src/share/vm/opto/callnode.cpp

Tue, 28 Jul 2009 12:12:40 -0700

author
xdono
date
Tue, 28 Jul 2009 12:12:40 -0700
changeset 1279
bd02caa94611
parent 1139
ad8c635e757e
child 1338
15bbd3f505c0
permissions
-rw-r--r--

6862919: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 07/09
Reviewed-by: tbell, ohair

duke@435 1 /*
xdono@1279 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_callnode.cpp.incl"
duke@435 31
duke@435 32 //=============================================================================
duke@435 33 uint StartNode::size_of() const { return sizeof(*this); }
duke@435 34 uint StartNode::cmp( const Node &n ) const
duke@435 35 { return _domain == ((StartNode&)n)._domain; }
duke@435 36 const Type *StartNode::bottom_type() const { return _domain; }
duke@435 37 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
duke@435 38 #ifndef PRODUCT
duke@435 39 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
duke@435 40 #endif
duke@435 41
duke@435 42 //------------------------------Ideal------------------------------------------
duke@435 43 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 44 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 45 }
duke@435 46
duke@435 47 //------------------------------calling_convention-----------------------------
duke@435 48 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
duke@435 49 Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
duke@435 50 }
duke@435 51
duke@435 52 //------------------------------Registers--------------------------------------
duke@435 53 const RegMask &StartNode::in_RegMask(uint) const {
duke@435 54 return RegMask::Empty;
duke@435 55 }
duke@435 56
duke@435 57 //------------------------------match------------------------------------------
duke@435 58 // Construct projections for incoming parameters, and their RegMask info
duke@435 59 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 60 switch (proj->_con) {
duke@435 61 case TypeFunc::Control:
duke@435 62 case TypeFunc::I_O:
duke@435 63 case TypeFunc::Memory:
duke@435 64 return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 65 case TypeFunc::FramePtr:
duke@435 66 return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
duke@435 67 case TypeFunc::ReturnAdr:
duke@435 68 return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
duke@435 69 case TypeFunc::Parms:
duke@435 70 default: {
duke@435 71 uint parm_num = proj->_con - TypeFunc::Parms;
duke@435 72 const Type *t = _domain->field_at(proj->_con);
duke@435 73 if (t->base() == Type::Half) // 2nd half of Longs and Doubles
duke@435 74 return new (match->C, 1) ConNode(Type::TOP);
duke@435 75 uint ideal_reg = Matcher::base2reg[t->base()];
duke@435 76 RegMask &rm = match->_calling_convention_mask[parm_num];
duke@435 77 return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
duke@435 78 }
duke@435 79 }
duke@435 80 return NULL;
duke@435 81 }
duke@435 82
duke@435 83 //------------------------------StartOSRNode----------------------------------
duke@435 84 // The method start node for an on stack replacement adapter
duke@435 85
duke@435 86 //------------------------------osr_domain-----------------------------
duke@435 87 const TypeTuple *StartOSRNode::osr_domain() {
duke@435 88 const Type **fields = TypeTuple::fields(2);
duke@435 89 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
duke@435 90
duke@435 91 return TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 92 }
duke@435 93
duke@435 94 //=============================================================================
duke@435 95 const char * const ParmNode::names[TypeFunc::Parms+1] = {
duke@435 96 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
duke@435 97 };
duke@435 98
duke@435 99 #ifndef PRODUCT
duke@435 100 void ParmNode::dump_spec(outputStream *st) const {
duke@435 101 if( _con < TypeFunc::Parms ) {
duke@435 102 st->print(names[_con]);
duke@435 103 } else {
duke@435 104 st->print("Parm%d: ",_con-TypeFunc::Parms);
duke@435 105 // Verbose and WizardMode dump bottom_type for all nodes
duke@435 106 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
duke@435 107 }
duke@435 108 }
duke@435 109 #endif
duke@435 110
duke@435 111 uint ParmNode::ideal_reg() const {
duke@435 112 switch( _con ) {
duke@435 113 case TypeFunc::Control : // fall through
duke@435 114 case TypeFunc::I_O : // fall through
duke@435 115 case TypeFunc::Memory : return 0;
duke@435 116 case TypeFunc::FramePtr : // fall through
duke@435 117 case TypeFunc::ReturnAdr: return Op_RegP;
duke@435 118 default : assert( _con > TypeFunc::Parms, "" );
duke@435 119 // fall through
duke@435 120 case TypeFunc::Parms : {
duke@435 121 // Type of argument being passed
duke@435 122 const Type *t = in(0)->as_Start()->_domain->field_at(_con);
duke@435 123 return Matcher::base2reg[t->base()];
duke@435 124 }
duke@435 125 }
duke@435 126 ShouldNotReachHere();
duke@435 127 return 0;
duke@435 128 }
duke@435 129
duke@435 130 //=============================================================================
duke@435 131 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
duke@435 132 init_req(TypeFunc::Control,cntrl);
duke@435 133 init_req(TypeFunc::I_O,i_o);
duke@435 134 init_req(TypeFunc::Memory,memory);
duke@435 135 init_req(TypeFunc::FramePtr,frameptr);
duke@435 136 init_req(TypeFunc::ReturnAdr,retadr);
duke@435 137 }
duke@435 138
duke@435 139 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 140 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 141 }
duke@435 142
duke@435 143 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
duke@435 144 return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
duke@435 145 ? Type::TOP
duke@435 146 : Type::BOTTOM;
duke@435 147 }
duke@435 148
duke@435 149 // Do we Match on this edge index or not? No edges on return nodes
duke@435 150 uint ReturnNode::match_edge(uint idx) const {
duke@435 151 return 0;
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 #ifndef PRODUCT
duke@435 156 void ReturnNode::dump_req() const {
duke@435 157 // Dump the required inputs, enclosed in '(' and ')'
duke@435 158 uint i; // Exit value of loop
duke@435 159 for( i=0; i<req(); i++ ) { // For all required inputs
duke@435 160 if( i == TypeFunc::Parms ) tty->print("returns");
duke@435 161 if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
duke@435 162 else tty->print("_ ");
duke@435 163 }
duke@435 164 }
duke@435 165 #endif
duke@435 166
duke@435 167 //=============================================================================
duke@435 168 RethrowNode::RethrowNode(
duke@435 169 Node* cntrl,
duke@435 170 Node* i_o,
duke@435 171 Node* memory,
duke@435 172 Node* frameptr,
duke@435 173 Node* ret_adr,
duke@435 174 Node* exception
duke@435 175 ) : Node(TypeFunc::Parms + 1) {
duke@435 176 init_req(TypeFunc::Control , cntrl );
duke@435 177 init_req(TypeFunc::I_O , i_o );
duke@435 178 init_req(TypeFunc::Memory , memory );
duke@435 179 init_req(TypeFunc::FramePtr , frameptr );
duke@435 180 init_req(TypeFunc::ReturnAdr, ret_adr);
duke@435 181 init_req(TypeFunc::Parms , exception);
duke@435 182 }
duke@435 183
duke@435 184 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
duke@435 185 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 186 }
duke@435 187
duke@435 188 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
duke@435 189 return (phase->type(in(TypeFunc::Control)) == Type::TOP)
duke@435 190 ? Type::TOP
duke@435 191 : Type::BOTTOM;
duke@435 192 }
duke@435 193
duke@435 194 uint RethrowNode::match_edge(uint idx) const {
duke@435 195 return 0;
duke@435 196 }
duke@435 197
duke@435 198 #ifndef PRODUCT
duke@435 199 void RethrowNode::dump_req() const {
duke@435 200 // Dump the required inputs, enclosed in '(' and ')'
duke@435 201 uint i; // Exit value of loop
duke@435 202 for( i=0; i<req(); i++ ) { // For all required inputs
duke@435 203 if( i == TypeFunc::Parms ) tty->print("exception");
duke@435 204 if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
duke@435 205 else tty->print("_ ");
duke@435 206 }
duke@435 207 }
duke@435 208 #endif
duke@435 209
duke@435 210 //=============================================================================
duke@435 211 // Do we Match on this edge index or not? Match only target address & method
duke@435 212 uint TailCallNode::match_edge(uint idx) const {
duke@435 213 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
