src/cpu/x86/vm/stubGenerator_x86_32.cpp

Thu, 19 Mar 2009 09:13:24 -0700

author
kvn
date
Thu, 19 Mar 2009 09:13:24 -0700
changeset 1082
bd441136a5ce
parent 1014
0fbdb4381b99
parent 1079
c517646eef23
child 1145
e5b0439ef4ae
permissions
-rw-r--r--

Merge

duke@435 1 /*
xdono@1014 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_x86_32.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp
duke@435 31
duke@435 32 #define __ _masm->
never@739 33 #define a__ ((Assembler*)_masm)->
duke@435 34
duke@435 35 #ifdef PRODUCT
duke@435 36 #define BLOCK_COMMENT(str) /* nothing */
duke@435 37 #else
duke@435 38 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 39 #endif
duke@435 40
duke@435 41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 42
duke@435 43 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
duke@435 44 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
duke@435 45
duke@435 46 // -------------------------------------------------------------------------------------------------------------------------
duke@435 47 // Stub Code definitions
duke@435 48
duke@435 49 static address handle_unsafe_access() {
duke@435 50 JavaThread* thread = JavaThread::current();
duke@435 51 address pc = thread->saved_exception_pc();
duke@435 52 // pc is the instruction which we must emulate
duke@435 53 // doing a no-op is fine: return garbage from the load
duke@435 54 // therefore, compute npc
duke@435 55 address npc = Assembler::locate_next_instruction(pc);
duke@435 56
duke@435 57 // request an async exception
duke@435 58 thread->set_pending_unsafe_access_error();
duke@435 59
duke@435 60 // return address of next instruction to execute
duke@435 61 return npc;
duke@435 62 }
duke@435 63
duke@435 64 class StubGenerator: public StubCodeGenerator {
duke@435 65 private:
duke@435 66
duke@435 67 #ifdef PRODUCT
duke@435 68 #define inc_counter_np(counter) (0)
duke@435 69 #else
duke@435 70 void inc_counter_np_(int& counter) {
never@739 71 __ incrementl(ExternalAddress((address)&counter));
duke@435 72 }
duke@435 73 #define inc_counter_np(counter) \
duke@435 74 BLOCK_COMMENT("inc_counter " #counter); \
duke@435 75 inc_counter_np_(counter);
duke@435 76 #endif //PRODUCT
duke@435 77
duke@435 78 void inc_copy_counter_np(BasicType t) {
duke@435 79 #ifndef PRODUCT
duke@435 80 switch (t) {
duke@435 81 case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
duke@435 82 case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
duke@435 83 case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
duke@435 84 case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
duke@435 85 case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
duke@435 86 }
duke@435 87 ShouldNotReachHere();
duke@435 88 #endif //PRODUCT
duke@435 89 }
duke@435 90
duke@435 91 //------------------------------------------------------------------------------------------------------------------------
duke@435 92 // Call stubs are used to call Java from C
duke@435 93 //
duke@435 94 // [ return_from_Java ] <--- rsp
duke@435 95 // [ argument word n ]
duke@435 96 // ...
duke@435 97 // -N [ argument word 1 ]
duke@435 98 // -7 [ Possible padding for stack alignment ]
duke@435 99 // -6 [ Possible padding for stack alignment ]
duke@435 100 // -5 [ Possible padding for stack alignment ]
duke@435 101 // -4 [ mxcsr save ] <--- rsp_after_call
duke@435 102 // -3 [ saved rbx, ]
duke@435 103 // -2 [ saved rsi ]
duke@435 104 // -1 [ saved rdi ]
duke@435 105 // 0 [ saved rbp, ] <--- rbp,
duke@435 106 // 1 [ return address ]
duke@435 107 // 2 [ ptr. to call wrapper ]
duke@435 108 // 3 [ result ]
duke@435 109 // 4 [ result_type ]
duke@435 110 // 5 [ method ]
duke@435 111 // 6 [ entry_point ]
duke@435 112 // 7 [ parameters ]
duke@435 113 // 8 [ parameter_size ]
duke@435 114 // 9 [ thread ]
duke@435 115
duke@435 116
duke@435 117 address generate_call_stub(address& return_address) {
duke@435 118 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 119 address start = __ pc();
duke@435 120
duke@435 121 // stub code parameters / addresses
duke@435 122 assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
duke@435 123 bool sse_save = false;
duke@435 124 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
duke@435 125 const int locals_count_in_bytes (4*wordSize);
duke@435 126 const Address mxcsr_save (rbp, -4 * wordSize);
duke@435 127 const Address saved_rbx (rbp, -3 * wordSize);
duke@435 128 const Address saved_rsi (rbp, -2 * wordSize);
duke@435 129 const Address saved_rdi (rbp, -1 * wordSize);
duke@435 130 const Address result (rbp, 3 * wordSize);
duke@435 131 const Address result_type (rbp, 4 * wordSize);
duke@435 132 const Address method (rbp, 5 * wordSize);
duke@435 133 const Address entry_point (rbp, 6 * wordSize);
duke@435 134 const Address parameters (rbp, 7 * wordSize);
duke@435 135 const Address parameter_size(rbp, 8 * wordSize);
duke@435 136 const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
duke@435 137 sse_save = UseSSE > 0;
duke@435 138
duke@435 139 // stub code
duke@435 140 __ enter();
never@739 141 __ movptr(rcx, parameter_size); // parameter counter
never@739 142 __ shlptr(rcx, Interpreter::logStackElementSize()); // convert parameter count to bytes
never@739 143 __ addptr(rcx, locals_count_in_bytes); // reserve space for register saves
never@739 144 __ subptr(rsp, rcx);
never@739 145 __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
duke@435 146
duke@435 147 // save rdi, rsi, & rbx, according to C calling conventions
never@739 148 __ movptr(saved_rdi, rdi);
never@739 149 __ movptr(saved_rsi, rsi);
never@739 150 __ movptr(saved_rbx, rbx);
duke@435 151 // save and initialize %mxcsr
duke@435 152 if (sse_save) {
duke@435 153 Label skip_ldmx;
duke@435 154 __ stmxcsr(mxcsr_save);
duke@435 155 __ movl(rax, mxcsr_save);
duke@435 156 __ andl(rax, MXCSR_MASK); // Only check control and mask bits
duke@435 157 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
duke@435 158 __ cmp32(rax, mxcsr_std);
duke@435 159 __ jcc(Assembler::equal, skip_ldmx);
duke@435 160 __ ldmxcsr(mxcsr_std);
duke@435 161 __ bind(skip_ldmx);
duke@435 162 }
duke@435 163
duke@435 164 // make sure the control word is correct.
duke@435 165 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 166
duke@435 167 #ifdef ASSERT
duke@435 168 // make sure we have no pending exceptions
duke@435 169 { Label L;
never@739 170 __ movptr(rcx, thread);
never@739 171 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 172 __ jcc(Assembler::equal, L);
duke@435 173 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 174 __ bind(L);
duke@435 175 }
duke@435 176 #endif
duke@435 177
duke@435 178 // pass parameters if any
duke@435 179 BLOCK_COMMENT("pass parameters if any");
duke@435 180 Label parameters_done;
duke@435 181 __ movl(rcx, parameter_size); // parameter counter
duke@435 182 __ testl(rcx, rcx);
duke@435 183 __ jcc(Assembler::zero, parameters_done);
duke@435 184
duke@435 185 // parameter passing loop
duke@435 186
duke@435 187 Label loop;
duke@435 188 // Copy Java parameters in reverse order (receiver last)
duke@435 189 // Note that the argument order is inverted in the process
duke@435 190 // source is rdx[rcx: N-1..0]
duke@435 191 // dest is rsp[rbx: 0..N-1]
duke@435 192
never@739 193 __ movptr(rdx, parameters); // parameter pointer
never@739 194 __ xorptr(rbx, rbx);
duke@435 195
duke@435 196 __ BIND(loop);
duke@435 197 if (TaggedStackInterpreter) {
never@739 198 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(),
duke@435 199 -2*wordSize)); // get tag
never@739 200 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 201 Interpreter::expr_tag_offset_in_bytes(0)), rax); // store tag
duke@435 202 }
duke@435 203
duke@435 204 // get parameter
never@739 205 __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
never@739 206 __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
duke@435 207 Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
duke@435 208 __ increment(rbx);
duke@435 209 __ decrement(rcx);
duke@435 210 __ jcc(Assembler::notZero, loop);
duke@435 211
duke@435 212 // call Java function
duke@435 213 __ BIND(parameters_done);
never@739 214 __ movptr(rbx, method); // get methodOop
never@739 215 __ movptr(rax, entry_point); // get entry_point
never@739 216 __ mov(rsi, rsp); // set sender sp
duke@435 217 BLOCK_COMMENT("call Java function");
duke@435 218 __ call(rax);
duke@435 219
duke@435 220 BLOCK_COMMENT("call_stub_return_address:");
duke@435 221 return_address = __ pc();
duke@435 222
duke@435 223 Label common_return;
duke@435 224
duke@435 225 __ BIND(common_return);
duke@435 226
duke@435 227 // store result depending on type
duke@435 228 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
never@739 229 __ movptr(rdi, result);
duke@435 230 Label is_long, is_float, is_double, exit;
duke@435 231 __ movl(rsi, result_type);
duke@435 232 __ cmpl(rsi, T_LONG);
duke@435 233 __ jcc(Assembler::equal, is_long);
duke@435 234 __ cmpl(rsi, T_FLOAT);
duke@435 235 __ jcc(Assembler::equal, is_float);
duke@435 236 __ cmpl(rsi, T_DOUBLE);
duke@435 237 __ jcc(Assembler::equal, is_double);
duke@435 238
duke@435 239 // handle T_INT case
duke@435 240 __ movl(Address(rdi, 0), rax);
duke@435 241 __ BIND(exit);
duke@435 242
duke@435 243 // check that FPU stack is empty
duke@435 244 __ verify_FPU(0, "generate_call_stub");
duke@435 245
duke@435 246 // pop parameters
never@739 247 __ lea(rsp, rsp_after_call);
duke@435 248
duke@435 249 // restore %mxcsr
duke@435 250 if (sse_save) {
duke@435 251 __ ldmxcsr(mxcsr_save);
duke@435 252 }
duke@435 253
duke@435 254 // restore rdi, rsi and rbx,
never@739 255 __ movptr(rbx, saved_rbx);
never@739 256 __ movptr(rsi, saved_rsi);
never@739 257 __ movptr(rdi, saved_rdi);
never@739 258 __ addptr(rsp, 4*wordSize);
duke@435 259
duke@435 260 // return
never@739 261 __ pop(rbp);
duke@435 262 __ ret(0);
duke@435 263
duke@435 264 // handle return types different from T_INT
duke@435 265 __ BIND(is_long);
duke@435 266 __ movl(Address(rdi, 0 * wordSize), rax);
duke@435 267 __ movl(Address(rdi, 1 * wordSize), rdx);
duke@435 268 __ jmp(exit);
duke@435 269
duke@435 270 __ BIND(is_float);
duke@435 271 // interpreter uses xmm0 for return values
duke@435 272 if (UseSSE >= 1) {
duke@435 273 __ movflt(Address(rdi, 0), xmm0);
duke@435 274 } else {
duke@435 275 __ fstp_s(Address(rdi, 0));
duke@435 276 }
duke@435 277 __ jmp(exit);
duke@435 278
duke@435 279 __ BIND(is_double);
duke@435 280 // interpreter uses xmm0 for return values
duke@435 281 if (UseSSE >= 2) {
duke@435 282 __ movdbl(Address(rdi, 0), xmm0);
duke@435 283 } else {
duke@435 284 __ fstp_d(Address(rdi, 0));
duke@435 285 }
duke@435 286 __ jmp(exit);
duke@435 287
duke@435 288 // If we call compiled code directly from the call stub we will
duke@435 289 // need to adjust the return back to the call stub to a specialized
duke@435 290 // piece of code that can handle compiled results and cleaning the fpu
duke@435 291 // stack. compiled code will be set to return here instead of the
duke@435 292 // return above that handles interpreter returns.
