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1278
twisti@1570 1279 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1280 // simply redispatch to the callee_target.
twisti@1570 1281 address sender_pc = caller_frame.pc();
twisti@1570 1282 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1283 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1639 1284 bool is_mh_invoke_via_adapter = false; // Direct c2c call or via adapter?
twisti@1639 1285 if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
twisti@1639 1286 // If the callee_target is set, then we have come here via an i2c
twisti@1639 1287 // adapter.
twisti@1639 1288 methodOop callee = thread->callee_target();
twisti@1639 1289 if (callee != NULL) {
twisti@1639 1290 assert(callee->is_method(), "sanity");
twisti@1639 1291 is_mh_invoke_via_adapter = true;
twisti@1639 1292 }
twisti@1639 1293 }
twisti@1570 1294
twisti@1570 1295 if (caller_frame.is_interpreted_frame() ||
twisti@1639 1296 caller_frame.is_entry_frame() ||
never@2895 1297 caller_frame.is_ricochet_frame() ||
twisti@1639 1298 is_mh_invoke_via_adapter) {
duke@435 1299 methodOop callee = thread->callee_target();
duke@435 1300 guarantee(callee != NULL && callee->is_method(), "bad handshake");
duke@435 1301 thread->set_vm_result(callee);
duke@435 1302 thread->set_callee_target(NULL);
duke@435 1303 return callee->get_c2i_entry();
duke@435 1304 }
duke@435 1305
duke@435 1306 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1307 methodHandle callee_method;
duke@435 1308 JRT_BLOCK
duke@435 1309 // Force resolving of caller (if we called from compiled frame)
duke@435 1310 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
duke@435 1311 thread->set_vm_result(callee_method());
duke@435 1312 JRT_BLOCK_END
duke@435 1313 // return compiled code entry point after potential safepoints
duke@435 1314 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1315 return callee_method->verified_code_entry();
duke@435 1316 JRT_END
duke@435 1317
duke@435 1318
duke@435 1319 // resolve a static call and patch code
duke@435 1320 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1321 methodHandle callee_method;
duke@435 1322 JRT_BLOCK
duke@435 1323 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
duke@435 1324 thread->set_vm_result(callee_method());
duke@435 1325 JRT_BLOCK_END
duke@435 1326 // return compiled code entry point after potential safepoints
duke@435 1327 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1328 return callee_method->verified_code_entry();
duke@435 1329 JRT_END
duke@435 1330
duke@435 1331
duke@435 1332 // resolve virtual call and update inline cache to monomorphic
duke@435 1333 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1334 methodHandle callee_method;
duke@435 1335 JRT_BLOCK
duke@435 1336 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
duke@435 1337 thread->set_vm_result(callee_method());
duke@435 1338 JRT_BLOCK_END
duke@435 1339 // return compiled code entry point after potential safepoints
duke@435 1340 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1341 return callee_method->verified_code_entry();
duke@435 1342 JRT_END
duke@435 1343
duke@435 1344
duke@435 1345 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1346 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1347 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1348 methodHandle callee_method;
duke@435 1349 JRT_BLOCK
duke@435 1350 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
duke@435 1351 thread->set_vm_result(callee_method());
duke@435 1352 JRT_BLOCK_END
duke@435 1353 // return compiled code entry point after potential safepoints
duke@435 1354 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1355 return callee_method->verified_code_entry();
duke@435 1356 JRT_END
duke@435 1357
duke@435 1358
duke@435 1359
duke@435 1360
duke@435 1361
duke@435 1362 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1363 ResourceMark rm(thread);
duke@435 1364 CallInfo call_info;
duke@435 1365 Bytecodes::Code bc;
duke@435 1366
duke@435 1367 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1368 // receivers for non-static calls
duke@435 1369 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1370 CHECK_(methodHandle()));
duke@435 1371 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1372 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1373 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1374 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1375 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1376 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1377 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1378 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1379 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1380 //
duke@435 1381 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1382 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1383 if (TraceCallFixup) {
duke@435 1384 RegisterMap reg_map(thread, false);
duke@435 1385 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1386 ResourceMark rm(thread);
duke@435 1387 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1388 callee_method->print_short_name(tty);
duke@435 1389 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1390 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1391 }
duke@435 1392 return callee_method;
duke@435 1393 }
duke@435 1394
duke@435 1395 methodHandle callee_method = call_info.selected_method();
duke@435 1396
duke@435 1397 bool should_be_mono = false;
duke@435 1398
duke@435 1399 #ifndef PRODUCT
duke@435 1400 Atomic::inc(&_ic_miss_ctr);
duke@435 1401
duke@435 1402 // Statistics & Tracing
duke@435 1403 if (TraceCallFixup) {
duke@435 1404 ResourceMark rm(thread);
duke@435 1405 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1406 callee_method->print_short_name(tty);
duke@435 1407 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1408 }
duke@435 1409
duke@435 1410 if (ICMissHistogram) {
duke@435 1411 MutexLocker m(VMStatistic_lock);
duke@435 1412 RegisterMap reg_map(thread, false);
duke@435 1413 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1414 // produce statistics under the lock
duke@435 1415 trace_ic_miss(f.pc());
duke@435 1416 }
duke@435 1417 #endif
duke@435 1418
duke@435 1419 // install an event collector so that when a vtable stub is created the
duke@435 1420 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1421 // event can't be posted when the stub is created as locks are held
duke@435 1422 // - instead the event will be deferred until the event collector goes
duke@435 1423 // out of scope.
duke@435 1424 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1425
duke@435 1426 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1427 // made non-entrant or we are called from interpreted.
duke@435 1428 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1429 RegisterMap reg_map(thread, false);
duke@435 1430 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1431 CodeBlob* cb = caller_frame.cb();
duke@435 1432 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1433 // Not a non-entrant nmethod, so find inline_cache
duke@435 1434 CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
duke@435 1435 bool should_be_mono = false;
duke@435 1436 if (inline_cache->is_optimized()) {
duke@435 1437 if (TraceCallFixup) {
duke@435 1438 ResourceMark rm(thread);
duke@435 1439 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1440 callee_method->print_short_name(tty);
duke@435 1441 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1442 }
duke@435 1443 should_be_mono = true;
duke@435 1444 } else {
duke@435 1445 compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
duke@435 1446 if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
duke@435 1447
duke@435 1448 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1449 // This isn't a real miss. We must have seen that compiled code
duke@435 1450 // is now available and we want the call site converted to a
duke@435 1451 // monomorphic compiled call site.
duke@435 1452 // We can't assert for callee_method->code() != NULL because it
duke@435 1453 // could have been deoptimized in the meantime
duke@435 1454 if (TraceCallFixup) {
duke@435 1455 ResourceMark rm(thread);
duke@435 1456 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1457 callee_method->print_short_name(tty);
duke@435 1458 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1459 }
duke@435 1460 should_be_mono = true;
duke@435 1461 }
duke@435 1462 }
duke@435 1463 }
duke@435 1464
duke@435 1465 if (should_be_mono) {
duke@435 1466
duke@435 1467 // We have a path that was monomorphic but was going interpreted
duke@435 1468 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1469 // by using a new icBuffer.
