src/share/vm/runtime/sharedRuntime.cpp

Sun, 03 Feb 2013 22:43:57 +0100

author
ewendeli
date
Sun, 03 Feb 2013 22:43:57 +0100
changeset 4703
b5cb079ecaa4
parent 4405
0c8717a92b2d
child 4535
9fae07c31641
child 4542
db9981fd3124
permissions
-rw-r--r--

Merge

duke@435 1 /*
never@3499 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "classfile/vmSymbols.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/scopeDesc.hpp"
stefank@2314 30 #include "code/vtableStubs.hpp"
stefank@2314 31 #include "compiler/abstractCompiler.hpp"
stefank@2314 32 #include "compiler/compileBroker.hpp"
stefank@2314 33 #include "compiler/compilerOracle.hpp"
twisti@4318 34 #include "compiler/disassembler.hpp"
stefank@2314 35 #include "interpreter/interpreter.hpp"
stefank@2314 36 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 37 #include "memory/gcLocker.inline.hpp"
stefank@2314 38 #include "memory/universe.inline.hpp"
stefank@2314 39 #include "oops/oop.inline.hpp"
stefank@2314 40 #include "prims/forte.hpp"
stefank@2314 41 #include "prims/jvmtiExport.hpp"
stefank@2314 42 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 43 #include "prims/methodHandles.hpp"
stefank@2314 44 #include "prims/nativeLookup.hpp"
stefank@2314 45 #include "runtime/arguments.hpp"
stefank@2314 46 #include "runtime/biasedLocking.hpp"
stefank@2314 47 #include "runtime/handles.inline.hpp"
stefank@2314 48 #include "runtime/init.hpp"
stefank@2314 49 #include "runtime/interfaceSupport.hpp"
stefank@2314 50 #include "runtime/javaCalls.hpp"
stefank@2314 51 #include "runtime/sharedRuntime.hpp"
stefank@2314 52 #include "runtime/stubRoutines.hpp"
stefank@2314 53 #include "runtime/vframe.hpp"
stefank@2314 54 #include "runtime/vframeArray.hpp"
stefank@2314 55 #include "utilities/copy.hpp"
stefank@2314 56 #include "utilities/dtrace.hpp"
stefank@2314 57 #include "utilities/events.hpp"
stefank@2314 58 #include "utilities/hashtable.inline.hpp"
stefank@2314 59 #include "utilities/xmlstream.hpp"
stefank@2314 60 #ifdef TARGET_ARCH_x86
stefank@2314 61 # include "nativeInst_x86.hpp"
stefank@2314 62 # include "vmreg_x86.inline.hpp"
stefank@2314 63 #endif
stefank@2314 64 #ifdef TARGET_ARCH_sparc
stefank@2314 65 # include "nativeInst_sparc.hpp"
stefank@2314 66 # include "vmreg_sparc.inline.hpp"
stefank@2314 67 #endif
stefank@2314 68 #ifdef TARGET_ARCH_zero
stefank@2314 69 # include "nativeInst_zero.hpp"
stefank@2314 70 # include "vmreg_zero.inline.hpp"
stefank@2314 71 #endif
bobv@2508 72 #ifdef TARGET_ARCH_arm
bobv@2508 73 # include "nativeInst_arm.hpp"
bobv@2508 74 # include "vmreg_arm.inline.hpp"
bobv@2508 75 #endif
bobv@2508 76 #ifdef TARGET_ARCH_ppc
bobv@2508 77 # include "nativeInst_ppc.hpp"
bobv@2508 78 # include "vmreg_ppc.inline.hpp"
bobv@2508 79 #endif
stefank@2314 80 #ifdef COMPILER1
stefank@2314 81 #include "c1/c1_Runtime1.hpp"
stefank@2314 82 #endif
stefank@2314 83
never@2950 84 // Shared stub locations
never@2950 85 RuntimeStub* SharedRuntime::_wrong_method_blob;
never@2950 86 RuntimeStub* SharedRuntime::_ic_miss_blob;
never@2950 87 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
never@2950 88 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
never@2950 89 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
never@2950 90
never@2950 91 DeoptimizationBlob* SharedRuntime::_deopt_blob;
kvn@4103 92 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
never@2950 93 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
never@2950 94 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
never@2950 95
never@2950 96 #ifdef COMPILER2
never@2950 97 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
never@2950 98 #endif // COMPILER2
never@2950 99
never@2950 100
never@2950 101 //----------------------------generate_stubs-----------------------------------
never@2950 102 void SharedRuntime::generate_stubs() {
never@2950 103 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
never@2950 104 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
never@2950 105 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
never@2950 106 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
never@2950 107 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
never@2950 108
kvn@4103 109 #ifdef COMPILER2
kvn@4103 110 // Vectors are generated only by C2.
kvn@4103 111 if (is_wide_vector(MaxVectorSize)) {
kvn@4103 112 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
kvn@4103 113 }
kvn@4103 114 #endif // COMPILER2
kvn@4103 115 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
kvn@4103 116 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
never@2950 117
never@2950 118 generate_deopt_blob();
never@2950 119
never@2950 120 #ifdef COMPILER2
never@2950 121 generate_uncommon_trap_blob();
never@2950 122 #endif // COMPILER2
never@2950 123 }
never@2950 124
duke@435 125 #include <math.h>
duke@435 126
dcubed@3202 127 #ifndef USDT2
duke@435 128 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
duke@435 129 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
duke@435 130 char*, int, char*, int, char*, int);
duke@435 131 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
duke@435 132 char*, int, char*, int, char*, int);
dcubed@3202 133 #endif /* !USDT2 */
duke@435 134
duke@435 135 // Implementation of SharedRuntime
duke@435 136
duke@435 137 #ifndef PRODUCT
duke@435 138 // For statistics
duke@435 139 int SharedRuntime::_ic_miss_ctr = 0;
duke@435 140 int SharedRuntime::_wrong_method_ctr = 0;
duke@435 141 int SharedRuntime::_resolve_static_ctr = 0;
duke@435 142 int SharedRuntime::_resolve_virtual_ctr = 0;
duke@435 143 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
duke@435 144 int SharedRuntime::_implicit_null_throws = 0;
duke@435 145 int SharedRuntime::_implicit_div0_throws = 0;
duke@435 146 int SharedRuntime::_throw_null_ctr = 0;
duke@435 147
duke@435 148 int SharedRuntime::_nof_normal_calls = 0;
duke@435 149 int SharedRuntime::_nof_optimized_calls = 0;
duke@435 150 int SharedRuntime::_nof_inlined_calls = 0;
duke@435 151 int SharedRuntime::_nof_megamorphic_calls = 0;
duke@435 152 int SharedRuntime::_nof_static_calls = 0;
duke@435 153 int SharedRuntime::_nof_inlined_static_calls = 0;
duke@435 154 int SharedRuntime::_nof_interface_calls = 0;
duke@435 155 int SharedRuntime::_nof_optimized_interface_calls = 0;
duke@435 156 int SharedRuntime::_nof_inlined_interface_calls = 0;
duke@435 157 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
duke@435 158 int SharedRuntime::_nof_removable_exceptions = 0;
duke@435 159
duke@435 160 int SharedRuntime::_new_instance_ctr=0;
duke@435 161 int SharedRuntime::_new_array_ctr=0;
duke@435 162 int SharedRuntime::_multi1_ctr=0;
duke@435 163 int SharedRuntime::_multi2_ctr=0;
duke@435 164 int SharedRuntime::_multi3_ctr=0;
duke@435 165 int SharedRuntime::_multi4_ctr=0;
duke@435 166 int SharedRuntime::_multi5_ctr=0;
duke@435 167 int SharedRuntime::_mon_enter_stub_ctr=0;
duke@435 168 int SharedRuntime::_mon_exit_stub_ctr=0;
duke@435 169 int SharedRuntime::_mon_enter_ctr=0;
duke@435 170 int SharedRuntime::_mon_exit_ctr=0;
duke@435 171 int SharedRuntime::_partial_subtype_ctr=0;
duke@435 172 int SharedRuntime::_jbyte_array_copy_ctr=0;
duke@435 173 int SharedRuntime::_jshort_array_copy_ctr=0;
duke@435 174 int SharedRuntime::_jint_array_copy_ctr=0;
duke@435 175 int SharedRuntime::_jlong_array_copy_ctr=0;
duke@435 176 int SharedRuntime::_oop_array_copy_ctr=0;
duke@435 177 int SharedRuntime::_checkcast_array_copy_ctr=0;
duke@435 178 int SharedRuntime::_unsafe_array_copy_ctr=0;
duke@435 179 int SharedRuntime::_generic_array_copy_ctr=0;
duke@435 180 int SharedRuntime::_slow_array_copy_ctr=0;
duke@435 181 int SharedRuntime::_find_handler_ctr=0;
duke@435 182 int SharedRuntime::_rethrow_ctr=0;
duke@435 183
duke@435 184 int SharedRuntime::_ICmiss_index = 0;
duke@435 185 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
duke@435 186 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
duke@435 187
never@2950 188
duke@435 189 void SharedRuntime::trace_ic_miss(address at) {
duke@435 190 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 191 if (_ICmiss_at[i] == at) {
duke@435 192 _ICmiss_count[i]++;
duke@435 193 return;
duke@435 194 }
duke@435 195 }
duke@435 196 int index = _ICmiss_index++;
duke@435 197 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
duke@435 198 _ICmiss_at[index] = at;
duke@435 199 _ICmiss_count[index] = 1;
duke@435 200 }
duke@435 201
duke@435 202 void SharedRuntime::print_ic_miss_histogram() {
duke@435 203 if (ICMissHistogram) {
duke@435 204 tty->print_cr ("IC Miss Histogram:");
duke@435 205 int tot_misses = 0;
duke@435 206 for (int i = 0; i < _ICmiss_index; i++) {
duke@435 207 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
duke@435 208 tot_misses += _ICmiss_count[i];
duke@435 209 }
duke@435 210 tty->print_cr ("Total IC misses: %7d", tot_misses);
duke@435 211 }
duke@435 212 }
duke@435 213 #endif // PRODUCT
duke@435 214
ysr@777 215 #ifndef SERIALGC
ysr@777 216
ysr@777 217 // G1 write-barrier pre: executed before a pointer store.
ysr@777 218 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
ysr@777 219 if (orig == NULL) {
ysr@777 220 assert(false, "should be optimized out");
ysr@777 221 return;
ysr@777 222 }
ysr@1280 223 assert(orig->is_oop(true /* ignore mark word */), "Error");
ysr@777 224 // store the original value that was in the field reference
ysr@777 225 thread->satb_mark_queue().enqueue(orig);
ysr@777 226 JRT_END
ysr@777 227
ysr@777 228 // G1 write-barrier post: executed after a pointer store.
ysr@777 229 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
ysr@777 230 thread->dirty_card_queue().enqueue(card_addr);
ysr@777 231 JRT_END
ysr@777 232
ysr@777 233 #endif // !SERIALGC
ysr@777 234
duke@435 235
duke@435 236 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
duke@435 237 return x * y;
duke@435 238 JRT_END
duke@435 239
duke@435 240
duke@435 241 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
duke@435 242 if (x == min_jlong && y == CONST64(-1)) {
duke@435 243 return x;
duke@435 244 } else {
duke@435 245 return x / y;
duke@435 246 }
duke@435 247 JRT_END
duke@435 248
duke@435 249
duke@435 250 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
duke@435 251 if (x == min_jlong && y == CONST64(-1)) {
duke@435 252 return 0;
duke@435 253 } else {
duke@435 254 return x % y;
duke@435 255 }
duke@435 256 JRT_END
duke@435 257
duke@435 258
duke@435 259 const juint float_sign_mask = 0x7FFFFFFF;
duke@435 260 const juint float_infinity = 0x7F800000;
duke@435 261 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
duke@435 262 const julong double_infinity = CONST64(0x7FF0000000000000);
duke@435 263
duke@435 264 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
duke@435 265 #ifdef _WIN64
duke@435 266 // 64-bit Windows on amd64 returns the wrong values for
duke@435 267 // infinity operands.
duke@435 268 union { jfloat f; juint i; } xbits, ybits;
duke@435 269 xbits.f = x;
duke@435 270 ybits.f = y;
duke@435 271 // x Mod Infinity == x unless x is infinity
duke@435 272 if ( ((xbits.i & float_sign_mask) != float_infinity) &&
duke@435 273 ((ybits.i & float_sign_mask) == float_infinity) ) {
duke@435 274 return x;
duke@435 275 }
duke@435 276 #endif
duke@435 277 return ((jfloat)fmod((double)x,(double)y));
duke@435 278 JRT_END
duke@435 279
duke@435 280
duke@435 281 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
duke@435 282 #ifdef _WIN64
duke@435 283 union { jdouble d; julong l; } xbits, ybits;
duke@435 284 xbits.d = x;
duke@435 285 ybits.d = y;
duke@435 286 // x Mod Infinity == x unless x is infinity
duke@435 287 if ( ((xbits.l & double_sign_mask) != double_infinity) &&
duke@435 288 ((ybits.l & double_sign_mask) == double_infinity) ) {
duke@435 289 return x;
duke@435 290 }
duke@435 291 #endif
duke@435 292 return ((jdouble)fmod((double)x,(double)y));
duke@435 293 JRT_END
duke@435 294
bobv@2036 295 #ifdef __SOFTFP__
bobv@2036 296 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
bobv@2036 297 return x + y;
bobv@2036 298 JRT_END
bobv@2036 299
bobv@2036 300 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
bobv@2036 301 return x - y;
bobv@2036 302 JRT_END
bobv@2036 303
bobv@2036 304 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
bobv@2036 305 return x * y;
bobv@2036 306 JRT_END
bobv@2036 307
bobv@2036 308 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
bobv@2036 309 return x / y;
bobv@2036 310 JRT_END
bobv@2036 311
bobv@2036 312 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
bobv@2036 313 return x + y;
bobv@2036 314 JRT_END
bobv@2036 315
bobv@2036 316 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
bobv@2036 317 return x - y;
bobv@2036 318 JRT_END
bobv@2036 319
bobv@2036 320 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
bobv@2036 321 return x * y;
bobv@2036 322 JRT_END
bobv@2036 323
bobv@2036 324 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
bobv@2036 325 return x / y;
bobv@2036 326 JRT_END
bobv@2036 327
bobv@2036 328 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
bobv@2036 329 return (jfloat)x;
bobv@2036 330 JRT_END
bobv@2036 331
bobv@2036 332 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
bobv@2036 333 return (jdouble)x;
bobv@2036 334 JRT_END
bobv@2036 335
bobv@2036 336 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
bobv@2036 337 return (jdouble)x;
bobv@2036 338 JRT_END
bobv@2036 339
bobv@2036 340 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
bobv@2036 341 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
bobv@2036 342 JRT_END
bobv@2036 343
bobv@2036 344 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
bobv@2036 345 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 346 JRT_END
bobv@2036 347
bobv@2036 348 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
bobv@2036 349 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
bobv@2036 350 JRT_END
bobv@2036 351
bobv@2036 352 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
bobv@2036 353 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
bobv@2036 354 JRT_END
bobv@2036 355
bobv@2036 356 // Functions to return the opposite of the aeabi functions for nan.
bobv@2036 357 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
bobv@2036 358 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 359 JRT_END
bobv@2036 360
bobv@2036 361 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
bobv@2036 362 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 363 JRT_END
bobv@2036 364
bobv@2036 365 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
bobv@2036 366 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 367 JRT_END
bobv@2036 368
bobv@2036 369 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
bobv@2036 370 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 371 JRT_END
bobv@2036 372
bobv@2036 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
bobv@2036 374 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 375 JRT_END
bobv@2036 376
bobv@2036 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
bobv@2036 378 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 379 JRT_END
bobv@2036 380
bobv@2036 381 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
bobv@2036 382 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 383 JRT_END
bobv@2036 384
bobv@2036 385 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
bobv@2036 386 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
bobv@2036 387 JRT_END
bobv@2036 388
bobv@2036 389 // Intrinsics make gcc generate code for these.