duke@435 293
duke@435 294 BLOCK_COMMENT("call_stub_compiled_return:");
never@739 295 StubRoutines::x86::set_call_stub_compiled_return( __ pc());
duke@435 296
duke@435 297 #ifdef COMPILER2
duke@435 298 if (UseSSE >= 2) {
duke@435 299 __ verify_FPU(0, "call_stub_compiled_return");
duke@435 300 } else {
duke@435 301 for (int i = 1; i < 8; i++) {
duke@435 302 __ ffree(i);
duke@435 303 }
duke@435 304
duke@435 305 // UseSSE <= 1 so double result should be left on TOS
duke@435 306 __ movl(rsi, result_type);
duke@435 307 __ cmpl(rsi, T_DOUBLE);
duke@435 308 __ jcc(Assembler::equal, common_return);
duke@435 309 if (UseSSE == 0) {
duke@435 310 // UseSSE == 0 so float result should be left on TOS
duke@435 311 __ cmpl(rsi, T_FLOAT);
duke@435 312 __ jcc(Assembler::equal, common_return);
duke@435 313 }
duke@435 314 __ ffree(0);
duke@435 315 }
duke@435 316 #endif /* COMPILER2 */
duke@435 317 __ jmp(common_return);
duke@435 318
duke@435 319 return start;
duke@435 320 }
duke@435 321
duke@435 322
duke@435 323 //------------------------------------------------------------------------------------------------------------------------
duke@435 324 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 325 // The exception is caught and transformed into a pending exception stored in
duke@435 326 // JavaThread that can be tested from within the VM.
duke@435 327 //
duke@435 328 // Note: Usually the parameters are removed by the callee. In case of an exception
duke@435 329 // crossing an activation frame boundary, that is not the case if the callee
duke@435 330 // is compiled code => need to setup the rsp.
duke@435 331 //
duke@435 332 // rax,: exception oop
duke@435 333
duke@435 334 address generate_catch_exception() {
duke@435 335 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 336 const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
duke@435 337 const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
duke@435 338 address start = __ pc();
duke@435 339
duke@435 340 // get thread directly
never@739 341 __ movptr(rcx, thread);
duke@435 342 #ifdef ASSERT
duke@435 343 // verify that threads correspond
duke@435 344 { Label L;
duke@435 345 __ get_thread(rbx);
never@739 346 __ cmpptr(rbx, rcx);
duke@435 347 __ jcc(Assembler::equal, L);
duke@435 348 __ stop("StubRoutines::catch_exception: threads must correspond");
duke@435 349 __ bind(L);
duke@435 350 }
duke@435 351 #endif
duke@435 352 // set pending exception
duke@435 353 __ verify_oop(rax);
never@739 354 __ movptr(Address(rcx, Thread::pending_exception_offset()), rax );
duke@435 355 __ lea(Address(rcx, Thread::exception_file_offset ()),
duke@435 356 ExternalAddress((address)__FILE__));
duke@435 357 __ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
duke@435 358 // complete return to VM
duke@435 359 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
duke@435 360 __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
duke@435 361
duke@435 362 return start;
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 //------------------------------------------------------------------------------------------------------------------------
duke@435 367 // Continuation point for runtime calls returning with a pending exception.
duke@435 368 // The pending exception check happened in the runtime or native call stub.
duke@435 369 // The pending exception in Thread is converted into a Java-level exception.
duke@435 370 //
duke@435 371 // Contract with Java-level exception handlers:
duke@435 372 // rax,: exception
duke@435 373 // rdx: throwing pc
duke@435 374 //
duke@435 375 // NOTE: At entry of this stub, exception-pc must be on stack !!
duke@435 376
duke@435 377 address generate_forward_exception() {
duke@435 378 StubCodeMark mark(this, "StubRoutines", "forward exception");
duke@435 379 address start = __ pc();
duke@435 380
duke@435 381 // Upon entry, the sp points to the return address returning into Java
duke@435 382 // (interpreted or compiled) code; i.e., the return address becomes the
duke@435 383 // throwing pc.
duke@435 384 //
duke@435 385 // Arguments pushed before the runtime call are still on the stack but
duke@435 386 // the exception handler will reset the stack pointer -> ignore them.
duke@435 387 // A potential result in registers can be ignored as well.
duke@435 388
duke@435 389 #ifdef ASSERT
duke@435 390 // make sure this code is only executed if there is a pending exception
duke@435 391 { Label L;
duke@435 392 __ get_thread(rcx);
never@739 393 __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 394 __ jcc(Assembler::notEqual, L);
duke@435 395 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 396 __ bind(L);
duke@435 397 }
duke@435 398 #endif
duke@435 399
duke@435 400 // compute exception handler into rbx,
never@739 401 __ movptr(rax, Address(rsp, 0));
duke@435 402 BLOCK_COMMENT("call exception_handler_for_return_address");
duke@435 403 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rax);
never@739 404 __ mov(rbx, rax);
duke@435 405
duke@435 406 // setup rax, & rdx, remove return address & clear pending exception
duke@435 407 __ get_thread(rcx);
never@739 408 __ pop(rdx);
never@739 409 __ movptr(rax, Address(rcx, Thread::pending_exception_offset()));
xlu@968 410 __ movptr(Address(rcx, Thread::pending_exception_offset()), NULL_WORD);
duke@435 411
duke@435 412 #ifdef ASSERT
duke@435 413 // make sure exception is set
duke@435 414 { Label L;
never@739 415 __ testptr(rax, rax);
duke@435 416 __ jcc(Assembler::notEqual, L);
duke@435 417 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 418 __ bind(L);
duke@435 419 }
duke@435 420 #endif
duke@435 421
duke@435 422 // continue at exception handler (return address removed)
duke@435 423 // rax,: exception
duke@435 424 // rbx,: exception handler
duke@435 425 // rdx: throwing pc
duke@435 426 __ verify_oop(rax);
duke@435 427 __ jmp(rbx);
duke@435 428
duke@435 429 return start;
duke@435 430 }
duke@435 431
duke@435 432
duke@435 433 //----------------------------------------------------------------------------------------------------
duke@435 434 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
duke@435 435 //
duke@435 436 // xchg exists as far back as 8086, lock needed for MP only
duke@435 437 // Stack layout immediately after call:
duke@435 438 //
duke@435 439 // 0 [ret addr ] <--- rsp
duke@435 440 // 1 [ ex ]
duke@435 441 // 2 [ dest ]
duke@435 442 //
duke@435 443 // Result: *dest <- ex, return (old *dest)
duke@435 444 //
duke@435 445 // Note: win32 does not currently use this code
duke@435 446
duke@435 447 address generate_atomic_xchg() {
duke@435 448 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 449 address start = __ pc();
duke@435 450
never@739 451 __ push(rdx);
duke@435 452 Address exchange(rsp, 2 * wordSize);
duke@435 453 Address dest_addr(rsp, 3 * wordSize);
duke@435 454 __ movl(rax, exchange);
never@739 455 __ movptr(rdx, dest_addr);
never@739 456 __ xchgl(rax, Address(rdx, 0));
never@739 457 __ pop(rdx);
duke@435 458 __ ret(0);
duke@435 459
duke@435 460 return start;
duke@435 461 }
duke@435 462
duke@435 463 //----------------------------------------------------------------------------------------------------
duke@435 464 // Support for void verify_mxcsr()
duke@435 465 //
duke@435 466 // This routine is used with -Xcheck:jni to verify that native
duke@435 467 // JNI code does not return to Java code without restoring the
duke@435 468 // MXCSR register to our expected state.
duke@435 469
duke@435 470
duke@435 471 address generate_verify_mxcsr() {
duke@435 472 StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
duke@435 473 address start = __ pc();
duke@435 474
duke@435 475 const Address mxcsr_save(rsp, 0);
duke@435 476
duke@435 477 if (CheckJNICalls && UseSSE > 0 ) {
duke@435 478 Label ok_ret;
duke@435 479 ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
never@739 480 __ push(rax);
never@739 481 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 482 __ stmxcsr(mxcsr_save);
duke@435 483 __ movl(rax, mxcsr_save);
duke@435 484 __ andl(rax, MXCSR_MASK);
duke@435 485 __ cmp32(rax, mxcsr_std);
duke@435 486 __ jcc(Assembler::equal, ok_ret);
duke@435 487
duke@435 488 __ warn("MXCSR changed by native JNI code.");
duke@435 489
duke@435 490 __ ldmxcsr(mxcsr_std);
duke@435 491
duke@435 492 __ bind(ok_ret);
never@739 493 __ addptr(rsp, wordSize);
never@739 494 __ pop(rax);
duke@435 495 }
duke@435 496
duke@435 497 __ ret(0);
duke@435 498
duke@435 499 return start;
duke@435 500 }
duke@435 501
duke@435 502
duke@435 503 //---------------------------------------------------------------------------
duke@435 504 // Support for void verify_fpu_cntrl_wrd()
duke@435 505 //
duke@435 506 // This routine is used with -Xcheck:jni to verify that native
duke@435 507 // JNI code does not return to Java code without restoring the
duke@435 508 // FP control word to our expected state.
duke@435 509
duke@435 510 address generate_verify_fpu_cntrl_wrd() {
duke@435 511 StubCodeMark mark(this, "StubRoutines", "verify_spcw");
duke@435 512 address start = __ pc();
duke@435 513
duke@435 514 const Address fpu_cntrl_wrd_save(rsp, 0);
duke@435 515
duke@435 516 if (CheckJNICalls) {
duke@435 517 Label ok_ret;
never@739 518 __ push(rax);
never@739 519 __ subptr(rsp, wordSize); // allocate a temp location
duke@435 520 __ fnstcw(fpu_cntrl_wrd_save);
duke@435 521 __ movl(rax, fpu_cntrl_wrd_save);
duke@435 522 __ andl(rax, FPU_CNTRL_WRD_MASK);
duke@435 523 ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
duke@435 524 __ cmp32(rax, fpu_std);
duke@435 525 __ jcc(Assembler::equal, ok_ret);
duke@435 526
duke@435 527 __ warn("Floating point control word changed by native JNI code.");
duke@435 528
duke@435 529 __ fldcw(fpu_std);
duke@435 530
duke@435 531 __ bind(ok_ret);
never@739 532 __ addptr(rsp, wordSize);
never@739 533 __ pop(rax);
duke@435 534 }
duke@435 535
duke@435 536 __ ret(0);
duke@435 537
duke@435 538 return start;
duke@435 539 }
duke@435 540
duke@435 541 //---------------------------------------------------------------------------
duke@435 542 // Wrapper for slow-case handling of double-to-integer conversion
duke@435 543 // d2i or f2i fast case failed either because it is nan or because
duke@435 544 // of under/overflow.