duke@435 1470 CompiledICInfo info;
duke@435 1471 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1472 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1473 receiver_klass,
duke@435 1474 inline_cache->is_optimized(),
duke@435 1475 false,
duke@435 1476 info, CHECK_(methodHandle()));
duke@435 1477 inline_cache->set_to_monomorphic(info);
duke@435 1478 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1479 // Change to megamorphic
duke@435 1480 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1481 } else {
duke@435 1482 // Either clean or megamorphic
duke@435 1483 }
duke@435 1484 }
duke@435 1485 } // Release CompiledIC_lock
duke@435 1486
duke@435 1487 return callee_method;
duke@435 1488 }
duke@435 1489
duke@435 1490 //
duke@435 1491 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1492 // This routines handles both virtual call sites, optimized virtual call
duke@435 1493 // sites, and static call sites. Typically used to change a call sites
duke@435 1494 // destination from compiled to interpreted.
duke@435 1495 //
duke@435 1496 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1497 ResourceMark rm(thread);
duke@435 1498 RegisterMap reg_map(thread, false);
duke@435 1499 frame stub_frame = thread->last_frame();
duke@435 1500 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1501 frame caller = stub_frame.sender(&reg_map);
duke@435 1502
duke@435 1503 // Do nothing if the frame isn't a live compiled frame.
duke@435 1504 // nmethod could be deoptimized by the time we get here
duke@435 1505 // so no update to the caller is needed.
duke@435 1506
duke@435 1507 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1508
duke@435 1509 address pc = caller.pc();
duke@435 1510 Events::log("update call-site at pc " INTPTR_FORMAT, pc);
duke@435 1511
duke@435 1512 // Default call_addr is the location of the "basic" call.
duke@435 1513 // Determine the address of the call we a reresolving. With
duke@435 1514 // Inline Caches we will always find a recognizable call.
duke@435 1515 // With Inline Caches disabled we may or may not find a
duke@435 1516 // recognizable call. We will always find a call for static
duke@435 1517 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1518 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1519 //
duke@435 1520 // With Inline Caches disabled we can get here for a virtual call
duke@435 1521 // for two reasons:
duke@435 1522 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1523 // will run us thru handle_wrong_method and we will eventually
duke@435 1524 // end up in the interpreter to throw the ame.
duke@435 1525 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1526 // call and between the time we fetch the entry address and
duke@435 1527 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1528 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1529 //
duke@435 1530 address call_addr = NULL;
duke@435 1531 {
duke@435 1532 // Get call instruction under lock because another thread may be
duke@435 1533 // busy patching it.
duke@435 1534 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1535 // Location of call instruction
duke@435 1536 if (NativeCall::is_call_before(pc)) {
duke@435 1537 NativeCall *ncall = nativeCall_before(pc);
duke@435 1538 call_addr = ncall->instruction_address();
duke@435 1539 }
duke@435 1540 }
duke@435 1541
duke@435 1542 // Check for static or virtual call
duke@435 1543 bool is_static_call = false;
duke@435 1544 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1545 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1546 // this is done with it.
duke@435 1547 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1548 nmethodLocker nmlock(caller_nm);
duke@435 1549
duke@435 1550 if (call_addr != NULL) {
duke@435 1551 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1552 int ret = iter.next(); // Get item
duke@435 1553 if (ret) {
duke@435 1554 assert(iter.addr() == call_addr, "must find call");
duke@435 1555 if (iter.type() == relocInfo::static_call_type) {
duke@435 1556 is_static_call = true;
duke@435 1557 } else {
duke@435 1558 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1559 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1560 , "unexpected relocInfo. type");
duke@435 1561 }
duke@435 1562 } else {
duke@435 1563 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1564 }
duke@435 1565
duke@435 1566 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1567 // than directly setting it to the new destination, since resolving of calls
duke@435 1568 // is always done through the same code path. (experience shows that it
duke@435 1569 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1570 // to a wrong method). It should not be performance critical, since the
duke@435 1571 // resolve is only done once.
duke@435 1572
duke@435 1573 MutexLocker ml(CompiledIC_lock);
duke@435 1574 //
duke@435 1575 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1576 // as it is a waste of time
duke@435 1577 //
duke@435 1578 if (caller_nm->is_in_use()) {
duke@435 1579 if (is_static_call) {
duke@435 1580 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1581 ssc->set_to_clean();
duke@435 1582 } else {
duke@435 1583 // compiled, dispatched call (which used to call an interpreted method)
duke@435 1584 CompiledIC* inline_cache = CompiledIC_at(call_addr);
duke@435 1585 inline_cache->set_to_clean();
duke@435 1586 }
duke@435 1587 }
duke@435 1588 }
duke@435 1589
duke@435 1590 }
duke@435 1591
duke@435 1592 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1593
duke@435 1594
duke@435 1595 #ifndef PRODUCT
duke@435 1596 Atomic::inc(&_wrong_method_ctr);
duke@435 1597
duke@435 1598 if (TraceCallFixup) {
duke@435 1599 ResourceMark rm(thread);
duke@435 1600 tty->print("handle_wrong_method reresolving call to");
duke@435 1601 callee_method->print_short_name(tty);
duke@435 1602 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1603 }
duke@435 1604 #endif
duke@435 1605
duke@435 1606 return callee_method;
duke@435 1607 }
duke@435 1608
duke@435 1609 // ---------------------------------------------------------------------------
duke@435 1610 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1611 // we were called by a compiled method. However we could have lost a race
duke@435 1612 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1613 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1614 // so he no longer calls into the interpreter.
duke@435 1615 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
duke@435 1616 methodOop moop(method);
duke@435 1617
duke@435 1618 address entry_point = moop->from_compiled_entry();
duke@435 1619
duke@435 1620 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1621 // been resolved yet, in which case this function will be called from
duke@435 1622 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1623 // request for a fixup.
duke@435 1624 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1625 // is now back to the i2c in that case we don't need to patch and if
duke@435 1626 // we did we'd leap into space because the callsite needs to use
duke@435 1627 // "to interpreter" stub in order to load up the methodOop. Don't
duke@435 1628 // ask me how I know this...
duke@435 1629
duke@435 1630 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1631 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1632 return;
twisti@1640 1633 }
twisti@1640 1634
twisti@1640 1635 // The check above makes sure this is a nmethod.
twisti@1640 1636 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1637 assert(nm, "must be");
twisti@1640 1638
twisti@1640 1639 // Don't fixup MethodHandle call sites as c2i/i2c adapters are used
twisti@1640 1640 // to implement MethodHandle actions.
twisti@1640 1641 if (nm->is_method_handle_return(caller_pc)) {
duke@435 1642 return;
duke@435 1643 }
duke@435 1644
duke@435 1645 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1646 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1647 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1648 // call site with the same old data. clear_code will set code() to NULL
duke@435 1649 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1650 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1651 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1652 // and patch the code with the same old data. Asi es la vida.
duke@435 1653
duke@435 1654 if (moop->code() == NULL) return;
duke@435 1655
twisti@1640 1656 if (nm->is_in_use()) {
duke@435 1657
duke@435 1658 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1659 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1660 if (NativeCall::is_call_before(caller_pc + frame::pc_return_offset)) {
duke@435 1661 NativeCall *call = nativeCall_before(caller_pc + frame::pc_return_offset);
duke@435 1662 //
duke@435 1663 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1664 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1665 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1666 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1667 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1668 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1669 // for the rest of its life! Just another racing bug in the life of
duke@435 1670 // fixup_callers_callsite ...
