src/share/vm/opto/type.cpp

Mon, 28 Jul 2008 17:12:52 -0700

author
kvn
date
Mon, 28 Jul 2008 17:12:52 -0700
changeset 688
b0fe4deeb9fb
parent 682
02a35ad4adf8
child 728
c3e045194476
permissions
-rw-r--r--

6726999: nsk/stress/jck12a/jck12a010 assert(n != null,"Bad immediate dominator info.")
Summary: Escape Analysis fixes.
Reviewed-by: never, rasbold

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 // Optimization - Graph Style
duke@435 28
duke@435 29 #include "incls/_precompiled.incl"
duke@435 30 #include "incls/_type.cpp.incl"
duke@435 31
duke@435 32 // Dictionary of types shared among compilations.
duke@435 33 Dict* Type::_shared_type_dict = NULL;
duke@435 34
duke@435 35 // Array which maps compiler types to Basic Types
duke@435 36 const BasicType Type::_basic_type[Type::lastype] = {
duke@435 37 T_ILLEGAL, // Bad
duke@435 38 T_ILLEGAL, // Control
duke@435 39 T_VOID, // Top
duke@435 40 T_INT, // Int
duke@435 41 T_LONG, // Long
duke@435 42 T_VOID, // Half
coleenp@548 43 T_NARROWOOP, // NarrowOop
duke@435 44
duke@435 45 T_ILLEGAL, // Tuple
duke@435 46 T_ARRAY, // Array
duke@435 47
duke@435 48 T_ADDRESS, // AnyPtr // shows up in factory methods for NULL_PTR
duke@435 49 T_ADDRESS, // RawPtr
duke@435 50 T_OBJECT, // OopPtr
duke@435 51 T_OBJECT, // InstPtr
duke@435 52 T_OBJECT, // AryPtr
duke@435 53 T_OBJECT, // KlassPtr
duke@435 54
duke@435 55 T_OBJECT, // Function
duke@435 56 T_ILLEGAL, // Abio
duke@435 57 T_ADDRESS, // Return_Address
duke@435 58 T_ILLEGAL, // Memory
duke@435 59 T_FLOAT, // FloatTop
duke@435 60 T_FLOAT, // FloatCon
duke@435 61 T_FLOAT, // FloatBot
duke@435 62 T_DOUBLE, // DoubleTop
duke@435 63 T_DOUBLE, // DoubleCon
duke@435 64 T_DOUBLE, // DoubleBot
duke@435 65 T_ILLEGAL, // Bottom
duke@435 66 };
duke@435 67
duke@435 68 // Map ideal registers (machine types) to ideal types
duke@435 69 const Type *Type::mreg2type[_last_machine_leaf];
duke@435 70
duke@435 71 // Map basic types to canonical Type* pointers.
duke@435 72 const Type* Type:: _const_basic_type[T_CONFLICT+1];
duke@435 73
duke@435 74 // Map basic types to constant-zero Types.
duke@435 75 const Type* Type:: _zero_type[T_CONFLICT+1];
duke@435 76
duke@435 77 // Map basic types to array-body alias types.
duke@435 78 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
duke@435 79
duke@435 80 //=============================================================================
duke@435 81 // Convenience common pre-built types.
duke@435 82 const Type *Type::ABIO; // State-of-machine only
duke@435 83 const Type *Type::BOTTOM; // All values
duke@435 84 const Type *Type::CONTROL; // Control only
duke@435 85 const Type *Type::DOUBLE; // All doubles
duke@435 86 const Type *Type::FLOAT; // All floats
duke@435 87 const Type *Type::HALF; // Placeholder half of doublewide type
duke@435 88 const Type *Type::MEMORY; // Abstract store only
duke@435 89 const Type *Type::RETURN_ADDRESS;
duke@435 90 const Type *Type::TOP; // No values in set
duke@435 91
duke@435 92 //------------------------------get_const_type---------------------------
duke@435 93 const Type* Type::get_const_type(ciType* type) {
duke@435 94 if (type == NULL) {
duke@435 95 return NULL;
duke@435 96 } else if (type->is_primitive_type()) {
duke@435 97 return get_const_basic_type(type->basic_type());
duke@435 98 } else {
duke@435 99 return TypeOopPtr::make_from_klass(type->as_klass());
duke@435 100 }
duke@435 101 }
duke@435 102
duke@435 103 //---------------------------array_element_basic_type---------------------------------
duke@435 104 // Mapping to the array element's basic type.