duke@435 214 }
duke@435 215
duke@435 216 //=============================================================================
duke@435 217 // Do we Match on this edge index or not? Match only target address & oop
duke@435 218 uint TailJumpNode::match_edge(uint idx) const {
duke@435 219 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
duke@435 220 }
duke@435 221
duke@435 222 //=============================================================================
duke@435 223 JVMState::JVMState(ciMethod* method, JVMState* caller) {
duke@435 224 assert(method != NULL, "must be valid call site");
duke@435 225 _method = method;
duke@435 226 debug_only(_bci = -99); // random garbage value
duke@435 227 debug_only(_map = (SafePointNode*)-1);
duke@435 228 _caller = caller;
duke@435 229 _depth = 1 + (caller == NULL ? 0 : caller->depth());
duke@435 230 _locoff = TypeFunc::Parms;
duke@435 231 _stkoff = _locoff + _method->max_locals();
duke@435 232 _monoff = _stkoff + _method->max_stack();
kvn@498 233 _scloff = _monoff;
duke@435 234 _endoff = _monoff;
duke@435 235 _sp = 0;
duke@435 236 }
duke@435 237 JVMState::JVMState(int stack_size) {
duke@435 238 _method = NULL;
duke@435 239 _bci = InvocationEntryBci;
duke@435 240 debug_only(_map = (SafePointNode*)-1);
duke@435 241 _caller = NULL;
duke@435 242 _depth = 1;
duke@435 243 _locoff = TypeFunc::Parms;
duke@435 244 _stkoff = _locoff;
duke@435 245 _monoff = _stkoff + stack_size;
kvn@498 246 _scloff = _monoff;
duke@435 247 _endoff = _monoff;
duke@435 248 _sp = 0;
duke@435 249 }
duke@435 250
duke@435 251 //--------------------------------of_depth-------------------------------------
duke@435 252 JVMState* JVMState::of_depth(int d) const {
duke@435 253 const JVMState* jvmp = this;
duke@435 254 assert(0 < d && (uint)d <= depth(), "oob");
duke@435 255 for (int skip = depth() - d; skip > 0; skip--) {
duke@435 256 jvmp = jvmp->caller();
duke@435 257 }
duke@435 258 assert(jvmp->depth() == (uint)d, "found the right one");
duke@435 259 return (JVMState*)jvmp;
duke@435 260 }
duke@435 261
duke@435 262 //-----------------------------same_calls_as-----------------------------------
duke@435 263 bool JVMState::same_calls_as(const JVMState* that) const {
duke@435 264 if (this == that) return true;
duke@435 265 if (this->depth() != that->depth()) return false;
duke@435 266 const JVMState* p = this;
duke@435 267 const JVMState* q = that;
duke@435 268 for (;;) {
duke@435 269 if (p->_method != q->_method) return false;
duke@435 270 if (p->_method == NULL) return true; // bci is irrelevant
duke@435 271 if (p->_bci != q->_bci) return false;
duke@435 272 p = p->caller();
duke@435 273 q = q->caller();
duke@435 274 if (p == q) return true;
duke@435 275 assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
duke@435 276 }
duke@435 277 }
duke@435 278
duke@435 279 //------------------------------debug_start------------------------------------
duke@435 280 uint JVMState::debug_start() const {
duke@435 281 debug_only(JVMState* jvmroot = of_depth(1));
duke@435 282 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
duke@435 283 return of_depth(1)->locoff();
duke@435 284 }
duke@435 285
duke@435 286 //-------------------------------debug_end-------------------------------------
duke@435 287 uint JVMState::debug_end() const {
duke@435 288 debug_only(JVMState* jvmroot = of_depth(1));
duke@435 289 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
duke@435 290 return endoff();
duke@435 291 }
duke@435 292
duke@435 293 //------------------------------debug_depth------------------------------------
duke@435 294 uint JVMState::debug_depth() const {
duke@435 295 uint total = 0;
duke@435 296 for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
duke@435 297 total += jvmp->debug_size();
duke@435 298 }
duke@435 299 return total;
duke@435 300 }
duke@435 301
kvn@498 302 #ifndef PRODUCT
kvn@498 303
duke@435 304 //------------------------------format_helper----------------------------------
duke@435 305 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
duke@435 306 // any defined value or not. If it does, print out the register or constant.
kvn@498 307 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
duke@435 308 if (n == NULL) { st->print(" NULL"); return; }
kvn@498 309 if (n->is_SafePointScalarObject()) {
kvn@498 310 // Scalar replacement.
kvn@498 311 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
kvn@498 312 scobjs->append_if_missing(spobj);
kvn@498 313 int sco_n = scobjs->find(spobj);
kvn@498 314 assert(sco_n >= 0, "");
kvn@498 315 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
kvn@498 316 return;
kvn@498 317 }
duke@435 318 if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
duke@435 319 char buf[50];
duke@435 320 regalloc->dump_register(n,buf);
duke@435 321 st->print(" %s%d]=%s",msg,i,buf);
duke@435 322 } else { // No register, but might be constant
duke@435 323 const Type *t = n->bottom_type();
duke@435 324 switch (t->base()) {
duke@435 325 case Type::Int:
duke@435 326 st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
duke@435 327 break;
duke@435 328 case Type::AnyPtr:
duke@435 329 assert( t == TypePtr::NULL_PTR, "" );
duke@435 330 st->print(" %s%d]=#NULL",msg,i);
duke@435 331 break;
duke@435 332 case Type::AryPtr:
duke@435 333 case Type::KlassPtr:
duke@435 334 case Type::InstPtr:
duke@435 335 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
duke@435 336 break;
kvn@766 337 case Type::NarrowOop:
kvn@766 338 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
kvn@766 339 break;
duke@435 340 case Type::RawPtr:
duke@435 341 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
duke@435 342 break;
duke@435 343 case Type::DoubleCon:
duke@435 344 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
duke@435 345 break;
duke@435 346 case Type::FloatCon:
duke@435 347 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
duke@435 348 break;
duke@435 349 case Type::Long:
duke@435 350 st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
duke@435 351 break;
duke@435 352 case Type::Half:
duke@435 353 case Type::Top:
duke@435 354 st->print(" %s%d]=_",msg,i);
duke@435 355 break;
duke@435 356 default: ShouldNotReachHere();
duke@435 357 }
duke@435 358 }
duke@435 359 }
duke@435 360
duke@435 361 //------------------------------format-----------------------------------------
duke@435 362 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
duke@435 363 st->print(" #");
duke@435 364 if( _method ) {
duke@435 365 _method->print_short_name(st);
duke@435 366 st->print(" @ bci:%d ",_bci);
duke@435 367 } else {
duke@435 368 st->print_cr(" runtime stub ");
duke@435 369 return;
duke@435 370 }
duke@435 371 if (n->is_MachSafePoint()) {
kvn@498 372 GrowableArray<SafePointScalarObjectNode*> scobjs;
duke@435 373 MachSafePointNode *mcall = n->as_MachSafePoint();
duke@435 374 uint i;
duke@435 375 // Print locals
duke@435 376 for( i = 0; i < (uint)loc_size(); i++ )
kvn@498 377 format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
duke@435 378 // Print stack
duke@435 379 for (i = 0; i < (uint)stk_size(); i++) {
duke@435 380 if ((uint)(_stkoff + i) >= mcall->len())
duke@435 381 st->print(" oob ");
duke@435 382 else
kvn@498 383 format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
duke@435 384 }
duke@435 385 for (i = 0; (int)i < nof_monitors(); i++) {
duke@435 386 Node *box = mcall->monitor_box(this, i);
duke@435 387 Node *obj = mcall->monitor_obj(this, i);
duke@435 388 if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
duke@435 389 while( !box->is_BoxLock() ) box = box->in(1);
kvn@498 390 format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
duke@435 391 } else {
duke@435 392 OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
duke@435 393 st->print(" MON-BOX%d=%s+%d",
duke@435 394 i,
duke@435 395 OptoReg::regname(OptoReg::c_frame_pointer),
duke@435 396 regalloc->reg2offset(box_reg));
duke@435 397 }
kvn@895 398 const char* obj_msg = "MON-OBJ[";
kvn@895 399 if (EliminateLocks) {
kvn@895 400 while( !box->is_BoxLock() ) box = box->in(1);
kvn@895 401 if (box->as_BoxLock()->is_eliminated())
kvn@895 402 obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
kvn@895 403 }
kvn@895 404 format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
kvn@498 405 }
kvn@498 406
kvn@498 407 for (i = 0; i < (uint)scobjs.length(); i++) {
kvn@498 408 // Scalar replaced objects.