duke@435 1671 //
twisti@1918 1672 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1673 iter.next();
duke@435 1674 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1675 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1676 if ( typ != relocInfo::static_call_type &&
duke@435 1677 typ != relocInfo::opt_virtual_call_type &&
duke@435 1678 typ != relocInfo::static_stub_type) {
duke@435 1679 return;
duke@435 1680 }
duke@435 1681 address destination = call->destination();
duke@435 1682 if (destination != entry_point) {
duke@435 1683 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1684 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1685 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1686 // static call or optimized virtual
duke@435 1687 if (TraceCallFixup) {
twisti@1639 1688 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1689 moop->print_short_name(tty);
duke@435 1690 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1691 }
duke@435 1692 call->set_destination_mt_safe(entry_point);
duke@435 1693 } else {
duke@435 1694 if (TraceCallFixup) {
duke@435 1695 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1696 moop->print_short_name(tty);
duke@435 1697 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1698 }
duke@435 1699 // assert is too strong could also be resolve destinations.
duke@435 1700 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1701 }
duke@435 1702 } else {
duke@435 1703 if (TraceCallFixup) {
twisti@1639 1704 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1705 moop->print_short_name(tty);
duke@435 1706 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1707 }
duke@435 1708 }
duke@435 1709 }
duke@435 1710 }
duke@435 1711
duke@435 1712 IRT_END
duke@435 1713
duke@435 1714
duke@435 1715 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1716 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1717 oopDesc* dest, jint dest_pos,
duke@435 1718 jint length,
duke@435 1719 JavaThread* thread)) {
duke@435 1720 #ifndef PRODUCT
duke@435 1721 _slow_array_copy_ctr++;
duke@435 1722 #endif
duke@435 1723 // Check if we have null pointers
duke@435 1724 if (src == NULL || dest == NULL) {
duke@435 1725 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1726 }
duke@435 1727 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1728 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1729 // that src and dest are truly arrays (and are conformable).
duke@435 1730 // The copy_array mechanism is awkward and could be removed, but
duke@435 1731 // the compilers don't call this function except as a last resort,
duke@435 1732 // so it probably doesn't matter.
duke@435 1733 Klass::cast(src->klass())->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1734 (arrayOopDesc*)dest, dest_pos,
duke@435 1735 length, thread);
duke@435 1736 }
duke@435 1737 JRT_END
duke@435 1738
duke@435 1739 char* SharedRuntime::generate_class_cast_message(
duke@435 1740 JavaThread* thread, const char* objName) {
duke@435 1741
duke@435 1742 // Get target class name from the checkcast instruction
duke@435 1743 vframeStream vfst(thread, true);
duke@435 1744 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1745 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
duke@435 1746 Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
never@2462 1747 cc.index(), thread));
duke@435 1748 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1749 }
duke@435 1750
jrose@1145 1751 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
jrose@1145 1752 oopDesc* required,
jrose@1145 1753 oopDesc* actual) {
jrose@2148 1754 if (TraceMethodHandles) {
jrose@2148 1755 tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
jrose@2148 1756 thread, required, actual);
jrose@2148 1757 }
twisti@2698 1758 assert(EnableInvokeDynamic, "");
jrose@1145 1759 oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
jrose@2148 1760 char* message = NULL;
jrose@1145 1761 if (singleKlass != NULL) {
jrose@1145 1762 const char* objName = "argument or return value";
jrose@1145 1763 if (actual != NULL) {
jrose@1145 1764 // be flexible about the junk passed in:
jrose@1145 1765 klassOop ak = (actual->is_klass()
jrose@1145 1766 ? (klassOop)actual
jrose@1145 1767 : actual->klass());
jrose@1145 1768 objName = Klass::cast(ak)->external_name();
jrose@1145 1769 }
jrose@1145 1770 Klass* targetKlass = Klass::cast(required->is_klass()
jrose@1145 1771 ? (klassOop)required
jrose@1145 1772 : java_lang_Class::as_klassOop(required));
jrose@2148 1773 message = generate_class_cast_message(objName, targetKlass->external_name());
jrose@1145 1774 } else {
jrose@1145 1775 // %%% need to get the MethodType string, without messing around too much
jrose@2743 1776 const char* desc = NULL;
jrose@1145 1777 // Get a signature from the invoke instruction
jrose@1145 1778 const char* mhName = "method handle";
jrose@1145 1779 const char* targetType = "the required signature";
jrose@2743 1780 int targetArity = -1, mhArity = -1;
jrose@1145 1781 vframeStream vfst(thread, true);
jrose@1145 1782 if (!vfst.at_end()) {
never@2462 1783 Bytecode_invoke call(vfst.method(), vfst.bci());
jrose@1145 1784 methodHandle target;
jrose@1145 1785 {
jrose@1145 1786 EXCEPTION_MARK;
never@2462 1787 target = call.static_target(THREAD);
jrose@1145 1788 if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
jrose@1145 1789 }
jrose@1145 1790 if (target.not_null()
jrose@1145 1791 && target->is_method_handle_invoke()
jrose@1145 1792 && required == target->method_handle_type()) {
jrose@1145 1793 targetType = target->signature()->as_C_string();
jrose@2743 1794 targetArity = ArgumentCount(target->signature()).size();
jrose@1145 1795 }
jrose@1145 1796 }
twisti@2806 1797 KlassHandle kignore; int dmf_flags = 0;
twisti@2806 1798 methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
jrose@2743 1799 if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
jrose@2743 1800 MethodHandles::_dmf_does_dispatch |
jrose@2743 1801 MethodHandles::_dmf_from_interface)) != 0)
twisti@2806 1802 actual_method = methodHandle(); // MH does extra binds, drops, etc.
jrose@2743 1803 bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
twisti@2806 1804 if (actual_method.not_null()) {
jrose@2743 1805 mhName = actual_method->signature()->as_C_string();
jrose@2743 1806 mhArity = ArgumentCount(actual_method->signature()).size();
jrose@2743 1807 if (!actual_method->is_static()) mhArity += 1;
jrose@2743 1808 } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
jrose@2743 1809 oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
jrose@2743 1810 mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
jrose@2743 1811 stringStream st;
jrose@2743 1812 java_lang_invoke_MethodType::print_signature(mhType, &st);
jrose@2743 1813 mhName = st.as_string();
jrose@2743 1814 }
jrose@2743 1815 if (targetArity != -1 && targetArity != mhArity) {
jrose@2743 1816 if (has_receiver && targetArity == mhArity-1)
jrose@2743 1817 desc = " cannot be called without a receiver argument as ";
jrose@1145 1818 else
jrose@2743 1819 desc = " cannot be called with a different arity as ";
jrose@1145 1820 }
jrose@2148 1821 message = generate_class_cast_message(mhName, targetType,
jrose@2743 1822 desc != NULL ? desc :
jrose@2148 1823 " cannot be called as ");
jrose@1145 1824 }
jrose@2148 1825 if (TraceMethodHandles) {
jrose@2148 1826 tty->print_cr("WrongMethodType => message=%s", message);
jrose@2148 1827 }
jrose@2148 1828 return message;
jrose@1145 1829 }
jrose@1145 1830
jrose@1145 1831 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
jrose@1145 1832 oopDesc* required) {
jrose@1145 1833 if (required == NULL) return NULL;
never@1577 1834 if (required->klass() == SystemDictionary::Class_klass())
jrose@1145 1835 return required;
jrose@1145 1836 if (required->is_klass())
jrose@1145 1837 return Klass::cast(klassOop(required))->java_mirror();
jrose@1145 1838 return NULL;
jrose@1145 1839 }
jrose@1145 1840
jrose@1145 1841
duke@435 1842 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1843 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1844 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1845
kamg@488 1846 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1847 if (NULL == message) {
kamg@488 1848 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1849 message = const_cast<char*>(objName);
duke@435 1850 } else {
duke@435 1851 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1852 }
duke@435 1853 return message;
duke@435 1854 }
duke@435 1855
duke@435 1856 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1857 (void) JavaThread::current()->reguard_stack();
duke@435 1858 JRT_END
duke@435 1859
duke@435 1860
duke@435 1861 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1862 #ifndef PRODUCT
duke@435 1863 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1864 #endif
duke@435 1865 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1866 oop obj(_obj);
duke@435 1867 #ifndef PRODUCT
duke@435 1868 _monitor_enter_ctr++; // monitor enter slow
duke@435 1869 #endif
duke@435 1870 if (PrintBiasedLockingStatistics) {
duke@435 1871 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1872 }
duke@435 1873 Handle h_obj(THREAD, obj);
duke@435 1874 if (UseBiasedLocking) {
duke@435 1875 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1876 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1877 } else {
duke@435 1878 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1879 }
duke@435 1880 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1881 JRT_END
duke@435 1882
duke@435 1883 #ifndef PRODUCT
duke@435 1884 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1885 #endif
duke@435 1886 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1887 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1888 oop obj(_obj);
duke@435 1889 #ifndef PRODUCT
duke@435 1890 _monitor_exit_ctr++; // monitor exit slow
duke@435 1891 #endif
duke@435 1892 Thread* THREAD = JavaThread::current();
duke@435 1893 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1894 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1895 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1896 #undef MIGHT_HAVE_PENDING
duke@435 1897 #ifdef MIGHT_HAVE_PENDING
duke@435 1898 // Save and restore any pending_exception around the exception mark.