duke@435 105 BasicType Type::array_element_basic_type() const {
duke@435 106 BasicType bt = basic_type();
duke@435 107 if (bt == T_INT) {
duke@435 108 if (this == TypeInt::INT) return T_INT;
duke@435 109 if (this == TypeInt::CHAR) return T_CHAR;
duke@435 110 if (this == TypeInt::BYTE) return T_BYTE;
duke@435 111 if (this == TypeInt::BOOL) return T_BOOLEAN;
duke@435 112 if (this == TypeInt::SHORT) return T_SHORT;
duke@435 113 return T_VOID;
duke@435 114 }
duke@435 115 return bt;
duke@435 116 }
duke@435 117
duke@435 118 //---------------------------get_typeflow_type---------------------------------
duke@435 119 // Import a type produced by ciTypeFlow.
duke@435 120 const Type* Type::get_typeflow_type(ciType* type) {
duke@435 121 switch (type->basic_type()) {
duke@435 122
duke@435 123 case ciTypeFlow::StateVector::T_BOTTOM:
duke@435 124 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
duke@435 125 return Type::BOTTOM;
duke@435 126
duke@435 127 case ciTypeFlow::StateVector::T_TOP:
duke@435 128 assert(type == ciTypeFlow::StateVector::top_type(), "");
duke@435 129 return Type::TOP;
duke@435 130
duke@435 131 case ciTypeFlow::StateVector::T_NULL:
duke@435 132 assert(type == ciTypeFlow::StateVector::null_type(), "");
duke@435 133 return TypePtr::NULL_PTR;
duke@435 134
duke@435 135 case ciTypeFlow::StateVector::T_LONG2:
duke@435 136 // The ciTypeFlow pass pushes a long, then the half.
duke@435 137 // We do the same.
duke@435 138 assert(type == ciTypeFlow::StateVector::long2_type(), "");
duke@435 139 return TypeInt::TOP;
duke@435 140
duke@435 141 case ciTypeFlow::StateVector::T_DOUBLE2:
duke@435 142 // The ciTypeFlow pass pushes double, then the half.
duke@435 143 // Our convention is the same.
duke@435 144 assert(type == ciTypeFlow::StateVector::double2_type(), "");
duke@435 145 return Type::TOP;
duke@435 146
duke@435 147 case T_ADDRESS:
duke@435 148 assert(type->is_return_address(), "");
duke@435 149 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
duke@435 150
duke@435 151 default:
duke@435 152 // make sure we did not mix up the cases:
duke@435 153 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
duke@435 154 assert(type != ciTypeFlow::StateVector::top_type(), "");
duke@435 155 assert(type != ciTypeFlow::StateVector::null_type(), "");
duke@435 156 assert(type != ciTypeFlow::StateVector::long2_type(), "");
duke@435 157 assert(type != ciTypeFlow::StateVector::double2_type(), "");
duke@435 158 assert(!type->is_return_address(), "");
duke@435 159
duke@435 160 return Type::get_const_type(type);
duke@435 161 }
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 //------------------------------make-------------------------------------------
duke@435 166 // Create a simple Type, with default empty symbol sets. Then hashcons it
duke@435 167 // and look for an existing copy in the type dictionary.