kvn@498 409 st->print_cr("");
kvn@498 410 st->print(" # ScObj" INT32_FORMAT " ", i);
kvn@498 411 SafePointScalarObjectNode* spobj = scobjs.at(i);
kvn@498 412 ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
kvn@498 413 assert(cik->is_instance_klass() ||
kvn@498 414 cik->is_array_klass(), "Not supported allocation.");
kvn@498 415 ciInstanceKlass *iklass = NULL;
kvn@498 416 if (cik->is_instance_klass()) {
kvn@498 417 cik->print_name_on(st);
kvn@498 418 iklass = cik->as_instance_klass();
kvn@498 419 } else if (cik->is_type_array_klass()) {
kvn@498 420 cik->as_array_klass()->base_element_type()->print_name_on(st);
kvn@498 421 st->print("[%d]=", spobj->n_fields());
kvn@498 422 } else if (cik->is_obj_array_klass()) {
kvn@498 423 ciType* cie = cik->as_array_klass()->base_element_type();
kvn@498 424 int ndim = 1;
kvn@498 425 while (cie->is_obj_array_klass()) {
kvn@498 426 ndim += 1;
kvn@498 427 cie = cie->as_array_klass()->base_element_type();
kvn@498 428 }
kvn@498 429 cie->print_name_on(st);
kvn@498 430 while (ndim-- > 0) {
kvn@498 431 st->print("[]");
kvn@498 432 }
kvn@498 433 st->print("[%d]=", spobj->n_fields());
kvn@498 434 }
kvn@498 435 st->print("{");
kvn@498 436 uint nf = spobj->n_fields();
kvn@498 437 if (nf > 0) {
kvn@498 438 uint first_ind = spobj->first_index();
kvn@498 439 Node* fld_node = mcall->in(first_ind);
kvn@498 440 ciField* cifield;
kvn@498 441 if (iklass != NULL) {
kvn@498 442 st->print(" [");
kvn@498 443 cifield = iklass->nonstatic_field_at(0);
kvn@498 444 cifield->print_name_on(st);
kvn@498 445 format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
kvn@498 446 } else {
kvn@498 447 format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
kvn@498 448 }
kvn@498 449 for (uint j = 1; j < nf; j++) {
kvn@498 450 fld_node = mcall->in(first_ind+j);
kvn@498 451 if (iklass != NULL) {
kvn@498 452 st->print(", [");
kvn@498 453 cifield = iklass->nonstatic_field_at(j);
kvn@498 454 cifield->print_name_on(st);
kvn@498 455 format_helper( regalloc, st, fld_node, ":", j, &scobjs );
kvn@498 456 } else {
kvn@498 457 format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
kvn@498 458 }
kvn@498 459 }
kvn@498 460 }
kvn@498 461 st->print(" }");
duke@435 462 }
duke@435 463 }
duke@435 464 st->print_cr("");
duke@435 465 if (caller() != NULL) caller()->format(regalloc, n, st);
duke@435 466 }
duke@435 467
kvn@498 468
duke@435 469 void JVMState::dump_spec(outputStream *st) const {
duke@435 470 if (_method != NULL) {
duke@435 471 bool printed = false;
duke@435 472 if (!Verbose) {
duke@435 473 // The JVMS dumps make really, really long lines.
duke@435 474 // Take out the most boring parts, which are the package prefixes.
duke@435 475 char buf[500];
duke@435 476 stringStream namest(buf, sizeof(buf));
duke@435 477 _method->print_short_name(&namest);
duke@435 478 if (namest.count() < sizeof(buf)) {
duke@435 479 const char* name = namest.base();
duke@435 480 if (name[0] == ' ') ++name;
duke@435 481 const char* endcn = strchr(name, ':'); // end of class name
duke@435 482 if (endcn == NULL) endcn = strchr(name, '(');
duke@435 483 if (endcn == NULL) endcn = name + strlen(name);
duke@435 484 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
duke@435 485 --endcn;
duke@435 486 st->print(" %s", endcn);
duke@435 487 printed = true;
duke@435 488 }
duke@435 489 }
duke@435 490 if (!printed)
duke@435 491 _method->print_short_name(st);
duke@435 492 st->print(" @ bci:%d",_bci);
duke@435 493 } else {
duke@435 494 st->print(" runtime stub");
duke@435 495 }
duke@435 496 if (caller() != NULL) caller()->dump_spec(st);
duke@435 497 }
duke@435 498
kvn@498 499
duke@435 500 void JVMState::dump_on(outputStream* st) const {
duke@435 501 if (_map && !((uintptr_t)_map & 1)) {
duke@435 502 if (_map->len() > _map->req()) { // _map->has_exceptions()
duke@435 503 Node* ex = _map->in(_map->req()); // _map->next_exception()
duke@435 504 // skip the first one; it's already being printed
duke@435 505 while (ex != NULL && ex->len() > ex->req()) {
duke@435 506 ex = ex->in(ex->req()); // ex->next_exception()
duke@435 507 ex->dump(1);
duke@435 508 }
duke@435 509 }
duke@435 510 _map->dump(2);
duke@435 511 }
kvn@498 512 st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d method=",
kvn@498 513 depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci());
duke@435 514 if (_method == NULL) {
duke@435 515 st->print_cr("(none)");
duke@435 516 } else {
duke@435 517 _method->print_name(st);
duke@435 518 st->cr();
duke@435 519 if (bci() >= 0 && bci() < _method->code_size()) {
duke@435 520 st->print(" bc: ");
duke@435 521 _method->print_codes_on(bci(), bci()+1, st);
duke@435 522 }
duke@435 523 }
duke@435 524 if (caller() != NULL) {
duke@435 525 caller()->dump_on(st);
duke@435 526 }
duke@435 527 }
duke@435 528
duke@435 529 // Extra way to dump a jvms from the debugger,
duke@435 530 // to avoid a bug with C++ member function calls.
duke@435 531 void dump_jvms(JVMState* jvms) {
duke@435 532 jvms->dump();
duke@435 533 }
duke@435 534 #endif
duke@435 535
duke@435 536 //--------------------------clone_shallow--------------------------------------
duke@435 537 JVMState* JVMState::clone_shallow(Compile* C) const {
duke@435 538 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
duke@435 539 n->set_bci(_bci);
duke@435 540 n->set_locoff(_locoff);
duke@435 541 n->set_stkoff(_stkoff);
duke@435 542 n->set_monoff(_monoff);
kvn@498 543 n->set_scloff(_scloff);
duke@435 544 n->set_endoff(_endoff);
duke@435 545 n->set_sp(_sp);
duke@435 546 n->set_map(_map);
duke@435 547 return n;
duke@435 548 }
duke@435 549
duke@435 550 //---------------------------clone_deep----------------------------------------
duke@435 551 JVMState* JVMState::clone_deep(Compile* C) const {
duke@435 552 JVMState* n = clone_shallow(C);
duke@435 553 for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
duke@435 554 p->_caller = p->_caller->clone_shallow(C);
duke@435 555 }
duke@435 556 assert(n->depth() == depth(), "sanity");
duke@435 557 assert(n->debug_depth() == debug_depth(), "sanity");
duke@435 558 return n;
duke@435 559 }
duke@435 560
duke@435 561 //=============================================================================
duke@435 562 uint CallNode::cmp( const Node &n ) const
duke@435 563 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
duke@435 564 #ifndef PRODUCT
duke@435 565 void CallNode::dump_req() const {
duke@435 566 // Dump the required inputs, enclosed in '(' and ')'
duke@435 567 uint i; // Exit value of loop
duke@435 568 for( i=0; i<req(); i++ ) { // For all required inputs
duke@435 569 if( i == TypeFunc::Parms ) tty->print("(");
duke@435 570 if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
duke@435 571 else tty->print("_ ");
duke@435 572 }
duke@435 573 tty->print(")");
duke@435 574 }
duke@435 575
duke@435 576 void CallNode::dump_spec(outputStream *st) const {
duke@435 577 st->print(" ");
duke@435 578 tf()->dump_on(st);
duke@435 579 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
duke@435 580 if (jvms() != NULL) jvms()->dump_spec(st);
duke@435 581 }
duke@435 582 #endif
duke@435 583
duke@435 584 const Type *CallNode::bottom_type() const { return tf()->range(); }
duke@435 585 const Type *CallNode::Value(PhaseTransform *phase) const {
duke@435 586 if (phase->type(in(0)) == Type::TOP) return Type::TOP;
duke@435 587 return tf()->range();
duke@435 588 }
duke@435 589
duke@435 590 //------------------------------calling_convention-----------------------------
duke@435 591 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
duke@435 592 // Use the standard compiler calling convention
duke@435 593 Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
duke@435 594 }
duke@435 595
duke@435 596
duke@435 597 //------------------------------match------------------------------------------
duke@435 598 // Construct projections for control, I/O, memory-fields, ..., and
duke@435 599 // return result(s) along with their RegMask info
duke@435 600 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
duke@435 601 switch (proj->_con) {
duke@435 602 case TypeFunc::Control:
duke@435 603 case TypeFunc::I_O:
duke@435 604 case TypeFunc::Memory:
duke@435 605 return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
duke@435 606
duke@435 607 case TypeFunc::Parms+1: // For LONG & DOUBLE returns
duke@435 608 assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
duke@435 609 // 2nd half of doubles and longs
duke@435 610 return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
duke@435 611
duke@435 612 case TypeFunc::Parms: { // Normal returns
duke@435 613 uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
duke@435 614 OptoRegPair regs = is_CallRuntime()
duke@435 615 ? match->c_return_value(ideal_reg,true) // Calls into C runtime
duke@435 616 : match-> return_value(ideal_reg,true); // Calls into compiled Java code
duke@435 617 RegMask rm = RegMask(regs.first());
duke@435 618 if( OptoReg::is_valid(regs.second()) )
duke@435 619 rm.Insert( regs.second() );
duke@435 620 return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
duke@435 621 }
duke@435 622
duke@435 623 case TypeFunc::ReturnAdr:
duke@435 624 case TypeFunc::FramePtr:
duke@435 625 default:
duke@435 626 ShouldNotReachHere();
duke@435 627 }
duke@435 628 return NULL;
duke@435 629 }
duke@435 630
duke@435 631 // Do we Match on this edge index or not? Match no edges
duke@435 632 uint CallNode::match_edge(uint idx) const {
duke@435 633 return 0;
duke@435 634 }
duke@435 635
kvn@500 636 //
kvn@509 637 // Determine whether the call could modify the field of the specified
kvn@509 638 // instance at the specified offset.