duke@435 545 // Input: FPU TOS: float value
duke@435 546 // Output: rax, (rdx): integer (long) result
duke@435 547
duke@435 548 address generate_d2i_wrapper(BasicType t, address fcn) {
duke@435 549 StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
duke@435 550 address start = __ pc();
duke@435 551
duke@435 552 // Capture info about frame layout
duke@435 553 enum layout { FPUState_off = 0,
duke@435 554 rbp_off = FPUStateSizeInWords,
duke@435 555 rdi_off,
duke@435 556 rsi_off,
duke@435 557 rcx_off,
duke@435 558 rbx_off,
duke@435 559 saved_argument_off,
duke@435 560 saved_argument_off2, // 2nd half of double
duke@435 561 framesize
duke@435 562 };
duke@435 563
duke@435 564 assert(FPUStateSizeInWords == 27, "update stack layout");
duke@435 565
duke@435 566 // Save outgoing argument to stack across push_FPU_state()
never@739 567 __ subptr(rsp, wordSize * 2);
duke@435 568 __ fstp_d(Address(rsp, 0));
duke@435 569
duke@435 570 // Save CPU & FPU state
never@739 571 __ push(rbx);
never@739 572 __ push(rcx);
never@739 573 __ push(rsi);
never@739 574 __ push(rdi);
never@739 575 __ push(rbp);
duke@435 576 __ push_FPU_state();
duke@435 577
duke@435 578 // push_FPU_state() resets the FP top of stack
duke@435 579 // Load original double into FP top of stack
duke@435 580 __ fld_d(Address(rsp, saved_argument_off * wordSize));
duke@435 581 // Store double into stack as outgoing argument
never@739 582 __ subptr(rsp, wordSize*2);
duke@435 583 __ fst_d(Address(rsp, 0));
duke@435 584
duke@435 585 // Prepare FPU for doing math in C-land
duke@435 586 __ empty_FPU_stack();
duke@435 587 // Call the C code to massage the double. Result in EAX
duke@435 588 if (t == T_INT)
duke@435 589 { BLOCK_COMMENT("SharedRuntime::d2i"); }
duke@435 590 else if (t == T_LONG)
duke@435 591 { BLOCK_COMMENT("SharedRuntime::d2l"); }
duke@435 592 __ call_VM_leaf( fcn, 2 );
duke@435 593
duke@435 594 // Restore CPU & FPU state
duke@435 595 __ pop_FPU_state();
never@739 596 __ pop(rbp);
never@739 597 __ pop(rdi);
never@739 598 __ pop(rsi);
never@739 599 __ pop(rcx);
never@739 600 __ pop(rbx);
never@739 601 __ addptr(rsp, wordSize * 2);
duke@435 602
duke@435 603 __ ret(0);
duke@435 604
duke@435 605 return start;
duke@435 606 }
duke@435 607
duke@435 608
duke@435 609 //---------------------------------------------------------------------------
duke@435 610 // The following routine generates a subroutine to throw an asynchronous
duke@435 611 // UnknownError when an unsafe access gets a fault that could not be
duke@435 612 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 613 address generate_handler_for_unsafe_access() {
duke@435 614 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 615 address start = __ pc();
duke@435 616
never@739 617 __ push(0); // hole for return address-to-be
never@739 618 __ pusha(); // push registers
duke@435 619 Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
duke@435 620 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 621 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
never@739 622 __ movptr(next_pc, rax); // stuff next address
never@739 623 __ popa();
duke@435 624 __ ret(0); // jump to next address
duke@435 625
duke@435 626 return start;
duke@435 627 }
duke@435 628
duke@435 629
duke@435 630 //----------------------------------------------------------------------------------------------------
duke@435 631 // Non-destructive plausibility checks for oops
duke@435 632
duke@435 633 address generate_verify_oop() {
duke@435 634 StubCodeMark mark(this, "StubRoutines", "verify_oop");
duke@435 635 address start = __ pc();
duke@435 636
duke@435 637 // Incoming arguments on stack after saving rax,:
duke@435 638 //
duke@435 639 // [tos ]: saved rdx
duke@435 640 // [tos + 1]: saved EFLAGS
duke@435 641 // [tos + 2]: return address
duke@435 642 // [tos + 3]: char* error message
duke@435 643 // [tos + 4]: oop object to verify
duke@435 644 // [tos + 5]: saved rax, - saved by caller and bashed
duke@435 645
duke@435 646 Label exit, error;
never@739 647 __ pushf();
never@739 648 __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
never@739 649 __ push(rdx); // save rdx
duke@435 650 // make sure object is 'reasonable'
never@739 651 __ movptr(rax, Address(rsp, 4 * wordSize)); // get object
never@739 652 __ testptr(rax, rax);
duke@435 653 __ jcc(Assembler::zero, exit); // if obj is NULL it is ok
duke@435 654
duke@435 655 // Check if the oop is in the right area of memory
duke@435 656 const int oop_mask = Universe::verify_oop_mask();
duke@435 657 const int oop_bits = Universe::verify_oop_bits();
never@739 658 __ mov(rdx, rax);
never@739 659 __ andptr(rdx, oop_mask);
never@739 660 __ cmpptr(rdx, oop_bits);
duke@435 661 __ jcc(Assembler::notZero, error);
duke@435 662
duke@435 663 // make sure klass is 'reasonable'
never@739 664 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
never@739 665 __ testptr(rax, rax);
duke@435 666 __ jcc(Assembler::zero, error); // if klass is NULL it is broken
duke@435 667
duke@435 668 // Check if the klass is in the right area of memory
duke@435 669 const int klass_mask = Universe::verify_klass_mask();
duke@435 670 const int klass_bits = Universe::verify_klass_bits();
never@739 671 __ mov(rdx, rax);
never@739 672 __ andptr(rdx, klass_mask);
never@739 673 __ cmpptr(rdx, klass_bits);
duke@435 674 __ jcc(Assembler::notZero, error);
duke@435 675
duke@435 676 // make sure klass' klass is 'reasonable'
never@739 677 __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass' klass
never@739 678 __ testptr(rax, rax);
duke@435 679 __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
duke@435 680
never@739 681 __ mov(rdx, rax);
never@739 682 __ andptr(rdx, klass_mask);
never@739 683 __ cmpptr(rdx, klass_bits);
duke@435 684 __ jcc(Assembler::notZero, error); // if klass not in right area
duke@435 685 // of memory it is broken too.
duke@435 686
duke@435 687 // return if everything seems ok
duke@435 688 __ bind(exit);
never@739 689 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 690 __ pop(rdx); // restore rdx
never@739 691 __ popf(); // restore EFLAGS
duke@435 692 __ ret(3 * wordSize); // pop arguments
duke@435 693
duke@435 694 // handle errors
duke@435 695 __ bind(error);
never@739 696 __ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
never@739 697 __ pop(rdx); // get saved rdx back
never@739 698 __ popf(); // get saved EFLAGS off stack -- will be ignored
never@739 699 __ pusha(); // push registers (eip = return address & msg are already pushed)
duke@435 700 BLOCK_COMMENT("call MacroAssembler::debug");
never@739 701 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
never@739 702 __ popa();
duke@435 703 __ ret(3 * wordSize); // pop arguments
duke@435 704 return start;
duke@435 705 }
duke@435 706
duke@435 707 //
duke@435 708 // Generate pre-barrier for array stores
duke@435 709 //
duke@435 710 // Input:
duke@435 711 // start - starting address
duke@435 712 // end - element count
duke@435 713 void gen_write_ref_array_pre_barrier(Register start, Register count) {
duke@435 714 assert_different_registers(start, count);
duke@435 715 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 716 switch (bs->kind()) {
duke@435 717 case BarrierSet::G1SATBCT:
duke@435 718 case BarrierSet::G1SATBCTLogging:
duke@435 719 {
never@739 720 __ pusha(); // push registers
never@739 721 __ push(count);
never@739 722 __ push(start);
ysr@777 723 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
apetrusenko@797 724 __ addptr(rsp, 2*wordSize);
never@739 725 __ popa();
duke@435 726 }
duke@435 727 break;
duke@435 728 case BarrierSet::CardTableModRef:
duke@435 729 case BarrierSet::CardTableExtension:
duke@435 730 case BarrierSet::ModRef:
duke@435 731 break;
duke@435 732 default :
duke@435 733 ShouldNotReachHere();
duke@435 734
duke@435 735 }
duke@435 736 }
duke@435 737
duke@435 738
duke@435 739 //
duke@435 740 // Generate a post-barrier for an array store
duke@435 741 //
duke@435 742 // start - starting address
duke@435 743 // count - element count
duke@435 744 //
duke@435 745 // The two input registers are overwritten.
duke@435 746 //
duke@435 747 void gen_write_ref_array_post_barrier(Register start, Register count) {
duke@435 748 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 749 assert_different_registers(start, count);
duke@435 750 switch (bs->kind()) {
duke@435 751 case BarrierSet::G1SATBCT:
duke@435 752 case BarrierSet::G1SATBCTLogging:
duke@435 753 {
never@739 754 __ pusha(); // push registers
never@739 755 __ push(count);
never@739 756 __ push(start);
ysr@777 757 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
apetrusenko@797 758 __ addptr(rsp, 2*wordSize);
never@739 759 __ popa();
duke@435 760
duke@435 761 }
duke@435 762 break;
duke@435 763
duke@435 764 case BarrierSet::CardTableModRef:
duke@435 765 case BarrierSet::CardTableExtension:
duke@435 766 {
duke@435 767 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 768 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 769
duke@435 770 Label L_loop;
duke@435 771 const Register end = count; // elements count; end == start+count-1
duke@435 772 assert_different_registers(start, end);
duke@435 773
never@739 774 __ lea(end, Address(start, count, Address::times_ptr, -wordSize));
never@739 775 __ shrptr(start, CardTableModRefBS::card_shift);
never@739 776 __ shrptr(end, CardTableModRefBS::card_shift);
never@739 777 __ subptr(end, start); // end --> count
duke@435 778 __ BIND(L_loop);
never@684 779 intptr_t disp = (intptr_t) ct->byte_map_base;
never@684 780 Address cardtable(start, count, Address::times_1, disp);
never@684 781 __ movb(cardtable, 0);
duke@435 782 __ decrement(count);
duke@435 783 __ jcc(Assembler::greaterEqual, L_loop);
duke@435 784 }
duke@435 785 break;
duke@435 786 case BarrierSet::ModRef:
duke@435 787 break;
duke@435 788 default :
duke@435 789 ShouldNotReachHere();
duke@435 790
duke@435 791 }
duke@435 792 }
duke@435 793
kvn@840 794
kvn@840 795 // Copy 64 bytes chunks
kvn@840 796 //
kvn@840 797 // Inputs:
kvn@840 798 // from - source array address
kvn@840 799 // to_from - destination array address - from
kvn@840 800 // qword_count - 8-bytes element count, negative
kvn@840 801 //
kvn@840 802 void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 803 assert( UseSSE >= 2, "supported cpu only" );
kvn@840 804 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
kvn@840 805 // Copy 64-byte chunks
kvn@840 806 __ jmpb(L_copy_64_bytes);
kvn@840 807 __ align(16);
kvn@840 808 __ BIND(L_copy_64_bytes_loop);
kvn@840 809
kvn@840 810 if(UseUnalignedLoadStores) {
kvn@840 811 __ movdqu(xmm0, Address(from, 0));
kvn@840 812 __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 813 __ movdqu(xmm1, Address(from, 16));
kvn@840 814 __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
kvn@840 815 __ movdqu(xmm2, Address(from, 32));
kvn@840 816 __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
kvn@840 817 __ movdqu(xmm3, Address(from, 48));
kvn@840 818 __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
kvn@840 819
kvn@840 820 } else {
kvn@840 821 __ movq(xmm0, Address(from, 0));
kvn@840 822 __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
kvn@840 823 __ movq(xmm1, Address(from, 8));
kvn@840 824 __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
kvn@840 825 __ movq(xmm2, Address(from, 16));
kvn@840 826 __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
kvn@840 827 __ movq(xmm3, Address(from, 24));
kvn@840 828 __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
kvn@840 829 __ movq(xmm4, Address(from, 32));
kvn@840 830 __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
kvn@840 831 __ movq(xmm5, Address(from, 40));
kvn@840 832 __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
kvn@840 833 __ movq(xmm6, Address(from, 48));
kvn@840 834 __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
kvn@840 835 __ movq(xmm7, Address(from, 56));
kvn@840 836 __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
kvn@840 837 }
kvn@840 838
kvn@840 839 __ addl(from, 64);
kvn@840 840 __ BIND(L_copy_64_bytes);
kvn@840 841 __ subl(qword_count, 8);
kvn@840 842 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
kvn@840 843 __ addl(qword_count, 8);
kvn@840 844 __ jccb(Assembler::zero, L_exit);
kvn@840 845 //
kvn@840 846 // length is too short, just copy qwords
kvn@840 847 //
kvn@840 848 __ BIND(L_copy_8_bytes);
kvn@840 849 __ movq(xmm0, Address(from, 0));
kvn@840 850 __ movq(Address(from, to_from, Address::times_1), xmm0);
kvn@840 851 __ addl(from, 8);
kvn@840 852 __ decrement(qword_count);
kvn@840 853 __ jcc(Assembler::greater, L_copy_8_bytes);
kvn@840 854 __ BIND(L_exit);
kvn@840 855 }
kvn@840 856
duke@435 857 // Copy 64 bytes chunks
duke@435 858 //
duke@435 859 // Inputs:
duke@435 860 // from - source array address
duke@435 861 // to_from - destination array address - from
duke@435 862 // qword_count - 8-bytes element count, negative
duke@435 863 //
duke@435 864 void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
kvn@840 865 assert( VM_Version::supports_mmx(), "supported cpu only" );
duke@435 866 Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
duke@435 867 // Copy 64-byte chunks
duke@435 868 __ jmpb(L_copy_64_bytes);
duke@435 869 __ align(16);
duke@435 870 __ BIND(L_copy_64_bytes_loop);
duke@435 871 __ movq(mmx0, Address(from, 0));
duke@435 872 __ movq(mmx1, Address(from, 8));
duke@435 873 __ movq(mmx2, Address(from, 16));
duke@435 874 __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
duke@435 875 __ movq(mmx3, Address(from, 24));
duke@435 876 __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
duke@435 877 __ movq(mmx4, Address(from, 32));
duke@435 878 __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
duke@435 879 __ movq(mmx5, Address(from, 40));
duke@435 880 __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
duke@435 881 __ movq(mmx6, Address(from, 48));
duke@435 882 __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
duke@435 883 __ movq(mmx7, Address(from, 56));
duke@435 884 __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
duke@435 885 __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