bobv@2036 390 float SharedRuntime::fneg(float f) {
bobv@2036 391 return -f;
bobv@2036 392 }
bobv@2036 393
bobv@2036 394 double SharedRuntime::dneg(double f) {
bobv@2036 395 return -f;
bobv@2036 396 }
bobv@2036 397
bobv@2036 398 #endif // __SOFTFP__
bobv@2036 399
bobv@2036 400 #if defined(__SOFTFP__) || defined(E500V2)
bobv@2036 401 // Intrinsics make gcc generate code for these.
bobv@2036 402 double SharedRuntime::dabs(double f) {
bobv@2036 403 return (f <= (double)0.0) ? (double)0.0 - f : f;
bobv@2036 404 }
bobv@2036 405
bobv@2223 406 #endif
bobv@2223 407
bobv@2223 408 #if defined(__SOFTFP__) || defined(PPC)
bobv@2036 409 double SharedRuntime::dsqrt(double f) {
bobv@2036 410 return sqrt(f);
bobv@2036 411 }
bobv@2036 412 #endif
duke@435 413
duke@435 414 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
kvn@943 415 if (g_isnan(x))
kvn@943 416 return 0;
kvn@943 417 if (x >= (jfloat) max_jint)
kvn@943 418 return max_jint;
kvn@943 419 if (x <= (jfloat) min_jint)
kvn@943 420 return min_jint;
kvn@943 421 return (jint) x;
duke@435 422 JRT_END
duke@435 423
duke@435 424
duke@435 425 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
kvn@943 426 if (g_isnan(x))
kvn@943 427 return 0;
kvn@943 428 if (x >= (jfloat) max_jlong)
kvn@943 429 return max_jlong;
kvn@943 430 if (x <= (jfloat) min_jlong)
kvn@943 431 return min_jlong;
kvn@943 432 return (jlong) x;
duke@435 433 JRT_END
duke@435 434
duke@435 435
duke@435 436 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
kvn@943 437 if (g_isnan(x))
kvn@943 438 return 0;
kvn@943 439 if (x >= (jdouble) max_jint)
kvn@943 440 return max_jint;
kvn@943 441 if (x <= (jdouble) min_jint)
kvn@943 442 return min_jint;
kvn@943 443 return (jint) x;
duke@435 444 JRT_END
duke@435 445
duke@435 446
duke@435 447 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
kvn@943 448 if (g_isnan(x))
kvn@943 449 return 0;
kvn@943 450 if (x >= (jdouble) max_jlong)
kvn@943 451 return max_jlong;
kvn@943 452 if (x <= (jdouble) min_jlong)
kvn@943 453 return min_jlong;
kvn@943 454 return (jlong) x;
duke@435 455 JRT_END
duke@435 456
duke@435 457
duke@435 458 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
duke@435 459 return (jfloat)x;
duke@435 460 JRT_END
duke@435 461
duke@435 462
duke@435 463 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
duke@435 464 return (jfloat)x;
duke@435 465 JRT_END
duke@435 466
duke@435 467
duke@435 468 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
duke@435 469 return (jdouble)x;
duke@435 470 JRT_END
duke@435 471
duke@435 472 // Exception handling accross interpreter/compiler boundaries
duke@435 473 //
duke@435 474 // exception_handler_for_return_address(...) returns the continuation address.
duke@435 475 // The continuation address is the entry point of the exception handler of the
duke@435 476 // previous frame depending on the return address.
duke@435 477
twisti@1730 478 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
twisti@2603 479 assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
twisti@2603 480
twisti@2603 481 // Reset method handle flag.
twisti@1803 482 thread->set_is_method_handle_return(false);
twisti@1803 483
twisti@2603 484 // The fastest case first
duke@435 485 CodeBlob* blob = CodeCache::find_blob(return_address);
twisti@2603 486 nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
twisti@2603 487 if (nm != NULL) {
twisti@2603 488 // Set flag if return address is a method handle call site.
twisti@2603 489 thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
duke@435 490 // native nmethods don't have exception handlers
twisti@2603 491 assert(!nm->is_native_method(), "no exception handler");
twisti@2603 492 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
twisti@2603 493 if (nm->is_deopt_pc(return_address)) {
duke@435 494 return SharedRuntime::deopt_blob()->unpack_with_exception();
duke@435 495 } else {
twisti@2603 496 return nm->exception_begin();
duke@435 497 }
duke@435 498 }
duke@435 499
duke@435 500 // Entry code
duke@435 501 if (StubRoutines::returns_to_call_stub(return_address)) {
duke@435 502 return StubRoutines::catch_exception_entry();
duke@435 503 }
duke@435 504 // Interpreted code
duke@435 505 if (Interpreter::contains(return_address)) {
duke@435 506 return Interpreter::rethrow_exception_entry();
duke@435 507 }
duke@435 508
twisti@2603 509 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
duke@435 510 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
twisti@2603 511
duke@435 512 #ifndef PRODUCT
duke@435 513 { ResourceMark rm;
duke@435 514 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
duke@435 515 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
duke@435 516 tty->print_cr("b) other problem");
duke@435 517 }
duke@435 518 #endif // PRODUCT
twisti@2603 519
duke@435 520 ShouldNotReachHere();
duke@435 521 return NULL;
duke@435 522 }
duke@435 523
duke@435 524
twisti@1730 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
twisti@1730 526 return raw_exception_handler_for_return_address(thread, return_address);
duke@435 527 JRT_END
duke@435 528
twisti@1730 529
duke@435 530 address SharedRuntime::get_poll_stub(address pc) {
duke@435 531 address stub;
duke@435 532 // Look up the code blob
duke@435 533 CodeBlob *cb = CodeCache::find_blob(pc);
duke@435 534
duke@435 535 // Should be an nmethod
duke@435 536 assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
duke@435 537
duke@435 538 // Look up the relocation information
duke@435 539 assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
duke@435 540 "safepoint polling: type must be poll" );
duke@435 541
duke@435 542 assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
duke@435 543 "Only polling locations are used for safepoint");
duke@435 544
duke@435 545 bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
kvn@4103 546 bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
duke@435 547 if (at_poll_return) {
duke@435 548 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
duke@435 549 "polling page return stub not created yet");
twisti@2103 550 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
kvn@4103 551 } else if (has_wide_vectors) {
kvn@4103 552 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
kvn@4103 553 "polling page vectors safepoint stub not created yet");
kvn@4103 554 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
duke@435 555 } else {
duke@435 556 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
duke@435 557 "polling page safepoint stub not created yet");
twisti@2103 558 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
duke@435 559 }
duke@435 560 #ifndef PRODUCT
duke@435 561 if( TraceSafepoint ) {
duke@435 562 char buf[256];
duke@435 563 jio_snprintf(buf, sizeof(buf),
duke@435 564 "... found polling page %s exception at pc = "
duke@435 565 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
duke@435 566 at_poll_return ? "return" : "loop",
duke@435 567 (intptr_t)pc, (intptr_t)stub);
duke@435 568 tty->print_raw_cr(buf);
duke@435 569 }
duke@435 570 #endif // PRODUCT
duke@435 571 return stub;
duke@435 572 }
duke@435 573
duke@435 574
coleenp@2497 575 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
duke@435 576 assert(caller.is_interpreted_frame(), "");
duke@435 577 int args_size = ArgumentSizeComputer(sig).size() + 1;
duke@435 578 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
duke@435 579 oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
duke@435 580 assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
duke@435 581 return result;
duke@435 582 }
duke@435 583
duke@435 584
duke@435 585 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
dcubed@1648 586 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 587 vframeStream vfst(thread, true);
duke@435 588 methodHandle method = methodHandle(thread, vfst.method());
duke@435 589 address bcp = method()->bcp_from(vfst.bci());
duke@435 590 JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
duke@435 591 }
duke@435 592 Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
duke@435 593 }
duke@435 594
coleenp@2497 595 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
duke@435 596 Handle h_exception = Exceptions::new_exception(thread, name, message);
duke@435 597 throw_and_post_jvmti_exception(thread, h_exception);
duke@435 598 }
duke@435 599
dcubed@1045 600 // The interpreter code to call this tracing function is only
dcubed@1045 601 // called/generated when TraceRedefineClasses has the right bits
dcubed@1045 602 // set. Since obsolete methods are never compiled, we don't have
dcubed@1045 603 // to modify the compilers to generate calls to this function.
dcubed@1045 604 //
dcubed@1045 605 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
coleenp@4037 606 JavaThread* thread, Method* method))
dcubed@1045 607 assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
dcubed@1045 608
dcubed@1045 609 if (method->is_obsolete()) {
dcubed@1045 610 // We are calling an obsolete method, but this is not necessarily
dcubed@1045 611 // an error. Our method could have been redefined just after we
coleenp@4037 612 // fetched the Method* from the constant pool.
dcubed@1045 613
dcubed@1045 614 // RC_TRACE macro has an embedded ResourceMark
dcubed@1045 615 RC_TRACE_WITH_THREAD(0x00001000, thread,
dcubed@1045 616 ("calling obsolete method '%s'",
dcubed@1045 617 method->name_and_sig_as_C_string()));
dcubed@1045 618 if (RC_TRACE_ENABLED(0x00002000)) {
dcubed@1045 619 // this option is provided to debug calls to obsolete methods
dcubed@1045 620 guarantee(false, "faulting at call to an obsolete method.");
dcubed@1045 621 }
dcubed@1045 622 }
dcubed@1045 623 return 0;
dcubed@1045 624 JRT_END
dcubed@1045 625
duke@435 626 // ret_pc points into caller; we are returning caller's exception handler
duke@435 627 // for given exception
duke@435 628 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
duke@435 629 bool force_unwind, bool top_frame_only) {
duke@435 630 assert(nm != NULL, "must exist");
duke@435 631 ResourceMark rm;
duke@435 632
duke@435 633 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
duke@435 634 // determine handler bci, if any
duke@435 635 EXCEPTION_MARK;
duke@435 636
duke@435 637 int handler_bci = -1;
duke@435 638 int scope_depth = 0;
duke@435 639 if (!force_unwind) {
duke@435 640 int bci = sd->bci();
kvn@3194 641 bool recursive_exception = false;
duke@435 642 do {
duke@435 643 bool skip_scope_increment = false;
duke@435 644 // exception handler lookup
duke@435 645 KlassHandle ek (THREAD, exception->klass());
jiangli@4405 646 methodHandle mh(THREAD, sd->method());
jiangli@4405 647 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
duke@435 648 if (HAS_PENDING_EXCEPTION) {
kvn@3194 649 recursive_exception = true;
duke@435 650 // We threw an exception while trying to find the exception handler.
duke@435 651 // Transfer the new exception to the exception handle which will
duke@435 652 // be set into thread local storage, and do another lookup for an
duke@435 653 // exception handler for this exception, this time starting at the
duke@435 654 // BCI of the exception handler which caused the exception to be
duke@435 655 // thrown (bugs 4307310 and 4546590). Set "exception" reference
duke@435 656 // argument to ensure that the correct exception is thrown (4870175).
duke@435 657 exception = Handle(THREAD, PENDING_EXCEPTION);
duke@435 658 CLEAR_PENDING_EXCEPTION;
duke@435 659 if (handler_bci >= 0) {
duke@435 660 bci = handler_bci;
duke@435 661 handler_bci = -1;
duke@435 662 skip_scope_increment = true;
duke@435 663 }
duke@435 664 }
kvn@3194 665 else {
kvn@3194 666 recursive_exception = false;
kvn@3194 667 }
duke@435 668 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
duke@435 669 sd = sd->sender();
duke@435 670 if (sd != NULL) {
duke@435 671 bci = sd->bci();
duke@435 672 }
duke@435 673 ++scope_depth;
duke@435 674 }
kvn@3194 675 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
duke@435 676 }
duke@435 677
duke@435 678 // found handling method => lookup exception handler
twisti@2103 679 int catch_pco = ret_pc - nm->code_begin();
duke@435 680
duke@435 681 ExceptionHandlerTable table(nm);
duke@435 682 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
duke@435 683 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
duke@435 684 // Allow abbreviated catch tables. The idea is to allow a method
duke@435 685 // to materialize its exceptions without committing to the exact
duke@435 686 // routing of exceptions. In particular this is needed for adding
duke@435 687 // a synthethic handler to unlock monitors when inlining
duke@435 688 // synchonized methods since the unlock path isn't represented in
duke@435 689 // the bytecodes.
duke@435 690 t = table.entry_for(catch_pco, -1, 0);
duke@435 691 }
duke@435 692
never@1813 693 #ifdef COMPILER1
never@1813 694 if (t == NULL && nm->is_compiled_by_c1()) {
never@1813 695 assert(nm->unwind_handler_begin() != NULL, "");
never@1813 696 return nm->unwind_handler_begin();
never@1813 697 }
never@1813 698 #endif
never@1813 699
duke@435 700 if (t == NULL) {
duke@435 701 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
duke@435 702 tty->print_cr(" Exception:");
duke@435 703 exception->print();
duke@435 704 tty->cr();
duke@435 705 tty->print_cr(" Compiled exception table :");
duke@435 706 table.print();
duke@435 707 nm->print_code();
duke@435 708 guarantee(false, "missing exception handler");
duke@435 709 return NULL;
duke@435 710 }
duke@435 711
twisti@2103 712 return nm->code_begin() + t->pco();
duke@435 713 }
duke@435 714
duke@435 715 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
duke@435 716 // These errors occur only at call sites
duke@435 717 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
duke@435 718 JRT_END
duke@435 719
dcubed@451 720 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
dcubed@451 721 // These errors occur only at call sites
dcubed@451 722 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
dcubed@451 723 JRT_END
dcubed@451 724
duke@435 725 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
duke@435 726 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 727 JRT_END
duke@435 728
duke@435 729 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
duke@435 730 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 731 JRT_END
duke@435 732
duke@435 733 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
duke@435 734 // This entry point is effectively only used for NullPointerExceptions which occur at inline
duke@435 735 // cache sites (when the callee activation is not yet set up) so we are at a call site
duke@435 736 throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 737 JRT_END
duke@435 738
duke@435 739 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
duke@435 740 // We avoid using the normal exception construction in this case because
duke@435 741 // it performs an upcall to Java, and we're already out of stack space.
coleenp@4037 742 Klass* k = SystemDictionary::StackOverflowError_klass();
coleenp@4037 743 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
duke@435 744 Handle exception (thread, exception_oop);
duke@435 745 if (StackTraceInThrowable) {
duke@435 746 java_lang_Throwable::fill_in_stack_trace(exception);
duke@435 747 }
duke@435 748 throw_and_post_jvmti_exception(thread, exception);
duke@435 749 JRT_END
duke@435 750
duke@435 751 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
duke@435 752 address pc,
duke@435 753 SharedRuntime::ImplicitExceptionKind exception_kind)
duke@435 754 {
duke@435 755 address target_pc = NULL;
duke@435 756
duke@435 757 if (Interpreter::contains(pc)) {
duke@435 758 #ifdef CC_INTERP
duke@435 759 // C++ interpreter doesn't throw implicit exceptions
duke@435 760 ShouldNotReachHere();
duke@435 761 #else
duke@435 762 switch (exception_kind) {
duke@435 763 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
duke@435 764 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
duke@435 765 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
duke@435 766 default: ShouldNotReachHere();
duke@435 767 }
duke@435 768 #endif // !CC_INTERP
duke@435 769 } else {
duke@435 770 switch (exception_kind) {
duke@435 771 case STACK_OVERFLOW: {
duke@435 772 // Stack overflow only occurs upon frame setup; the callee is
duke@435 773 // going to be unwound. Dispatch to a shared runtime stub
duke@435 774 // which will cause the StackOverflowError to be fabricated
duke@435 775 // and processed.
duke@435 776 // For stack overflow in deoptimization blob, cleanup thread.
duke@435 777 if (thread->deopt_mark() != NULL) {
duke@435 778 Deoptimization::cleanup_deopt_info(thread, NULL);
duke@435 779 }
never@3571 780 Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
duke@435 781 return StubRoutines::throw_StackOverflowError_entry();
duke@435 782 }
duke@435 783
duke@435 784 case IMPLICIT_NULL: {
duke@435 785 if (VtableStubs::contains(pc)) {
duke@435 786 // We haven't yet entered the callee frame. Fabricate an
duke@435 787 // exception and begin dispatching it in the caller. Since
duke@435 788 // the caller was at a call site, it's safe to destroy all
duke@435 789 // caller-saved registers, as these entry points do.