kvn@500 639 //
kvn@500 640 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
kvn@500 641 const TypeOopPtr *adrInst_t = addr_t->isa_oopptr();
kvn@500 642
kvn@682 643 // If not an OopPtr or not an instance type, assume the worst.
kvn@682 644 // Note: currently this method is called only for instance types.
kvn@682 645 if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
kvn@500 646 return true;
kvn@500 647 }
kvn@682 648 // The instance_id is set only for scalar-replaceable allocations which
kvn@682 649 // are not passed as arguments according to Escape Analysis.
kvn@500 650 return false;
kvn@500 651 }
kvn@500 652
kvn@500 653 // Does this call have a direct reference to n other than debug information?
kvn@500 654 bool CallNode::has_non_debug_use(Node *n) {
kvn@500 655 const TypeTuple * d = tf()->domain();
kvn@500 656 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 657 Node *arg = in(i);
kvn@500 658 if (arg == n) {
kvn@500 659 return true;
kvn@500 660 }
kvn@500 661 }
kvn@500 662 return false;
kvn@500 663 }
kvn@500 664
kvn@500 665 // Returns the unique CheckCastPP of a call
kvn@500 666 // or 'this' if there are several CheckCastPP
kvn@500 667 // or returns NULL if there is no one.
kvn@500 668 Node *CallNode::result_cast() {
kvn@500 669 Node *cast = NULL;
kvn@500 670
kvn@500 671 Node *p = proj_out(TypeFunc::Parms);
kvn@500 672 if (p == NULL)
kvn@500 673 return NULL;
kvn@500 674
kvn@500 675 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
kvn@500 676 Node *use = p->fast_out(i);
kvn@500 677 if (use->is_CheckCastPP()) {
kvn@500 678 if (cast != NULL) {
kvn@500 679 return this; // more than 1 CheckCastPP
kvn@500 680 }
kvn@500 681 cast = use;
kvn@500 682 }
kvn@500 683 }
kvn@500 684 return cast;
kvn@500 685 }
kvn@500 686
kvn@500 687
duke@435 688 //=============================================================================
duke@435 689 uint CallJavaNode::size_of() const { return sizeof(*this); }
duke@435 690 uint CallJavaNode::cmp( const Node &n ) const {
duke@435 691 CallJavaNode &call = (CallJavaNode&)n;
duke@435 692 return CallNode::cmp(call) && _method == call._method;
duke@435 693 }
duke@435 694 #ifndef PRODUCT
duke@435 695 void CallJavaNode::dump_spec(outputStream *st) const {
duke@435 696 if( _method ) _method->print_short_name(st);
duke@435 697 CallNode::dump_spec(st);
duke@435 698 }
duke@435 699 #endif
duke@435 700
duke@435 701 //=============================================================================
duke@435 702 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
duke@435 703 uint CallStaticJavaNode::cmp( const Node &n ) const {
duke@435 704 CallStaticJavaNode &call = (CallStaticJavaNode&)n;
duke@435 705 return CallJavaNode::cmp(call);
duke@435 706 }
duke@435 707
duke@435 708 //----------------------------uncommon_trap_request----------------------------
duke@435 709 // If this is an uncommon trap, return the request code, else zero.
duke@435 710 int CallStaticJavaNode::uncommon_trap_request() const {
duke@435 711 if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
duke@435 712 return extract_uncommon_trap_request(this);
duke@435 713 }
duke@435 714 return 0;
duke@435 715 }
duke@435 716 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
duke@435 717 #ifndef PRODUCT
duke@435 718 if (!(call->req() > TypeFunc::Parms &&
duke@435 719 call->in(TypeFunc::Parms) != NULL &&
duke@435 720 call->in(TypeFunc::Parms)->is_Con())) {
duke@435 721 assert(_in_dump_cnt != 0, "OK if dumping");
duke@435 722 tty->print("[bad uncommon trap]");
duke@435 723 return 0;
duke@435 724 }
duke@435 725 #endif
duke@435 726 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
duke@435 727 }
duke@435 728
duke@435 729 #ifndef PRODUCT
duke@435 730 void CallStaticJavaNode::dump_spec(outputStream *st) const {
duke@435 731 st->print("# Static ");
duke@435 732 if (_name != NULL) {
duke@435 733 st->print("%s", _name);
duke@435 734 int trap_req = uncommon_trap_request();
duke@435 735 if (trap_req != 0) {
duke@435 736 char buf[100];
duke@435 737 st->print("(%s)",
duke@435 738 Deoptimization::format_trap_request(buf, sizeof(buf),
duke@435 739 trap_req));
duke@435 740 }
duke@435 741 st->print(" ");
duke@435 742 }
duke@435 743 CallJavaNode::dump_spec(st);
duke@435 744 }
duke@435 745 #endif
duke@435 746
duke@435 747 //=============================================================================
duke@435 748 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
duke@435 749 uint CallDynamicJavaNode::cmp( const Node &n ) const {
duke@435 750 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
duke@435 751 return CallJavaNode::cmp(call);
duke@435 752 }
duke@435 753 #ifndef PRODUCT
duke@435 754 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
duke@435 755 st->print("# Dynamic ");
duke@435 756 CallJavaNode::dump_spec(st);
duke@435 757 }
duke@435 758 #endif
duke@435 759
duke@435 760 //=============================================================================
duke@435 761 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
duke@435 762 uint CallRuntimeNode::cmp( const Node &n ) const {
duke@435 763 CallRuntimeNode &call = (CallRuntimeNode&)n;
duke@435 764 return CallNode::cmp(call) && !strcmp(_name,call._name);
duke@435 765 }
duke@435 766 #ifndef PRODUCT
duke@435 767 void CallRuntimeNode::dump_spec(outputStream *st) const {
duke@435 768 st->print("# ");
duke@435 769 st->print(_name);
duke@435 770 CallNode::dump_spec(st);
duke@435 771 }
duke@435 772 #endif
duke@435 773
duke@435 774 //------------------------------calling_convention-----------------------------
duke@435 775 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
duke@435 776 Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
duke@435 777 }
duke@435 778
duke@435 779 //=============================================================================
duke@435 780 //------------------------------calling_convention-----------------------------
duke@435 781
duke@435 782
duke@435 783 //=============================================================================
duke@435 784 #ifndef PRODUCT
duke@435 785 void CallLeafNode::dump_spec(outputStream *st) const {
duke@435 786 st->print("# ");
duke@435 787 st->print(_name);
duke@435 788 CallNode::dump_spec(st);
duke@435 789 }
duke@435 790 #endif
duke@435 791
duke@435 792 //=============================================================================
duke@435 793
duke@435 794 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
duke@435 795 assert(verify_jvms(jvms), "jvms must match");
duke@435 796 int loc = jvms->locoff() + idx;
duke@435 797 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
duke@435 798 // If current local idx is top then local idx - 1 could
duke@435 799 // be a long/double that needs to be killed since top could
duke@435 800 // represent the 2nd half ofthe long/double.