duke@435 168 const Type *Type::make( enum TYPES t ) {
duke@435 169 return (new Type(t))->hashcons();
duke@435 170 }
kvn@658 171
duke@435 172 //------------------------------cmp--------------------------------------------
duke@435 173 int Type::cmp( const Type *const t1, const Type *const t2 ) {
duke@435 174 if( t1->_base != t2->_base )
duke@435 175 return 1; // Missed badly
duke@435 176 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
duke@435 177 return !t1->eq(t2); // Return ZERO if equal
duke@435 178 }
duke@435 179
duke@435 180 //------------------------------hash-------------------------------------------
duke@435 181 int Type::uhash( const Type *const t ) {
duke@435 182 return t->hash();
duke@435 183 }
duke@435 184
duke@435 185 //--------------------------Initialize_shared----------------------------------
duke@435 186 void Type::Initialize_shared(Compile* current) {
duke@435 187 // This method does not need to be locked because the first system
duke@435 188 // compilations (stub compilations) occur serially. If they are
duke@435 189 // changed to proceed in parallel, then this section will need
duke@435 190 // locking.
duke@435 191
duke@435 192 Arena* save = current->type_arena();
duke@435 193 Arena* shared_type_arena = new Arena();
duke@435 194
duke@435 195 current->set_type_arena(shared_type_arena);
duke@435 196 _shared_type_dict =
duke@435 197 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
duke@435 198 shared_type_arena, 128 );
duke@435 199 current->set_type_dict(_shared_type_dict);
duke@435 200
duke@435 201 // Make shared pre-built types.
duke@435 202 CONTROL = make(Control); // Control only
duke@435 203 TOP = make(Top); // No values in set
duke@435 204 MEMORY = make(Memory); // Abstract store only
duke@435 205 ABIO = make(Abio); // State-of-machine only
duke@435 206 RETURN_ADDRESS=make(Return_Address);
duke@435 207 FLOAT = make(FloatBot); // All floats
duke@435 208 DOUBLE = make(DoubleBot); // All doubles
duke@435 209 BOTTOM = make(Bottom); // Everything
duke@435 210 HALF = make(Half); // Placeholder half of doublewide type
duke@435 211
duke@435 212 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
duke@435 213 TypeF::ONE = TypeF::make(1.0); // Float 1
duke@435 214
duke@435 215 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
duke@435 216 TypeD::ONE = TypeD::make(1.0); // Double 1
duke@435 217
duke@435 218 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
duke@435 219 TypeInt::ZERO = TypeInt::make( 0); // 0
duke@435 220 TypeInt::ONE = TypeInt::make( 1); // 1
duke@435 221 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
duke@435 222 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
duke@435 223 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
duke@435 224 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
duke@435 225 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
duke@435 226 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
duke@435 227 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
duke@435 228 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
duke@435 229 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
duke@435 230 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
duke@435 231 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
duke@435 232 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
duke@435 233 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
duke@435 234 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
duke@435 235 // CmpL is overloaded both as the bytecode computation returning
duke@435 236 // a trinary (-1,0,+1) integer result AND as an efficient long
duke@435 237 // compare returning optimizer ideal-type flags.