duke@435 886 __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
never@739 887 __ addptr(from, 64);
duke@435 888 __ BIND(L_copy_64_bytes);
duke@435 889 __ subl(qword_count, 8);
duke@435 890 __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
duke@435 891 __ addl(qword_count, 8);
duke@435 892 __ jccb(Assembler::zero, L_exit);
duke@435 893 //
duke@435 894 // length is too short, just copy qwords
duke@435 895 //
duke@435 896 __ BIND(L_copy_8_bytes);
duke@435 897 __ movq(mmx0, Address(from, 0));
duke@435 898 __ movq(Address(from, to_from, Address::times_1), mmx0);
never@739 899 __ addptr(from, 8);
duke@435 900 __ decrement(qword_count);
duke@435 901 __ jcc(Assembler::greater, L_copy_8_bytes);
duke@435 902 __ BIND(L_exit);
duke@435 903 __ emms();
duke@435 904 }
duke@435 905
duke@435 906 address generate_disjoint_copy(BasicType t, bool aligned,
duke@435 907 Address::ScaleFactor sf,
duke@435 908 address* entry, const char *name) {
duke@435 909 __ align(CodeEntryAlignment);
duke@435 910 StubCodeMark mark(this, "StubRoutines", name);
duke@435 911 address start = __ pc();
duke@435 912
duke@435 913 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 914 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
duke@435 915
never@739 916 int shift = Address::times_ptr - sf;
duke@435 917
duke@435 918 const Register from = rsi; // source array address
duke@435 919 const Register to = rdi; // destination array address
duke@435 920 const Register count = rcx; // elements count
duke@435 921 const Register to_from = to; // (to - from)
duke@435 922 const Register saved_to = rdx; // saved destination array address
duke@435 923
duke@435 924 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 925 __ push(rsi);
never@739 926 __ push(rdi);
never@739 927 __ movptr(from , Address(rsp, 12+ 4));
never@739 928 __ movptr(to , Address(rsp, 12+ 8));
duke@435 929 __ movl(count, Address(rsp, 12+ 12));
duke@435 930 if (t == T_OBJECT) {
duke@435 931 __ testl(count, count);
duke@435 932 __ jcc(Assembler::zero, L_0_count);
duke@435 933 gen_write_ref_array_pre_barrier(to, count);
never@739 934 __ mov(saved_to, to); // save 'to'
duke@435 935 }
duke@435 936
duke@435 937 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 938 BLOCK_COMMENT("Entry:");
duke@435 939
never@739 940 __ subptr(to, from); // to --> to_from
duke@435 941 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 942 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
kvn@840 943 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
duke@435 944 // align source address at 4 bytes address boundary
duke@435 945 if (t == T_BYTE) {
duke@435 946 // One byte misalignment happens only for byte arrays
duke@435 947 __ testl(from, 1);
duke@435 948 __ jccb(Assembler::zero, L_skip_align1);
duke@435 949 __ movb(rax, Address(from, 0));
duke@435 950 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 951 __ increment(from);
duke@435 952 __ decrement(count);
duke@435 953 __ BIND(L_skip_align1);
duke@435 954 }
duke@435 955 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 956 __ testl(from, 2);
duke@435 957 __ jccb(Assembler::zero, L_skip_align2);
duke@435 958 __ movw(rax, Address(from, 0));
duke@435 959 __ movw(Address(from, to_from, Address::times_1, 0), rax);
never@739 960 __ addptr(from, 2);
duke@435 961 __ subl(count, 1<<(shift-1));
duke@435 962 __ BIND(L_skip_align2);
duke@435 963 }
duke@435 964 if (!VM_Version::supports_mmx()) {
never@739 965 __ mov(rax, count); // save 'count'
never@739 966 __ shrl(count, shift); // bytes count
never@739 967 __ addptr(to_from, from);// restore 'to'
never@739 968 __ rep_mov();
never@739 969 __ subptr(to_from, from);// restore 'to_from'
never@739 970 __ mov(count, rax); // restore 'count'
duke@435 971 __ jmpb(L_copy_2_bytes); // all dwords were copied
duke@435 972 } else {
kvn@840 973 if (!UseUnalignedLoadStores) {
kvn@840 974 // align to 8 bytes, we know we are 4 byte aligned to start
kvn@840 975 __ testptr(from, 4);
kvn@840 976 __ jccb(Assembler::zero, L_copy_64_bytes);
kvn@840 977 __ movl(rax, Address(from, 0));
kvn@840 978 __ movl(Address(from, to_from, Address::times_1, 0), rax);
kvn@840 979 __ addptr(from, 4);
kvn@840 980 __ subl(count, 1<<shift);
kvn@840 981 }
duke@435 982 __ BIND(L_copy_64_bytes);
never@739 983 __ mov(rax, count);
duke@435 984 __ shrl(rax, shift+1); // 8 bytes chunk count
duke@435 985 //
duke@435 986 // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
duke@435 987 //
kvn@840 988 if (UseXMMForArrayCopy) {
kvn@840 989 xmm_copy_forward(from, to_from, rax);
kvn@840 990 } else {
kvn@840 991 mmx_copy_forward(from, to_from, rax);
kvn@840 992 }
duke@435 993 }
duke@435 994 // copy tailing dword
duke@435 995 __ BIND(L_copy_4_bytes);
duke@435 996 __ testl(count, 1<<shift);
duke@435 997 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 998 __ movl(rax, Address(from, 0));
duke@435 999 __ movl(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1000 if (t == T_BYTE || t == T_SHORT) {
never@739 1001 __ addptr(from, 4);
duke@435 1002 __ BIND(L_copy_2_bytes);
duke@435 1003 // copy tailing word
duke@435 1004 __ testl(count, 1<<(shift-1));
duke@435 1005 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1006 __ movw(rax, Address(from, 0));
duke@435 1007 __ movw(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1008 if (t == T_BYTE) {
never@739 1009 __ addptr(from, 2);
duke@435 1010 __ BIND(L_copy_byte);
duke@435 1011 // copy tailing byte
duke@435 1012 __ testl(count, 1);
duke@435 1013 __ jccb(Assembler::zero, L_exit);
duke@435 1014 __ movb(rax, Address(from, 0));
duke@435 1015 __ movb(Address(from, to_from, Address::times_1, 0), rax);
duke@435 1016 __ BIND(L_exit);
duke@435 1017 } else {
duke@435 1018 __ BIND(L_copy_byte);
duke@435 1019 }
duke@435 1020 } else {
duke@435 1021 __ BIND(L_copy_2_bytes);
duke@435 1022 }
duke@435 1023
duke@435 1024 if (t == T_OBJECT) {
duke@435 1025 __ movl(count, Address(rsp, 12+12)); // reread 'count'
never@739 1026 __ mov(to, saved_to); // restore 'to'
duke@435 1027 gen_write_ref_array_post_barrier(to, count);
duke@435 1028 __ BIND(L_0_count);
duke@435 1029 }
duke@435 1030 inc_copy_counter_np(t);
never@739 1031 __ pop(rdi);
never@739 1032 __ pop(rsi);
duke@435 1033 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1034 __ xorptr(rax, rax); // return 0
duke@435 1035 __ ret(0);
duke@435 1036 return start;
duke@435 1037 }
duke@435 1038
duke@435 1039
duke@435 1040 address generate_conjoint_copy(BasicType t, bool aligned,
duke@435 1041 Address::ScaleFactor sf,
duke@435 1042 address nooverlap_target,
duke@435 1043 address* entry, const char *name) {
duke@435 1044 __ align(CodeEntryAlignment);
duke@435 1045 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1046 address start = __ pc();
duke@435 1047
duke@435 1048 Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
duke@435 1049 Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1050
never@739 1051 int shift = Address::times_ptr - sf;
duke@435 1052
duke@435 1053 const Register src = rax; // source array address
duke@435 1054 const Register dst = rdx; // destination array address
duke@435 1055 const Register from = rsi; // source array address
duke@435 1056 const Register to = rdi; // destination array address
duke@435 1057 const Register count = rcx; // elements count
duke@435 1058 const Register end = rax; // array end address
duke@435 1059
duke@435 1060 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1061 __ push(rsi);
never@739 1062 __ push(rdi);
never@739 1063 __ movptr(src , Address(rsp, 12+ 4)); // from
never@739 1064 __ movptr(dst , Address(rsp, 12+ 8)); // to
never@739 1065 __ movl2ptr(count, Address(rsp, 12+12)); // count
duke@435 1066 if (t == T_OBJECT) {
duke@435 1067 gen_write_ref_array_pre_barrier(dst, count);
duke@435 1068 }
duke@435 1069
duke@435 1070 if (entry != NULL) {
duke@435 1071 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1072 BLOCK_COMMENT("Entry:");
duke@435 1073 }
duke@435 1074
duke@435 1075 if (t == T_OBJECT) {
duke@435 1076 __ testl(count, count);
duke@435 1077 __ jcc(Assembler::zero, L_0_count);
duke@435 1078 }
never@739 1079 __ mov(from, src);
never@739 1080 __ mov(to , dst);
duke@435 1081
duke@435 1082 // arrays overlap test
duke@435 1083 RuntimeAddress nooverlap(nooverlap_target);
never@739 1084 __ cmpptr(dst, src);
never@739 1085 __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
duke@435 1086 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1087 __ cmpptr(dst, end);
duke@435 1088 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1089
duke@435 1090 // copy from high to low
duke@435 1091 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1092 __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
duke@435 1093 if (t == T_BYTE || t == T_SHORT) {
duke@435 1094 // Align the end of destination array at 4 bytes address boundary
never@739 1095 __ lea(end, Address(dst, count, sf, 0));
duke@435 1096 if (t == T_BYTE) {
duke@435 1097 // One byte misalignment happens only for byte arrays
duke@435 1098 __ testl(end, 1);
duke@435 1099 __ jccb(Assembler::zero, L_skip_align1);
duke@435 1100 __ decrement(count);
duke@435 1101 __ movb(rdx, Address(from, count, sf, 0));
duke@435 1102 __ movb(Address(to, count, sf, 0), rdx);
duke@435 1103 __ BIND(L_skip_align1);
duke@435 1104 }
duke@435 1105 // Two bytes misalignment happens only for byte and short (char) arrays
duke@435 1106 __ testl(end, 2);
duke@435 1107 __ jccb(Assembler::zero, L_skip_align2);
never@739 1108 __ subptr(count, 1<<(shift-1));
duke@435 1109 __ movw(rdx, Address(from, count, sf, 0));
duke@435 1110 __ movw(Address(to, count, sf, 0), rdx);
duke@435 1111 __ BIND(L_skip_align2);
duke@435 1112 __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
duke@435 1113 __ jcc(Assembler::below, L_copy_4_bytes);
duke@435 1114 }
duke@435 1115
duke@435 1116 if (!VM_Version::supports_mmx()) {
duke@435 1117 __ std();
never@739 1118 __ mov(rax, count); // Save 'count'
never@739 1119 __ mov(rdx, to); // Save 'to'
never@739 1120 __ lea(rsi, Address(from, count, sf, -4));
never@739 1121 __ lea(rdi, Address(to , count, sf, -4));
never@739 1122 __ shrptr(count, shift); // bytes count
never@739 1123 __ rep_mov();
duke@435 1124 __ cld();
never@739 1125 __ mov(count, rax); // restore 'count'
duke@435 1126 __ andl(count, (1<<shift)-1); // mask the number of rest elements
never@739 1127 __ movptr(from, Address(rsp, 12+4)); // reread 'from'
never@739 1128 __ mov(to, rdx); // restore 'to'
duke@435 1129 __ jmpb(L_copy_2_bytes); // all dword were copied
duke@435 1130 } else {
duke@435 1131 // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
never@739 1132 __ testptr(end, 4);
duke@435 1133 __ jccb(Assembler::zero, L_copy_8_bytes);
duke@435 1134 __ subl(count, 1<<shift);
duke@435 1135 __ movl(rdx, Address(from, count, sf, 0));
duke@435 1136 __ movl(Address(to, count, sf, 0), rdx);
duke@435 1137 __ jmpb(L_copy_8_bytes);
duke@435 1138
duke@435 1139 __ align(16);
duke@435 1140 // Move 8 bytes
duke@435 1141 __ BIND(L_copy_8_bytes_loop);
kvn@840 1142 if (UseXMMForArrayCopy) {
kvn@840 1143 __ movq(xmm0, Address(from, count, sf, 0));
kvn@840 1144 __ movq(Address(to, count, sf, 0), xmm0);
kvn@840 1145 } else {
kvn@840 1146 __ movq(mmx0, Address(from, count, sf, 0));
kvn@840 1147 __ movq(Address(to, count, sf, 0), mmx0);
kvn@840 1148 }
duke@435 1149 __ BIND(L_copy_8_bytes);
duke@435 1150 __ subl(count, 2<<shift);
duke@435 1151 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1152 __ addl(count, 2<<shift);
kvn@840 1153 if (!UseXMMForArrayCopy) {
kvn@840 1154 __ emms();
kvn@840 1155 }
duke@435 1156 }
duke@435 1157 __ BIND(L_copy_4_bytes);
duke@435 1158 // copy prefix qword
duke@435 1159 __ testl(count, 1<<shift);
duke@435 1160 __ jccb(Assembler::zero, L_copy_2_bytes);
duke@435 1161 __ movl(rdx, Address(from, count, sf, -4));
duke@435 1162 __ movl(Address(to, count, sf, -4), rdx);
duke@435 1163
duke@435 1164 if (t == T_BYTE || t == T_SHORT) {
duke@435 1165 __ subl(count, (1<<shift));
duke@435 1166 __ BIND(L_copy_2_bytes);
duke@435 1167 // copy prefix dword
duke@435 1168 __ testl(count, 1<<(shift-1));
duke@435 1169 __ jccb(Assembler::zero, L_copy_byte);
duke@435 1170 __ movw(rdx, Address(from, count, sf, -2));
duke@435 1171 __ movw(Address(to, count, sf, -2), rdx);
duke@435 1172 if (t == T_BYTE) {
duke@435 1173 __ subl(count, 1<<(shift-1));
duke@435 1174 __ BIND(L_copy_byte);
duke@435 1175 // copy prefix byte
duke@435 1176 __ testl(count, 1);
duke@435 1177 __ jccb(Assembler::zero, L_exit);
duke@435 1178 __ movb(rdx, Address(from, 0));
duke@435 1179 __ movb(Address(to, 0), rdx);
duke@435 1180 __ BIND(L_exit);
duke@435 1181 } else {
duke@435 1182 __ BIND(L_copy_byte);
duke@435 1183 }
duke@435 1184 } else {
duke@435 1185 __ BIND(L_copy_2_bytes);
duke@435 1186 }
duke@435 1187 if (t == T_OBJECT) {
never@739 1188 __ movl2ptr(count, Address(rsp, 12+12)); // reread count
duke@435 1189 gen_write_ref_array_post_barrier(to, count);
duke@435 1190 __ BIND(L_0_count);
duke@435 1191 }
duke@435 1192 inc_copy_counter_np(t);
never@739 1193 __ pop(rdi);
never@739 1194 __ pop(rsi);
duke@435 1195 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1196 __ xorptr(rax, rax); // return 0
duke@435 1197 __ ret(0);
duke@435 1198 return start;
duke@435 1199 }
duke@435 1200
duke@435 1201
duke@435 1202 address generate_disjoint_long_copy(address* entry, const char *name) {
duke@435 1203 __ align(CodeEntryAlignment);
duke@435 1204 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1205 address start = __ pc();
duke@435 1206
duke@435 1207 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1208 const Register from = rax; // source array address
duke@435 1209 const Register to = rdx; // destination array address
duke@435 1210 const Register count = rcx; // elements count
duke@435 1211 const Register to_from = rdx; // (to - from)
duke@435 1212
duke@435 1213 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1214 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1215 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1216 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1217
duke@435 1218 *entry = __ pc(); // Entry point from conjoint arraycopy stub.