duke@435 1899 // While the slow_exit must not throw an exception, we could come into
duke@435 1900 // this routine with one set.
duke@435 1901 oop pending_excep = NULL;
duke@435 1902 const char* pending_file;
duke@435 1903 int pending_line;
duke@435 1904 if (HAS_PENDING_EXCEPTION) {
duke@435 1905 pending_excep = PENDING_EXCEPTION;
duke@435 1906 pending_file = THREAD->exception_file();
duke@435 1907 pending_line = THREAD->exception_line();
duke@435 1908 CLEAR_PENDING_EXCEPTION;
duke@435 1909 }
duke@435 1910 #endif /* MIGHT_HAVE_PENDING */
duke@435 1911
duke@435 1912 {
duke@435 1913 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1914 EXCEPTION_MARK;
duke@435 1915 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1916 }
duke@435 1917
duke@435 1918 #ifdef MIGHT_HAVE_PENDING
duke@435 1919 if (pending_excep != NULL) {
duke@435 1920 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1921 }
duke@435 1922 #endif /* MIGHT_HAVE_PENDING */
duke@435 1923 JRT_END
duke@435 1924
duke@435 1925 #ifndef PRODUCT
duke@435 1926
duke@435 1927 void SharedRuntime::print_statistics() {
duke@435 1928 ttyLocker ttyl;
duke@435 1929 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1930
duke@435 1931 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1932 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1933 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1934
duke@435 1935 SharedRuntime::print_ic_miss_histogram();
duke@435 1936
duke@435 1937 if (CountRemovableExceptions) {
duke@435 1938 if (_nof_removable_exceptions > 0) {
duke@435 1939 Unimplemented(); // this counter is not yet incremented
duke@435 1940 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1941 }
duke@435 1942 }
duke@435 1943
duke@435 1944 // Dump the JRT_ENTRY counters
duke@435 1945 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1946 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1947 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1948 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1949 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1950 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1951 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1952
duke@435 1953 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1954 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1955 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1956 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1957 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1958
duke@435 1959 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1960 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1961 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1962 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1963 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1964 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1965 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1966 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1967 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1968 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1969 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1970 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1971 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1972 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1973 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1974 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1975
never@1622 1976 AdapterHandlerLibrary::print_statistics();
never@1622 1977
duke@435 1978 if (xtty != NULL) xtty->tail("statistics");
duke@435 1979 }
duke@435 1980
duke@435 1981 inline double percent(int x, int y) {
duke@435 1982 return 100.0 * x / MAX2(y, 1);
duke@435 1983 }
duke@435 1984
duke@435 1985 class MethodArityHistogram {
duke@435 1986 public:
duke@435 1987 enum { MAX_ARITY = 256 };
duke@435 1988 private:
duke@435 1989 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1990 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1991 static int _max_arity; // max. arity seen
duke@435 1992 static int _max_size; // max. arg size seen
duke@435 1993
duke@435 1994 static void add_method_to_histogram(nmethod* nm) {
duke@435 1995 methodOop m = nm->method();
duke@435 1996 ArgumentCount args(m->signature());
duke@435 1997 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1998 int argsize = m->size_of_parameters();
duke@435 1999 arity = MIN2(arity, MAX_ARITY-1);
duke@435 2000 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 2001 int count = nm->method()->compiled_invocation_count();
duke@435 2002 _arity_histogram[arity] += count;
duke@435 2003 _size_histogram[argsize] += count;
duke@435 2004 _max_arity = MAX2(_max_arity, arity);
duke@435 2005 _max_size = MAX2(_max_size, argsize);
duke@435 2006 }
duke@435 2007
duke@435 2008 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 2009 const int N = MIN2(5, n);
duke@435 2010 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2011 double sum = 0;
duke@435 2012 double weighted_sum = 0;
duke@435 2013 int i;
duke@435 2014 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 2015 double rest = sum;
duke@435 2016 double percent = sum / 100;
duke@435 2017 for (i = 0; i <= N; i++) {
duke@435 2018 rest -= histo[i];
duke@435 2019 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 2020 }
duke@435 2021 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 2022 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 2023 }
duke@435 2024
duke@435 2025 void print_histogram() {
duke@435 2026 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 2027 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 2028 tty->print_cr("\nSame for parameter size (in words):");
duke@435 2029 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 2030 tty->cr();
duke@435 2031 }
duke@435 2032
duke@435 2033 public:
duke@435 2034 MethodArityHistogram() {
duke@435 2035 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 2036 _max_arity = _max_size = 0;
duke@435 2037 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 2038 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 2039 print_histogram();
duke@435 2040 }
duke@435 2041 };
duke@435 2042
duke@435 2043 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2044 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2045 int MethodArityHistogram::_max_arity;
duke@435 2046 int MethodArityHistogram::_max_size;
duke@435 2047
duke@435 2048 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2049 tty->print_cr("Calls from compiled code:");
duke@435 2050 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2051 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2052 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2053 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2054 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2055 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2056 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2057 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2058 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2059 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2060 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2061 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2062 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2063 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2064 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2065 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2066 tty->cr();
duke@435 2067 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2068 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2069 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2070 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2071 tty->cr();
duke@435 2072
duke@435 2073 MethodArityHistogram h;
duke@435 2074 }
duke@435 2075 #endif
duke@435 2076
duke@435 2077
never@1622 2078 // A simple wrapper class around the calling convention information
never@1622 2079 // that allows sharing of adapters for the same calling convention.
never@1622 2080 class AdapterFingerPrint : public CHeapObj {
never@1622 2081 private:
never@1622 2082 union {
never@1642 2083 int _compact[3];
never@1642 2084 int* _fingerprint;
never@1622 2085 } _value;
never@1642 2086 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2087 // Otherwise _value._fingerprint is the array.