duke@435 801 uint ideal = in(loc -1)->ideal_reg();
duke@435 802 if (ideal == Op_RegD || ideal == Op_RegL) {
duke@435 803 // set other (low index) half to top
duke@435 804 set_req(loc - 1, in(loc));
duke@435 805 }
duke@435 806 }
duke@435 807 set_req(loc, c);
duke@435 808 }
duke@435 809
duke@435 810 uint SafePointNode::size_of() const { return sizeof(*this); }
duke@435 811 uint SafePointNode::cmp( const Node &n ) const {
duke@435 812 return (&n == this); // Always fail except on self
duke@435 813 }
duke@435 814
duke@435 815 //-------------------------set_next_exception----------------------------------
duke@435 816 void SafePointNode::set_next_exception(SafePointNode* n) {
duke@435 817 assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
duke@435 818 if (len() == req()) {
duke@435 819 if (n != NULL) add_prec(n);
duke@435 820 } else {
duke@435 821 set_prec(req(), n);
duke@435 822 }
duke@435 823 }
duke@435 824
duke@435 825
duke@435 826 //----------------------------next_exception-----------------------------------
duke@435 827 SafePointNode* SafePointNode::next_exception() const {
duke@435 828 if (len() == req()) {
duke@435 829 return NULL;
duke@435 830 } else {
duke@435 831 Node* n = in(req());
duke@435 832 assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
duke@435 833 return (SafePointNode*) n;
duke@435 834 }
duke@435 835 }
duke@435 836
duke@435 837
duke@435 838 //------------------------------Ideal------------------------------------------
duke@435 839 // Skip over any collapsed Regions
duke@435 840 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@740 841 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 842 }
duke@435 843
duke@435 844 //------------------------------Identity---------------------------------------
duke@435 845 // Remove obviously duplicate safepoints
duke@435 846 Node *SafePointNode::Identity( PhaseTransform *phase ) {
duke@435 847
duke@435 848 // If you have back to back safepoints, remove one
duke@435 849 if( in(TypeFunc::Control)->is_SafePoint() )
duke@435 850 return in(TypeFunc::Control);
duke@435 851
duke@435 852 if( in(0)->is_Proj() ) {
duke@435 853 Node *n0 = in(0)->in(0);
duke@435 854 // Check if he is a call projection (except Leaf Call)
duke@435 855 if( n0->is_Catch() ) {
duke@435 856 n0 = n0->in(0)->in(0);
duke@435 857 assert( n0->is_Call(), "expect a call here" );
duke@435 858 }
duke@435 859 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
duke@435 860 // Useless Safepoint, so remove it
duke@435 861 return in(TypeFunc::Control);
duke@435 862 }
duke@435 863 }
duke@435 864
duke@435 865 return this;
duke@435 866 }
duke@435 867
duke@435 868 //------------------------------Value------------------------------------------
duke@435 869 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
duke@435 870 if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 871 if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
duke@435 872 return Type::CONTROL;
duke@435 873 }
duke@435 874
duke@435 875 #ifndef PRODUCT
duke@435 876 void SafePointNode::dump_spec(outputStream *st) const {
duke@435 877 st->print(" SafePoint ");
duke@435 878 }
duke@435 879 #endif
duke@435 880
duke@435 881 const RegMask &SafePointNode::in_RegMask(uint idx) const {
duke@435 882 if( idx < TypeFunc::Parms ) return RegMask::Empty;
duke@435 883 // Values outside the domain represent debug info
duke@435 884 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
duke@435 885 }
duke@435 886 const RegMask &SafePointNode::out_RegMask() const {
duke@435 887 return RegMask::Empty;
duke@435 888 }
duke@435 889
duke@435 890
duke@435 891 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
duke@435 892 assert((int)grow_by > 0, "sanity");
duke@435 893 int monoff = jvms->monoff();
kvn@498 894 int scloff = jvms->scloff();
duke@435 895 int endoff = jvms->endoff();
duke@435 896 assert(endoff == (int)req(), "no other states or debug info after me");
duke@435 897 Node* top = Compile::current()->top();
duke@435 898 for (uint i = 0; i < grow_by; i++) {
duke@435 899 ins_req(monoff, top);
duke@435 900 }
duke@435 901 jvms->set_monoff(monoff + grow_by);
kvn@498 902 jvms->set_scloff(scloff + grow_by);
duke@435 903 jvms->set_endoff(endoff + grow_by);
duke@435 904 }
duke@435 905
duke@435 906 void SafePointNode::push_monitor(const FastLockNode *lock) {
duke@435 907 // Add a LockNode, which points to both the original BoxLockNode (the
duke@435 908 // stack space for the monitor) and the Object being locked.
duke@435 909 const int MonitorEdges = 2;
duke@435 910 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
duke@435 911 assert(req() == jvms()->endoff(), "correct sizing");
kvn@498 912 int nextmon = jvms()->scloff();
duke@435 913 if (GenerateSynchronizationCode) {
duke@435 914 add_req(lock->box_node());
duke@435 915 add_req(lock->obj_node());
duke@435 916 } else {
kvn@895 917 Node* top = Compile::current()->top();
kvn@895 918 add_req(top);
kvn@895 919 add_req(top);
duke@435 920 }
kvn@498 921 jvms()->set_scloff(nextmon+MonitorEdges);
duke@435 922 jvms()->set_endoff(req());
duke@435 923 }
duke@435 924
duke@435 925 void SafePointNode::pop_monitor() {
duke@435 926 // Delete last monitor from debug info
duke@435 927 debug_only(int num_before_pop = jvms()->nof_monitors());
duke@435 928 const int MonitorEdges = (1<<JVMState::logMonitorEdges);
kvn@498 929 int scloff = jvms()->scloff();
duke@435 930 int endoff = jvms()->endoff();
kvn@498 931 int new_scloff = scloff - MonitorEdges;
duke@435 932 int new_endoff = endoff - MonitorEdges;
kvn@498 933 jvms()->set_scloff(new_scloff);
duke@435 934 jvms()->set_endoff(new_endoff);
kvn@498 935 while (scloff > new_scloff) del_req(--scloff);
duke@435 936 assert(jvms()->nof_monitors() == num_before_pop-1, "");
duke@435 937 }
duke@435 938
duke@435 939 Node *SafePointNode::peek_monitor_box() const {
duke@435 940 int mon = jvms()->nof_monitors() - 1;
duke@435 941 assert(mon >= 0, "most have a monitor");
duke@435 942 return monitor_box(jvms(), mon);
duke@435 943 }
duke@435 944
duke@435 945 Node *SafePointNode::peek_monitor_obj() const {
duke@435 946 int mon = jvms()->nof_monitors() - 1;
duke@435 947 assert(mon >= 0, "most have a monitor");
duke@435 948 return monitor_obj(jvms(), mon);
duke@435 949 }
duke@435 950
duke@435 951 // Do we Match on this edge index or not? Match no edges
duke@435 952 uint SafePointNode::match_edge(uint idx) const {
duke@435 953 if( !needs_polling_address_input() )
duke@435 954 return 0;
duke@435 955
duke@435 956 return (TypeFunc::Parms == idx);
duke@435 957 }
duke@435 958
kvn@498 959 //============== SafePointScalarObjectNode ==============
kvn@498 960
kvn@498 961 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 962 #ifdef ASSERT
kvn@498 963 AllocateNode* alloc,
kvn@498 964 #endif
kvn@498 965 uint first_index,
kvn@498 966 uint n_fields) :
kvn@498 967 TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
kvn@498 968 #ifdef ASSERT
kvn@498 969 _alloc(alloc),
kvn@498 970 #endif
kvn@498 971 _first_index(first_index),
kvn@498 972 _n_fields(n_fields)
kvn@498 973 {
kvn@498 974 init_class_id(Class_SafePointScalarObject);
kvn@498 975 }
kvn@498 976
kvn@855 977 bool SafePointScalarObjectNode::pinned() const { return true; }
kvn@1036 978 bool SafePointScalarObjectNode::depends_only_on_test() const { return false; }
kvn@498 979
kvn@498 980 uint SafePointScalarObjectNode::ideal_reg() const {
kvn@498 981 return 0; // No matching to machine instruction
kvn@498 982 }
kvn@498 983
kvn@498 984 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
kvn@498 985 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
kvn@498 986 }
kvn@498 987
kvn@498 988 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
kvn@498 989 return RegMask::Empty;
kvn@498 990 }
kvn@498 991
kvn@498 992 uint SafePointScalarObjectNode::match_edge(uint idx) const {
kvn@498 993 return 0;
kvn@498 994 }
kvn@498 995
kvn@498 996 SafePointScalarObjectNode*
kvn@498 997 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
kvn@498 998 void* cached = (*sosn_map)[(void*)this];
kvn@498 999 if (cached != NULL) {
kvn@498 1000 return (SafePointScalarObjectNode*)cached;