duke@435 790 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
poonam@900 791
poonam@900 792 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 793 if (vt_stub == NULL) return NULL;
poonam@900 794
duke@435 795 if (vt_stub->is_abstract_method_error(pc)) {
duke@435 796 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
never@3571 797 Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
duke@435 798 return StubRoutines::throw_AbstractMethodError_entry();
duke@435 799 } else {
never@3571 800 Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
duke@435 801 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 802 }
duke@435 803 } else {
duke@435 804 CodeBlob* cb = CodeCache::find_blob(pc);
poonam@900 805
poonam@900 806 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
poonam@900 807 if (cb == NULL) return NULL;
duke@435 808
duke@435 809 // Exception happened in CodeCache. Must be either:
duke@435 810 // 1. Inline-cache check in C2I handler blob,
duke@435 811 // 2. Inline-cache check in nmethod, or
duke@435 812 // 3. Implict null exception in nmethod
duke@435 813
duke@435 814 if (!cb->is_nmethod()) {
twisti@1734 815 guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
poonam@900 816 "exception happened outside interpreter, nmethods and vtable stubs (1)");
never@3571 817 Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
duke@435 818 // There is no handler here, so we will simply unwind.
duke@435 819 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 820 }
duke@435 821
duke@435 822 // Otherwise, it's an nmethod. Consult its exception handlers.
duke@435 823 nmethod* nm = (nmethod*)cb;
duke@435 824 if (nm->inlinecache_check_contains(pc)) {
duke@435 825 // exception happened inside inline-cache check code
duke@435 826 // => the nmethod is not yet active (i.e., the frame
duke@435 827 // is not set up yet) => use return address pushed by
duke@435 828 // caller => don't push another return address
never@3571 829 Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
duke@435 830 return StubRoutines::throw_NullPointerException_at_call_entry();
duke@435 831 }
duke@435 832
twisti@3969 833 if (nm->method()->is_method_handle_intrinsic()) {
twisti@3969 834 // exception happened inside MH dispatch code, similar to a vtable stub
twisti@3969 835 Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
twisti@3969 836 return StubRoutines::throw_NullPointerException_at_call_entry();
twisti@3969 837 }
twisti@3969 838
duke@435 839 #ifndef PRODUCT
duke@435 840 _implicit_null_throws++;
duke@435 841 #endif
duke@435 842 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 843 // If there's an unexpected fault, target_pc might be NULL,
never@1685 844 // in which case we want to fall through into the normal
never@1685 845 // error handling code.
duke@435 846 }
duke@435 847
duke@435 848 break; // fall through
duke@435 849 }
duke@435 850
duke@435 851
duke@435 852 case IMPLICIT_DIVIDE_BY_ZERO: {
duke@435 853 nmethod* nm = CodeCache::find_nmethod(pc);
duke@435 854 guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
duke@435 855 #ifndef PRODUCT
duke@435 856 _implicit_div0_throws++;
duke@435 857 #endif
duke@435 858 target_pc = nm->continuation_for_implicit_exception(pc);
never@1685 859 // If there's an unexpected fault, target_pc might be NULL,
never@1685 860 // in which case we want to fall through into the normal
never@1685 861 // error handling code.
duke@435 862 break; // fall through
duke@435 863 }
duke@435 864
duke@435 865 default: ShouldNotReachHere();
duke@435 866 }
duke@435 867
duke@435 868 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
duke@435 869
duke@435 870 // for AbortVMOnException flag
duke@435 871 NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
duke@435 872 if (exception_kind == IMPLICIT_NULL) {
never@3499 873 Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 874 } else {
never@3499 875 Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
duke@435 876 }
duke@435 877 return target_pc;
duke@435 878 }
duke@435 879
duke@435 880 ShouldNotReachHere();
duke@435 881 return NULL;
duke@435 882 }
duke@435 883
duke@435 884
duke@435 885 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
duke@435 886 {
duke@435 887 THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
duke@435 888 }
duke@435 889 JNI_END
duke@435 890
twisti@3974 891 JNI_ENTRY(void, throw_unsupported_operation_exception(JNIEnv* env, ...))
twisti@3974 892 {
twisti@3974 893 THROW(vmSymbols::java_lang_UnsupportedOperationException());
twisti@3974 894 }
twisti@3974 895 JNI_END
duke@435 896
duke@435 897 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
duke@435 898 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
duke@435 899 }
duke@435 900
twisti@3974 901 address SharedRuntime::native_method_throw_unsupported_operation_exception_entry() {
twisti@3974 902 return CAST_FROM_FN_PTR(address, &throw_unsupported_operation_exception);
twisti@3974 903 }
twisti@3974 904
duke@435 905
duke@435 906 #ifndef PRODUCT
duke@435 907 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
duke@435 908 const frame f = thread->last_frame();
duke@435 909 assert(f.is_interpreted_frame(), "must be an interpreted frame");
duke@435 910 #ifndef PRODUCT
duke@435 911 methodHandle mh(THREAD, f.interpreter_frame_method());
duke@435 912 BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
duke@435 913 #endif // !PRODUCT
duke@435 914 return preserve_this_value;
duke@435 915 JRT_END
duke@435 916 #endif // !PRODUCT
duke@435 917
duke@435 918
duke@435 919 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
duke@435 920 os::yield_all(attempts);
duke@435 921 JRT_END
duke@435 922
duke@435 923
duke@435 924 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
duke@435 925 assert(obj->is_oop(), "must be a valid oop");
coleenp@4037 926 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
coleenp@4037 927 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
duke@435 928 JRT_END
duke@435 929
duke@435 930
duke@435 931 jlong SharedRuntime::get_java_tid(Thread* thread) {
duke@435 932 if (thread != NULL) {
duke@435 933 if (thread->is_Java_thread()) {
duke@435 934 oop obj = ((JavaThread*)thread)->threadObj();
duke@435 935 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
duke@435 936 }
duke@435 937 }
duke@435 938 return 0;
duke@435 939 }
duke@435 940
duke@435 941 /**
duke@435 942 * This function ought to be a void function, but cannot be because
duke@435 943 * it gets turned into a tail-call on sparc, which runs into dtrace bug
duke@435 944 * 6254741. Once that is fixed we can remove the dummy return value.
duke@435 945 */
duke@435 946 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
duke@435 947 return dtrace_object_alloc_base(Thread::current(), o);
duke@435 948 }
duke@435 949
duke@435 950 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
duke@435 951 assert(DTraceAllocProbes, "wrong call");
coleenp@4037 952 Klass* klass = o->klass();
duke@435 953 int size = o->size();
coleenp@2497 954 Symbol* name = klass->name();
dcubed@3202 955 #ifndef USDT2
duke@435 956 HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
duke@435 957 name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 958 #else /* USDT2 */
dcubed@3202 959 HOTSPOT_OBJECT_ALLOC(
dcubed@3202 960 get_java_tid(thread),
dcubed@3202 961 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
dcubed@3202 962 #endif /* USDT2 */
duke@435 963 return 0;
duke@435 964 }
duke@435 965
duke@435 966 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
coleenp@4037 967 JavaThread* thread, Method* method))
duke@435 968 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 969 Symbol* kname = method->klass_name();
coleenp@2497 970 Symbol* name = method->name();
coleenp@2497 971 Symbol* sig = method->signature();
dcubed@3202 972 #ifndef USDT2
duke@435 973 HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
duke@435 974 kname->bytes(), kname->utf8_length(),
duke@435 975 name->bytes(), name->utf8_length(),
duke@435 976 sig->bytes(), sig->utf8_length());
dcubed@3202 977 #else /* USDT2 */
dcubed@3202 978 HOTSPOT_METHOD_ENTRY(
dcubed@3202 979 get_java_tid(thread),
dcubed@3202 980 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 981 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 982 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 983 #endif /* USDT2 */
duke@435 984 return 0;
duke@435 985 JRT_END
duke@435 986
duke@435 987 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
coleenp@4037 988 JavaThread* thread, Method* method))
duke@435 989 assert(DTraceMethodProbes, "wrong call");
coleenp@2497 990 Symbol* kname = method->klass_name();
coleenp@2497 991 Symbol* name = method->name();
coleenp@2497 992 Symbol* sig = method->signature();
dcubed@3202 993 #ifndef USDT2
duke@435 994 HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
duke@435 995 kname->bytes(), kname->utf8_length(),
duke@435 996 name->bytes(), name->utf8_length(),
duke@435 997 sig->bytes(), sig->utf8_length());
dcubed@3202 998 #else /* USDT2 */
dcubed@3202 999 HOTSPOT_METHOD_RETURN(
dcubed@3202 1000 get_java_tid(thread),
dcubed@3202 1001 (char *) kname->bytes(), kname->utf8_length(),
dcubed@3202 1002 (char *) name->bytes(), name->utf8_length(),
dcubed@3202 1003 (char *) sig->bytes(), sig->utf8_length());
dcubed@3202 1004 #endif /* USDT2 */
duke@435 1005 return 0;
duke@435 1006 JRT_END
duke@435 1007
duke@435 1008
duke@435 1009 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
duke@435 1010 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1011 // put callee has not been invoked yet. Used by: resolve virtual/static,
duke@435 1012 // vtable updates, etc. Caller frame must be compiled.
duke@435 1013 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
duke@435 1014 ResourceMark rm(THREAD);
duke@435 1015
duke@435 1016 // last java frame on stack (which includes native call frames)
duke@435 1017 vframeStream vfst(thread, true); // Do not skip and javaCalls
duke@435 1018
duke@435 1019 return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
duke@435 1020 }
duke@435 1021
duke@435 1022
duke@435 1023 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
duke@435 1024 // for a call current in progress, i.e., arguments has been pushed on stack
duke@435 1025 // but callee has not been invoked yet. Caller frame must be compiled.
duke@435 1026 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
duke@435 1027 vframeStream& vfst,
duke@435 1028 Bytecodes::Code& bc,
duke@435 1029 CallInfo& callinfo, TRAPS) {
duke@435 1030 Handle receiver;
duke@435 1031 Handle nullHandle; //create a handy null handle for exception returns
duke@435 1032
duke@435 1033 assert(!vfst.at_end(), "Java frame must exist");
duke@435 1034
duke@435 1035 // Find caller and bci from vframe
twisti@3969 1036 methodHandle caller(THREAD, vfst.method());
twisti@3969 1037 int bci = vfst.bci();
duke@435 1038
duke@435 1039 // Find bytecode
never@2462 1040 Bytecode_invoke bytecode(caller, bci);
twisti@3969 1041 bc = bytecode.invoke_code();
never@2462 1042 int bytecode_index = bytecode.index();
duke@435 1043
duke@435 1044 // Find receiver for non-static call
twisti@3969 1045 if (bc != Bytecodes::_invokestatic &&
twisti@3969 1046 bc != Bytecodes::_invokedynamic) {
duke@435 1047 // This register map must be update since we need to find the receiver for
duke@435 1048 // compiled frames. The receiver might be in a register.
duke@435 1049 RegisterMap reg_map2(thread);
duke@435 1050 frame stubFrame = thread->last_frame();
duke@435 1051 // Caller-frame is a compiled frame
duke@435 1052 frame callerFrame = stubFrame.sender(&reg_map2);
duke@435 1053
never@2462 1054 methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
duke@435 1055 if (callee.is_null()) {
duke@435 1056 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
duke@435 1057 }
duke@435 1058 // Retrieve from a compiled argument list
duke@435 1059 receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
duke@435 1060
duke@435 1061 if (receiver.is_null()) {
duke@435 1062 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
duke@435 1063 }
duke@435 1064 }
duke@435 1065
duke@435 1066 // Resolve method. This is parameterized by bytecode.
twisti@3969 1067 constantPoolHandle constants(THREAD, caller->constants());
twisti@3969 1068 assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
duke@435 1069 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
duke@435 1070
duke@435 1071 #ifdef ASSERT
duke@435 1072 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
twisti@1570 1073 if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
duke@435 1074 assert(receiver.not_null(), "should have thrown exception");
twisti@3969 1075 KlassHandle receiver_klass(THREAD, receiver->klass());
coleenp@4037 1076 Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
duke@435 1077 // klass is already loaded
twisti@3969 1078 KlassHandle static_receiver_klass(THREAD, rk);
twisti@3969 1079 // Method handle invokes might have been optimized to a direct call
twisti@3969 1080 // so don't check for the receiver class.
twisti@3969 1081 // FIXME this weakens the assert too much
twisti@3969 1082 methodHandle callee = callinfo.selected_method();
twisti@3969 1083 assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
twisti@3969 1084 callee->is_method_handle_intrinsic() ||
twisti@3969 1085 callee->is_compiled_lambda_form(),
twisti@3969 1086 "actual receiver must be subclass of static receiver klass");
duke@435 1087 if (receiver_klass->oop_is_instance()) {
coleenp@4037 1088 if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
duke@435 1089 tty->print_cr("ERROR: Klass not yet initialized!!");
coleenp@4037 1090 receiver_klass()->print();
duke@435 1091 }
coleenp@4037 1092 assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
duke@435 1093 }
duke@435 1094 }
duke@435 1095 #endif
duke@435 1096
duke@435 1097 return receiver;
duke@435 1098 }
duke@435 1099
duke@435 1100 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
duke@435 1101 ResourceMark rm(THREAD);
duke@435 1102 // We need first to check if any Java activations (compiled, interpreted)
duke@435 1103 // exist on the stack since last JavaCall. If not, we need
duke@435 1104 // to get the target method from the JavaCall wrapper.
duke@435 1105 vframeStream vfst(thread, true); // Do not skip any javaCalls
duke@435 1106 methodHandle callee_method;
duke@435 1107 if (vfst.at_end()) {
duke@435 1108 // No Java frames were found on stack since we did the JavaCall.
duke@435 1109 // Hence the stack can only contain an entry_frame. We need to
duke@435 1110 // find the target method from the stub frame.
duke@435 1111 RegisterMap reg_map(thread, false);
duke@435 1112 frame fr = thread->last_frame();
duke@435 1113 assert(fr.is_runtime_frame(), "must be a runtimeStub");
duke@435 1114 fr = fr.sender(&reg_map);
duke@435 1115 assert(fr.is_entry_frame(), "must be");
duke@435 1116 // fr is now pointing to the entry frame.
duke@435 1117 callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
duke@435 1118 assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
duke@435 1119 } else {
duke@435 1120 Bytecodes::Code bc;
duke@435 1121 CallInfo callinfo;
duke@435 1122 find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
duke@435 1123 callee_method = callinfo.selected_method();
duke@435 1124 }
duke@435 1125 assert(callee_method()->is_method(), "must be");
duke@435 1126 return callee_method;
duke@435 1127 }
duke@435 1128
duke@435 1129 // Resolves a call.
duke@435 1130 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
duke@435 1131 bool is_virtual,
duke@435 1132 bool is_optimized, TRAPS) {
duke@435 1133 methodHandle callee_method;
duke@435 1134 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1135 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
duke@435 1136 int retry_count = 0;
duke@435 1137 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
never@1577 1138 callee_method->method_holder() != SystemDictionary::Object_klass()) {
duke@435 1139 // If has a pending exception then there is no need to re-try to
duke@435 1140 // resolve this method.
duke@435 1141 // If the method has been redefined, we need to try again.
duke@435 1142 // Hack: we have no way to update the vtables of arrays, so don't
duke@435 1143 // require that java.lang.Object has been updated.
duke@435 1144
duke@435 1145 // It is very unlikely that method is redefined more than 100 times
duke@435 1146 // in the middle of resolve. If it is looping here more than 100 times
duke@435 1147 // means then there could be a bug here.
duke@435 1148 guarantee((retry_count++ < 100),
duke@435 1149 "Could not resolve to latest version of redefined method");
duke@435 1150 // method is redefined in the middle of resolve so re-try.
duke@435 1151 callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
duke@435 1152 }
duke@435 1153 }
duke@435 1154 return callee_method;
duke@435 1155 }
duke@435 1156
duke@435 1157 // Resolves a call. The compilers generate code for calls that go here
duke@435 1158 // and are patched with the real destination of the call.