never@1622 2088
never@1642 2089 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2090 // These are correct for the current system but someday it might be
never@1642 2091 // necessary to make this mapping platform dependent.
never@1642 2092 static BasicType adapter_encoding(BasicType in) {
never@1642 2093 assert((~0xf & in) == 0, "must fit in 4 bits");
never@1642 2094 switch(in) {
never@1642 2095 case T_BOOLEAN:
never@1642 2096 case T_BYTE:
never@1642 2097 case T_SHORT:
never@1642 2098 case T_CHAR:
never@1642 2099 // There are all promoted to T_INT in the calling convention
never@1642 2100 return T_INT;
never@1642 2101
never@1642 2102 case T_OBJECT:
never@1642 2103 case T_ARRAY:
never@1642 2104 #ifdef _LP64
twisti@1861 2105 return T_LONG;
never@1642 2106 #else
twisti@1861 2107 return T_INT;
never@1642 2108 #endif
never@1642 2109
never@1642 2110 case T_INT:
never@1642 2111 case T_LONG:
never@1642 2112 case T_FLOAT:
never@1642 2113 case T_DOUBLE:
never@1642 2114 case T_VOID:
never@1642 2115 return in;
never@1642 2116
never@1642 2117 default:
never@1642 2118 ShouldNotReachHere();
never@1642 2119 return T_CONFLICT;
never@1622 2120 }
never@1622 2121 }
never@1622 2122
never@1642 2123 public:
never@1642 2124 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2125 // The fingerprint is based on the BasicType signature encoded
never@1642 2126 // into an array of ints with four entries per int.
never@1642 2127 int* ptr;
never@1642 2128 int len = (total_args_passed + 3) >> 2;
never@1642 2129 if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
never@1642 2130 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2131 // Storing the signature encoded as signed chars hits about 98%
never@1642 2132 // of the time.
never@1642 2133 _length = -len;
never@1642 2134 ptr = _value._compact;
never@1642 2135 } else {
never@1642 2136 _length = len;
never@1642 2137 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
never@1642 2138 ptr = _value._fingerprint;
never@1642 2139 }
never@1642 2140
never@1642 2141 // Now pack the BasicTypes with 4 per int
never@1642 2142 int sig_index = 0;
never@1642 2143 for (int index = 0; index < len; index++) {
never@1642 2144 int value = 0;
never@1642 2145 for (int byte = 0; byte < 4; byte++) {
never@1642 2146 if (sig_index < total_args_passed) {
never@1642 2147 value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
never@1642 2148 }
never@1642 2149 }
never@1642 2150 ptr[index] = value;
never@1642 2151 }
never@1622 2152 }
never@1622 2153
never@1622 2154 ~AdapterFingerPrint() {
never@1622 2155 if (_length > 0) {
never@1622 2156 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
never@1622 2157 }
never@1622 2158 }
never@1622 2159
never@1642 2160 int value(int index) {
never@1622 2161 if (_length < 0) {
never@1622 2162 return _value._compact[index];
never@1622 2163 }
never@1622 2164 return _value._fingerprint[index];
never@1622 2165 }
never@1622 2166 int length() {
never@1622 2167 if (_length < 0) return -_length;
never@1622 2168 return _length;
never@1622 2169 }
never@1622 2170
never@1622 2171 bool is_compact() {
never@1622 2172 return _length <= 0;
never@1622 2173 }
never@1622 2174
never@1622 2175 unsigned int compute_hash() {
never@1642 2176 int hash = 0;
never@1622 2177 for (int i = 0; i < length(); i++) {
never@1642 2178 int v = value(i);
never@1622 2179 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2180 }
never@1622 2181 return (unsigned int)hash;
never@1622 2182 }
never@1622 2183
never@1622 2184 const char* as_string() {
never@1622 2185 stringStream st;
never@1622 2186 for (int i = 0; i < length(); i++) {
never@1622 2187 st.print(PTR_FORMAT, value(i));
never@1622 2188 }
never@1622 2189 return st.as_string();
never@1622 2190 }
never@1622 2191
never@1622 2192 bool equals(AdapterFingerPrint* other) {
never@1622 2193 if (other->_length != _length) {
never@1622 2194 return false;
never@1622 2195 }
never@1622 2196 if (_length < 0) {
never@1642 2197 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2198 _value._compact[1] == other->_value._compact[1] &&
never@1642 2199 _value._compact[2] == other->_value._compact[2];
never@1622 2200 } else {
never@1622 2201 for (int i = 0; i < _length; i++) {
never@1622 2202 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2203 return false;
never@1622 2204 }
never@1622 2205 }
never@1622 2206 }
never@1622 2207 return true;
never@1622 2208 }
never@1622 2209 };
never@1622 2210
never@1622 2211
never@1622 2212 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
never@1622 2213 class AdapterHandlerTable : public BasicHashtable {
never@1622 2214 friend class AdapterHandlerTableIterator;
never@1622 2215
never@1622 2216 private:
never@1622 2217
kvn@1698 2218 #ifndef PRODUCT
never@1622 2219 static int _lookups; // number of calls to lookup
never@1622 2220 static int _buckets; // number of buckets checked
never@1622 2221 static int _equals; // number of buckets checked with matching hash
never@1622 2222 static int _hits; // number of successful lookups
never@1622 2223 static int _compact; // number of equals calls with compact signature
never@1622 2224 #endif
never@1622 2225
never@1622 2226 AdapterHandlerEntry* bucket(int i) {
never@1622 2227 return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
never@1622 2228 }
never@1622 2229
never@1622 2230 public:
never@1622 2231 AdapterHandlerTable()
never@1622 2232 : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2233
never@1622 2234 // Create a new entry suitable for insertion in the table
never@1622 2235 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
never@1622 2236 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
never@1622 2237 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2238 return entry;
never@1622 2239 }
never@1622 2240
never@1622 2241 // Insert an entry into the table
never@1622 2242 void add(AdapterHandlerEntry* entry) {
never@1622 2243 int index = hash_to_index(entry->hash());
never@1622 2244 add_entry(index, entry);
never@1622 2245 }
never@1622 2246
never@1642 2247 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2248 entry->deallocate();
never@1642 2249 BasicHashtable::free_entry(entry);
never@1642 2250 }
never@1642 2251
never@1622 2252 // Find a entry with the same fingerprint if it exists
never@1642 2253 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2254 NOT_PRODUCT(_lookups++);
never@1642 2255 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2256 unsigned int hash = fp.compute_hash();
never@1622 2257 int index = hash_to_index(hash);
never@1622 2258 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2259 NOT_PRODUCT(_buckets++);
never@1622 2260 if (e->hash() == hash) {
kvn@1698 2261 NOT_PRODUCT(_equals++);
never@1622 2262 if (fp.equals(e->fingerprint())) {
kvn@1698 2263 #ifndef PRODUCT
never@1622 2264 if (fp.is_compact()) _compact++;
never@1622 2265 _hits++;
never@1622 2266 #endif
never@1622 2267 return e;
never@1622 2268 }
never@1622 2269 }
never@1622 2270 }
never@1622 2271 return NULL;
never@1622 2272 }
never@1622 2273
kvn@1698 2274 #ifndef PRODUCT
never@1622 2275 void print_statistics() {
never@1622 2276 ResourceMark rm;
never@1622 2277 int longest = 0;
never@1622 2278 int empty = 0;
never@1622 2279 int total = 0;
never@1622 2280 int nonempty = 0;
never@1622 2281 for (int index = 0; index < table_size(); index++) {
never@1622 2282 int count = 0;
never@1622 2283 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2284 count++;
never@1622 2285 }
never@1622 2286 if (count != 0) nonempty++;
never@1622 2287 if (count == 0) empty++;
never@1622 2288 if (count > longest) longest = count;
never@1622 2289 total += count;
never@1622 2290 }
never@1622 2291 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2292 empty, longest, total, total / (double)nonempty);