duke@435 1219 BLOCK_COMMENT("Entry:");
duke@435 1220
never@739 1221 __ subptr(to, from); // to --> to_from
duke@435 1222 if (VM_Version::supports_mmx()) {
kvn@840 1223 if (UseXMMForArrayCopy) {
kvn@840 1224 xmm_copy_forward(from, to_from, count);
kvn@840 1225 } else {
kvn@840 1226 mmx_copy_forward(from, to_from, count);
kvn@840 1227 }
duke@435 1228 } else {
duke@435 1229 __ jmpb(L_copy_8_bytes);
duke@435 1230 __ align(16);
duke@435 1231 __ BIND(L_copy_8_bytes_loop);
duke@435 1232 __ fild_d(Address(from, 0));
duke@435 1233 __ fistp_d(Address(from, to_from, Address::times_1));
never@739 1234 __ addptr(from, 8);
duke@435 1235 __ BIND(L_copy_8_bytes);
duke@435 1236 __ decrement(count);
duke@435 1237 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1238 }
duke@435 1239 inc_copy_counter_np(T_LONG);
duke@435 1240 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1241 __ xorptr(rax, rax); // return 0
duke@435 1242 __ ret(0);
duke@435 1243 return start;
duke@435 1244 }
duke@435 1245
duke@435 1246 address generate_conjoint_long_copy(address nooverlap_target,
duke@435 1247 address* entry, const char *name) {
duke@435 1248 __ align(CodeEntryAlignment);
duke@435 1249 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1250 address start = __ pc();
duke@435 1251
duke@435 1252 Label L_copy_8_bytes, L_copy_8_bytes_loop;
duke@435 1253 const Register from = rax; // source array address
duke@435 1254 const Register to = rdx; // destination array address
duke@435 1255 const Register count = rcx; // elements count
duke@435 1256 const Register end_from = rax; // source array end address
duke@435 1257
duke@435 1258 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1259 __ movptr(from , Address(rsp, 8+0)); // from
never@739 1260 __ movptr(to , Address(rsp, 8+4)); // to
never@739 1261 __ movl2ptr(count, Address(rsp, 8+8)); // count
duke@435 1262
duke@435 1263 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1264 BLOCK_COMMENT("Entry:");
duke@435 1265
duke@435 1266 // arrays overlap test
never@739 1267 __ cmpptr(to, from);
duke@435 1268 RuntimeAddress nooverlap(nooverlap_target);
duke@435 1269 __ jump_cc(Assembler::belowEqual, nooverlap);
never@739 1270 __ lea(end_from, Address(from, count, Address::times_8, 0));
never@739 1271 __ cmpptr(to, end_from);
never@739 1272 __ movptr(from, Address(rsp, 8)); // from
duke@435 1273 __ jump_cc(Assembler::aboveEqual, nooverlap);
duke@435 1274
duke@435 1275 __ jmpb(L_copy_8_bytes);
duke@435 1276
duke@435 1277 __ align(16);
duke@435 1278 __ BIND(L_copy_8_bytes_loop);
duke@435 1279 if (VM_Version::supports_mmx()) {
kvn@840 1280 if (UseXMMForArrayCopy) {
kvn@840 1281 __ movq(xmm0, Address(from, count, Address::times_8));
kvn@840 1282 __ movq(Address(to, count, Address::times_8), xmm0);
kvn@840 1283 } else {
kvn@840 1284 __ movq(mmx0, Address(from, count, Address::times_8));
kvn@840 1285 __ movq(Address(to, count, Address::times_8), mmx0);
kvn@840 1286 }
duke@435 1287 } else {
duke@435 1288 __ fild_d(Address(from, count, Address::times_8));
duke@435 1289 __ fistp_d(Address(to, count, Address::times_8));
duke@435 1290 }
duke@435 1291 __ BIND(L_copy_8_bytes);
duke@435 1292 __ decrement(count);
duke@435 1293 __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
duke@435 1294
kvn@840 1295 if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
duke@435 1296 __ emms();
duke@435 1297 }
duke@435 1298 inc_copy_counter_np(T_LONG);
duke@435 1299 __ leave(); // required for proper stackwalking of RuntimeStub frame
never@739 1300 __ xorptr(rax, rax); // return 0
duke@435 1301 __ ret(0);
duke@435 1302 return start;
duke@435 1303 }
duke@435 1304
duke@435 1305
duke@435 1306 // Helper for generating a dynamic type check.
duke@435 1307 // The sub_klass must be one of {rbx, rdx, rsi}.
duke@435 1308 // The temp is killed.
duke@435 1309 void generate_type_check(Register sub_klass,
duke@435 1310 Address& super_check_offset_addr,
duke@435 1311 Address& super_klass_addr,
duke@435 1312 Register temp,
jrose@1079 1313 Label* L_success, Label* L_failure) {
duke@435 1314 BLOCK_COMMENT("type_check:");
duke@435 1315
duke@435 1316 Label L_fallthrough;
jrose@1079 1317 #define LOCAL_JCC(assembler_con, label_ptr) \
jrose@1079 1318 if (label_ptr != NULL) __ jcc(assembler_con, *(label_ptr)); \
jrose@1079 1319 else __ jcc(assembler_con, L_fallthrough) /*omit semi*/
duke@435 1320
jrose@1079 1321 // The following is a strange variation of the fast path which requires
jrose@1079 1322 // one less register, because needed values are on the argument stack.
jrose@1079 1323 // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
jrose@1079 1324 // L_success, L_failure, NULL);
duke@435 1325 assert_different_registers(sub_klass, temp);
duke@435 1326
duke@435 1327 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1328 Klass::secondary_super_cache_offset_in_bytes());
duke@435 1329
duke@435 1330 // if the pointers are equal, we are done (e.g., String[] elements)
never@739 1331 __ cmpptr(sub_klass, super_klass_addr);
jrose@1079 1332 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1333
duke@435 1334 // check the supertype display:
never@739 1335 __ movl2ptr(temp, super_check_offset_addr);
duke@435 1336 Address super_check_addr(sub_klass, temp, Address::times_1, 0);
never@739 1337 __ movptr(temp, super_check_addr); // load displayed supertype
never@739 1338 __ cmpptr(temp, super_klass_addr); // test the super type
jrose@1079 1339 LOCAL_JCC(Assembler::equal, L_success);
duke@435 1340
duke@435 1341 // if it was a primary super, we can just fail immediately
duke@435 1342 __ cmpl(super_check_offset_addr, sc_offset);
jrose@1079 1343 LOCAL_JCC(Assembler::notEqual, L_failure);
duke@435 1344
jrose@1079 1345 // The repne_scan instruction uses fixed registers, which will get spilled.
jrose@1079 1346 // We happen to know this works best when super_klass is in rax.
jrose@1079 1347 Register super_klass = temp;
jrose@1079 1348 __ movptr(super_klass, super_klass_addr);
jrose@1079 1349 __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
jrose@1079 1350 L_success, L_failure);
duke@435 1351
jrose@1079 1352 __ bind(L_fallthrough);
duke@435 1353
jrose@1079 1354 if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
jrose@1079 1355 if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
duke@435 1356
jrose@1079 1357 #undef LOCAL_JCC
duke@435 1358 }
duke@435 1359
duke@435 1360 //
duke@435 1361 // Generate checkcasting array copy stub
duke@435 1362 //
duke@435 1363 // Input:
duke@435 1364 // 4(rsp) - source array address
duke@435 1365 // 8(rsp) - destination array address
duke@435 1366 // 12(rsp) - element count, can be zero
duke@435 1367 // 16(rsp) - size_t ckoff (super_check_offset)
duke@435 1368 // 20(rsp) - oop ckval (super_klass)
duke@435 1369 //
duke@435 1370 // Output:
duke@435 1371 // rax, == 0 - success
duke@435 1372 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1373 //
duke@435 1374 address generate_checkcast_copy(const char *name, address* entry) {
duke@435 1375 __ align(CodeEntryAlignment);
duke@435 1376 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1377 address start = __ pc();
duke@435 1378
duke@435 1379 Label L_load_element, L_store_element, L_do_card_marks, L_done;
duke@435 1380
duke@435 1381 // register use:
duke@435 1382 // rax, rdx, rcx -- loop control (end_from, end_to, count)
duke@435 1383 // rdi, rsi -- element access (oop, klass)
duke@435 1384 // rbx, -- temp
duke@435 1385 const Register from = rax; // source array address
duke@435 1386 const Register to = rdx; // destination array address
duke@435 1387 const Register length = rcx; // elements count
duke@435 1388 const Register elem = rdi; // each oop copied
duke@435 1389 const Register elem_klass = rsi; // each elem._klass (sub_klass)
duke@435 1390 const Register temp = rbx; // lone remaining temp
duke@435 1391
duke@435 1392 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 1393
never@739 1394 __ push(rsi);
never@739 1395 __ push(rdi);
never@739 1396 __ push(rbx);
duke@435 1397
duke@435 1398 Address from_arg(rsp, 16+ 4); // from
duke@435 1399 Address to_arg(rsp, 16+ 8); // to
duke@435 1400 Address length_arg(rsp, 16+12); // elements count
duke@435 1401 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1402 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1403
duke@435 1404 // Load up:
never@739 1405 __ movptr(from, from_arg);
never@739 1406 __ movptr(to, to_arg);
never@739 1407 __ movl2ptr(length, length_arg);
duke@435 1408
duke@435 1409 *entry = __ pc(); // Entry point from generic arraycopy stub.
duke@435 1410 BLOCK_COMMENT("Entry:");
duke@435 1411
duke@435 1412 //---------------------------------------------------------------
duke@435 1413 // Assembler stub will be used for this call to arraycopy
duke@435 1414 // if the two arrays are subtypes of Object[] but the
duke@435 1415 // destination array type is not equal to or a supertype
duke@435 1416 // of the source type. Each element must be separately
duke@435 1417 // checked.
duke@435 1418
duke@435 1419 // Loop-invariant addresses. They are exclusive end pointers.
never@739 1420 Address end_from_addr(from, length, Address::times_ptr, 0);
never@739 1421 Address end_to_addr(to, length, Address::times_ptr, 0);
duke@435 1422
duke@435 1423 Register end_from = from; // re-use
duke@435 1424 Register end_to = to; // re-use
duke@435 1425 Register count = length; // re-use
duke@435 1426
duke@435 1427 // Loop-variant addresses. They assume post-incremented count < 0.