kvn@498 1001 }
kvn@498 1002 Compile* C = Compile::current();
kvn@498 1003 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
kvn@498 1004 res->_first_index += jvms_adj;
kvn@498 1005 sosn_map->Insert((void*)this, (void*)res);
kvn@498 1006 return res;
kvn@498 1007 }
kvn@498 1008
kvn@498 1009
kvn@498 1010 #ifndef PRODUCT
kvn@498 1011 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
kvn@498 1012 st->print(" # fields@[%d..%d]", first_index(),
kvn@498 1013 first_index() + n_fields() - 1);
kvn@498 1014 }
kvn@498 1015
kvn@498 1016 #endif
kvn@498 1017
duke@435 1018 //=============================================================================
duke@435 1019 uint AllocateNode::size_of() const { return sizeof(*this); }
duke@435 1020
duke@435 1021 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
duke@435 1022 Node *ctrl, Node *mem, Node *abio,
duke@435 1023 Node *size, Node *klass_node, Node *initial_test)
duke@435 1024 : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
duke@435 1025 {
duke@435 1026 init_class_id(Class_Allocate);
duke@435 1027 init_flags(Flag_is_macro);
kvn@474 1028 _is_scalar_replaceable = false;
duke@435 1029 Node *topnode = C->top();
duke@435 1030
duke@435 1031 init_req( TypeFunc::Control , ctrl );
duke@435 1032 init_req( TypeFunc::I_O , abio );
duke@435 1033 init_req( TypeFunc::Memory , mem );
duke@435 1034 init_req( TypeFunc::ReturnAdr, topnode );
duke@435 1035 init_req( TypeFunc::FramePtr , topnode );
duke@435 1036 init_req( AllocSize , size);
duke@435 1037 init_req( KlassNode , klass_node);
duke@435 1038 init_req( InitialTest , initial_test);
duke@435 1039 init_req( ALength , topnode);
duke@435 1040 C->add_macro_node(this);
duke@435 1041 }
duke@435 1042
duke@435 1043 //=============================================================================
duke@435 1044 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
duke@435 1045
kvn@1139 1046 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
kvn@1139 1047 if (remove_dead_region(phase, can_reshape)) return this;
kvn@1139 1048
kvn@1139 1049 const Type* type = phase->type(Ideal_length());
kvn@1139 1050 if (type->isa_int() && type->is_int()->_hi < 0) {
kvn@1139 1051 if (can_reshape) {
kvn@1139 1052 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1139 1053 // Unreachable fall through path (negative array length),
kvn@1139 1054 // the allocation can only throw so disconnect it.
kvn@1139 1055 Node* proj = proj_out(TypeFunc::Control);
kvn@1139 1056 Node* catchproj = NULL;
kvn@1139 1057 if (proj != NULL) {
kvn@1139 1058 for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
kvn@1139 1059 Node *cn = proj->fast_out(i);
kvn@1139 1060 if (cn->is_Catch()) {
kvn@1139 1061 catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
kvn@1139 1062 break;
kvn@1139 1063 }
kvn@1139 1064 }
kvn@1139 1065 }
kvn@1139 1066 if (catchproj != NULL && catchproj->outcnt() > 0 &&
kvn@1139 1067 (catchproj->outcnt() > 1 ||
kvn@1139 1068 catchproj->unique_out()->Opcode() != Op_Halt)) {
kvn@1139 1069 assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
kvn@1139 1070 Node* nproj = catchproj->clone();
kvn@1139 1071 igvn->register_new_node_with_optimizer(nproj);
kvn@1139 1072
kvn@1139 1073 Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
kvn@1139 1074 frame = phase->transform(frame);
kvn@1139 1075 // Halt & Catch Fire
kvn@1139 1076 Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
kvn@1139 1077 phase->C->root()->add_req(halt);
kvn@1139 1078 phase->transform(halt);
kvn@1139 1079
kvn@1139 1080 igvn->replace_node(catchproj, phase->C->top());
kvn@1139 1081 return this;
kvn@1139 1082 }
kvn@1139 1083 } else {
kvn@1139 1084 // Can't correct it during regular GVN so register for IGVN
kvn@1139 1085 phase->C->record_for_igvn(this);
kvn@1139 1086 }
kvn@1139 1087 }
kvn@1139 1088 return NULL;
kvn@1139 1089 }
kvn@1139 1090
rasbold@801 1091 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
rasbold@801 1092 // CastII, if appropriate. If we are not allowed to create new nodes, and
rasbold@801 1093 // a CastII is appropriate, return NULL.
rasbold@801 1094 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
rasbold@801 1095 Node *length = in(AllocateNode::ALength);
rasbold@801 1096 assert(length != NULL, "length is not null");
rasbold@801 1097
rasbold@801 1098 const TypeInt* length_type = phase->find_int_type(length);
rasbold@801 1099 const TypeAryPtr* ary_type = oop_type->isa_aryptr();
rasbold@801 1100
rasbold@801 1101 if (ary_type != NULL && length_type != NULL) {
rasbold@801 1102 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
rasbold@801 1103 if (narrow_length_type != length_type) {
rasbold@801 1104 // Assert one of:
rasbold@801 1105 // - the narrow_length is 0
rasbold@801 1106 // - the narrow_length is not wider than length
rasbold@801 1107 assert(narrow_length_type == TypeInt::ZERO ||
rasbold@801 1108 (narrow_length_type->_hi <= length_type->_hi &&
rasbold@801 1109 narrow_length_type->_lo >= length_type->_lo),
rasbold@801 1110 "narrow type must be narrower than length type");
rasbold@801 1111
rasbold@801 1112 // Return NULL if new nodes are not allowed
rasbold@801 1113 if (!allow_new_nodes) return NULL;
rasbold@801 1114 // Create a cast which is control dependent on the initialization to
rasbold@801 1115 // propagate the fact that the array length must be positive.
rasbold@801 1116 length = new (phase->C, 2) CastIINode(length, narrow_length_type);
rasbold@801 1117 length->set_req(0, initialization()->proj_out(0));
rasbold@801 1118 }
rasbold@801 1119 }
rasbold@801 1120
rasbold@801 1121 return length;
rasbold@801 1122 }
rasbold@801 1123
duke@435 1124 //=============================================================================
duke@435 1125 uint LockNode::size_of() const { return sizeof(*this); }
duke@435 1126
duke@435 1127 // Redundant lock elimination
duke@435 1128 //
duke@435 1129 // There are various patterns of locking where we release and
duke@435 1130 // immediately reacquire a lock in a piece of code where no operations
duke@435 1131 // occur in between that would be observable. In those cases we can
duke@435 1132 // skip releasing and reacquiring the lock without violating any
duke@435 1133 // fairness requirements. Doing this around a loop could cause a lock
duke@435 1134 // to be held for a very long time so we concentrate on non-looping
duke@435 1135 // control flow. We also require that the operations are fully
duke@435 1136 // redundant meaning that we don't introduce new lock operations on
duke@435 1137 // some paths so to be able to eliminate it on others ala PRE. This
duke@435 1138 // would probably require some more extensive graph manipulation to
duke@435 1139 // guarantee that the memory edges were all handled correctly.
duke@435 1140 //
duke@435 1141 // Assuming p is a simple predicate which can't trap in any way and s
duke@435 1142 // is a synchronized method consider this code:
duke@435 1143 //
duke@435 1144 // s();
duke@435 1145 // if (p)
duke@435 1146 // s();
duke@435 1147 // else
duke@435 1148 // s();
duke@435 1149 // s();
duke@435 1150 //
duke@435 1151 // 1. The unlocks of the first call to s can be eliminated if the
duke@435 1152 // locks inside the then and else branches are eliminated.
duke@435 1153 //
duke@435 1154 // 2. The unlocks of the then and else branches can be eliminated if
duke@435 1155 // the lock of the final call to s is eliminated.
duke@435 1156 //
duke@435 1157 // Either of these cases subsumes the simple case of sequential control flow
duke@435 1158 //
duke@435 1159 // Addtionally we can eliminate versions without the else case:
duke@435 1160 //
duke@435 1161 // s();
duke@435 1162 // if (p)
duke@435 1163 // s();
duke@435 1164 // s();
duke@435 1165 //
duke@435 1166 // 3. In this case we eliminate the unlock of the first s, the lock
duke@435 1167 // and unlock in the then case and the lock in the final s.
duke@435 1168 //
duke@435 1169 // Note also that in all these cases the then/else pieces don't have
duke@435 1170 // to be trivial as long as they begin and end with synchronization
duke@435 1171 // operations.