duke@435 238 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
duke@435 239 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
duke@435 240 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
duke@435 241 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
duke@435 242
duke@435 243 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
duke@435 244 TypeLong::ZERO = TypeLong::make( 0); // 0
duke@435 245 TypeLong::ONE = TypeLong::make( 1); // 1
duke@435 246 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
duke@435 247 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
duke@435 248 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
duke@435 249 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
duke@435 250
duke@435 251 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 252 fboth[0] = Type::CONTROL;
duke@435 253 fboth[1] = Type::CONTROL;
duke@435 254 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
duke@435 255
duke@435 256 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 257 ffalse[0] = Type::CONTROL;
duke@435 258 ffalse[1] = Type::TOP;
duke@435 259 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
duke@435 260
duke@435 261 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 262 fneither[0] = Type::TOP;
duke@435 263 fneither[1] = Type::TOP;
duke@435 264 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
duke@435 265
duke@435 266 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 267 ftrue[0] = Type::TOP;
duke@435 268 ftrue[1] = Type::CONTROL;
duke@435 269 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
duke@435 270
duke@435 271 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 272 floop[0] = Type::CONTROL;
duke@435 273 floop[1] = TypeInt::INT;
duke@435 274 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
duke@435 275
duke@435 276 TypePtr::NULL_PTR= TypePtr::make( AnyPtr, TypePtr::Null, 0 );
duke@435 277 TypePtr::NOTNULL = TypePtr::make( AnyPtr, TypePtr::NotNull, OffsetBot );
duke@435 278 TypePtr::BOTTOM = TypePtr::make( AnyPtr, TypePtr::BotPTR, OffsetBot );
duke@435 279
duke@435 280 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
duke@435 281 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
duke@435 282
duke@435 283 const Type **fmembar = TypeTuple::fields(0);
duke@435 284 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
duke@435 285
duke@435 286 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
duke@435 287 fsc[0] = TypeInt::CC;
duke@435 288 fsc[1] = Type::MEMORY;
duke@435 289 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
duke@435 290
duke@435 291 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
duke@435 292 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
duke@435 293 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
duke@435 294 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 295 false, 0, oopDesc::mark_offset_in_bytes());
duke@435 296 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
duke@435 297 false, 0, oopDesc::klass_offset_in_bytes());
duke@435 298 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot);
duke@435 299
coleenp@548 300 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
coleenp@548 301 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
coleenp@548 302
coleenp@548 303 mreg2type[Op_Node] = Type::BOTTOM;
coleenp@548 304 mreg2type[Op_Set ] = 0;
coleenp@548 305 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
coleenp@548 306 mreg2type[Op_RegI] = TypeInt::INT;
coleenp@548 307 mreg2type[Op_RegP] = TypePtr::BOTTOM;
coleenp@548 308 mreg2type[Op_RegF] = Type::FLOAT;
coleenp@548 309 mreg2type[Op_RegD] = Type::DOUBLE;
coleenp@548 310 mreg2type[Op_RegL] = TypeLong::LONG;
coleenp@548 311 mreg2type[Op_RegFlags] = TypeInt::CC;
coleenp@548 312
duke@435 313 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), current->env()->Object_klass(), false, arrayOopDesc::length_offset_in_bytes());
kvn@598 314
kvn@598 315 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 316
kvn@598 317 #ifdef _LP64
kvn@598 318 if (UseCompressedOops) {
kvn@598 319 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
kvn@598 320 } else
kvn@598 321 #endif
kvn@598 322 {
kvn@598 323 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
kvn@598 324 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
kvn@598 325 }
duke@435 326 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
duke@435 327 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
duke@435 328 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
duke@435 329 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
duke@435 330 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
duke@435 331 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
duke@435 332 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
duke@435 333
kvn@598 334 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
kvn@598 335 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
duke@435 336 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
kvn@598 337 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
duke@435 338 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
duke@435 339 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
duke@435 340 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
duke@435 341 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
duke@435 342 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
duke@435 343 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
duke@435 344 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
duke@435 345 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
duke@435 346
duke@435 347 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
duke@435 348 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
duke@435 349
duke@435 350 const Type **fi2c = TypeTuple::fields(2);
duke@435 351 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // methodOop
duke@435 352 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
duke@435 353 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
duke@435 354
duke@435 355 const Type **intpair = TypeTuple::fields(2);
duke@435 356 intpair[0] = TypeInt::INT;
duke@435 357 intpair[1] = TypeInt::INT;
duke@435 358 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
duke@435 359
duke@435 360 const Type **longpair = TypeTuple::fields(2);
duke@435 361 longpair[0] = TypeLong::LONG;
duke@435 362 longpair[1] = TypeLong::LONG;
duke@435 363 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
duke@435 364
coleenp@548 365 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
duke@435 366 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
duke@435 367 _const_basic_type[T_CHAR] = TypeInt::CHAR;
duke@435 368 _const_basic_type[T_BYTE] = TypeInt::BYTE;
duke@435 369 _const_basic_type[T_SHORT] = TypeInt::SHORT;
duke@435 370 _const_basic_type[T_INT] = TypeInt::INT;
duke@435 371 _const_basic_type[T_LONG] = TypeLong::LONG;
duke@435 372 _const_basic_type[T_FLOAT] = Type::FLOAT;
duke@435 373 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
duke@435 374 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
duke@435 375 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
duke@435 376 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
duke@435 377 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
duke@435 378 _const_basic_type[T_CONFLICT]= Type::BOTTOM; // why not?