duke@435 1159 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
duke@435 1160 bool is_virtual,
duke@435 1161 bool is_optimized, TRAPS) {
duke@435 1162
duke@435 1163 ResourceMark rm(thread);
duke@435 1164 RegisterMap cbl_map(thread, false);
duke@435 1165 frame caller_frame = thread->last_frame().sender(&cbl_map);
duke@435 1166
twisti@1730 1167 CodeBlob* caller_cb = caller_frame.cb();
twisti@1730 1168 guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
twisti@1730 1169 nmethod* caller_nm = caller_cb->as_nmethod_or_null();
duke@435 1170 // make sure caller is not getting deoptimized
duke@435 1171 // and removed before we are done with it.
duke@435 1172 // CLEANUP - with lazy deopt shouldn't need this lock
twisti@1730 1173 nmethodLocker caller_lock(caller_nm);
duke@435 1174
duke@435 1175
duke@435 1176 // determine call info & receiver
duke@435 1177 // note: a) receiver is NULL for static calls
duke@435 1178 // b) an exception is thrown if receiver is NULL for non-static calls
duke@435 1179 CallInfo call_info;
duke@435 1180 Bytecodes::Code invoke_code = Bytecodes::_illegal;
duke@435 1181 Handle receiver = find_callee_info(thread, invoke_code,
duke@435 1182 call_info, CHECK_(methodHandle()));
duke@435 1183 methodHandle callee_method = call_info.selected_method();
duke@435 1184
twisti@3969 1185 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
twisti@3969 1186 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
twisti@3969 1187 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
twisti@3969 1188 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
duke@435 1189
duke@435 1190 #ifndef PRODUCT
duke@435 1191 // tracing/debugging/statistics
duke@435 1192 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
duke@435 1193 (is_virtual) ? (&_resolve_virtual_ctr) :
duke@435 1194 (&_resolve_static_ctr);
duke@435 1195 Atomic::inc(addr);
duke@435 1196
duke@435 1197 if (TraceCallFixup) {
duke@435 1198 ResourceMark rm(thread);
duke@435 1199 tty->print("resolving %s%s (%s) call to",
duke@435 1200 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
duke@435 1201 Bytecodes::name(invoke_code));
duke@435 1202 callee_method->print_short_name(tty);
twisti@3969 1203 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
duke@435 1204 }
duke@435 1205 #endif
duke@435 1206
twisti@3969 1207 // JSR 292 key invariant:
twisti@1730 1208 // If the resolved method is a MethodHandle invoke target the call
twisti@3969 1209 // site must be a MethodHandle call site, because the lambda form might tail-call
twisti@3969 1210 // leaving the stack in a state unknown to either caller or callee
twisti@3969 1211 // TODO detune for now but we might need it again
twisti@3969 1212 // assert(!callee_method->is_compiled_lambda_form() ||
twisti@3969 1213 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
twisti@1730 1214
duke@435 1215 // Compute entry points. This might require generation of C2I converter
duke@435 1216 // frames, so we cannot be holding any locks here. Furthermore, the
duke@435 1217 // computation of the entry points is independent of patching the call. We
duke@435 1218 // always return the entry-point, but we only patch the stub if the call has
duke@435 1219 // not been deoptimized. Return values: For a virtual call this is an
duke@435 1220 // (cached_oop, destination address) pair. For a static call/optimized
duke@435 1221 // virtual this is just a destination address.
duke@435 1222
duke@435 1223 StaticCallInfo static_call_info;
duke@435 1224 CompiledICInfo virtual_call_info;
duke@435 1225
duke@435 1226 // Make sure the callee nmethod does not get deoptimized and removed before
duke@435 1227 // we are done patching the code.
twisti@1730 1228 nmethod* callee_nm = callee_method->code();
twisti@1730 1229 nmethodLocker nl_callee(callee_nm);
duke@435 1230 #ifdef ASSERT
twisti@1730 1231 address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
duke@435 1232 #endif
duke@435 1233
duke@435 1234 if (is_virtual) {
duke@435 1235 assert(receiver.not_null(), "sanity check");
duke@435 1236 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
duke@435 1237 KlassHandle h_klass(THREAD, receiver->klass());
duke@435 1238 CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
duke@435 1239 is_optimized, static_bound, virtual_call_info,
duke@435 1240 CHECK_(methodHandle()));
duke@435 1241 } else {
duke@435 1242 // static call
duke@435 1243 CompiledStaticCall::compute_entry(callee_method, static_call_info);
duke@435 1244 }
duke@435 1245
duke@435 1246 // grab lock, check for deoptimization and potentially patch caller
duke@435 1247 {
duke@435 1248 MutexLocker ml_patch(CompiledIC_lock);
duke@435 1249
coleenp@4037 1250 // Now that we are ready to patch if the Method* was redefined then
duke@435 1251 // don't update call site and let the caller retry.
duke@435 1252
duke@435 1253 if (!callee_method->is_old()) {
duke@435 1254 #ifdef ASSERT
duke@435 1255 // We must not try to patch to jump to an already unloaded method.
duke@435 1256 if (dest_entry_point != 0) {
duke@435 1257 assert(CodeCache::find_blob(dest_entry_point) != NULL,
duke@435 1258 "should not unload nmethod while locked");
duke@435 1259 }
duke@435 1260 #endif
duke@435 1261 if (is_virtual) {
coleenp@4037 1262 nmethod* nm = callee_nm;
coleenp@4037 1263 if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
coleenp@4037 1264 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
duke@435 1265 if (inline_cache->is_clean()) {
duke@435 1266 inline_cache->set_to_monomorphic(virtual_call_info);
duke@435 1267 }
duke@435 1268 } else {
duke@435 1269 CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
duke@435 1270 if (ssc->is_clean()) ssc->set(static_call_info);
duke@435 1271 }
duke@435 1272 }
duke@435 1273
duke@435 1274 } // unlock CompiledIC_lock
duke@435 1275
duke@435 1276 return callee_method;
duke@435 1277 }
duke@435 1278
duke@435 1279
duke@435 1280 // Inline caches exist only in compiled code
duke@435 1281 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
duke@435 1282 #ifdef ASSERT
duke@435 1283 RegisterMap reg_map(thread, false);
duke@435 1284 frame stub_frame = thread->last_frame();
duke@435 1285 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1286 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 1287 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
duke@435 1288 #endif /* ASSERT */
duke@435 1289
duke@435 1290 methodHandle callee_method;
duke@435 1291 JRT_BLOCK
duke@435 1292 callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
coleenp@4037 1293 // Return Method* through TLS
coleenp@4037 1294 thread->set_vm_result_2(callee_method());
duke@435 1295 JRT_BLOCK_END
duke@435 1296 // return compiled code entry point after potential safepoints
duke@435 1297 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1298 return callee_method->verified_code_entry();
duke@435 1299 JRT_END
duke@435 1300
duke@435 1301
duke@435 1302 // Handle call site that has been made non-entrant
duke@435 1303 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
duke@435 1304 // 6243940 We might end up in here if the callee is deoptimized
duke@435 1305 // as we race to call it. We don't want to take a safepoint if
duke@435 1306 // the caller was interpreted because the caller frame will look
duke@435 1307 // interpreted to the stack walkers and arguments are now
duke@435 1308 // "compiled" so it is much better to make this transition
duke@435 1309 // invisible to the stack walking code. The i2c path will
duke@435 1310 // place the callee method in the callee_target. It is stashed
duke@435 1311 // there because if we try and find the callee by normal means a
duke@435 1312 // safepoint is possible and have trouble gc'ing the compiled args.
duke@435 1313 RegisterMap reg_map(thread, false);
duke@435 1314 frame stub_frame = thread->last_frame();
duke@435 1315 assert(stub_frame.is_runtime_frame(), "sanity check");
duke@435 1316 frame caller_frame = stub_frame.sender(&reg_map);
twisti@1570 1317
twisti@1570 1318 // MethodHandle invokes don't have a CompiledIC and should always
twisti@1570 1319 // simply redispatch to the callee_target.
twisti@1570 1320 address sender_pc = caller_frame.pc();
twisti@1570 1321 CodeBlob* sender_cb = caller_frame.cb();
twisti@1570 1322 nmethod* sender_nm = sender_cb->as_nmethod_or_null();
twisti@1570 1323
twisti@1570 1324 if (caller_frame.is_interpreted_frame() ||
twisti@3969 1325 caller_frame.is_entry_frame()) {
coleenp@4037 1326 Method* callee = thread->callee_target();
duke@435 1327 guarantee(callee != NULL && callee->is_method(), "bad handshake");
coleenp@4037 1328 thread->set_vm_result_2(callee);
duke@435 1329 thread->set_callee_target(NULL);
duke@435 1330 return callee->get_c2i_entry();
duke@435 1331 }
duke@435 1332
duke@435 1333 // Must be compiled to compiled path which is safe to stackwalk
duke@435 1334 methodHandle callee_method;
duke@435 1335 JRT_BLOCK
duke@435 1336 // Force resolving of caller (if we called from compiled frame)
duke@435 1337 callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
coleenp@4037 1338 thread->set_vm_result_2(callee_method());
duke@435 1339 JRT_BLOCK_END
duke@435 1340 // return compiled code entry point after potential safepoints
duke@435 1341 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1342 return callee_method->verified_code_entry();
duke@435 1343 JRT_END
duke@435 1344
duke@435 1345
duke@435 1346 // resolve a static call and patch code
duke@435 1347 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
duke@435 1348 methodHandle callee_method;
duke@435 1349 JRT_BLOCK
duke@435 1350 callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
coleenp@4037 1351 thread->set_vm_result_2(callee_method());
duke@435 1352 JRT_BLOCK_END
duke@435 1353 // return compiled code entry point after potential safepoints
duke@435 1354 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1355 return callee_method->verified_code_entry();
duke@435 1356 JRT_END
duke@435 1357
duke@435 1358
duke@435 1359 // resolve virtual call and update inline cache to monomorphic
duke@435 1360 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
duke@435 1361 methodHandle callee_method;
duke@435 1362 JRT_BLOCK
duke@435 1363 callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
coleenp@4037 1364 thread->set_vm_result_2(callee_method());
duke@435 1365 JRT_BLOCK_END
duke@435 1366 // return compiled code entry point after potential safepoints
duke@435 1367 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1368 return callee_method->verified_code_entry();
duke@435 1369 JRT_END
duke@435 1370
duke@435 1371
duke@435 1372 // Resolve a virtual call that can be statically bound (e.g., always
duke@435 1373 // monomorphic, so it has no inline cache). Patch code to resolved target.
duke@435 1374 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
duke@435 1375 methodHandle callee_method;
duke@435 1376 JRT_BLOCK
duke@435 1377 callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
coleenp@4037 1378 thread->set_vm_result_2(callee_method());
duke@435 1379 JRT_BLOCK_END
duke@435 1380 // return compiled code entry point after potential safepoints
duke@435 1381 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
duke@435 1382 return callee_method->verified_code_entry();
duke@435 1383 JRT_END
duke@435 1384
duke@435 1385
duke@435 1386
duke@435 1387
duke@435 1388
duke@435 1389 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
duke@435 1390 ResourceMark rm(thread);
duke@435 1391 CallInfo call_info;
duke@435 1392 Bytecodes::Code bc;
duke@435 1393
duke@435 1394 // receiver is NULL for static calls. An exception is thrown for NULL
duke@435 1395 // receivers for non-static calls
duke@435 1396 Handle receiver = find_callee_info(thread, bc, call_info,
duke@435 1397 CHECK_(methodHandle()));
duke@435 1398 // Compiler1 can produce virtual call sites that can actually be statically bound
duke@435 1399 // If we fell thru to below we would think that the site was going megamorphic
duke@435 1400 // when in fact the site can never miss. Worse because we'd think it was megamorphic
duke@435 1401 // we'd try and do a vtable dispatch however methods that can be statically bound
duke@435 1402 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
duke@435 1403 // reresolution of the call site (as if we did a handle_wrong_method and not an
duke@435 1404 // plain ic_miss) and the site will be converted to an optimized virtual call site
duke@435 1405 // never to miss again. I don't believe C2 will produce code like this but if it
duke@435 1406 // did this would still be the correct thing to do for it too, hence no ifdef.
duke@435 1407 //
duke@435 1408 if (call_info.resolved_method()->can_be_statically_bound()) {
duke@435 1409 methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
duke@435 1410 if (TraceCallFixup) {
duke@435 1411 RegisterMap reg_map(thread, false);
duke@435 1412 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1413 ResourceMark rm(thread);
duke@435 1414 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
duke@435 1415 callee_method->print_short_name(tty);
duke@435 1416 tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
duke@435 1417 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1418 }
duke@435 1419 return callee_method;
duke@435 1420 }
duke@435 1421
duke@435 1422 methodHandle callee_method = call_info.selected_method();
duke@435 1423
duke@435 1424 bool should_be_mono = false;
duke@435 1425
duke@435 1426 #ifndef PRODUCT
duke@435 1427 Atomic::inc(&_ic_miss_ctr);
duke@435 1428
duke@435 1429 // Statistics & Tracing
duke@435 1430 if (TraceCallFixup) {
duke@435 1431 ResourceMark rm(thread);
duke@435 1432 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1433 callee_method->print_short_name(tty);
duke@435 1434 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1435 }
duke@435 1436
duke@435 1437 if (ICMissHistogram) {
duke@435 1438 MutexLocker m(VMStatistic_lock);
duke@435 1439 RegisterMap reg_map(thread, false);
duke@435 1440 frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
duke@435 1441 // produce statistics under the lock
duke@435 1442 trace_ic_miss(f.pc());
duke@435 1443 }
duke@435 1444 #endif
duke@435 1445
duke@435 1446 // install an event collector so that when a vtable stub is created the
duke@435 1447 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
duke@435 1448 // event can't be posted when the stub is created as locks are held
duke@435 1449 // - instead the event will be deferred until the event collector goes
duke@435 1450 // out of scope.
duke@435 1451 JvmtiDynamicCodeEventCollector event_collector;
duke@435 1452
duke@435 1453 // Update inline cache to megamorphic. Skip update if caller has been
duke@435 1454 // made non-entrant or we are called from interpreted.
duke@435 1455 { MutexLocker ml_patch (CompiledIC_lock);
duke@435 1456 RegisterMap reg_map(thread, false);
duke@435 1457 frame caller_frame = thread->last_frame().sender(&reg_map);
duke@435 1458 CodeBlob* cb = caller_frame.cb();
duke@435 1459 if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
duke@435 1460 // Not a non-entrant nmethod, so find inline_cache
coleenp@4037 1461 CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
duke@435 1462 bool should_be_mono = false;
duke@435 1463 if (inline_cache->is_optimized()) {
duke@435 1464 if (TraceCallFixup) {
duke@435 1465 ResourceMark rm(thread);
duke@435 1466 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
duke@435 1467 callee_method->print_short_name(tty);
duke@435 1468 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1469 }
duke@435 1470 should_be_mono = true;
coleenp@4037 1471 } else if (inline_cache->is_icholder_call()) {
coleenp@4037 1472 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
coleenp@4037 1473 if ( ic_oop != NULL) {
duke@435 1474
duke@435 1475 if (receiver()->klass() == ic_oop->holder_klass()) {
duke@435 1476 // This isn't a real miss. We must have seen that compiled code
duke@435 1477 // is now available and we want the call site converted to a
duke@435 1478 // monomorphic compiled call site.
duke@435 1479 // We can't assert for callee_method->code() != NULL because it
duke@435 1480 // could have been deoptimized in the meantime
duke@435 1481 if (TraceCallFixup) {
duke@435 1482 ResourceMark rm(thread);
duke@435 1483 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
duke@435 1484 callee_method->print_short_name(tty);
duke@435 1485 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1486 }
duke@435 1487 should_be_mono = true;
duke@435 1488 }
duke@435 1489 }
duke@435 1490 }
duke@435 1491
duke@435 1492 if (should_be_mono) {
duke@435 1493
duke@435 1494 // We have a path that was monomorphic but was going interpreted
duke@435 1495 // and now we have (or had) a compiled entry. We correct the IC
duke@435 1496 // by using a new icBuffer.