never@739 1428 Address from_element_addr(end_from, count, Address::times_ptr, 0);
never@739 1429 Address to_element_addr(end_to, count, Address::times_ptr, 0);
duke@435 1430 Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
duke@435 1431
duke@435 1432 // Copy from low to high addresses, indexed from the end of each array.
ysr@777 1433 gen_write_ref_array_pre_barrier(to, count);
never@739 1434 __ lea(end_from, end_from_addr);
never@739 1435 __ lea(end_to, end_to_addr);
duke@435 1436 assert(length == count, ""); // else fix next line:
never@739 1437 __ negptr(count); // negate and test the length
duke@435 1438 __ jccb(Assembler::notZero, L_load_element);
duke@435 1439
duke@435 1440 // Empty array: Nothing to do.
never@739 1441 __ xorptr(rax, rax); // return 0 on (trivial) success
duke@435 1442 __ jmp(L_done);
duke@435 1443
duke@435 1444 // ======== begin loop ========
duke@435 1445 // (Loop is rotated; its entry is L_load_element.)
duke@435 1446 // Loop control:
duke@435 1447 // for (count = -count; count != 0; count++)
duke@435 1448 // Base pointers src, dst are biased by 8*count,to last element.
duke@435 1449 __ align(16);
duke@435 1450
duke@435 1451 __ BIND(L_store_element);
never@739 1452 __ movptr(to_element_addr, elem); // store the oop
duke@435 1453 __ increment(count); // increment the count toward zero
duke@435 1454 __ jccb(Assembler::zero, L_do_card_marks);
duke@435 1455
duke@435 1456 // ======== loop entry is here ========
duke@435 1457 __ BIND(L_load_element);
never@739 1458 __ movptr(elem, from_element_addr); // load the oop
never@739 1459 __ testptr(elem, elem);
duke@435 1460 __ jccb(Assembler::zero, L_store_element);
duke@435 1461
duke@435 1462 // (Could do a trick here: Remember last successful non-null
duke@435 1463 // element stored and make a quick oop equality check on it.)
duke@435 1464
never@739 1465 __ movptr(elem_klass, elem_klass_addr); // query the object klass
duke@435 1466 generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
duke@435 1467 &L_store_element, NULL);
duke@435 1468 // (On fall-through, we have failed the element type check.)
duke@435 1469 // ======== end loop ========
duke@435 1470
duke@435 1471 // It was a real error; we must depend on the caller to finish the job.
rasbold@454 1472 // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
rasbold@454 1473 // Emit GC store barriers for the oops we have copied (length_arg + count),
duke@435 1474 // and report their number to the caller.
duke@435 1475 __ addl(count, length_arg); // transfers = (length - remaining)
never@739 1476 __ movl2ptr(rax, count); // save the value
never@739 1477 __ notptr(rax); // report (-1^K) to caller
never@739 1478 __ movptr(to, to_arg); // reload
duke@435 1479 assert_different_registers(to, count, rax);
duke@435 1480 gen_write_ref_array_post_barrier(to, count);
duke@435 1481 __ jmpb(L_done);
duke@435 1482
duke@435 1483 // Come here on success only.
duke@435 1484 __ BIND(L_do_card_marks);
never@739 1485 __ movl2ptr(count, length_arg);
never@739 1486 __ movptr(to, to_arg); // reload
duke@435 1487 gen_write_ref_array_post_barrier(to, count);
never@739 1488 __ xorptr(rax, rax); // return 0 on success
duke@435 1489
duke@435 1490 // Common exit point (success or failure).
duke@435 1491 __ BIND(L_done);
never@739 1492 __ pop(rbx);
never@739 1493 __ pop(rdi);
never@739 1494 __ pop(rsi);
duke@435 1495 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
duke@435 1496 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1497 __ ret(0);
duke@435 1498
duke@435 1499 return start;
duke@435 1500 }
duke@435 1501
duke@435 1502 //
duke@435 1503 // Generate 'unsafe' array copy stub
duke@435 1504 // Though just as safe as the other stubs, it takes an unscaled
duke@435 1505 // size_t argument instead of an element count.
duke@435 1506 //
duke@435 1507 // Input:
duke@435 1508 // 4(rsp) - source array address
duke@435 1509 // 8(rsp) - destination array address
duke@435 1510 // 12(rsp) - byte count, can be zero
duke@435 1511 //
duke@435 1512 // Output:
duke@435 1513 // rax, == 0 - success
duke@435 1514 // rax, == -1 - need to call System.arraycopy
duke@435 1515 //
duke@435 1516 // Examines the alignment of the operands and dispatches
duke@435 1517 // to a long, int, short, or byte copy loop.
duke@435 1518 //
duke@435 1519 address generate_unsafe_copy(const char *name,
duke@435 1520 address byte_copy_entry,
duke@435 1521 address short_copy_entry,
duke@435 1522 address int_copy_entry,
duke@435 1523 address long_copy_entry) {
duke@435 1524
duke@435 1525 Label L_long_aligned, L_int_aligned, L_short_aligned;
duke@435 1526
duke@435 1527 __ align(CodeEntryAlignment);
duke@435 1528 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1529 address start = __ pc();
duke@435 1530
duke@435 1531 const Register from = rax; // source array address
duke@435 1532 const Register to = rdx; // destination array address
duke@435 1533 const Register count = rcx; // elements count
duke@435 1534
duke@435 1535 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1536 __ push(rsi);
never@739 1537 __ push(rdi);
duke@435 1538 Address from_arg(rsp, 12+ 4); // from
duke@435 1539 Address to_arg(rsp, 12+ 8); // to
duke@435 1540 Address count_arg(rsp, 12+12); // byte count
duke@435 1541
duke@435 1542 // Load up:
never@739 1543 __ movptr(from , from_arg);
never@739 1544 __ movptr(to , to_arg);
never@739 1545 __ movl2ptr(count, count_arg);
duke@435 1546
duke@435 1547 // bump this on entry, not on exit:
duke@435 1548 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
duke@435 1549
duke@435 1550 const Register bits = rsi;
never@739 1551 __ mov(bits, from);
never@739 1552 __ orptr(bits, to);
never@739 1553 __ orptr(bits, count);
duke@435 1554
duke@435 1555 __ testl(bits, BytesPerLong-1);
duke@435 1556 __ jccb(Assembler::zero, L_long_aligned);
duke@435 1557
duke@435 1558 __ testl(bits, BytesPerInt-1);
duke@435 1559 __ jccb(Assembler::zero, L_int_aligned);
duke@435 1560
duke@435 1561 __ testl(bits, BytesPerShort-1);
duke@435 1562 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
duke@435 1563
duke@435 1564 __ BIND(L_short_aligned);
never@739 1565 __ shrptr(count, LogBytesPerShort); // size => short_count
duke@435 1566 __ movl(count_arg, count); // update 'count'
duke@435 1567 __ jump(RuntimeAddress(short_copy_entry));
duke@435 1568
duke@435 1569 __ BIND(L_int_aligned);
never@739 1570 __ shrptr(count, LogBytesPerInt); // size => int_count
duke@435 1571 __ movl(count_arg, count); // update 'count'
duke@435 1572 __ jump(RuntimeAddress(int_copy_entry));
duke@435 1573
duke@435 1574 __ BIND(L_long_aligned);
never@739 1575 __ shrptr(count, LogBytesPerLong); // size => qword_count
duke@435 1576 __ movl(count_arg, count); // update 'count'
never@739 1577 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1578 __ pop(rsi);
duke@435 1579 __ jump(RuntimeAddress(long_copy_entry));
duke@435 1580
duke@435 1581 return start;
duke@435 1582 }
duke@435 1583
duke@435 1584
duke@435 1585 // Perform range checks on the proposed arraycopy.
duke@435 1586 // Smashes src_pos and dst_pos. (Uses them up for temps.)
duke@435 1587 void arraycopy_range_checks(Register src,
duke@435 1588 Register src_pos,
duke@435 1589 Register dst,
duke@435 1590 Register dst_pos,
duke@435 1591 Address& length,
duke@435 1592 Label& L_failed) {
duke@435 1593 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 1594 const Register src_end = src_pos; // source array end position
duke@435 1595 const Register dst_end = dst_pos; // destination array end position
duke@435 1596 __ addl(src_end, length); // src_pos + length
duke@435 1597 __ addl(dst_end, length); // dst_pos + length
duke@435 1598
duke@435 1599 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 1600 __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
duke@435 1601 __ jcc(Assembler::above, L_failed);
duke@435 1602
duke@435 1603 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 1604 __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
duke@435 1605 __ jcc(Assembler::above, L_failed);
duke@435 1606
duke@435 1607 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 1608 }
duke@435 1609
duke@435 1610
duke@435 1611 //
duke@435 1612 // Generate generic array copy stubs
duke@435 1613 //
duke@435 1614 // Input:
duke@435 1615 // 4(rsp) - src oop
duke@435 1616 // 8(rsp) - src_pos
duke@435 1617 // 12(rsp) - dst oop
duke@435 1618 // 16(rsp) - dst_pos
duke@435 1619 // 20(rsp) - element count
duke@435 1620 //
duke@435 1621 // Output:
duke@435 1622 // rax, == 0 - success
duke@435 1623 // rax, == -1^K - failure, where K is partial transfer count
duke@435 1624 //
duke@435 1625 address generate_generic_copy(const char *name,
duke@435 1626 address entry_jbyte_arraycopy,
duke@435 1627 address entry_jshort_arraycopy,
duke@435 1628 address entry_jint_arraycopy,
duke@435 1629 address entry_oop_arraycopy,
duke@435 1630 address entry_jlong_arraycopy,
duke@435 1631 address entry_checkcast_arraycopy) {
duke@435 1632 Label L_failed, L_failed_0, L_objArray;
duke@435 1633
duke@435 1634 { int modulus = CodeEntryAlignment;
duke@435 1635 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
duke@435 1636 int advance = target - (__ offset() % modulus);
duke@435 1637 if (advance < 0) advance += modulus;
duke@435 1638 if (advance > 0) __ nop(advance);
duke@435 1639 }
duke@435 1640 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1641
duke@435 1642 // Short-hop target to L_failed. Makes for denser prologue code.
duke@435 1643 __ BIND(L_failed_0);
duke@435 1644 __ jmp(L_failed);
duke@435 1645 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
duke@435 1646
duke@435 1647 __ align(CodeEntryAlignment);
duke@435 1648 address start = __ pc();
duke@435 1649
duke@435 1650 __ enter(); // required for proper stackwalking of RuntimeStub frame
never@739 1651 __ push(rsi);
never@739 1652 __ push(rdi);
duke@435 1653
duke@435 1654 // bump this on entry, not on exit:
duke@435 1655 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
duke@435 1656
duke@435 1657 // Input values
duke@435 1658 Address SRC (rsp, 12+ 4);
duke@435 1659 Address SRC_POS (rsp, 12+ 8);
duke@435 1660 Address DST (rsp, 12+12);
duke@435 1661 Address DST_POS (rsp, 12+16);
duke@435 1662 Address LENGTH (rsp, 12+20);
duke@435 1663
duke@435 1664 //-----------------------------------------------------------------------
duke@435 1665 // Assembler stub will be used for this call to arraycopy
duke@435 1666 // if the following conditions are met:
duke@435 1667 //
duke@435 1668 // (1) src and dst must not be null.
duke@435 1669 // (2) src_pos must not be negative.
duke@435 1670 // (3) dst_pos must not be negative.
duke@435 1671 // (4) length must not be negative.
duke@435 1672 // (5) src klass and dst klass should be the same and not NULL.
duke@435 1673 // (6) src and dst should be arrays.
duke@435 1674 // (7) src_pos + length must not exceed length of src.
duke@435 1675 // (8) dst_pos + length must not exceed length of dst.