never@1622 2293 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2294 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2295 }
never@1622 2296 #endif
never@1622 2297 };
never@1622 2298
never@1622 2299
kvn@1698 2300 #ifndef PRODUCT
never@1622 2301
never@1622 2302 int AdapterHandlerTable::_lookups;
never@1622 2303 int AdapterHandlerTable::_buckets;
never@1622 2304 int AdapterHandlerTable::_equals;
never@1622 2305 int AdapterHandlerTable::_hits;
never@1622 2306 int AdapterHandlerTable::_compact;
never@1622 2307
bobv@2036 2308 #endif
bobv@2036 2309
never@1622 2310 class AdapterHandlerTableIterator : public StackObj {
never@1622 2311 private:
never@1622 2312 AdapterHandlerTable* _table;
never@1622 2313 int _index;
never@1622 2314 AdapterHandlerEntry* _current;
never@1622 2315
never@1622 2316 void scan() {
never@1622 2317 while (_index < _table->table_size()) {
never@1622 2318 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2319 _index++;
never@1622 2320 if (a != NULL) {
never@1622 2321 _current = a;
never@1622 2322 return;
never@1622 2323 }
never@1622 2324 }
never@1622 2325 }
never@1622 2326
never@1622 2327 public:
never@1622 2328 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2329 scan();
never@1622 2330 }
never@1622 2331 bool has_next() {
never@1622 2332 return _current != NULL;
never@1622 2333 }
never@1622 2334 AdapterHandlerEntry* next() {
never@1622 2335 if (_current != NULL) {
never@1622 2336 AdapterHandlerEntry* result = _current;
never@1622 2337 _current = _current->next();
never@1622 2338 if (_current == NULL) scan();
never@1622 2339 return result;
never@1622 2340 } else {
never@1622 2341 return NULL;
never@1622 2342 }
never@1622 2343 }
never@1622 2344 };
never@1622 2345
never@1622 2346
duke@435 2347 // ---------------------------------------------------------------------------
duke@435 2348 // Implementation of AdapterHandlerLibrary
never@1622 2349 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2350 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2351 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2352 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2353
kvn@1177 2354 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2355 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2356 if (_buffer == NULL) // Initialize lazily
kvn@1177 2357 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2358 return _buffer;
kvn@1177 2359 }
duke@435 2360
duke@435 2361 void AdapterHandlerLibrary::initialize() {
never@1622 2362 if (_adapters != NULL) return;
never@1622 2363 _adapters = new AdapterHandlerTable();
duke@435 2364
duke@435 2365 // Create a special handler for abstract methods. Abstract methods
duke@435 2366 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2367 // fill it in with something appropriate just in case. Pass handle
duke@435 2368 // wrong method for the c2i transitions.
duke@435 2369 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2370 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2371 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2372 wrong_method, wrong_method);
duke@435 2373 }
duke@435 2374
never@1622 2375 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2376 address i2c_entry,
never@1622 2377 address c2i_entry,
never@1622 2378 address c2i_unverified_entry) {
never@1622 2379 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2380 }
never@1622 2381
never@1622 2382 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2383 // Use customized signature handler. Need to lock around updates to
never@1622 2384 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2385 // and a single writer: this could be fixed if it becomes a
never@1622 2386 // problem).
duke@435 2387
duke@435 2388 // Get the address of the ic_miss handlers before we grab the
duke@435 2389 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2390 // was caused by the initialization of the stubs happening
duke@435 2391 // while we held the lock and then notifying jvmti while
duke@435 2392 // holding it. This just forces the initialization to be a little
duke@435 2393 // earlier.
duke@435 2394 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2395 assert(ic_miss != NULL, "must have handler");
duke@435 2396
never@1622 2397 ResourceMark rm;
never@1622 2398
twisti@2103 2399 NOT_PRODUCT(int insts_size);
twisti@1734 2400 AdapterBlob* B = NULL;
kvn@1177 2401 AdapterHandlerEntry* entry = NULL;
never@1622 2402 AdapterFingerPrint* fingerprint = NULL;
duke@435 2403 {
duke@435 2404 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2405 // make sure data structure is initialized
duke@435 2406 initialize();
duke@435 2407
duke@435 2408 if (method->is_abstract()) {
never@1622 2409 return _abstract_method_handler;
duke@435 2410 }
duke@435 2411
never@1622 2412 // Fill in the signature array, for the calling-convention call.
never@1622 2413 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2414
never@1622 2415 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2416 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2417 int i = 0;
never@1622 2418 if (!method->is_static()) // Pass in receiver first
never@1622 2419 sig_bt[i++] = T_OBJECT;
never@1622 2420 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2421 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2422 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2423 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2424 }
never@1622 2425 assert(i == total_args_passed, "");
never@1622 2426
never@1642 2427 // Lookup method signature's fingerprint
never@1642 2428 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2429
never@1642 2430 #ifdef ASSERT
never@1642 2431 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2432 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2433 shared_entry = entry;
never@1642 2434 entry = NULL;
never@1642 2435 }
never@1642 2436 #endif
never@1642 2437
never@1622 2438 if (entry != NULL) {
never@1622 2439 return entry;
duke@435 2440 }
duke@435 2441
never@1642 2442 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2443 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2444
never@1622 2445 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2446 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2447
duke@435 2448 // Create I2C & C2I handlers
duke@435 2449
twisti@1734 2450 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2451 if (buf != NULL) {
twisti@2103 2452 CodeBuffer buffer(buf);
kvn@1177 2453 short buffer_locs[20];
kvn@1177 2454 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2455 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2456 MacroAssembler _masm(&buffer);
duke@435 2457
kvn@1177 2458 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2459 total_args_passed,
kvn@1177 2460 comp_args_on_stack,
kvn@1177 2461 sig_bt,
never@1622 2462 regs,
never@1622 2463 fingerprint);
kvn@1177 2464
never@1642 2465 #ifdef ASSERT
never@1642 2466 if (VerifyAdapterSharing) {
never@1642 2467 if (shared_entry != NULL) {
twisti@2103 2468 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2469 "code must match");
never@1642 2470 // Release the one just created and return the original
never@1642 2471 _adapters->free_entry(entry);
never@1642 2472 return shared_entry;
never@1642 2473 } else {
twisti@2103 2474 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2475 }
never@1642 2476 }
never@1642 2477 #endif
never@1642 2478
twisti@1734 2479 B = AdapterBlob::create(&buffer);
twisti@2103 2480 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2481 }
kvn@463 2482 if (B == NULL) {
kvn@463 2483 // CodeCache is full, disable compilation
kvn@463 2484 // Ought to log this but compile log is only per compile thread
kvn@463 2485 // and we're some non descript Java thread.