duke@435 1497 CompiledICInfo info;
duke@435 1498 KlassHandle receiver_klass(THREAD, receiver()->klass());
duke@435 1499 inline_cache->compute_monomorphic_entry(callee_method,
duke@435 1500 receiver_klass,
duke@435 1501 inline_cache->is_optimized(),
duke@435 1502 false,
duke@435 1503 info, CHECK_(methodHandle()));
duke@435 1504 inline_cache->set_to_monomorphic(info);
duke@435 1505 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
duke@435 1506 // Change to megamorphic
duke@435 1507 inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
duke@435 1508 } else {
duke@435 1509 // Either clean or megamorphic
duke@435 1510 }
duke@435 1511 }
duke@435 1512 } // Release CompiledIC_lock
duke@435 1513
duke@435 1514 return callee_method;
duke@435 1515 }
duke@435 1516
duke@435 1517 //
duke@435 1518 // Resets a call-site in compiled code so it will get resolved again.
duke@435 1519 // This routines handles both virtual call sites, optimized virtual call
duke@435 1520 // sites, and static call sites. Typically used to change a call sites
duke@435 1521 // destination from compiled to interpreted.
duke@435 1522 //
duke@435 1523 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
duke@435 1524 ResourceMark rm(thread);
duke@435 1525 RegisterMap reg_map(thread, false);
duke@435 1526 frame stub_frame = thread->last_frame();
duke@435 1527 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
duke@435 1528 frame caller = stub_frame.sender(&reg_map);
duke@435 1529
duke@435 1530 // Do nothing if the frame isn't a live compiled frame.
duke@435 1531 // nmethod could be deoptimized by the time we get here
duke@435 1532 // so no update to the caller is needed.
duke@435 1533
duke@435 1534 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
duke@435 1535
duke@435 1536 address pc = caller.pc();
duke@435 1537
duke@435 1538 // Default call_addr is the location of the "basic" call.
duke@435 1539 // Determine the address of the call we a reresolving. With
duke@435 1540 // Inline Caches we will always find a recognizable call.
duke@435 1541 // With Inline Caches disabled we may or may not find a
duke@435 1542 // recognizable call. We will always find a call for static
duke@435 1543 // calls and for optimized virtual calls. For vanilla virtual
duke@435 1544 // calls it depends on the state of the UseInlineCaches switch.
duke@435 1545 //
duke@435 1546 // With Inline Caches disabled we can get here for a virtual call
duke@435 1547 // for two reasons:
duke@435 1548 // 1 - calling an abstract method. The vtable for abstract methods
duke@435 1549 // will run us thru handle_wrong_method and we will eventually
duke@435 1550 // end up in the interpreter to throw the ame.
duke@435 1551 // 2 - a racing deoptimization. We could be doing a vanilla vtable
duke@435 1552 // call and between the time we fetch the entry address and
duke@435 1553 // we jump to it the target gets deoptimized. Similar to 1
duke@435 1554 // we will wind up in the interprter (thru a c2i with c2).
duke@435 1555 //
duke@435 1556 address call_addr = NULL;
duke@435 1557 {
duke@435 1558 // Get call instruction under lock because another thread may be
duke@435 1559 // busy patching it.
duke@435 1560 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 1561 // Location of call instruction
duke@435 1562 if (NativeCall::is_call_before(pc)) {
duke@435 1563 NativeCall *ncall = nativeCall_before(pc);
duke@435 1564 call_addr = ncall->instruction_address();
duke@435 1565 }
duke@435 1566 }
duke@435 1567
duke@435 1568 // Check for static or virtual call
duke@435 1569 bool is_static_call = false;
duke@435 1570 nmethod* caller_nm = CodeCache::find_nmethod(pc);
duke@435 1571 // Make sure nmethod doesn't get deoptimized and removed until
duke@435 1572 // this is done with it.
duke@435 1573 // CLEANUP - with lazy deopt shouldn't need this lock
duke@435 1574 nmethodLocker nmlock(caller_nm);
duke@435 1575
duke@435 1576 if (call_addr != NULL) {
duke@435 1577 RelocIterator iter(caller_nm, call_addr, call_addr+1);
duke@435 1578 int ret = iter.next(); // Get item
duke@435 1579 if (ret) {
duke@435 1580 assert(iter.addr() == call_addr, "must find call");
duke@435 1581 if (iter.type() == relocInfo::static_call_type) {
duke@435 1582 is_static_call = true;
duke@435 1583 } else {
duke@435 1584 assert(iter.type() == relocInfo::virtual_call_type ||
duke@435 1585 iter.type() == relocInfo::opt_virtual_call_type
duke@435 1586 , "unexpected relocInfo. type");
duke@435 1587 }
duke@435 1588 } else {
duke@435 1589 assert(!UseInlineCaches, "relocation info. must exist for this address");
duke@435 1590 }
duke@435 1591
duke@435 1592 // Cleaning the inline cache will force a new resolve. This is more robust
duke@435 1593 // than directly setting it to the new destination, since resolving of calls
duke@435 1594 // is always done through the same code path. (experience shows that it
duke@435 1595 // leads to very hard to track down bugs, if an inline cache gets updated
duke@435 1596 // to a wrong method). It should not be performance critical, since the
duke@435 1597 // resolve is only done once.
duke@435 1598
duke@435 1599 MutexLocker ml(CompiledIC_lock);
duke@435 1600 //
duke@435 1601 // We do not patch the call site if the nmethod has been made non-entrant
duke@435 1602 // as it is a waste of time
duke@435 1603 //
duke@435 1604 if (caller_nm->is_in_use()) {
duke@435 1605 if (is_static_call) {
duke@435 1606 CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
duke@435 1607 ssc->set_to_clean();
duke@435 1608 } else {
duke@435 1609 // compiled, dispatched call (which used to call an interpreted method)
coleenp@4037 1610 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
duke@435 1611 inline_cache->set_to_clean();
duke@435 1612 }
duke@435 1613 }
duke@435 1614 }
duke@435 1615
duke@435 1616 }
duke@435 1617
duke@435 1618 methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
duke@435 1619
duke@435 1620
duke@435 1621 #ifndef PRODUCT
duke@435 1622 Atomic::inc(&_wrong_method_ctr);
duke@435 1623
duke@435 1624 if (TraceCallFixup) {
duke@435 1625 ResourceMark rm(thread);
duke@435 1626 tty->print("handle_wrong_method reresolving call to");
duke@435 1627 callee_method->print_short_name(tty);
duke@435 1628 tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
duke@435 1629 }
duke@435 1630 #endif
duke@435 1631
duke@435 1632 return callee_method;
duke@435 1633 }
duke@435 1634
twisti@4101 1635 #ifdef ASSERT
twisti@4101 1636 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
twisti@4101 1637 const BasicType* sig_bt,
twisti@4101 1638 const VMRegPair* regs) {
twisti@4101 1639 ResourceMark rm;
twisti@4101 1640 const int total_args_passed = method->size_of_parameters();
twisti@4101 1641 const VMRegPair* regs_with_member_name = regs;
twisti@4101 1642 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
twisti@4101 1643
twisti@4101 1644 const int member_arg_pos = total_args_passed - 1;
twisti@4101 1645 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
twisti@4101 1646 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
twisti@4101 1647
twisti@4101 1648 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@4101 1649 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
twisti@4101 1650
twisti@4101 1651 for (int i = 0; i < member_arg_pos; i++) {
twisti@4101 1652 VMReg a = regs_with_member_name[i].first();
twisti@4101 1653 VMReg b = regs_without_member_name[i].first();
twisti@4101 1654 assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
twisti@4101 1655 }
twisti@4101 1656 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
twisti@4101 1657 }
twisti@4101 1658 #endif
twisti@4101 1659
duke@435 1660 // ---------------------------------------------------------------------------
duke@435 1661 // We are calling the interpreter via a c2i. Normally this would mean that
duke@435 1662 // we were called by a compiled method. However we could have lost a race
duke@435 1663 // where we went int -> i2c -> c2i and so the caller could in fact be
twisti@1640 1664 // interpreted. If the caller is compiled we attempt to patch the caller
duke@435 1665 // so he no longer calls into the interpreter.
coleenp@4037 1666 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
coleenp@4037 1667 Method* moop(method);
duke@435 1668
duke@435 1669 address entry_point = moop->from_compiled_entry();
duke@435 1670
duke@435 1671 // It's possible that deoptimization can occur at a call site which hasn't
duke@435 1672 // been resolved yet, in which case this function will be called from
duke@435 1673 // an nmethod that has been patched for deopt and we can ignore the
duke@435 1674 // request for a fixup.
duke@435 1675 // Also it is possible that we lost a race in that from_compiled_entry
duke@435 1676 // is now back to the i2c in that case we don't need to patch and if
duke@435 1677 // we did we'd leap into space because the callsite needs to use
coleenp@4037 1678 // "to interpreter" stub in order to load up the Method*. Don't
duke@435 1679 // ask me how I know this...
duke@435 1680
duke@435 1681 CodeBlob* cb = CodeCache::find_blob(caller_pc);
twisti@1640 1682 if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
twisti@1640 1683 return;
twisti@1640 1684 }
twisti@1640 1685
twisti@1640 1686 // The check above makes sure this is a nmethod.
twisti@1640 1687 nmethod* nm = cb->as_nmethod_or_null();
twisti@1640 1688 assert(nm, "must be");
twisti@1640 1689
twisti@3240 1690 // Get the return PC for the passed caller PC.
twisti@3240 1691 address return_pc = caller_pc + frame::pc_return_offset;
twisti@3240 1692
duke@435 1693 // There is a benign race here. We could be attempting to patch to a compiled
duke@435 1694 // entry point at the same time the callee is being deoptimized. If that is
duke@435 1695 // the case then entry_point may in fact point to a c2i and we'd patch the
duke@435 1696 // call site with the same old data. clear_code will set code() to NULL
duke@435 1697 // at the end of it. If we happen to see that NULL then we can skip trying
duke@435 1698 // to patch. If we hit the window where the callee has a c2i in the
duke@435 1699 // from_compiled_entry and the NULL isn't present yet then we lose the race
duke@435 1700 // and patch the code with the same old data. Asi es la vida.
duke@435 1701
duke@435 1702 if (moop->code() == NULL) return;
duke@435 1703
twisti@1640 1704 if (nm->is_in_use()) {
duke@435 1705
duke@435 1706 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
duke@435 1707 MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
twisti@3240 1708 if (NativeCall::is_call_before(return_pc)) {
twisti@3240 1709 NativeCall *call = nativeCall_before(return_pc);
duke@435 1710 //
duke@435 1711 // bug 6281185. We might get here after resolving a call site to a vanilla
duke@435 1712 // virtual call. Because the resolvee uses the verified entry it may then
duke@435 1713 // see compiled code and attempt to patch the site by calling us. This would
duke@435 1714 // then incorrectly convert the call site to optimized and its downhill from
duke@435 1715 // there. If you're lucky you'll get the assert in the bugid, if not you've
duke@435 1716 // just made a call site that could be megamorphic into a monomorphic site
duke@435 1717 // for the rest of its life! Just another racing bug in the life of
duke@435 1718 // fixup_callers_callsite ...
duke@435 1719 //
twisti@1918 1720 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
duke@435 1721 iter.next();
duke@435 1722 assert(iter.has_current(), "must have a reloc at java call site");
duke@435 1723 relocInfo::relocType typ = iter.reloc()->type();
duke@435 1724 if ( typ != relocInfo::static_call_type &&
duke@435 1725 typ != relocInfo::opt_virtual_call_type &&
duke@435 1726 typ != relocInfo::static_stub_type) {
duke@435 1727 return;
duke@435 1728 }
duke@435 1729 address destination = call->destination();
duke@435 1730 if (destination != entry_point) {
duke@435 1731 CodeBlob* callee = CodeCache::find_blob(destination);
duke@435 1732 // callee == cb seems weird. It means calling interpreter thru stub.
duke@435 1733 if (callee == cb || callee->is_adapter_blob()) {
duke@435 1734 // static call or optimized virtual
duke@435 1735 if (TraceCallFixup) {
twisti@1639 1736 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1737 moop->print_short_name(tty);
duke@435 1738 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1739 }
duke@435 1740 call->set_destination_mt_safe(entry_point);
duke@435 1741 } else {
duke@435 1742 if (TraceCallFixup) {
duke@435 1743 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1744 moop->print_short_name(tty);
duke@435 1745 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1746 }
duke@435 1747 // assert is too strong could also be resolve destinations.
duke@435 1748 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
duke@435 1749 }
duke@435 1750 } else {
duke@435 1751 if (TraceCallFixup) {
twisti@1639 1752 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
duke@435 1753 moop->print_short_name(tty);
duke@435 1754 tty->print_cr(" to " INTPTR_FORMAT, entry_point);
duke@435 1755 }
duke@435 1756 }
duke@435 1757 }
duke@435 1758 }
duke@435 1759 IRT_END
duke@435 1760
duke@435 1761
duke@435 1762 // same as JVM_Arraycopy, but called directly from compiled code
duke@435 1763 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
duke@435 1764 oopDesc* dest, jint dest_pos,
duke@435 1765 jint length,
duke@435 1766 JavaThread* thread)) {
duke@435 1767 #ifndef PRODUCT
duke@435 1768 _slow_array_copy_ctr++;
duke@435 1769 #endif
duke@435 1770 // Check if we have null pointers
duke@435 1771 if (src == NULL || dest == NULL) {
duke@435 1772 THROW(vmSymbols::java_lang_NullPointerException());
duke@435 1773 }
duke@435 1774 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
duke@435 1775 // even though the copy_array API also performs dynamic checks to ensure
duke@435 1776 // that src and dest are truly arrays (and are conformable).
duke@435 1777 // The copy_array mechanism is awkward and could be removed, but
duke@435 1778 // the compilers don't call this function except as a last resort,
duke@435 1779 // so it probably doesn't matter.
hseigel@4278 1780 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
duke@435 1781 (arrayOopDesc*)dest, dest_pos,
duke@435 1782 length, thread);
duke@435 1783 }
duke@435 1784 JRT_END
duke@435 1785
duke@435 1786 char* SharedRuntime::generate_class_cast_message(
duke@435 1787 JavaThread* thread, const char* objName) {
duke@435 1788
duke@435 1789 // Get target class name from the checkcast instruction
duke@435 1790 vframeStream vfst(thread, true);
duke@435 1791 assert(!vfst.at_end(), "Java frame must exist");
never@2462 1792 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
hseigel@4278 1793 Klass* targetKlass = vfst.method()->constants()->klass_at(
hseigel@4278 1794 cc.index(), thread);
duke@435 1795 return generate_class_cast_message(objName, targetKlass->external_name());
duke@435 1796 }
duke@435 1797
duke@435 1798 char* SharedRuntime::generate_class_cast_message(
jrose@1145 1799 const char* objName, const char* targetKlassName, const char* desc) {
duke@435 1800 size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
duke@435 1801
kamg@488 1802 char* message = NEW_RESOURCE_ARRAY(char, msglen);
duke@435 1803 if (NULL == message) {
kamg@488 1804 // Shouldn't happen, but don't cause even more problems if it does
duke@435 1805 message = const_cast<char*>(objName);
duke@435 1806 } else {
duke@435 1807 jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
duke@435 1808 }
duke@435 1809 return message;
duke@435 1810 }
duke@435 1811
duke@435 1812 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
duke@435 1813 (void) JavaThread::current()->reguard_stack();
duke@435 1814 JRT_END
duke@435 1815
duke@435 1816
duke@435 1817 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
duke@435 1818 #ifndef PRODUCT
duke@435 1819 int SharedRuntime::_monitor_enter_ctr=0;
duke@435 1820 #endif
duke@435 1821 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
duke@435 1822 oop obj(_obj);
duke@435 1823 #ifndef PRODUCT
duke@435 1824 _monitor_enter_ctr++; // monitor enter slow
duke@435 1825 #endif
duke@435 1826 if (PrintBiasedLockingStatistics) {
duke@435 1827 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 1828 }
duke@435 1829 Handle h_obj(THREAD, obj);
duke@435 1830 if (UseBiasedLocking) {
duke@435 1831 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 1832 ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
duke@435 1833 } else {
duke@435 1834 ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
duke@435 1835 }
duke@435 1836 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
duke@435 1837 JRT_END
duke@435 1838
duke@435 1839 #ifndef PRODUCT
duke@435 1840 int SharedRuntime::_monitor_exit_ctr=0;
duke@435 1841 #endif
duke@435 1842 // Handles the uncommon cases of monitor unlocking in compiled code
duke@435 1843 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
duke@435 1844 oop obj(_obj);
duke@435 1845 #ifndef PRODUCT
duke@435 1846 _monitor_exit_ctr++; // monitor exit slow
duke@435 1847 #endif
duke@435 1848 Thread* THREAD = JavaThread::current();
duke@435 1849 // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
duke@435 1850 // testing was unable to ever fire the assert that guarded it so I have removed it.