duke@435 1172 //
duke@435 1173 // s();
duke@435 1174 // if (p)
duke@435 1175 // s();
duke@435 1176 // f();
duke@435 1177 // s();
duke@435 1178 // s();
duke@435 1179 //
duke@435 1180 // The code will work properly for this case, leaving in the unlock
duke@435 1181 // before the call to f and the relock after it.
duke@435 1182 //
duke@435 1183 // A potentially interesting case which isn't handled here is when the
duke@435 1184 // locking is partially redundant.
duke@435 1185 //
duke@435 1186 // s();
duke@435 1187 // if (p)
duke@435 1188 // s();
duke@435 1189 //
duke@435 1190 // This could be eliminated putting unlocking on the else case and
duke@435 1191 // eliminating the first unlock and the lock in the then side.
duke@435 1192 // Alternatively the unlock could be moved out of the then side so it
duke@435 1193 // was after the merge and the first unlock and second lock
duke@435 1194 // eliminated. This might require less manipulation of the memory
duke@435 1195 // state to get correct.
duke@435 1196 //
duke@435 1197 // Additionally we might allow work between a unlock and lock before
duke@435 1198 // giving up eliminating the locks. The current code disallows any
duke@435 1199 // conditional control flow between these operations. A formulation
duke@435 1200 // similar to partial redundancy elimination computing the
duke@435 1201 // availability of unlocking and the anticipatability of locking at a
duke@435 1202 // program point would allow detection of fully redundant locking with
duke@435 1203 // some amount of work in between. I'm not sure how often I really
duke@435 1204 // think that would occur though. Most of the cases I've seen
duke@435 1205 // indicate it's likely non-trivial work would occur in between.
duke@435 1206 // There may be other more complicated constructs where we could
duke@435 1207 // eliminate locking but I haven't seen any others appear as hot or
duke@435 1208 // interesting.
duke@435 1209 //
duke@435 1210 // Locking and unlocking have a canonical form in ideal that looks
duke@435 1211 // roughly like this:
duke@435 1212 //
duke@435 1213 // <obj>
duke@435 1214 // | \\------+
duke@435 1215 // | \ \
duke@435 1216 // | BoxLock \
duke@435 1217 // | | | \
duke@435 1218 // | | \ \
duke@435 1219 // | | FastLock
duke@435 1220 // | | /
duke@435 1221 // | | /
duke@435 1222 // | | |
duke@435 1223 //
duke@435 1224 // Lock
duke@435 1225 // |
duke@435 1226 // Proj #0
duke@435 1227 // |
duke@435 1228 // MembarAcquire
duke@435 1229 // |
duke@435 1230 // Proj #0
duke@435 1231 //
duke@435 1232 // MembarRelease
duke@435 1233 // |
duke@435 1234 // Proj #0
duke@435 1235 // |
duke@435 1236 // Unlock
duke@435 1237 // |
duke@435 1238 // Proj #0
duke@435 1239 //
duke@435 1240 //
duke@435 1241 // This code proceeds by processing Lock nodes during PhaseIterGVN
duke@435 1242 // and searching back through its control for the proper code
duke@435 1243 // patterns. Once it finds a set of lock and unlock operations to
duke@435 1244 // eliminate they are marked as eliminatable which causes the
duke@435 1245 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
duke@435 1246 //
duke@435 1247 //=============================================================================
duke@435 1248
duke@435 1249 //
duke@435 1250 // Utility function to skip over uninteresting control nodes. Nodes skipped are:
duke@435 1251 // - copy regions. (These may not have been optimized away yet.)
duke@435 1252 // - eliminated locking nodes
duke@435 1253 //
duke@435 1254 static Node *next_control(Node *ctrl) {
duke@435 1255 if (ctrl == NULL)
duke@435 1256 return NULL;
duke@435 1257 while (1) {
duke@435 1258 if (ctrl->is_Region()) {
duke@435 1259 RegionNode *r = ctrl->as_Region();
duke@435 1260 Node *n = r->is_copy();
duke@435 1261 if (n == NULL)
duke@435 1262 break; // hit a region, return it
duke@435 1263 else
duke@435 1264 ctrl = n;
duke@435 1265 } else if (ctrl->is_Proj()) {
duke@435 1266 Node *in0 = ctrl->in(0);
duke@435 1267 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
duke@435 1268 ctrl = in0->in(0);
duke@435 1269 } else {
duke@435 1270 break;
duke@435 1271 }
duke@435 1272 } else {
duke@435 1273 break; // found an interesting control
duke@435 1274 }
duke@435 1275 }
duke@435 1276 return ctrl;
duke@435 1277 }
duke@435 1278 //
duke@435 1279 // Given a control, see if it's the control projection of an Unlock which
duke@435 1280 // operating on the same object as lock.
duke@435 1281 //
duke@435 1282 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 1283 GrowableArray<AbstractLockNode*> &lock_ops) {
duke@435 1284 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
duke@435 1285 if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
duke@435 1286 Node *n = ctrl_proj->in(0);
duke@435 1287 if (n != NULL && n->is_Unlock()) {
duke@435 1288 UnlockNode *unlock = n->as_Unlock();
duke@435 1289 if ((lock->obj_node() == unlock->obj_node()) &&
duke@435 1290 (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
duke@435 1291 lock_ops.append(unlock);
duke@435 1292 return true;
duke@435 1293 }
duke@435 1294 }
duke@435 1295 }
duke@435 1296 return false;
duke@435 1297 }
duke@435 1298
duke@435 1299 //
duke@435 1300 // Find the lock matching an unlock. Returns null if a safepoint
duke@435 1301 // or complicated control is encountered first.
duke@435 1302 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
duke@435 1303 LockNode *lock_result = NULL;
duke@435 1304 // find the matching lock, or an intervening safepoint
duke@435 1305 Node *ctrl = next_control(unlock->in(0));
duke@435 1306 while (1) {
duke@435 1307 assert(ctrl != NULL, "invalid control graph");
duke@435 1308 assert(!ctrl->is_Start(), "missing lock for unlock");
duke@435 1309 if (ctrl->is_top()) break; // dead control path
duke@435 1310 if (ctrl->is_Proj()) ctrl = ctrl->in(0);
duke@435 1311 if (ctrl->is_SafePoint()) {
duke@435 1312 break; // found a safepoint (may be the lock we are searching for)
duke@435 1313 } else if (ctrl->is_Region()) {
duke@435 1314 // Check for a simple diamond pattern. Punt on anything more complicated
duke@435 1315 if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
duke@435 1316 Node *in1 = next_control(ctrl->in(1));
duke@435 1317 Node *in2 = next_control(ctrl->in(2));
duke@435 1318 if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
duke@435 1319 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
duke@435 1320 ctrl = next_control(in1->in(0)->in(0));
duke@435 1321 } else {
duke@435 1322 break;
duke@435 1323 }
duke@435 1324 } else {
duke@435 1325 break;
duke@435 1326 }
duke@435 1327 } else {
duke@435 1328 ctrl = next_control(ctrl->in(0)); // keep searching
duke@435 1329 }
duke@435 1330 }
duke@435 1331 if (ctrl->is_Lock()) {
duke@435 1332 LockNode *lock = ctrl->as_Lock();
duke@435 1333 if ((lock->obj_node() == unlock->obj_node()) &&
duke@435 1334 (lock->box_node() == unlock->box_node())) {
duke@435 1335 lock_result = lock;
duke@435 1336 }
duke@435 1337 }
duke@435 1338 return lock_result;
duke@435 1339 }
duke@435 1340
duke@435 1341 // This code corresponds to case 3 above.
duke@435 1342
duke@435 1343 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 1344 GrowableArray<AbstractLockNode*> &lock_ops) {
duke@435 1345 Node* if_node = node->in(0);
duke@435 1346 bool if_true = node->is_IfTrue();
duke@435 1347
duke@435 1348 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
duke@435 1349 Node *lock_ctrl = next_control(if_node->in(0));
duke@435 1350 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
duke@435 1351 Node* lock1_node = NULL;
duke@435 1352 ProjNode* proj = if_node->as_If()->proj_out(!if_true);
duke@435 1353 if (if_true) {
duke@435 1354 if (proj->is_IfFalse() && proj->outcnt() == 1) {
duke@435 1355 lock1_node = proj->unique_out();
duke@435 1356 }
duke@435 1357 } else {
duke@435 1358 if (proj->is_IfTrue() && proj->outcnt() == 1) {
duke@435 1359 lock1_node = proj->unique_out();
duke@435 1360 }
duke@435 1361 }
duke@435 1362 if (lock1_node != NULL && lock1_node->is_Lock()) {
duke@435 1363 LockNode *lock1 = lock1_node->as_Lock();
duke@435 1364 if ((lock->obj_node() == lock1->obj_node()) &&
duke@435 1365 (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
duke@435 1366 lock_ops.append(lock1);
duke@435 1367 return true;
duke@435 1368 }
duke@435 1369 }
duke@435 1370 }
duke@435 1371 }
duke@435 1372
duke@435 1373 lock_ops.trunc_to(0);
duke@435 1374 return false;
duke@435 1375 }
duke@435 1376
duke@435 1377 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 1378 GrowableArray<AbstractLockNode*> &lock_ops) {
duke@435 1379 // check each control merging at this point for a matching unlock.