kvn@1637 2486 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2487 CompileBroker::handle_full_code_cache();
never@1622 2488 return NULL; // Out of CodeCache space
kvn@463 2489 }
twisti@2103 2490 entry->relocate(B->content_begin());
duke@435 2491 #ifndef PRODUCT
duke@435 2492 // debugging suppport
duke@435 2493 if (PrintAdapterHandlers) {
duke@435 2494 tty->cr();
never@1622 2495 tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
never@1622 2496 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@2103 2497 method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
duke@435 2498 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@2103 2499 Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
duke@435 2500 }
duke@435 2501 #endif
duke@435 2502
never@1622 2503 _adapters->add(entry);
duke@435 2504 }
duke@435 2505 // Outside of the lock
duke@435 2506 if (B != NULL) {
duke@435 2507 char blob_id[256];
duke@435 2508 jio_snprintf(blob_id,
duke@435 2509 sizeof(blob_id),
never@1622 2510 "%s(%s)@" PTR_FORMAT,
twisti@1734 2511 B->name(),
never@1622 2512 fingerprint->as_string(),
twisti@2103 2513 B->content_begin());
twisti@2103 2514 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2515
duke@435 2516 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2517 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2518 }
duke@435 2519 }
never@1622 2520 return entry;
duke@435 2521 }
duke@435 2522
duke@435 2523 void AdapterHandlerEntry::relocate(address new_base) {
duke@435 2524 ptrdiff_t delta = new_base - _i2c_entry;
duke@435 2525 _i2c_entry += delta;
duke@435 2526 _c2i_entry += delta;
duke@435 2527 _c2i_unverified_entry += delta;
duke@435 2528 }
duke@435 2529
never@1642 2530
never@1642 2531 void AdapterHandlerEntry::deallocate() {
never@1642 2532 delete _fingerprint;
never@1642 2533 #ifdef ASSERT
never@1642 2534 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
never@1642 2535 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
never@1642 2536 #endif
never@1642 2537 }
never@1642 2538
never@1642 2539
never@1642 2540 #ifdef ASSERT
never@1642 2541 // Capture the code before relocation so that it can be compared
never@1642 2542 // against other versions. If the code is captured after relocation
never@1642 2543 // then relative instructions won't be equivalent.
never@1642 2544 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2545 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
never@1642 2546 _code_length = length;
never@1642 2547 memcpy(_saved_code, buffer, length);
never@1642 2548 _total_args_passed = total_args_passed;
never@1642 2549 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
never@1642 2550 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2551 }
never@1642 2552
never@1642 2553
never@1642 2554 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2555 if (length != _code_length) {
never@1642 2556 return false;
never@1642 2557 }
never@1642 2558 for (int i = 0; i < length; i++) {
never@1642 2559 if (buffer[i] != _saved_code[i]) {
never@1642 2560 return false;
never@1642 2561 }
never@1642 2562 }
never@1642 2563 return true;
never@1642 2564 }
never@1642 2565 #endif
never@1642 2566
never@1642 2567
duke@435 2568 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2569 // java compiled calling convention to the native convention, handlizes
duke@435 2570 // arguments, and transitions to native. On return from the native we transition
duke@435 2571 // back to java blocking if a safepoint is in progress.
twisti@2687 2572 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2573 ResourceMark rm;
duke@435 2574 nmethod* nm = NULL;
duke@435 2575
duke@435 2576 assert(method->has_native_function(), "must have something valid to call!");
duke@435 2577
duke@435 2578 {
duke@435 2579 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2580 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2581 // See if somebody beat us to it
duke@435 2582 nm = method->code();
duke@435 2583 if (nm) {
duke@435 2584 return nm;
duke@435 2585 }
duke@435 2586
kvn@1177 2587 ResourceMark rm;
duke@435 2588
kvn@1177 2589 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2590 if (buf != NULL) {
twisti@2103 2591 CodeBuffer buffer(buf);
kvn@1177 2592 double locs_buf[20];
kvn@1177 2593 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2594 MacroAssembler _masm(&buffer);
duke@435 2595
kvn@1177 2596 // Fill in the signature array, for the calling-convention call.
kvn@1177 2597 int total_args_passed = method->size_of_parameters();
kvn@1177 2598
kvn@1177 2599 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
kvn@1177 2600 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
kvn@1177 2601 int i=0;
kvn@1177 2602 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2603 sig_bt[i++] = T_OBJECT;
kvn@1177 2604 SignatureStream ss(method->signature());
kvn@1177 2605 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2606 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2607 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2608 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2609 }
kvn@1177 2610 assert( i==total_args_passed, "" );
kvn@1177 2611 BasicType ret_type = ss.type();
kvn@1177 2612
kvn@1177 2613 // Now get the compiled-Java layout as input arguments
kvn@1177 2614 int comp_args_on_stack;
kvn@1177 2615 comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
kvn@1177 2616
kvn@1177 2617 // Generate the compiled-to-native wrapper code
kvn@1177 2618 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2619 method,
twisti@2687 2620 compile_id,
kvn@1177 2621 total_args_passed,
kvn@1177 2622 comp_args_on_stack,
kvn@1177 2623 sig_bt,regs,
kvn@1177 2624 ret_type);
duke@435 2625 }
duke@435 2626 }
duke@435 2627
duke@435 2628 // Must unlock before calling set_code
never@2083 2629
duke@435 2630 // Install the generated code.
duke@435 2631 if (nm != NULL) {
twisti@2687 2632 if (PrintCompilation) {
twisti@2687 2633 ttyLocker ttyl;
twisti@2687 2634 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2635 }
duke@435 2636 method->set_code(method, nm);
duke@435 2637 nm->post_compiled_method_load_event();
duke@435 2638 } else {
duke@435 2639 // CodeCache is full, disable compilation
kvn@1637 2640 CompileBroker::handle_full_code_cache();
duke@435 2641 }
duke@435 2642 return nm;
duke@435 2643 }
duke@435 2644
kamg@551 2645 #ifdef HAVE_DTRACE_H
kamg@551 2646 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2647 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2648 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2649 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2650 // leaf no thread transition is needed.
kamg@551 2651
kamg@551 2652 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2653 ResourceMark rm;
kamg@551 2654 nmethod* nm = NULL;
kamg@551 2655
kamg@551 2656 if (PrintCompilation) {
kamg@551 2657 ttyLocker ttyl;
kamg@551 2658 tty->print("--- n%s ");
kamg@551 2659 method->print_short_name(tty);
kamg@551 2660 if (method->is_static()) {
kamg@551 2661 tty->print(" (static)");
kamg@551 2662 }
kamg@551 2663 tty->cr();
kamg@551 2664 }
kamg@551 2665
kamg@551 2666 {
kamg@551 2667 // perform the work while holding the lock, but perform any printing
kamg@551 2668 // outside the lock
kamg@551 2669 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2670 // See if somebody beat us to it
kamg@551 2671 nm = method->code();
kamg@551 2672 if (nm) {
kamg@551 2673 return nm;
kamg@551 2674 }
kamg@551 2675
kvn@1177 2676 ResourceMark rm;
kvn@1177 2677
kvn@1177 2678 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2679 if (buf != NULL) {
twisti@2103 2680 CodeBuffer buffer(buf);
kvn@1177 2681 // Need a few relocation entries
kvn@1177 2682 double locs_buf[20];
kvn@1177 2683 buffer.insts()->initialize_shared_locs(
kamg@551 2684 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2685 MacroAssembler _masm(&buffer);
kamg@551 2686
kvn@1177 2687 // Generate the compiled-to-native wrapper code
kvn@1177 2688 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2689 }
kamg@551 2690 }
kamg@551 2691 return nm;
kamg@551 2692 }
kamg@551 2693
kamg@551 2694 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2695 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2696 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2697 int jlsOffset = java_lang_String::offset(src);
kamg@551 2698 int jlsLen = java_lang_String::length(src);
kamg@551 2699 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2700 jlsValue->char_at_addr(jlsOffset);
bobv@2508 2701 assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2702 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2703 }
kamg@551 2704 #endif // ndef HAVE_DTRACE_H
kamg@551 2705
duke@435 2706 // -------------------------------------------------------------------------
duke@435 2707 // Java-Java calling convention
duke@435 2708 // (what you use when Java calls Java)
duke@435 2709
duke@435 2710 //------------------------------name_for_receiver----------------------------------
duke@435 2711 // For a given signature, return the VMReg for parameter 0.