duke@435 1851 assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
duke@435 1852 #undef MIGHT_HAVE_PENDING
duke@435 1853 #ifdef MIGHT_HAVE_PENDING
duke@435 1854 // Save and restore any pending_exception around the exception mark.
duke@435 1855 // While the slow_exit must not throw an exception, we could come into
duke@435 1856 // this routine with one set.
duke@435 1857 oop pending_excep = NULL;
duke@435 1858 const char* pending_file;
duke@435 1859 int pending_line;
duke@435 1860 if (HAS_PENDING_EXCEPTION) {
duke@435 1861 pending_excep = PENDING_EXCEPTION;
duke@435 1862 pending_file = THREAD->exception_file();
duke@435 1863 pending_line = THREAD->exception_line();
duke@435 1864 CLEAR_PENDING_EXCEPTION;
duke@435 1865 }
duke@435 1866 #endif /* MIGHT_HAVE_PENDING */
duke@435 1867
duke@435 1868 {
duke@435 1869 // Exit must be non-blocking, and therefore no exceptions can be thrown.
duke@435 1870 EXCEPTION_MARK;
duke@435 1871 ObjectSynchronizer::slow_exit(obj, lock, THREAD);
duke@435 1872 }
duke@435 1873
duke@435 1874 #ifdef MIGHT_HAVE_PENDING
duke@435 1875 if (pending_excep != NULL) {
duke@435 1876 THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
duke@435 1877 }
duke@435 1878 #endif /* MIGHT_HAVE_PENDING */
duke@435 1879 JRT_END
duke@435 1880
duke@435 1881 #ifndef PRODUCT
duke@435 1882
duke@435 1883 void SharedRuntime::print_statistics() {
duke@435 1884 ttyLocker ttyl;
duke@435 1885 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
duke@435 1886
duke@435 1887 if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow", _monitor_enter_ctr);
duke@435 1888 if (_monitor_exit_ctr ) tty->print_cr("%5d monitor exit slow", _monitor_exit_ctr);
duke@435 1889 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
duke@435 1890
duke@435 1891 SharedRuntime::print_ic_miss_histogram();
duke@435 1892
duke@435 1893 if (CountRemovableExceptions) {
duke@435 1894 if (_nof_removable_exceptions > 0) {
duke@435 1895 Unimplemented(); // this counter is not yet incremented
duke@435 1896 tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
duke@435 1897 }
duke@435 1898 }
duke@435 1899
duke@435 1900 // Dump the JRT_ENTRY counters
duke@435 1901 if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
duke@435 1902 if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
duke@435 1903 if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
duke@435 1904 if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
duke@435 1905 if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
duke@435 1906 if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
duke@435 1907 if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
duke@435 1908
duke@435 1909 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
duke@435 1910 tty->print_cr("%5d wrong method", _wrong_method_ctr );
duke@435 1911 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
duke@435 1912 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
duke@435 1913 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
duke@435 1914
duke@435 1915 if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
duke@435 1916 if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
duke@435 1917 if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
duke@435 1918 if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
duke@435 1919 if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
duke@435 1920 if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
duke@435 1921 if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
duke@435 1922 if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
duke@435 1923 if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
duke@435 1924 if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
duke@435 1925 if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
duke@435 1926 if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
duke@435 1927 if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
duke@435 1928 if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
duke@435 1929 if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
duke@435 1930 if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
duke@435 1931
never@1622 1932 AdapterHandlerLibrary::print_statistics();
never@1622 1933
duke@435 1934 if (xtty != NULL) xtty->tail("statistics");
duke@435 1935 }
duke@435 1936
duke@435 1937 inline double percent(int x, int y) {
duke@435 1938 return 100.0 * x / MAX2(y, 1);
duke@435 1939 }
duke@435 1940
duke@435 1941 class MethodArityHistogram {
duke@435 1942 public:
duke@435 1943 enum { MAX_ARITY = 256 };
duke@435 1944 private:
duke@435 1945 static int _arity_histogram[MAX_ARITY]; // histogram of #args
duke@435 1946 static int _size_histogram[MAX_ARITY]; // histogram of arg size in words
duke@435 1947 static int _max_arity; // max. arity seen
duke@435 1948 static int _max_size; // max. arg size seen
duke@435 1949
duke@435 1950 static void add_method_to_histogram(nmethod* nm) {
coleenp@4037 1951 Method* m = nm->method();
duke@435 1952 ArgumentCount args(m->signature());
duke@435 1953 int arity = args.size() + (m->is_static() ? 0 : 1);
duke@435 1954 int argsize = m->size_of_parameters();
duke@435 1955 arity = MIN2(arity, MAX_ARITY-1);
duke@435 1956 argsize = MIN2(argsize, MAX_ARITY-1);
duke@435 1957 int count = nm->method()->compiled_invocation_count();
duke@435 1958 _arity_histogram[arity] += count;
duke@435 1959 _size_histogram[argsize] += count;
duke@435 1960 _max_arity = MAX2(_max_arity, arity);
duke@435 1961 _max_size = MAX2(_max_size, argsize);
duke@435 1962 }
duke@435 1963
duke@435 1964 void print_histogram_helper(int n, int* histo, const char* name) {
duke@435 1965 const int N = MIN2(5, n);
duke@435 1966 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1967 double sum = 0;
duke@435 1968 double weighted_sum = 0;
duke@435 1969 int i;
duke@435 1970 for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
duke@435 1971 double rest = sum;
duke@435 1972 double percent = sum / 100;
duke@435 1973 for (i = 0; i <= N; i++) {
duke@435 1974 rest -= histo[i];
duke@435 1975 tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
duke@435 1976 }
duke@435 1977 tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
duke@435 1978 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
duke@435 1979 }
duke@435 1980
duke@435 1981 void print_histogram() {
duke@435 1982 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
duke@435 1983 print_histogram_helper(_max_arity, _arity_histogram, "arity");
duke@435 1984 tty->print_cr("\nSame for parameter size (in words):");
duke@435 1985 print_histogram_helper(_max_size, _size_histogram, "size");
duke@435 1986 tty->cr();
duke@435 1987 }
duke@435 1988
duke@435 1989 public:
duke@435 1990 MethodArityHistogram() {
duke@435 1991 MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
duke@435 1992 _max_arity = _max_size = 0;
duke@435 1993 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
duke@435 1994 CodeCache::nmethods_do(add_method_to_histogram);
duke@435 1995 print_histogram();
duke@435 1996 }
duke@435 1997 };
duke@435 1998
duke@435 1999 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2000 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
duke@435 2001 int MethodArityHistogram::_max_arity;
duke@435 2002 int MethodArityHistogram::_max_size;
duke@435 2003
duke@435 2004 void SharedRuntime::print_call_statistics(int comp_total) {
duke@435 2005 tty->print_cr("Calls from compiled code:");
duke@435 2006 int total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
duke@435 2007 int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
duke@435 2008 int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
duke@435 2009 tty->print_cr("\t%9d (%4.1f%%) total non-inlined ", total, percent(total, total));
duke@435 2010 tty->print_cr("\t%9d (%4.1f%%) virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
duke@435 2011 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
duke@435 2012 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
duke@435 2013 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
duke@435 2014 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
duke@435 2015 tty->print_cr("\t%9d (%4.1f%%) interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
duke@435 2016 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
duke@435 2017 tty->print_cr("\t %9d (%3.0f%%) optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
duke@435 2018 tty->print_cr("\t %9d (%3.0f%%) monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
duke@435 2019 tty->print_cr("\t %9d (%3.0f%%) megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
duke@435 2020 tty->print_cr("\t%9d (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
duke@435 2021 tty->print_cr("\t %9d (%3.0f%%) inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
duke@435 2022 tty->cr();
duke@435 2023 tty->print_cr("Note 1: counter updates are not MT-safe.");
duke@435 2024 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
duke@435 2025 tty->print_cr(" %% in nested categories are relative to their category");
duke@435 2026 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
duke@435 2027 tty->cr();
duke@435 2028
duke@435 2029 MethodArityHistogram h;
duke@435 2030 }
duke@435 2031 #endif
duke@435 2032
duke@435 2033
never@1622 2034 // A simple wrapper class around the calling convention information
never@1622 2035 // that allows sharing of adapters for the same calling convention.
zgu@3900 2036 class AdapterFingerPrint : public CHeapObj<mtCode> {
never@1622 2037 private:
twisti@3969 2038 enum {
twisti@3969 2039 _basic_type_bits = 4,
twisti@3969 2040 _basic_type_mask = right_n_bits(_basic_type_bits),
twisti@3969 2041 _basic_types_per_int = BitsPerInt / _basic_type_bits,
twisti@3969 2042 _compact_int_count = 3
twisti@3969 2043 };
twisti@3969 2044 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
twisti@3969 2045 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
twisti@3969 2046
never@1622 2047 union {
twisti@3969 2048 int _compact[_compact_int_count];
never@1642 2049 int* _fingerprint;
never@1622 2050 } _value;
never@1642 2051 int _length; // A negative length indicates the fingerprint is in the compact form,
never@1642 2052 // Otherwise _value._fingerprint is the array.
never@1622 2053
never@1642 2054 // Remap BasicTypes that are handled equivalently by the adapters.
never@1642 2055 // These are correct for the current system but someday it might be
never@1642 2056 // necessary to make this mapping platform dependent.
twisti@3969 2057 static int adapter_encoding(BasicType in) {
never@1642 2058 switch(in) {
never@1642 2059 case T_BOOLEAN:
never@1642 2060 case T_BYTE:
never@1642 2061 case T_SHORT:
never@1642 2062 case T_CHAR:
never@1642 2063 // There are all promoted to T_INT in the calling convention
never@1642 2064 return T_INT;
never@1642 2065
never@1642 2066 case T_OBJECT:
never@1642 2067 case T_ARRAY:
twisti@3969 2068 // In other words, we assume that any register good enough for
twisti@3969 2069 // an int or long is good enough for a managed pointer.
never@1642 2070 #ifdef _LP64
twisti@1861 2071 return T_LONG;
never@1642 2072 #else
twisti@1861 2073 return T_INT;
never@1642 2074 #endif
never@1642 2075
never@1642 2076 case T_INT:
never@1642 2077 case T_LONG:
never@1642 2078 case T_FLOAT:
never@1642 2079 case T_DOUBLE:
never@1642 2080 case T_VOID:
never@1642 2081 return in;
never@1642 2082
never@1642 2083 default:
never@1642 2084 ShouldNotReachHere();
never@1642 2085 return T_CONFLICT;
never@1622 2086 }
never@1622 2087 }
never@1622 2088
never@1642 2089 public:
never@1642 2090 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
never@1642 2091 // The fingerprint is based on the BasicType signature encoded
never@3039 2092 // into an array of ints with eight entries per int.
never@1642 2093 int* ptr;
twisti@3969 2094 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
twisti@3969 2095 if (len <= _compact_int_count) {
twisti@3969 2096 assert(_compact_int_count == 3, "else change next line");
never@1642 2097 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
never@1642 2098 // Storing the signature encoded as signed chars hits about 98%
never@1642 2099 // of the time.