duke@435 379
coleenp@548 380 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
duke@435 381 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
duke@435 382 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
duke@435 383 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
duke@435 384 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
duke@435 385 _zero_type[T_INT] = TypeInt::ZERO;
duke@435 386 _zero_type[T_LONG] = TypeLong::ZERO;
duke@435 387 _zero_type[T_FLOAT] = TypeF::ZERO;
duke@435 388 _zero_type[T_DOUBLE] = TypeD::ZERO;
duke@435 389 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
duke@435 390 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
duke@435 391 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
duke@435 392 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
duke@435 393
duke@435 394 // get_zero_type() should not happen for T_CONFLICT
duke@435 395 _zero_type[T_CONFLICT]= NULL;
duke@435 396
duke@435 397 // Restore working type arena.
duke@435 398 current->set_type_arena(save);
duke@435 399 current->set_type_dict(NULL);
duke@435 400 }
duke@435 401
duke@435 402 //------------------------------Initialize-------------------------------------
duke@435 403 void Type::Initialize(Compile* current) {
duke@435 404 assert(current->type_arena() != NULL, "must have created type arena");
duke@435 405
duke@435 406 if (_shared_type_dict == NULL) {
duke@435 407 Initialize_shared(current);
duke@435 408 }
duke@435 409
duke@435 410 Arena* type_arena = current->type_arena();
duke@435 411
duke@435 412 // Create the hash-cons'ing dictionary with top-level storage allocation
duke@435 413 Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
duke@435 414 current->set_type_dict(tdic);
duke@435 415
duke@435 416 // Transfer the shared types.
duke@435 417 DictI i(_shared_type_dict);
duke@435 418 for( ; i.test(); ++i ) {
duke@435 419 Type* t = (Type*)i._value;
duke@435 420 tdic->Insert(t,t); // New Type, insert into Type table
duke@435 421 }
coleenp@548 422
coleenp@548 423 #ifdef ASSERT
coleenp@548 424 verify_lastype();
coleenp@548 425 #endif
duke@435 426 }
duke@435 427
duke@435 428 //------------------------------hashcons---------------------------------------
duke@435 429 // Do the hash-cons trick. If the Type already exists in the type table,
duke@435 430 // delete the current Type and return the existing Type. Otherwise stick the
duke@435 431 // current Type in the Type table.
duke@435 432 const Type *Type::hashcons(void) {
duke@435 433 debug_only(base()); // Check the assertion in Type::base().
duke@435 434 // Look up the Type in the Type dictionary
duke@435 435 Dict *tdic = type_dict();
duke@435 436 Type* old = (Type*)(tdic->Insert(this, this, false));
duke@435 437 if( old ) { // Pre-existing Type?
duke@435 438 if( old != this ) // Yes, this guy is not the pre-existing?
duke@435 439 delete this; // Yes, Nuke this guy
duke@435 440 assert( old->_dual, "" );
duke@435 441 return old; // Return pre-existing
duke@435 442 }
duke@435 443
duke@435 444 // Every type has a dual (to make my lattice symmetric).
duke@435 445 // Since we just discovered a new Type, compute its dual right now.