duke@435 2712 VMReg SharedRuntime::name_for_receiver() {
duke@435 2713 VMRegPair regs;
duke@435 2714 BasicType sig_bt = T_OBJECT;
duke@435 2715 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2716 // Return argument 0 register. In the LP64 build pointers
duke@435 2717 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2718 return regs.first();
duke@435 2719 }
duke@435 2720
coleenp@2497 2721 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2722 // This method is returning a data structure allocating as a
duke@435 2723 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2724 char *s = sig->as_C_string();
duke@435 2725 int len = (int)strlen(s);
duke@435 2726 *s++; len--; // Skip opening paren
duke@435 2727 char *t = s+len;
duke@435 2728 while( *(--t) != ')' ) ; // Find close paren
duke@435 2729
duke@435 2730 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2731 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2732 int cnt = 0;
twisti@1573 2733 if (has_receiver) {
duke@435 2734 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2735 }
duke@435 2736
duke@435 2737 while( s < t ) {
duke@435 2738 switch( *s++ ) { // Switch on signature character
duke@435 2739 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2740 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2741 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2742 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2743 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2744 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2745 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2746 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2747 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2748 case 'L': // Oop
duke@435 2749 while( *s++ != ';' ) ; // Skip signature
duke@435 2750 sig_bt[cnt++] = T_OBJECT;
duke@435 2751 break;
duke@435 2752 case '[': { // Array
duke@435 2753 do { // Skip optional size
duke@435 2754 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2755 } while( *s++ == '[' ); // Nested arrays?
duke@435 2756 // Skip element type
duke@435 2757 if( s[-1] == 'L' )
duke@435 2758 while( *s++ != ';' ) ; // Skip signature
duke@435 2759 sig_bt[cnt++] = T_ARRAY;
duke@435 2760 break;
duke@435 2761 }
duke@435 2762 default : ShouldNotReachHere();
duke@435 2763 }
duke@435 2764 }
duke@435 2765 assert( cnt < 256, "grow table size" );
duke@435 2766
duke@435 2767 int comp_args_on_stack;
duke@435 2768 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2769
duke@435 2770 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2771 // we must add that in to get "true" stack offsets.
duke@435 2772
duke@435 2773 if (comp_args_on_stack) {
duke@435 2774 for (int i = 0; i < cnt; i++) {
duke@435 2775 VMReg reg1 = regs[i].first();
duke@435 2776 if( reg1->is_stack()) {
duke@435 2777 // Yuck
duke@435 2778 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2779 }
duke@435 2780 VMReg reg2 = regs[i].second();
duke@435 2781 if( reg2->is_stack()) {
duke@435 2782 // Yuck
duke@435 2783 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2784 }
duke@435 2785 regs[i].set_pair(reg2, reg1);
duke@435 2786 }
duke@435 2787 }
duke@435 2788
duke@435 2789 // results
duke@435 2790 *arg_size = cnt;
duke@435 2791 return regs;
duke@435 2792 }
duke@435 2793
duke@435 2794 // OSR Migration Code
duke@435 2795 //
duke@435 2796 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2797 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2798 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2799 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2800 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2801 // back to the compiled code. The compiled code then pops the current
duke@435 2802 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2803 // copies the interpreter locals and displaced headers where it wants.
duke@435 2804 // Finally it calls back to free the temp buffer.
duke@435 2805 //
duke@435 2806 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2807
duke@435 2808 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2809
duke@435 2810 #ifdef IA64
duke@435 2811 ShouldNotReachHere(); // NYI
duke@435 2812 #endif /* IA64 */
duke@435 2813
duke@435 2814 //
duke@435 2815 // This code is dependent on the memory layout of the interpreter local
duke@435 2816 // array and the monitors. On all of our platforms the layout is identical
duke@435 2817 // so this code is shared. If some platform lays the their arrays out
duke@435 2818 // differently then this code could move to platform specific code or
duke@435 2819 // the code here could be modified to copy items one at a time using
duke@435 2820 // frame accessor methods and be platform independent.
duke@435 2821
duke@435 2822 frame fr = thread->last_frame();
duke@435 2823 assert( fr.is_interpreted_frame(), "" );
duke@435 2824 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2825
duke@435 2826 // Figure out how many monitors are active.
duke@435 2827 int active_monitor_count = 0;
duke@435 2828 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2829 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2830 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2831 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2832 }
duke@435 2833
duke@435 2834 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2835 // could double check it.
duke@435 2836
duke@435 2837 methodOop moop = fr.interpreter_frame_method();
duke@435 2838 int max_locals = moop->max_locals();
duke@435 2839 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2840 int buf_size_words = max_locals + active_monitor_count*2;
duke@435 2841 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
duke@435 2842
duke@435 2843 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2844 // Since there's no GC I can copy the oops blindly.
duke@435 2845 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2846 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2847 (HeapWord*)&buf[0],
duke@435 2848 max_locals);
duke@435 2849
duke@435 2850 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2851 int i = max_locals;
duke@435 2852 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2853 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2854 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2855 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2856 BasicLock *lock = kptr2->lock();
duke@435 2857 // Inflate so the displaced header becomes position-independent
duke@435 2858 if (lock->displaced_header()->is_unlocked())
duke@435 2859 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2860 // Now the displaced header is free to move
duke@435 2861 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2862 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2863 }
duke@435 2864 }
duke@435 2865 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2866
duke@435 2867 return buf;
duke@435 2868 JRT_END
duke@435 2869
duke@435 2870 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
duke@435 2871 FREE_C_HEAP_ARRAY(intptr_t,buf);
duke@435 2872 JRT_END
duke@435 2873
duke@435 2874 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2875 AdapterHandlerTableIterator iter(_adapters);
never@1622 2876 while (iter.has_next()) {
never@1622 2877 AdapterHandlerEntry* a = iter.next();
never@1622 2878 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2879 }
duke@435 2880 return false;
duke@435 2881 }
duke@435 2882
bobv@2036 2883 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2884 AdapterHandlerTableIterator iter(_adapters);
never@1622 2885 while (iter.has_next()) {
never@1622 2886 AdapterHandlerEntry* a = iter.next();
never@1622 2887 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
bobv@2036 2888 st->print("Adapter for signature: ");
bobv@2036 2889 st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
bobv@2036 2890 a->fingerprint()->as_string(),
bobv@2036 2891 a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
bobv@2036 2892
duke@435 2893 return;
duke@435 2894 }
duke@435 2895 }
duke@435 2896 assert(false, "Should have found handler");
duke@435 2897 }
never@1622 2898
bobv@2036 2899 #ifndef PRODUCT
bobv@2036 2900
never@1622 2901 void AdapterHandlerLibrary::print_statistics() {
never@1622 2902 _adapters->print_statistics();
never@1622 2903 }
never@1622 2904
duke@435 2905 #endif /* PRODUCT */

mercurial