never@1642 2100 _length = -len;
never@1642 2101 ptr = _value._compact;
never@1642 2102 } else {
never@1642 2103 _length = len;
zgu@3900 2104 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
never@1642 2105 ptr = _value._fingerprint;
never@1642 2106 }
never@1642 2107
never@3039 2108 // Now pack the BasicTypes with 8 per int
never@1642 2109 int sig_index = 0;
never@1642 2110 for (int index = 0; index < len; index++) {
never@1642 2111 int value = 0;
twisti@3969 2112 for (int byte = 0; byte < _basic_types_per_int; byte++) {
twisti@3969 2113 int bt = ((sig_index < total_args_passed)
twisti@3969 2114 ? adapter_encoding(sig_bt[sig_index++])
twisti@3969 2115 : 0);
twisti@3969 2116 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
twisti@3969 2117 value = (value << _basic_type_bits) | bt;
never@1642 2118 }
never@1642 2119 ptr[index] = value;
never@1642 2120 }
never@1622 2121 }
never@1622 2122
never@1622 2123 ~AdapterFingerPrint() {
never@1622 2124 if (_length > 0) {
zgu@3900 2125 FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
never@1622 2126 }
never@1622 2127 }
never@1622 2128
never@1642 2129 int value(int index) {
never@1622 2130 if (_length < 0) {
never@1622 2131 return _value._compact[index];
never@1622 2132 }
never@1622 2133 return _value._fingerprint[index];
never@1622 2134 }
never@1622 2135 int length() {
never@1622 2136 if (_length < 0) return -_length;
never@1622 2137 return _length;
never@1622 2138 }
never@1622 2139
never@1622 2140 bool is_compact() {
never@1622 2141 return _length <= 0;
never@1622 2142 }
never@1622 2143
never@1622 2144 unsigned int compute_hash() {
never@1642 2145 int hash = 0;
never@1622 2146 for (int i = 0; i < length(); i++) {
never@1642 2147 int v = value(i);
never@1622 2148 hash = (hash << 8) ^ v ^ (hash >> 5);
never@1622 2149 }
never@1622 2150 return (unsigned int)hash;
never@1622 2151 }
never@1622 2152
never@1622 2153 const char* as_string() {
never@1622 2154 stringStream st;
never@3039 2155 st.print("0x");
never@1622 2156 for (int i = 0; i < length(); i++) {
never@3039 2157 st.print("%08x", value(i));
never@1622 2158 }
never@1622 2159 return st.as_string();
never@1622 2160 }
never@1622 2161
never@1622 2162 bool equals(AdapterFingerPrint* other) {
never@1622 2163 if (other->_length != _length) {
never@1622 2164 return false;
never@1622 2165 }
never@1622 2166 if (_length < 0) {
twisti@3969 2167 assert(_compact_int_count == 3, "else change next line");
never@1642 2168 return _value._compact[0] == other->_value._compact[0] &&
never@1642 2169 _value._compact[1] == other->_value._compact[1] &&
never@1642 2170 _value._compact[2] == other->_value._compact[2];
never@1622 2171 } else {
never@1622 2172 for (int i = 0; i < _length; i++) {
never@1622 2173 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
never@1622 2174 return false;
never@1622 2175 }
never@1622 2176 }
never@1622 2177 }
never@1622 2178 return true;
never@1622 2179 }
never@1622 2180 };
never@1622 2181
never@1622 2182
never@1622 2183 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
zgu@3900 2184 class AdapterHandlerTable : public BasicHashtable<mtCode> {
never@1622 2185 friend class AdapterHandlerTableIterator;
never@1622 2186
never@1622 2187 private:
never@1622 2188
kvn@1698 2189 #ifndef PRODUCT
never@1622 2190 static int _lookups; // number of calls to lookup
never@1622 2191 static int _buckets; // number of buckets checked
never@1622 2192 static int _equals; // number of buckets checked with matching hash
never@1622 2193 static int _hits; // number of successful lookups
never@1622 2194 static int _compact; // number of equals calls with compact signature
never@1622 2195 #endif
never@1622 2196
never@1622 2197 AdapterHandlerEntry* bucket(int i) {
zgu@3900 2198 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
never@1622 2199 }
never@1622 2200
never@1622 2201 public:
never@1622 2202 AdapterHandlerTable()
zgu@3900 2203 : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
never@1622 2204
never@1622 2205 // Create a new entry suitable for insertion in the table
never@1622 2206 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
zgu@3900 2207 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
never@1622 2208 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2209 return entry;
never@1622 2210 }
never@1622 2211
never@1622 2212 // Insert an entry into the table
never@1622 2213 void add(AdapterHandlerEntry* entry) {
never@1622 2214 int index = hash_to_index(entry->hash());
never@1622 2215 add_entry(index, entry);
never@1622 2216 }
never@1622 2217
never@1642 2218 void free_entry(AdapterHandlerEntry* entry) {
never@1642 2219 entry->deallocate();
zgu@3900 2220 BasicHashtable<mtCode>::free_entry(entry);
never@1642 2221 }
never@1642 2222
never@1622 2223 // Find a entry with the same fingerprint if it exists
never@1642 2224 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
kvn@1698 2225 NOT_PRODUCT(_lookups++);
never@1642 2226 AdapterFingerPrint fp(total_args_passed, sig_bt);
never@1622 2227 unsigned int hash = fp.compute_hash();
never@1622 2228 int index = hash_to_index(hash);
never@1622 2229 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
kvn@1698 2230 NOT_PRODUCT(_buckets++);
never@1622 2231 if (e->hash() == hash) {
kvn@1698 2232 NOT_PRODUCT(_equals++);
never@1622 2233 if (fp.equals(e->fingerprint())) {
kvn@1698 2234 #ifndef PRODUCT
never@1622 2235 if (fp.is_compact()) _compact++;
never@1622 2236 _hits++;
never@1622 2237 #endif
never@1622 2238 return e;
never@1622 2239 }
never@1622 2240 }
never@1622 2241 }
never@1622 2242 return NULL;
never@1622 2243 }
never@1622 2244
kvn@1698 2245 #ifndef PRODUCT
never@1622 2246 void print_statistics() {
never@1622 2247 ResourceMark rm;
never@1622 2248 int longest = 0;
never@1622 2249 int empty = 0;
never@1622 2250 int total = 0;
never@1622 2251 int nonempty = 0;
never@1622 2252 for (int index = 0; index < table_size(); index++) {
never@1622 2253 int count = 0;
never@1622 2254 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
never@1622 2255 count++;
never@1622 2256 }
never@1622 2257 if (count != 0) nonempty++;
never@1622 2258 if (count == 0) empty++;
never@1622 2259 if (count > longest) longest = count;
never@1622 2260 total += count;
never@1622 2261 }
never@1622 2262 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
never@1622 2263 empty, longest, total, total / (double)nonempty);
never@1622 2264 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
never@1622 2265 _lookups, _buckets, _equals, _hits, _compact);
kvn@1698 2266 }
never@1622 2267 #endif
never@1622 2268 };
never@1622 2269
never@1622 2270
kvn@1698 2271 #ifndef PRODUCT
never@1622 2272
never@1622 2273 int AdapterHandlerTable::_lookups;
never@1622 2274 int AdapterHandlerTable::_buckets;
never@1622 2275 int AdapterHandlerTable::_equals;
never@1622 2276 int AdapterHandlerTable::_hits;
never@1622 2277 int AdapterHandlerTable::_compact;
never@1622 2278
bobv@2036 2279 #endif
bobv@2036 2280
never@1622 2281 class AdapterHandlerTableIterator : public StackObj {
never@1622 2282 private:
never@1622 2283 AdapterHandlerTable* _table;
never@1622 2284 int _index;
never@1622 2285 AdapterHandlerEntry* _current;
never@1622 2286
never@1622 2287 void scan() {
never@1622 2288 while (_index < _table->table_size()) {
never@1622 2289 AdapterHandlerEntry* a = _table->bucket(_index);
twisti@1919 2290 _index++;
never@1622 2291 if (a != NULL) {
never@1622 2292 _current = a;
never@1622 2293 return;
never@1622 2294 }
never@1622 2295 }
never@1622 2296 }
never@1622 2297
never@1622 2298 public:
never@1622 2299 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
never@1622 2300 scan();
never@1622 2301 }
never@1622 2302 bool has_next() {
never@1622 2303 return _current != NULL;
never@1622 2304 }
never@1622 2305 AdapterHandlerEntry* next() {
never@1622 2306 if (_current != NULL) {
never@1622 2307 AdapterHandlerEntry* result = _current;
never@1622 2308 _current = _current->next();
never@1622 2309 if (_current == NULL) scan();
never@1622 2310 return result;
never@1622 2311 } else {
never@1622 2312 return NULL;
never@1622 2313 }
never@1622 2314 }
never@1622 2315 };
never@1622 2316
never@1622 2317
duke@435 2318 // ---------------------------------------------------------------------------
duke@435 2319 // Implementation of AdapterHandlerLibrary
never@1622 2320 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
never@1622 2321 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
duke@435 2322 const int AdapterHandlerLibrary_size = 16*K;
kvn@1177 2323 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
kvn@1177 2324
kvn@1177 2325 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
kvn@1177 2326 // Should be called only when AdapterHandlerLibrary_lock is active.
kvn@1177 2327 if (_buffer == NULL) // Initialize lazily
kvn@1177 2328 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
kvn@1177 2329 return _buffer;
kvn@1177 2330 }
duke@435 2331
duke@435 2332 void AdapterHandlerLibrary::initialize() {
never@1622 2333 if (_adapters != NULL) return;
never@1622 2334 _adapters = new AdapterHandlerTable();
duke@435 2335
duke@435 2336 // Create a special handler for abstract methods. Abstract methods
duke@435 2337 // are never compiled so an i2c entry is somewhat meaningless, but
duke@435 2338 // fill it in with something appropriate just in case. Pass handle
duke@435 2339 // wrong method for the c2i transitions.
duke@435 2340 address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
never@1622 2341 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
never@1622 2342 StubRoutines::throw_AbstractMethodError_entry(),
never@1622 2343 wrong_method, wrong_method);
duke@435 2344 }
duke@435 2345
never@1622 2346 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
never@1622 2347 address i2c_entry,
never@1622 2348 address c2i_entry,
never@1622 2349 address c2i_unverified_entry) {
never@1622 2350 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
never@1622 2351 }
never@1622 2352
never@1622 2353 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
never@1622 2354 // Use customized signature handler. Need to lock around updates to
never@1622 2355 // the AdapterHandlerTable (it is not safe for concurrent readers
never@1622 2356 // and a single writer: this could be fixed if it becomes a
never@1622 2357 // problem).
duke@435 2358
duke@435 2359 // Get the address of the ic_miss handlers before we grab the
duke@435 2360 // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
duke@435 2361 // was caused by the initialization of the stubs happening
duke@435 2362 // while we held the lock and then notifying jvmti while
duke@435 2363 // holding it. This just forces the initialization to be a little
duke@435 2364 // earlier.
duke@435 2365 address ic_miss = SharedRuntime::get_ic_miss_stub();
duke@435 2366 assert(ic_miss != NULL, "must have handler");
duke@435 2367
never@1622 2368 ResourceMark rm;
never@1622 2369
twisti@2103 2370 NOT_PRODUCT(int insts_size);
twisti@1734 2371 AdapterBlob* B = NULL;
kvn@1177 2372 AdapterHandlerEntry* entry = NULL;
never@1622 2373 AdapterFingerPrint* fingerprint = NULL;
duke@435 2374 {
duke@435 2375 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2376 // make sure data structure is initialized
duke@435 2377 initialize();
duke@435 2378
duke@435 2379 if (method->is_abstract()) {
never@1622 2380 return _abstract_method_handler;
duke@435 2381 }
duke@435 2382
never@1622 2383 // Fill in the signature array, for the calling-convention call.
never@1622 2384 int total_args_passed = method->size_of_parameters(); // All args on stack
never@1622 2385
never@1622 2386 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
never@1622 2387 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
never@1622 2388 int i = 0;
never@1622 2389 if (!method->is_static()) // Pass in receiver first
never@1622 2390 sig_bt[i++] = T_OBJECT;
never@1622 2391 for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
never@1622 2392 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
never@1622 2393 if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
never@1622 2394 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
never@1622 2395 }
never@1622 2396 assert(i == total_args_passed, "");
never@1622 2397
never@1642 2398 // Lookup method signature's fingerprint
never@1642 2399 entry = _adapters->lookup(total_args_passed, sig_bt);
never@1622 2400
never@1642 2401 #ifdef ASSERT
never@1642 2402 AdapterHandlerEntry* shared_entry = NULL;
never@1642 2403 if (VerifyAdapterSharing && entry != NULL) {
never@1642 2404 shared_entry = entry;
never@1642 2405 entry = NULL;
never@1642 2406 }
never@1642 2407 #endif
never@1642 2408
never@1622 2409 if (entry != NULL) {
never@1622 2410 return entry;
duke@435 2411 }
duke@435 2412
never@1642 2413 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
never@1642 2414 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
never@1642 2415
never@1622 2416 // Make a C heap allocated version of the fingerprint to store in the adapter
never@1642 2417 fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
never@1622 2418
duke@435 2419 // Create I2C & C2I handlers
duke@435 2420
twisti@1734 2421 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2422 if (buf != NULL) {
twisti@2103 2423 CodeBuffer buffer(buf);
kvn@1177 2424 short buffer_locs[20];
kvn@1177 2425 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
kvn@1177 2426 sizeof(buffer_locs)/sizeof(relocInfo));
kvn@1177 2427 MacroAssembler _masm(&buffer);
duke@435 2428
kvn@1177 2429 entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
kvn@1177 2430 total_args_passed,
kvn@1177 2431 comp_args_on_stack,
kvn@1177 2432 sig_bt,
never@1622 2433 regs,
never@1622 2434 fingerprint);
kvn@1177 2435
never@1642 2436 #ifdef ASSERT
never@1642 2437 if (VerifyAdapterSharing) {
never@1642 2438 if (shared_entry != NULL) {
twisti@2103 2439 assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
never@1642 2440 "code must match");
never@1642 2441 // Release the one just created and return the original
never@1642 2442 _adapters->free_entry(entry);
never@1642 2443 return shared_entry;
never@1642 2444 } else {
twisti@2103 2445 entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
never@1642 2446 }
never@1642 2447 }
never@1642 2448 #endif
never@1642 2449
twisti@1734 2450 B = AdapterBlob::create(&buffer);
twisti@2103 2451 NOT_PRODUCT(insts_size = buffer.insts_size());
duke@435 2452 }
kvn@463 2453 if (B == NULL) {
kvn@463 2454 // CodeCache is full, disable compilation
kvn@463 2455 // Ought to log this but compile log is only per compile thread
kvn@463 2456 // and we're some non descript Java thread.
kvn@1637 2457 MutexUnlocker mu(AdapterHandlerLibrary_lock);
kvn@1637 2458 CompileBroker::handle_full_code_cache();
never@1622 2459 return NULL; // Out of CodeCache space
kvn@463 2460 }
twisti@2103 2461 entry->relocate(B->content_begin());
duke@435 2462 #ifndef PRODUCT
duke@435 2463 // debugging suppport
twisti@3969 2464 if (PrintAdapterHandlers || PrintStubCode) {
kvn@4107 2465 ttyLocker ttyl;
twisti@3969 2466 entry->print_adapter_on(tty);
twisti@3969 2467 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
never@1622 2468 _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
twisti@3969 2469 method->signature()->as_C_string(), insts_size);
duke@435 2470 tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
twisti@3969 2471 if (Verbose || PrintStubCode) {
twisti@3969 2472 address first_pc = entry->base_address();
kvn@4107 2473 if (first_pc != NULL) {
twisti@3969 2474 Disassembler::decode(first_pc, first_pc + insts_size);
kvn@4107 2475 tty->cr();
kvn@4107 2476 }
twisti@3969 2477 }
duke@435 2478 }
duke@435 2479 #endif
duke@435 2480
never@1622 2481 _adapters->add(entry);
duke@435 2482 }
duke@435 2483 // Outside of the lock
duke@435 2484 if (B != NULL) {
duke@435 2485 char blob_id[256];
duke@435 2486 jio_snprintf(blob_id,
duke@435 2487 sizeof(blob_id),
never@1622 2488 "%s(%s)@" PTR_FORMAT,
twisti@1734 2489 B->name(),
never@1622 2490 fingerprint->as_string(),
twisti@2103 2491 B->content_begin());
twisti@2103 2492 Forte::register_stub(blob_id, B->content_begin(), B->content_end());
duke@435 2493
duke@435 2494 if (JvmtiExport::should_post_dynamic_code_generated()) {
twisti@2103 2495 JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
duke@435 2496 }
duke@435 2497 }
never@1622 2498 return entry;
duke@435 2499 }
duke@435 2500
twisti@3969 2501 address AdapterHandlerEntry::base_address() {
twisti@3969 2502 address base = _i2c_entry;
twisti@3969 2503 if (base == NULL) base = _c2i_entry;
twisti@3969 2504 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
twisti@3969 2505 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
twisti@3969 2506 return base;
twisti@3969 2507 }
twisti@3969 2508
duke@435 2509 void AdapterHandlerEntry::relocate(address new_base) {
twisti@3969 2510 address old_base = base_address();
twisti@3969 2511 assert(old_base != NULL, "");
twisti@3969 2512 ptrdiff_t delta = new_base - old_base;
twisti@3969 2513 if (_i2c_entry != NULL)
duke@435 2514 _i2c_entry += delta;
twisti@3969 2515 if (_c2i_entry != NULL)
duke@435 2516 _c2i_entry += delta;
twisti@3969 2517 if (_c2i_unverified_entry != NULL)
duke@435 2518 _c2i_unverified_entry += delta;
twisti@3969 2519 assert(base_address() == new_base, "");
duke@435 2520 }
duke@435 2521
never@1642 2522
never@1642 2523 void AdapterHandlerEntry::deallocate() {
never@1642 2524 delete _fingerprint;
never@1642 2525 #ifdef ASSERT
zgu@3900 2526 if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
zgu@3900 2527 if (_saved_sig) FREE_C_HEAP_ARRAY(Basictype, _saved_sig, mtCode);
never@1642 2528 #endif
never@1642 2529 }
never@1642 2530
never@1642 2531
never@1642 2532 #ifdef ASSERT
never@1642 2533 // Capture the code before relocation so that it can be compared
never@1642 2534 // against other versions. If the code is captured after relocation
never@1642 2535 // then relative instructions won't be equivalent.
never@1642 2536 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
zgu@3900 2537 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
never@1642 2538 _code_length = length;
never@1642 2539 memcpy(_saved_code, buffer, length);
never@1642 2540 _total_args_passed = total_args_passed;
zgu@3900 2541 _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed, mtCode);
never@1642 2542 memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
never@1642 2543 }
never@1642 2544
never@1642 2545
never@1642 2546 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
never@1642 2547 if (length != _code_length) {
never@1642 2548 return false;
never@1642 2549 }
never@1642 2550 for (int i = 0; i < length; i++) {
never@1642 2551 if (buffer[i] != _saved_code[i]) {
never@1642 2552 return false;
never@1642 2553 }
never@1642 2554 }
never@1642 2555 return true;
never@1642 2556 }
never@1642 2557 #endif
never@1642 2558
never@1642 2559
duke@435 2560 // Create a native wrapper for this native method. The wrapper converts the
duke@435 2561 // java compiled calling convention to the native convention, handlizes
duke@435 2562 // arguments, and transitions to native. On return from the native we transition
duke@435 2563 // back to java blocking if a safepoint is in progress.
twisti@2687 2564 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
duke@435 2565 ResourceMark rm;
duke@435 2566 nmethod* nm = NULL;
duke@435 2567
twisti@3969 2568 assert(method->is_native(), "must be native");
twisti@3969 2569 assert(method->is_method_handle_intrinsic() ||
twisti@3969 2570 method->has_native_function(), "must have something valid to call!");
duke@435 2571
duke@435 2572 {
duke@435 2573 // perform the work while holding the lock, but perform any printing outside the lock
duke@435 2574 MutexLocker mu(AdapterHandlerLibrary_lock);
duke@435 2575 // See if somebody beat us to it
duke@435 2576 nm = method->code();
duke@435 2577 if (nm) {
duke@435 2578 return nm;
duke@435 2579 }
duke@435 2580
kvn@1177 2581 ResourceMark rm;
duke@435 2582
kvn@1177 2583 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2584 if (buf != NULL) {
twisti@2103 2585 CodeBuffer buffer(buf);
kvn@1177 2586 double locs_buf[20];
kvn@1177 2587 buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2588 MacroAssembler _masm(&buffer);
duke@435 2589
kvn@1177 2590 // Fill in the signature array, for the calling-convention call.