duke@435 446 assert( !_dual, "" ); // No dual yet
duke@435 447 _dual = xdual(); // Compute the dual
duke@435 448 if( cmp(this,_dual)==0 ) { // Handle self-symmetric
duke@435 449 _dual = this;
duke@435 450 return this;
duke@435 451 }
duke@435 452 assert( !_dual->_dual, "" ); // No reverse dual yet
duke@435 453 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
duke@435 454 // New Type, insert into Type table
duke@435 455 tdic->Insert((void*)_dual,(void*)_dual);
duke@435 456 ((Type*)_dual)->_dual = this; // Finish up being symmetric
duke@435 457 #ifdef ASSERT
duke@435 458 Type *dual_dual = (Type*)_dual->xdual();
duke@435 459 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
duke@435 460 delete dual_dual;
duke@435 461 #endif
duke@435 462 return this; // Return new Type
duke@435 463 }
duke@435 464
duke@435 465 //------------------------------eq---------------------------------------------
duke@435 466 // Structural equality check for Type representations
duke@435 467 bool Type::eq( const Type * ) const {
duke@435 468 return true; // Nothing else can go wrong
duke@435 469 }
duke@435 470
duke@435 471 //------------------------------hash-------------------------------------------
duke@435 472 // Type-specific hashing function.
duke@435 473 int Type::hash(void) const {
duke@435 474 return _base;
duke@435 475 }
duke@435 476
duke@435 477 //------------------------------is_finite--------------------------------------
duke@435 478 // Has a finite value
duke@435 479 bool Type::is_finite() const {
duke@435 480 return false;
duke@435 481 }
duke@435 482
duke@435 483 //------------------------------is_nan-----------------------------------------
duke@435 484 // Is not a number (NaN)
duke@435 485 bool Type::is_nan() const {
duke@435 486 return false;
duke@435 487 }
duke@435 488
duke@435 489 //------------------------------meet-------------------------------------------
duke@435 490 // Compute the MEET of two types. NOT virtual. It enforces that meet is
duke@435 491 // commutative and the lattice is symmetric.
duke@435 492 const Type *Type::meet( const Type *t ) const {
coleenp@548 493 if (isa_narrowoop() && t->isa_narrowoop()) {
kvn@656 494 const Type* result = make_ptr()->meet(t->make_ptr());
kvn@656 495 return result->make_narrowoop();
coleenp@548 496 }
coleenp@548 497
duke@435 498 const Type *mt = xmeet(t);
coleenp@548 499 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
duke@435 500 #ifdef ASSERT
duke@435 501 assert( mt == t->xmeet(this), "meet not commutative" );
duke@435 502 const Type* dual_join = mt->_dual;
duke@435 503 const Type *t2t = dual_join->xmeet(t->_dual);
duke@435 504 const Type *t2this = dual_join->xmeet( _dual);
duke@435 505
duke@435 506 // Interface meet Oop is Not Symmetric:
duke@435 507 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
duke@435 508 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
duke@435 509 const TypeInstPtr* this_inst = this->isa_instptr();
duke@435 510 const TypeInstPtr* t_inst = t->isa_instptr();
duke@435 511 bool interface_vs_oop = false;
duke@435 512 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
duke@435 513 bool this_interface = this_inst->klass()->is_interface();
duke@435 514 bool t_interface = t_inst->klass()->is_interface();
duke@435 515 interface_vs_oop = this_interface ^ t_interface;
duke@435 516 }
kvn@658 517
kvn@658 518 if( !interface_vs_oop && (t2t != t->_dual || t2this != _dual) ) {
duke@435 519 tty->print_cr("=== Meet Not Symmetric ===");
duke@435 520 tty->print("t = "); t->dump(); tty->cr();
duke@435 521 tty->print("this= "); dump(); tty->cr();
duke@435 522 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
duke@435 523
duke@435 524 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
duke@435 525 tty->print("this_dual= "); _dual->dump(); tty->cr();
duke@435 526 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
duke@435 527
duke@435 528 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
duke@435 529 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
duke@435 530
duke@435 531 fatal("meet not symmetric" );
duke@435 532 }
duke@435 533 #endif
duke@435 534 return mt;
duke@435 535 }
duke@435 536
duke@435 537 //------------------------------xmeet------------------------------------------
duke@435 538 // Compute the MEET of two types. It returns a new Type object.
duke@435 539 const Type *Type::xmeet( const Type *t ) const {
duke@435 540 // Perform a fast test for common case; meeting the same types together.