duke@435 1676 //
duke@435 1677
duke@435 1678 const Register src = rax; // source array oop
duke@435 1679 const Register src_pos = rsi;
duke@435 1680 const Register dst = rdx; // destination array oop
duke@435 1681 const Register dst_pos = rdi;
duke@435 1682 const Register length = rcx; // transfer count
duke@435 1683
duke@435 1684 // if (src == NULL) return -1;
never@739 1685 __ movptr(src, SRC); // src oop
never@739 1686 __ testptr(src, src);
duke@435 1687 __ jccb(Assembler::zero, L_failed_0);
duke@435 1688
duke@435 1689 // if (src_pos < 0) return -1;
never@739 1690 __ movl2ptr(src_pos, SRC_POS); // src_pos
duke@435 1691 __ testl(src_pos, src_pos);
duke@435 1692 __ jccb(Assembler::negative, L_failed_0);
duke@435 1693
duke@435 1694 // if (dst == NULL) return -1;
never@739 1695 __ movptr(dst, DST); // dst oop
never@739 1696 __ testptr(dst, dst);
duke@435 1697 __ jccb(Assembler::zero, L_failed_0);
duke@435 1698
duke@435 1699 // if (dst_pos < 0) return -1;
never@739 1700 __ movl2ptr(dst_pos, DST_POS); // dst_pos
duke@435 1701 __ testl(dst_pos, dst_pos);
duke@435 1702 __ jccb(Assembler::negative, L_failed_0);
duke@435 1703
duke@435 1704 // if (length < 0) return -1;
never@739 1705 __ movl2ptr(length, LENGTH); // length
duke@435 1706 __ testl(length, length);
duke@435 1707 __ jccb(Assembler::negative, L_failed_0);
duke@435 1708
duke@435 1709 // if (src->klass() == NULL) return -1;
duke@435 1710 Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
duke@435 1711 Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
duke@435 1712 const Register rcx_src_klass = rcx; // array klass
never@739 1713 __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
duke@435 1714
duke@435 1715 #ifdef ASSERT
duke@435 1716 // assert(src->klass() != NULL);
duke@435 1717 BLOCK_COMMENT("assert klasses not null");
duke@435 1718 { Label L1, L2;
never@739 1719 __ testptr(rcx_src_klass, rcx_src_klass);
duke@435 1720 __ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
duke@435 1721 __ bind(L1);
duke@435 1722 __ stop("broken null klass");
duke@435 1723 __ bind(L2);
never@739 1724 __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
duke@435 1725 __ jccb(Assembler::equal, L1); // this would be broken also
duke@435 1726 BLOCK_COMMENT("assert done");
duke@435 1727 }
duke@435 1728 #endif //ASSERT
duke@435 1729
duke@435 1730 // Load layout helper (32-bits)
duke@435 1731 //
duke@435 1732 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 1733 // 32 30 24 16 8 2 0
duke@435 1734 //
duke@435 1735 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 1736 //
duke@435 1737
duke@435 1738 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 1739 Klass::layout_helper_offset_in_bytes();
duke@435 1740 Address src_klass_lh_addr(rcx_src_klass, lh_offset);
duke@435 1741
duke@435 1742 // Handle objArrays completely differently...
duke@435 1743 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 1744 __ cmpl(src_klass_lh_addr, objArray_lh);
duke@435 1745 __ jcc(Assembler::equal, L_objArray);
duke@435 1746
duke@435 1747 // if (src->klass() != dst->klass()) return -1;
never@739 1748 __ cmpptr(rcx_src_klass, dst_klass_addr);
duke@435 1749 __ jccb(Assembler::notEqual, L_failed_0);
duke@435 1750
duke@435 1751 const Register rcx_lh = rcx; // layout helper
duke@435 1752 assert(rcx_lh == rcx_src_klass, "known alias");
duke@435 1753 __ movl(rcx_lh, src_klass_lh_addr);
duke@435 1754
duke@435 1755 // if (!src->is_Array()) return -1;
duke@435 1756 __ cmpl(rcx_lh, Klass::_lh_neutral_value);
duke@435 1757 __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
duke@435 1758
duke@435 1759 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 1760 #ifdef ASSERT
duke@435 1761 { Label L;
duke@435 1762 __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
duke@435 1763 __ jcc(Assembler::greaterEqual, L); // signed cmp
duke@435 1764 __ stop("must be a primitive array");
duke@435 1765 __ bind(L);
duke@435 1766 }
duke@435 1767 #endif
duke@435 1768
duke@435 1769 assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
duke@435 1770 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1771
duke@435 1772 // typeArrayKlass
duke@435 1773 //
duke@435 1774 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 1775 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 1776 //
duke@435 1777 const Register rsi_offset = rsi; // array offset
duke@435 1778 const Register src_array = src; // src array offset
duke@435 1779 const Register dst_array = dst; // dst array offset
duke@435 1780 const Register rdi_elsize = rdi; // log2 element size
duke@435 1781
never@739 1782 __ mov(rsi_offset, rcx_lh);
never@739 1783 __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
never@739 1784 __ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset
never@739 1785 __ addptr(src_array, rsi_offset); // src array offset
never@739 1786 __ addptr(dst_array, rsi_offset); // dst array offset
never@739 1787 __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
duke@435 1788
duke@435 1789 // next registers should be set before the jump to corresponding stub
duke@435 1790 const Register from = src; // source array address
duke@435 1791 const Register to = dst; // destination array address
duke@435 1792 const Register count = rcx; // elements count
duke@435 1793 // some of them should be duplicated on stack
duke@435 1794 #define FROM Address(rsp, 12+ 4)
duke@435 1795 #define TO Address(rsp, 12+ 8) // Not used now
duke@435 1796 #define COUNT Address(rsp, 12+12) // Only for oop arraycopy
duke@435 1797
duke@435 1798 BLOCK_COMMENT("scale indexes to element size");
never@739 1799 __ movl2ptr(rsi, SRC_POS); // src_pos
never@739 1800 __ shlptr(rsi); // src_pos << rcx (log2 elsize)
duke@435 1801 assert(src_array == from, "");
never@739 1802 __ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize
never@739 1803 __ movl2ptr(rdi, DST_POS); // dst_pos
never@739 1804 __ shlptr(rdi); // dst_pos << rcx (log2 elsize)
duke@435 1805 assert(dst_array == to, "");
never@739 1806 __ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize
never@739 1807 __ movptr(FROM, from); // src_addr
never@739 1808 __ mov(rdi_elsize, rcx_lh); // log2 elsize
never@739 1809 __ movl2ptr(count, LENGTH); // elements count
duke@435 1810
duke@435 1811 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 1812 __ cmpl(rdi_elsize, 0);
duke@435 1813
duke@435 1814 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
duke@435 1815 __ cmpl(rdi_elsize, LogBytesPerShort);
duke@435 1816 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
duke@435 1817 __ cmpl(rdi_elsize, LogBytesPerInt);
duke@435 1818 __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
duke@435 1819 #ifdef ASSERT
duke@435 1820 __ cmpl(rdi_elsize, LogBytesPerLong);
duke@435 1821 __ jccb(Assembler::notEqual, L_failed);
duke@435 1822 #endif
never@739 1823 __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
never@739 1824 __ pop(rsi);
duke@435 1825 __ jump(RuntimeAddress(entry_jlong_arraycopy));
duke@435 1826
duke@435 1827 __ BIND(L_failed);
never@739 1828 __ xorptr(rax, rax);
never@739 1829 __ notptr(rax); // return -1
never@739 1830 __ pop(rdi);
never@739 1831 __ pop(rsi);
duke@435 1832 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 1833 __ ret(0);
duke@435 1834
duke@435 1835 // objArrayKlass
duke@435 1836 __ BIND(L_objArray);
duke@435 1837 // live at this point: rcx_src_klass, src[_pos], dst[_pos]
duke@435 1838
duke@435 1839 Label L_plain_copy, L_checkcast_copy;
duke@435 1840 // test array classes for subtyping
never@739 1841 __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
duke@435 1842 __ jccb(Assembler::notEqual, L_checkcast_copy);
duke@435 1843
duke@435 1844 // Identically typed arrays can be copied without element-wise checks.
duke@435 1845 assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
duke@435 1846 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1847
duke@435 1848 __ BIND(L_plain_copy);
never@739 1849 __ movl2ptr(count, LENGTH); // elements count
never@739 1850 __ movl2ptr(src_pos, SRC_POS); // reload src_pos
never@739 1851 __ lea(from, Address(src, src_pos, Address::times_ptr,
never@739 1852 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
never@739 1853 __ movl2ptr(dst_pos, DST_POS); // reload dst_pos
never@739 1854 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
never@739 1855 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
never@739 1856 __ movptr(FROM, from); // src_addr
never@739 1857 __ movptr(TO, to); // dst_addr
duke@435 1858 __ movl(COUNT, count); // count
duke@435 1859 __ jump(RuntimeAddress(entry_oop_arraycopy));
duke@435 1860
duke@435 1861 __ BIND(L_checkcast_copy);
duke@435 1862 // live at this point: rcx_src_klass, dst[_pos], src[_pos]
duke@435 1863 {
duke@435 1864 // Handy offsets:
duke@435 1865 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1866 objArrayKlass::element_klass_offset_in_bytes());
duke@435 1867 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 1868 Klass::super_check_offset_offset_in_bytes());
duke@435 1869
duke@435 1870 Register rsi_dst_klass = rsi;
duke@435 1871 Register rdi_temp = rdi;
duke@435 1872 assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
duke@435 1873 assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
duke@435 1874 Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
duke@435 1875
duke@435 1876 // Before looking at dst.length, make sure dst is also an objArray.
never@739 1877 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1878 __ cmpl(dst_klass_lh_addr, objArray_lh);
duke@435 1879 __ jccb(Assembler::notEqual, L_failed);
duke@435 1880
duke@435 1881 // It is safe to examine both src.length and dst.length.
never@739 1882 __ movl2ptr(src_pos, SRC_POS); // reload rsi
duke@435 1883 arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
duke@435 1884 // (Now src_pos and dst_pos are killed, but not src and dst.)
duke@435 1885
duke@435 1886 // We'll need this temp (don't forget to pop it after the type check).
never@739 1887 __ push(rbx);
duke@435 1888 Register rbx_src_klass = rbx;
duke@435 1889
never@739 1890 __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
never@739 1891 __ movptr(rsi_dst_klass, dst_klass_addr);
duke@435 1892 Address super_check_offset_addr(rsi_dst_klass, sco_offset);
duke@435 1893 Label L_fail_array_check;
duke@435 1894 generate_type_check(rbx_src_klass,
duke@435 1895 super_check_offset_addr, dst_klass_addr,
duke@435 1896 rdi_temp, NULL, &L_fail_array_check);
duke@435 1897 // (On fall-through, we have passed the array type check.)
never@739 1898 __ pop(rbx);
duke@435 1899 __ jmp(L_plain_copy);
duke@435 1900
duke@435 1901 __ BIND(L_fail_array_check);
duke@435 1902 // Reshuffle arguments so we can call checkcast_arraycopy:
duke@435 1903
duke@435 1904 // match initial saves for checkcast_arraycopy
never@739 1905 // push(rsi); // already done; see above
never@739 1906 // push(rdi); // already done; see above
never@739 1907 // push(rbx); // already done; see above
duke@435 1908
duke@435 1909 // Marshal outgoing arguments now, freeing registers.
duke@435 1910 Address from_arg(rsp, 16+ 4); // from
duke@435 1911 Address to_arg(rsp, 16+ 8); // to
duke@435 1912 Address length_arg(rsp, 16+12); // elements count
duke@435 1913 Address ckoff_arg(rsp, 16+16); // super_check_offset
duke@435 1914 Address ckval_arg(rsp, 16+20); // super_klass
duke@435 1915
duke@435 1916 Address SRC_POS_arg(rsp, 16+ 8);
duke@435 1917 Address DST_POS_arg(rsp, 16+16);
duke@435 1918 Address LENGTH_arg(rsp, 16+20);
duke@435 1919 // push rbx, changed the incoming offsets (why not just use rbp,??)