duke@435 1380 // in(0) should be self edge so skip it.
duke@435 1381 for (int i = 1; i < (int)region->req(); i++) {
duke@435 1382 Node *in_node = next_control(region->in(i));
duke@435 1383 if (in_node != NULL) {
duke@435 1384 if (find_matching_unlock(in_node, lock, lock_ops)) {
duke@435 1385 // found a match so keep on checking.
duke@435 1386 continue;
duke@435 1387 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
duke@435 1388 continue;
duke@435 1389 }
duke@435 1390
duke@435 1391 // If we fall through to here then it was some kind of node we
duke@435 1392 // don't understand or there wasn't a matching unlock, so give
duke@435 1393 // up trying to merge locks.
duke@435 1394 lock_ops.trunc_to(0);
duke@435 1395 return false;
duke@435 1396 }
duke@435 1397 }
duke@435 1398 return true;
duke@435 1399
duke@435 1400 }
duke@435 1401
duke@435 1402 #ifndef PRODUCT
duke@435 1403 //
duke@435 1404 // Create a counter which counts the number of times this lock is acquired
duke@435 1405 //
duke@435 1406 void AbstractLockNode::create_lock_counter(JVMState* state) {
duke@435 1407 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
duke@435 1408 }
duke@435 1409 #endif
duke@435 1410
duke@435 1411 void AbstractLockNode::set_eliminated() {
duke@435 1412 _eliminate = true;
duke@435 1413 #ifndef PRODUCT
duke@435 1414 if (_counter) {
duke@435 1415 // Update the counter to indicate that this lock was eliminated.
duke@435 1416 // The counter update code will stay around even though the
duke@435 1417 // optimizer will eliminate the lock operation itself.
duke@435 1418 _counter->set_tag(NamedCounter::EliminatedLockCounter);
duke@435 1419 }
duke@435 1420 #endif
duke@435 1421 }
duke@435 1422
duke@435 1423 //=============================================================================
duke@435 1424 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1425
kvn@501 1426 // perform any generic optimizations first (returns 'this' or NULL)
duke@435 1427 Node *result = SafePointNode::Ideal(phase, can_reshape);
duke@435 1428
duke@435 1429 // Now see if we can optimize away this lock. We don't actually
duke@435 1430 // remove the locking here, we simply set the _eliminate flag which
duke@435 1431 // prevents macro expansion from expanding the lock. Since we don't
duke@435 1432 // modify the graph, the value returned from this function is the
duke@435 1433 // one computed above.
kvn@501 1434 if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
kvn@501 1435 //
kvn@501 1436 // If we are locking an unescaped object, the lock/unlock is unnecessary
kvn@501 1437 //
kvn@895 1438 ConnectionGraph *cgr = phase->C->congraph();
kvn@501 1439 PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
kvn@501 1440 if (cgr != NULL)
kvn@501 1441 es = cgr->escape_state(obj_node(), phase);
kvn@501 1442 if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
kvn@501 1443 // Mark it eliminated to update any counters
kvn@501 1444 this->set_eliminated();
kvn@501 1445 return result;
kvn@501 1446 }
kvn@501 1447
duke@435 1448 //
duke@435 1449 // Try lock coarsening
duke@435 1450 //
duke@435 1451 PhaseIterGVN* iter = phase->is_IterGVN();
duke@435 1452 if (iter != NULL) {
duke@435 1453
duke@435 1454 GrowableArray<AbstractLockNode*> lock_ops;
duke@435 1455
duke@435 1456 Node *ctrl = next_control(in(0));
duke@435 1457
duke@435 1458 // now search back for a matching Unlock
duke@435 1459 if (find_matching_unlock(ctrl, this, lock_ops)) {
duke@435 1460 // found an unlock directly preceding this lock. This is the
duke@435 1461 // case of single unlock directly control dependent on a
duke@435 1462 // single lock which is the trivial version of case 1 or 2.
duke@435 1463 } else if (ctrl->is_Region() ) {
duke@435 1464 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
duke@435 1465 // found lock preceded by multiple unlocks along all paths
duke@435 1466 // joining at this point which is case 3 in description above.
duke@435 1467 }
duke@435 1468 } else {
duke@435 1469 // see if this lock comes from either half of an if and the
duke@435 1470 // predecessors merges unlocks and the other half of the if
duke@435 1471 // performs a lock.
duke@435 1472 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
duke@435 1473 // found unlock splitting to an if with locks on both branches.
duke@435 1474 }
duke@435 1475 }
duke@435 1476
duke@435 1477 if (lock_ops.length() > 0) {
duke@435 1478 // add ourselves to the list of locks to be eliminated.
duke@435 1479 lock_ops.append(this);
duke@435 1480
duke@435 1481 #ifndef PRODUCT
duke@435 1482 if (PrintEliminateLocks) {
duke@435 1483 int locks = 0;
duke@435 1484 int unlocks = 0;
duke@435 1485 for (int i = 0; i < lock_ops.length(); i++) {
duke@435 1486 AbstractLockNode* lock = lock_ops.at(i);
kvn@501 1487 if (lock->Opcode() == Op_Lock)
kvn@501 1488 locks++;
kvn@501 1489 else
kvn@501 1490 unlocks++;
duke@435 1491 if (Verbose) {
duke@435 1492 lock->dump(1);
duke@435 1493 }
duke@435 1494 }
duke@435 1495 tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
duke@435 1496 }
duke@435 1497 #endif
duke@435 1498
duke@435 1499 // for each of the identified locks, mark them
duke@435 1500 // as eliminatable
duke@435 1501 for (int i = 0; i < lock_ops.length(); i++) {
duke@435 1502 AbstractLockNode* lock = lock_ops.at(i);
duke@435 1503
duke@435 1504 // Mark it eliminated to update any counters
duke@435 1505 lock->set_eliminated();
kvn@895 1506 lock->set_coarsened();
duke@435 1507 }
duke@435 1508 } else if (result != NULL && ctrl->is_Region() &&
duke@435 1509 iter->_worklist.member(ctrl)) {
duke@435 1510 // We weren't able to find any opportunities but the region this
duke@435 1511 // lock is control dependent on hasn't been processed yet so put
duke@435 1512 // this lock back on the worklist so we can check again once any
duke@435 1513 // region simplification has occurred.
duke@435 1514 iter->_worklist.push(this);
duke@435 1515 }
duke@435 1516 }
duke@435 1517 }
duke@435 1518
duke@435 1519 return result;
duke@435 1520 }
duke@435 1521
duke@435 1522 //=============================================================================
duke@435 1523 uint UnlockNode::size_of() const { return sizeof(*this); }
duke@435 1524
duke@435 1525 //=============================================================================
duke@435 1526 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1527
kvn@501 1528 // perform any generic optimizations first (returns 'this' or NULL)
duke@435 1529 Node * result = SafePointNode::Ideal(phase, can_reshape);
duke@435 1530
duke@435 1531 // Now see if we can optimize away this unlock. We don't actually
duke@435 1532 // remove the unlocking here, we simply set the _eliminate flag which
duke@435 1533 // prevents macro expansion from expanding the unlock. Since we don't
duke@435 1534 // modify the graph, the value returned from this function is the
duke@435 1535 // one computed above.
kvn@501 1536 // Escape state is defined after Parse phase.
kvn@501 1537 if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
duke@435 1538 //
kvn@501 1539 // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
duke@435 1540 //
kvn@895 1541 ConnectionGraph *cgr = phase->C->congraph();
kvn@501 1542 PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
kvn@501 1543 if (cgr != NULL)
kvn@501 1544 es = cgr->escape_state(obj_node(), phase);
kvn@501 1545 if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
kvn@501 1546 // Mark it eliminated to update any counters
kvn@501 1547 this->set_eliminated();
duke@435 1548 }
duke@435 1549 }
duke@435 1550 return result;
duke@435 1551 }

mercurial