twisti@4101 2591 const int total_args_passed = method->size_of_parameters();
twisti@4101 2592
twisti@4101 2593 BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
twisti@4101 2594 VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
kvn@1177 2595 int i=0;
kvn@1177 2596 if( !method->is_static() ) // Pass in receiver first
kvn@1177 2597 sig_bt[i++] = T_OBJECT;
kvn@1177 2598 SignatureStream ss(method->signature());
kvn@1177 2599 for( ; !ss.at_return_type(); ss.next()) {
kvn@1177 2600 sig_bt[i++] = ss.type(); // Collect remaining bits of signature
kvn@1177 2601 if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
kvn@1177 2602 sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots
kvn@1177 2603 }
twisti@4101 2604 assert(i == total_args_passed, "");
kvn@1177 2605 BasicType ret_type = ss.type();
kvn@1177 2606
twisti@3969 2607 // Now get the compiled-Java layout as input (or output) arguments.
twisti@3969 2608 // NOTE: Stubs for compiled entry points of method handle intrinsics
twisti@3969 2609 // are just trampolines so the argument registers must be outgoing ones.
twisti@3969 2610 const bool is_outgoing = method->is_method_handle_intrinsic();
twisti@3969 2611 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
kvn@1177 2612
kvn@1177 2613 // Generate the compiled-to-native wrapper code
kvn@1177 2614 nm = SharedRuntime::generate_native_wrapper(&_masm,
kvn@1177 2615 method,
twisti@2687 2616 compile_id,
twisti@4101 2617 sig_bt,
twisti@4101 2618 regs,
kvn@1177 2619 ret_type);
duke@435 2620 }
duke@435 2621 }
duke@435 2622
duke@435 2623 // Must unlock before calling set_code
never@2083 2624
duke@435 2625 // Install the generated code.
duke@435 2626 if (nm != NULL) {
twisti@2687 2627 if (PrintCompilation) {
twisti@2687 2628 ttyLocker ttyl;
twisti@2687 2629 CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
twisti@2687 2630 }
duke@435 2631 method->set_code(method, nm);
duke@435 2632 nm->post_compiled_method_load_event();
duke@435 2633 } else {
duke@435 2634 // CodeCache is full, disable compilation
kvn@1637 2635 CompileBroker::handle_full_code_cache();
duke@435 2636 }
duke@435 2637 return nm;
duke@435 2638 }
duke@435 2639
never@3500 2640 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
never@3500 2641 assert(thread == JavaThread::current(), "must be");
never@3500 2642 // The code is about to enter a JNI lazy critical native method and
never@3500 2643 // _needs_gc is true, so if this thread is already in a critical
never@3500 2644 // section then just return, otherwise this thread should block
never@3500 2645 // until needs_gc has been cleared.
never@3500 2646 if (thread->in_critical()) {
never@3500 2647 return;
never@3500 2648 }
never@3500 2649 // Lock and unlock a critical section to give the system a chance to block
never@3500 2650 GC_locker::lock_critical(thread);
never@3500 2651 GC_locker::unlock_critical(thread);
never@3500 2652 JRT_END
never@3500 2653
kamg@551 2654 #ifdef HAVE_DTRACE_H
kamg@551 2655 // Create a dtrace nmethod for this method. The wrapper converts the
kamg@551 2656 // java compiled calling convention to the native convention, makes a dummy call
kamg@551 2657 // (actually nops for the size of the call instruction, which become a trap if
kamg@551 2658 // probe is enabled). The returns to the caller. Since this all looks like a
kamg@551 2659 // leaf no thread transition is needed.
kamg@551 2660
kamg@551 2661 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
kamg@551 2662 ResourceMark rm;
kamg@551 2663 nmethod* nm = NULL;
kamg@551 2664
kamg@551 2665 if (PrintCompilation) {
kamg@551 2666 ttyLocker ttyl;
kamg@551 2667 tty->print("--- n%s ");
kamg@551 2668 method->print_short_name(tty);
kamg@551 2669 if (method->is_static()) {
kamg@551 2670 tty->print(" (static)");
kamg@551 2671 }
kamg@551 2672 tty->cr();
kamg@551 2673 }
kamg@551 2674
kamg@551 2675 {
kamg@551 2676 // perform the work while holding the lock, but perform any printing
kamg@551 2677 // outside the lock
kamg@551 2678 MutexLocker mu(AdapterHandlerLibrary_lock);
kamg@551 2679 // See if somebody beat us to it
kamg@551 2680 nm = method->code();
kamg@551 2681 if (nm) {
kamg@551 2682 return nm;
kamg@551 2683 }
kamg@551 2684
kvn@1177 2685 ResourceMark rm;
kvn@1177 2686
kvn@1177 2687 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
kvn@1177 2688 if (buf != NULL) {
twisti@2103 2689 CodeBuffer buffer(buf);
kvn@1177 2690 // Need a few relocation entries
kvn@1177 2691 double locs_buf[20];
kvn@1177 2692 buffer.insts()->initialize_shared_locs(
kamg@551 2693 (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
kvn@1177 2694 MacroAssembler _masm(&buffer);
kamg@551 2695
kvn@1177 2696 // Generate the compiled-to-native wrapper code
kvn@1177 2697 nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
kvn@1177 2698 }
kamg@551 2699 }
kamg@551 2700 return nm;
kamg@551 2701 }
kamg@551 2702
kamg@551 2703 // the dtrace method needs to convert java lang string to utf8 string.
kamg@551 2704 void SharedRuntime::get_utf(oopDesc* src, address dst) {
kamg@551 2705 typeArrayOop jlsValue = java_lang_String::value(src);
kamg@551 2706 int jlsOffset = java_lang_String::offset(src);
kamg@551 2707 int jlsLen = java_lang_String::length(src);
kamg@551 2708 jchar* jlsPos = (jlsLen == 0) ? NULL :
kamg@551 2709 jlsValue->char_at_addr(jlsOffset);
coleenp@4142 2710 assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
kamg@551 2711 (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
kamg@551 2712 }
kamg@551 2713 #endif // ndef HAVE_DTRACE_H
kamg@551 2714
duke@435 2715 // -------------------------------------------------------------------------
duke@435 2716 // Java-Java calling convention
duke@435 2717 // (what you use when Java calls Java)
duke@435 2718
duke@435 2719 //------------------------------name_for_receiver----------------------------------
duke@435 2720 // For a given signature, return the VMReg for parameter 0.
duke@435 2721 VMReg SharedRuntime::name_for_receiver() {
duke@435 2722 VMRegPair regs;
duke@435 2723 BasicType sig_bt = T_OBJECT;
duke@435 2724 (void) java_calling_convention(&sig_bt, &regs, 1, true);
duke@435 2725 // Return argument 0 register. In the LP64 build pointers
duke@435 2726 // take 2 registers, but the VM wants only the 'main' name.
duke@435 2727 return regs.first();
duke@435 2728 }
duke@435 2729
coleenp@2497 2730 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
duke@435 2731 // This method is returning a data structure allocating as a
duke@435 2732 // ResourceObject, so do not put any ResourceMarks in here.
duke@435 2733 char *s = sig->as_C_string();
duke@435 2734 int len = (int)strlen(s);
duke@435 2735 *s++; len--; // Skip opening paren
duke@435 2736 char *t = s+len;
duke@435 2737 while( *(--t) != ')' ) ; // Find close paren
duke@435 2738
duke@435 2739 BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
duke@435 2740 VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
duke@435 2741 int cnt = 0;
twisti@1573 2742 if (has_receiver) {
duke@435 2743 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
duke@435 2744 }
duke@435 2745
duke@435 2746 while( s < t ) {
duke@435 2747 switch( *s++ ) { // Switch on signature character
duke@435 2748 case 'B': sig_bt[cnt++] = T_BYTE; break;
duke@435 2749 case 'C': sig_bt[cnt++] = T_CHAR; break;
duke@435 2750 case 'D': sig_bt[cnt++] = T_DOUBLE; sig_bt[cnt++] = T_VOID; break;
duke@435 2751 case 'F': sig_bt[cnt++] = T_FLOAT; break;
duke@435 2752 case 'I': sig_bt[cnt++] = T_INT; break;
duke@435 2753 case 'J': sig_bt[cnt++] = T_LONG; sig_bt[cnt++] = T_VOID; break;
duke@435 2754 case 'S': sig_bt[cnt++] = T_SHORT; break;
duke@435 2755 case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
duke@435 2756 case 'V': sig_bt[cnt++] = T_VOID; break;
duke@435 2757 case 'L': // Oop
duke@435 2758 while( *s++ != ';' ) ; // Skip signature
duke@435 2759 sig_bt[cnt++] = T_OBJECT;
duke@435 2760 break;
duke@435 2761 case '[': { // Array
duke@435 2762 do { // Skip optional size
duke@435 2763 while( *s >= '0' && *s <= '9' ) s++;
duke@435 2764 } while( *s++ == '[' ); // Nested arrays?
duke@435 2765 // Skip element type
duke@435 2766 if( s[-1] == 'L' )
duke@435 2767 while( *s++ != ';' ) ; // Skip signature
duke@435 2768 sig_bt[cnt++] = T_ARRAY;
duke@435 2769 break;
duke@435 2770 }
duke@435 2771 default : ShouldNotReachHere();
duke@435 2772 }
duke@435 2773 }
duke@435 2774 assert( cnt < 256, "grow table size" );
duke@435 2775
duke@435 2776 int comp_args_on_stack;
duke@435 2777 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
duke@435 2778
duke@435 2779 // the calling convention doesn't count out_preserve_stack_slots so
duke@435 2780 // we must add that in to get "true" stack offsets.
duke@435 2781
duke@435 2782 if (comp_args_on_stack) {
duke@435 2783 for (int i = 0; i < cnt; i++) {
duke@435 2784 VMReg reg1 = regs[i].first();
duke@435 2785 if( reg1->is_stack()) {
duke@435 2786 // Yuck
duke@435 2787 reg1 = reg1->bias(out_preserve_stack_slots());
duke@435 2788 }
duke@435 2789 VMReg reg2 = regs[i].second();
duke@435 2790 if( reg2->is_stack()) {
duke@435 2791 // Yuck
duke@435 2792 reg2 = reg2->bias(out_preserve_stack_slots());
duke@435 2793 }
duke@435 2794 regs[i].set_pair(reg2, reg1);
duke@435 2795 }
duke@435 2796 }
duke@435 2797
duke@435 2798 // results
duke@435 2799 *arg_size = cnt;
duke@435 2800 return regs;
duke@435 2801 }
duke@435 2802
duke@435 2803 // OSR Migration Code
duke@435 2804 //
duke@435 2805 // This code is used convert interpreter frames into compiled frames. It is
duke@435 2806 // called from very start of a compiled OSR nmethod. A temp array is
duke@435 2807 // allocated to hold the interesting bits of the interpreter frame. All
duke@435 2808 // active locks are inflated to allow them to move. The displaced headers and
duke@435 2809 // active interpeter locals are copied into the temp buffer. Then we return
duke@435 2810 // back to the compiled code. The compiled code then pops the current
duke@435 2811 // interpreter frame off the stack and pushes a new compiled frame. Then it
duke@435 2812 // copies the interpreter locals and displaced headers where it wants.
duke@435 2813 // Finally it calls back to free the temp buffer.
duke@435 2814 //
duke@435 2815 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
duke@435 2816
duke@435 2817 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
duke@435 2818
duke@435 2819 #ifdef IA64
duke@435 2820 ShouldNotReachHere(); // NYI
duke@435 2821 #endif /* IA64 */
duke@435 2822
duke@435 2823 //
duke@435 2824 // This code is dependent on the memory layout of the interpreter local
duke@435 2825 // array and the monitors. On all of our platforms the layout is identical
duke@435 2826 // so this code is shared. If some platform lays the their arrays out
duke@435 2827 // differently then this code could move to platform specific code or
duke@435 2828 // the code here could be modified to copy items one at a time using
duke@435 2829 // frame accessor methods and be platform independent.
duke@435 2830
duke@435 2831 frame fr = thread->last_frame();
duke@435 2832 assert( fr.is_interpreted_frame(), "" );
duke@435 2833 assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
duke@435 2834
duke@435 2835 // Figure out how many monitors are active.
duke@435 2836 int active_monitor_count = 0;
duke@435 2837 for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
duke@435 2838 kptr < fr.interpreter_frame_monitor_begin();
duke@435 2839 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
duke@435 2840 if( kptr->obj() != NULL ) active_monitor_count++;
duke@435 2841 }
duke@435 2842
duke@435 2843 // QQQ we could place number of active monitors in the array so that compiled code
duke@435 2844 // could double check it.
duke@435 2845
coleenp@4037 2846 Method* moop = fr.interpreter_frame_method();
duke@435 2847 int max_locals = moop->max_locals();
duke@435 2848 // Allocate temp buffer, 1 word per local & 2 per active monitor
duke@435 2849 int buf_size_words = max_locals + active_monitor_count*2;
zgu@3900 2850 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
duke@435 2851
duke@435 2852 // Copy the locals. Order is preserved so that loading of longs works.
duke@435 2853 // Since there's no GC I can copy the oops blindly.
duke@435 2854 assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
twisti@1861 2855 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
duke@435 2856 (HeapWord*)&buf[0],
duke@435 2857 max_locals);
duke@435 2858
duke@435 2859 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
duke@435 2860 int i = max_locals;
duke@435 2861 for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
duke@435 2862 kptr2 < fr.interpreter_frame_monitor_begin();
duke@435 2863 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
duke@435 2864 if( kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
duke@435 2865 BasicLock *lock = kptr2->lock();
duke@435 2866 // Inflate so the displaced header becomes position-independent
duke@435 2867 if (lock->displaced_header()->is_unlocked())
duke@435 2868 ObjectSynchronizer::inflate_helper(kptr2->obj());
duke@435 2869 // Now the displaced header is free to move
duke@435 2870 buf[i++] = (intptr_t)lock->displaced_header();
duke@435 2871 buf[i++] = (intptr_t)kptr2->obj();
duke@435 2872 }
duke@435 2873 }
duke@435 2874 assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
duke@435 2875
duke@435 2876 return buf;
duke@435 2877 JRT_END
duke@435 2878
duke@435 2879 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
zgu@3900 2880 FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
duke@435 2881 JRT_END
duke@435 2882
duke@435 2883 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
never@1622 2884 AdapterHandlerTableIterator iter(_adapters);
never@1622 2885 while (iter.has_next()) {
never@1622 2886 AdapterHandlerEntry* a = iter.next();
never@1622 2887 if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
duke@435 2888 }
duke@435 2889 return false;
duke@435 2890 }
duke@435 2891
bobv@2036 2892 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
never@1622 2893 AdapterHandlerTableIterator iter(_adapters);
never@1622 2894 while (iter.has_next()) {
never@1622 2895 AdapterHandlerEntry* a = iter.next();
twisti@3969 2896 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
bobv@2036 2897 st->print("Adapter for signature: ");
twisti@3969 2898 a->print_adapter_on(tty);
duke@435 2899 return;
duke@435 2900 }
duke@435 2901 }
duke@435 2902 assert(false, "Should have found handler");
duke@435 2903 }
never@1622 2904
twisti@3969 2905 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
twisti@3969 2906 st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
twisti@3969 2907 (intptr_t) this, fingerprint()->as_string(),
twisti@3969 2908 get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
twisti@3969 2909
twisti@3969 2910 }
twisti@3969 2911
bobv@2036 2912 #ifndef PRODUCT
bobv@2036 2913
never@1622 2914 void AdapterHandlerLibrary::print_statistics() {
never@1622 2915 _adapters->print_statistics();
never@1622 2916 }
never@1622 2917
duke@435 2918 #endif /* PRODUCT */

mercurial