duke@435 1920 // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
duke@435 1921
never@739 1922 __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
never@739 1923 __ movl2ptr(length, LENGTH_arg); // reload elements count
never@739 1924 __ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos
never@739 1925 __ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos
duke@435 1926
never@739 1927 __ movptr(ckval_arg, rbx); // destination element type
duke@435 1928 __ movl(rbx, Address(rbx, sco_offset));
duke@435 1929 __ movl(ckoff_arg, rbx); // corresponding class check offset
duke@435 1930
duke@435 1931 __ movl(length_arg, length); // outgoing length argument
duke@435 1932
never@739 1933 __ lea(from, Address(src, src_pos, Address::times_ptr,
duke@435 1934 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1935 __ movptr(from_arg, from);
duke@435 1936
never@739 1937 __ lea(to, Address(dst, dst_pos, Address::times_ptr,
duke@435 1938 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
never@739 1939 __ movptr(to_arg, to);
duke@435 1940 __ jump(RuntimeAddress(entry_checkcast_arraycopy));
duke@435 1941 }
duke@435 1942
duke@435 1943 return start;
duke@435 1944 }
duke@435 1945
duke@435 1946 void generate_arraycopy_stubs() {
duke@435 1947 address entry;
duke@435 1948 address entry_jbyte_arraycopy;
duke@435 1949 address entry_jshort_arraycopy;
duke@435 1950 address entry_jint_arraycopy;
duke@435 1951 address entry_oop_arraycopy;
duke@435 1952 address entry_jlong_arraycopy;
duke@435 1953 address entry_checkcast_arraycopy;
duke@435 1954
duke@435 1955 StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
duke@435 1956 generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
duke@435 1957 "arrayof_jbyte_disjoint_arraycopy");
duke@435 1958 StubRoutines::_arrayof_jbyte_arraycopy =
duke@435 1959 generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
duke@435 1960 NULL, "arrayof_jbyte_arraycopy");
duke@435 1961 StubRoutines::_jbyte_disjoint_arraycopy =
duke@435 1962 generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
duke@435 1963 "jbyte_disjoint_arraycopy");
duke@435 1964 StubRoutines::_jbyte_arraycopy =
duke@435 1965 generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
duke@435 1966 &entry_jbyte_arraycopy, "jbyte_arraycopy");
duke@435 1967
duke@435 1968 StubRoutines::_arrayof_jshort_disjoint_arraycopy =
duke@435 1969 generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
duke@435 1970 "arrayof_jshort_disjoint_arraycopy");
duke@435 1971 StubRoutines::_arrayof_jshort_arraycopy =
duke@435 1972 generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
duke@435 1973 NULL, "arrayof_jshort_arraycopy");
duke@435 1974 StubRoutines::_jshort_disjoint_arraycopy =
duke@435 1975 generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
duke@435 1976 "jshort_disjoint_arraycopy");
duke@435 1977 StubRoutines::_jshort_arraycopy =
duke@435 1978 generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
duke@435 1979 &entry_jshort_arraycopy, "jshort_arraycopy");
duke@435 1980
duke@435 1981 // Next arrays are always aligned on 4 bytes at least.
duke@435 1982 StubRoutines::_jint_disjoint_arraycopy =
duke@435 1983 generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
duke@435 1984 "jint_disjoint_arraycopy");
duke@435 1985 StubRoutines::_jint_arraycopy =
duke@435 1986 generate_conjoint_copy(T_INT, true, Address::times_4, entry,
duke@435 1987 &entry_jint_arraycopy, "jint_arraycopy");
duke@435 1988
duke@435 1989 StubRoutines::_oop_disjoint_arraycopy =
never@739 1990 generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
duke@435 1991 "oop_disjoint_arraycopy");
duke@435 1992 StubRoutines::_oop_arraycopy =
never@739 1993 generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
duke@435 1994 &entry_oop_arraycopy, "oop_arraycopy");
duke@435 1995
duke@435 1996 StubRoutines::_jlong_disjoint_arraycopy =
duke@435 1997 generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
duke@435 1998 StubRoutines::_jlong_arraycopy =
duke@435 1999 generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
duke@435 2000 "jlong_arraycopy");
duke@435 2001
duke@435 2002 StubRoutines::_arrayof_jint_disjoint_arraycopy =
duke@435 2003 StubRoutines::_jint_disjoint_arraycopy;
duke@435 2004 StubRoutines::_arrayof_oop_disjoint_arraycopy =
duke@435 2005 StubRoutines::_oop_disjoint_arraycopy;
duke@435 2006 StubRoutines::_arrayof_jlong_disjoint_arraycopy =
duke@435 2007 StubRoutines::_jlong_disjoint_arraycopy;
duke@435 2008
duke@435 2009 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2010 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2011 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2012
duke@435 2013 StubRoutines::_checkcast_arraycopy =
duke@435 2014 generate_checkcast_copy("checkcast_arraycopy",
duke@435 2015 &entry_checkcast_arraycopy);
duke@435 2016
duke@435 2017 StubRoutines::_unsafe_arraycopy =
duke@435 2018 generate_unsafe_copy("unsafe_arraycopy",
duke@435 2019 entry_jbyte_arraycopy,
duke@435 2020 entry_jshort_arraycopy,
duke@435 2021 entry_jint_arraycopy,
duke@435 2022 entry_jlong_arraycopy);
duke@435 2023
duke@435 2024 StubRoutines::_generic_arraycopy =
duke@435 2025 generate_generic_copy("generic_arraycopy",
duke@435 2026 entry_jbyte_arraycopy,
duke@435 2027 entry_jshort_arraycopy,
duke@435 2028 entry_jint_arraycopy,
duke@435 2029 entry_oop_arraycopy,
duke@435 2030 entry_jlong_arraycopy,
duke@435 2031 entry_checkcast_arraycopy);
duke@435 2032 }
duke@435 2033
duke@435 2034 public:
duke@435 2035 // Information about frame layout at time of blocking runtime call.
duke@435 2036 // Note that we only have to preserve callee-saved registers since
duke@435 2037 // the compilers are responsible for supplying a continuation point
duke@435 2038 // if they expect all registers to be preserved.
duke@435 2039 enum layout {
duke@435 2040 thread_off, // last_java_sp
duke@435 2041 rbp_off, // callee saved register
duke@435 2042 ret_pc,
duke@435 2043 framesize
duke@435 2044 };
duke@435 2045
duke@435 2046 private:
duke@435 2047
duke@435 2048 #undef __
duke@435 2049 #define __ masm->
duke@435 2050
duke@435 2051 //------------------------------------------------------------------------------------------------------------------------
duke@435 2052 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 2053 // the current activation. Fabricates an exception oop and initiates normal
duke@435 2054 // exception dispatching in this frame.
duke@435 2055 //
duke@435 2056 // Previously the compiler (c2) allowed for callee save registers on Java calls.
duke@435 2057 // This is no longer true after adapter frames were removed but could possibly
duke@435 2058 // be brought back in the future if the interpreter code was reworked and it
duke@435 2059 // was deemed worthwhile. The comment below was left to describe what must
duke@435 2060 // happen here if callee saves were resurrected. As it stands now this stub
duke@435 2061 // could actually be a vanilla BufferBlob and have now oopMap at all.
duke@435 2062 // Since it doesn't make much difference we've chosen to leave it the
duke@435 2063 // way it was in the callee save days and keep the comment.
duke@435 2064
duke@435 2065 // If we need to preserve callee-saved values we need a callee-saved oop map and
duke@435 2066 // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
duke@435 2067 // If the compiler needs all registers to be preserved between the fault
duke@435 2068 // point and the exception handler then it must assume responsibility for that in
duke@435 2069 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 2070 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 2071 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 2072 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 2073 // so caller saved registers were assumed volatile in the compiler.
duke@435 2074 address generate_throw_exception(const char* name, address runtime_entry,
duke@435 2075 bool restore_saved_exception_pc) {
duke@435 2076
duke@435 2077 int insts_size = 256;
duke@435 2078 int locs_size = 32;
duke@435 2079
duke@435 2080 CodeBuffer code(name, insts_size, locs_size);
duke@435 2081 OopMapSet* oop_maps = new OopMapSet();
duke@435 2082 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 2083
duke@435 2084 address start = __ pc();
duke@435 2085
duke@435 2086 // This is an inlined and slightly modified version of call_VM
duke@435 2087 // which has the ability to fetch the return PC out of
duke@435 2088 // thread-local storage and also sets up last_Java_sp slightly
duke@435 2089 // differently than the real call_VM
duke@435 2090 Register java_thread = rbx;
duke@435 2091 __ get_thread(java_thread);
duke@435 2092 if (restore_saved_exception_pc) {
never@739 2093 __ movptr(rax, Address(java_thread, in_bytes(JavaThread::saved_exception_pc_offset())));
never@739 2094 __ push(rax);
duke@435 2095 }
duke@435 2096
duke@435 2097 __ enter(); // required for proper stackwalking of RuntimeStub frame
duke@435 2098
duke@435 2099 // pc and rbp, already pushed
never@739 2100 __ subptr(rsp, (framesize-2) * wordSize); // prolog
duke@435 2101
duke@435 2102 // Frame is now completed as far as size and linkage.
duke@435 2103
duke@435 2104 int frame_complete = __ pc() - start;
duke@435 2105
duke@435 2106 // push java thread (becomes first argument of C function)
never@739 2107 __ movptr(Address(rsp, thread_off * wordSize), java_thread);
duke@435 2108
duke@435 2109 // Set up last_Java_sp and last_Java_fp
duke@435 2110 __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
duke@435 2111
duke@435 2112 // Call runtime
duke@435 2113 BLOCK_COMMENT("call runtime_entry");
duke@435 2114 __ call(RuntimeAddress(runtime_entry));
duke@435 2115 // Generate oop map
duke@435 2116 OopMap* map = new OopMap(framesize, 0);
duke@435 2117 oop_maps->add_gc_map(__ pc() - start, map);
duke@435 2118
duke@435 2119 // restore the thread (cannot use the pushed argument since arguments
duke@435 2120 // may be overwritten by C code generated by an optimizing compiler);
duke@435 2121 // however can use the register value directly if it is callee saved.
duke@435 2122 __ get_thread(java_thread);
duke@435 2123
duke@435 2124 __ reset_last_Java_frame(java_thread, true, false);
duke@435 2125
duke@435 2126 __ leave(); // required for proper stackwalking of RuntimeStub frame
duke@435 2127
duke@435 2128 // check for pending exceptions
duke@435 2129 #ifdef ASSERT
duke@435 2130 Label L;
never@739 2131 __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
duke@435 2132 __ jcc(Assembler::notEqual, L);
duke@435 2133 __ should_not_reach_here();
duke@435 2134 __ bind(L);
duke@435 2135 #endif /* ASSERT */
duke@435 2136 __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
duke@435 2137
duke@435 2138
duke@435 2139 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
duke@435 2140 return stub->entry_point();
duke@435 2141 }
duke@435 2142
duke@435 2143
duke@435 2144 void create_control_words() {
duke@435 2145 // Round to nearest, 53-bit mode, exceptions masked
duke@435 2146 StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
duke@435 2147 // Round to zero, 53-bit mode, exception mased
duke@435 2148 StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
duke@435 2149 // Round to nearest, 24-bit mode, exceptions masked
duke@435 2150 StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
duke@435 2151 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2152 StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
duke@435 2153 // Round to nearest, 64-bit mode, exceptions masked
duke@435 2154 StubRoutines::_mxcsr_std = 0x1F80;
duke@435 2155 // Note: the following two constants are 80-bit values
duke@435 2156 // layout is critical for correct loading by FPU.
duke@435 2157 // Bias for strict fp multiply/divide
duke@435 2158 StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
duke@435 2159 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
duke@435 2160 StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
duke@435 2161 // Un-Bias for strict fp multiply/divide
duke@435 2162 StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
duke@435 2163 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
duke@435 2164 StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
duke@435 2165 }
duke@435 2166
duke@435 2167 //---------------------------------------------------------------------------
duke@435 2168 // Initialization
duke@435 2169
duke@435 2170 void generate_initial() {
duke@435 2171 // Generates all stubs and initializes the entry points
duke@435 2172
duke@435 2173 //------------------------------------------------------------------------------------------------------------------------
duke@435 2174 // entry points that exist in all platforms
duke@435 2175 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2176 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2177 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2178
duke@435 2179 StubRoutines::_call_stub_entry =
duke@435 2180 generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2181 // is referenced by megamorphic call
duke@435 2182 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2183
duke@435 2184 // These are currently used by Solaris/Intel
duke@435 2185 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2186
duke@435 2187 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2188 generate_handler_for_unsafe_access();
duke@435 2189
duke@435 2190 // platform dependent
duke@435 2191 create_control_words();
duke@435 2192
never@739 2193 StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
never@739 2194 StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
duke@435 2195 StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
duke@435 2196 CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
duke@435 2197 StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
duke@435 2198 CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
duke@435 2199 }
duke@435 2200
duke@435 2201
duke@435 2202 void generate_all() {
duke@435 2203 // Generates all stubs and initializes the entry points
duke@435 2204
duke@435 2205 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2206 // and need to be relocatable, so they each fabricate a RuntimeStub internally.
duke@435 2207 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2208 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2209 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2210 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2211 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2212 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2213
duke@435 2214 //------------------------------------------------------------------------------------------------------------------------
duke@435 2215 // entry points that are platform specific
duke@435 2216
duke@435 2217 // support for verify_oop (must happen after universe_init)
duke@435 2218 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
duke@435 2219
duke@435 2220 // arraycopy stubs used by compilers
duke@435 2221 generate_arraycopy_stubs();
duke@435 2222 }
duke@435 2223
duke@435 2224
duke@435 2225 public:
duke@435 2226 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2227 if (all) {
duke@435 2228 generate_all();
duke@435 2229 } else {
duke@435 2230 generate_initial();
duke@435 2231 }
duke@435 2232 }
duke@435 2233 }; // end class declaration
duke@435 2234
duke@435 2235
duke@435 2236 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2237 StubGenerator g(code, all);
duke@435 2238 }

mercurial