duke@435 541 if( this == t ) return this; // Meeting same type-rep?
duke@435 542
duke@435 543 // Meeting TOP with anything?
duke@435 544 if( _base == Top ) return t;
duke@435 545
duke@435 546 // Meeting BOTTOM with anything?
duke@435 547 if( _base == Bottom ) return BOTTOM;
duke@435 548
duke@435 549 // Current "this->_base" is one of: Bad, Multi, Control, Top,
duke@435 550 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
duke@435 551 switch (t->base()) { // Switch on original type
duke@435 552
duke@435 553 // Cut in half the number of cases I must handle. Only need cases for when
duke@435 554 // the given enum "t->type" is less than or equal to the local enum "type".
duke@435 555 case FloatCon:
duke@435 556 case DoubleCon:
duke@435 557 case Int:
duke@435 558 case Long:
duke@435 559 return t->xmeet(this);
duke@435 560
duke@435 561 case OopPtr:
duke@435 562 return t->xmeet(this);
duke@435 563
duke@435 564 case InstPtr:
duke@435 565 return t->xmeet(this);
duke@435 566
duke@435 567 case KlassPtr:
duke@435 568 return t->xmeet(this);
duke@435 569
duke@435 570 case AryPtr:
duke@435 571 return t->xmeet(this);
duke@435 572
coleenp@548 573 case NarrowOop:
coleenp@548 574 return t->xmeet(this);
coleenp@548 575
duke@435 576 case Bad: // Type check
duke@435 577 default: // Bogus type not in lattice
duke@435 578 typerr(t);
duke@435 579 return Type::BOTTOM;
duke@435 580
duke@435 581 case Bottom: // Ye Olde Default
duke@435 582 return t;
duke@435 583
duke@435 584 case FloatTop:
duke@435 585 if( _base == FloatTop ) return this;
duke@435 586 case FloatBot: // Float
duke@435 587 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
duke@435 588 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
duke@435 589 typerr(t);
duke@435 590 return Type::BOTTOM;
duke@435 591
duke@435 592 case DoubleTop:
duke@435 593 if( _base == DoubleTop ) return this;
duke@435 594 case DoubleBot: // Double
duke@435 595 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
duke@435 596 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
duke@435 597 typerr(t);
duke@435 598 return Type::BOTTOM;
duke@435 599
duke@435 600 // These next few cases must match exactly or it is a compile-time error.
duke@435 601 case Control: // Control of code
duke@435 602 case Abio: // State of world outside of program
duke@435 603 case Memory:
duke@435 604 if( _base == t->_base ) return this;
duke@435 605 typerr(t);
duke@435 606 return Type::BOTTOM;
duke@435 607
duke@435 608 case Top: // Top of the lattice
duke@435 609 return this;
duke@435 610 }
duke@435 611
duke@435 612 // The type is unchanged
duke@435 613 return this;
duke@435 614 }
duke@435 615
duke@435 616 //-----------------------------filter------------------------------------------
duke@435 617 const Type *Type::filter( const Type *kills ) const {
duke@435 618 const Type* ft = join(kills);
duke@435 619 if (ft->empty())
duke@435 620 return Type::TOP; // Canonical empty value
duke@435 621 return ft;
duke@435 622 }
duke@435 623
duke@435 624 //------------------------------xdual------------------------------------------
duke@435 625 // Compute dual right now.
duke@435 626 const Type::TYPES Type::dual_type[Type::lastype] = {
duke@435 627 Bad, // Bad
duke@435 628 Control, // Control
duke@435 629 Bottom, // Top
duke@435 630 Bad, // Int - handled in v-call
duke@435 631 Bad, // Long - handled in v-call
duke@435 632 Half, // Half
coleenp@548 633 Bad, // NarrowOop - handled in v-call
duke@435 634
duke@435 635 Bad, // Tuple - handled in v-call
duke@435 636 Bad, // Array - handled in v-call
duke@435 637
duke@435 638 Bad, // AnyPtr - handled in v-call
duke@435 639 Bad, // RawPtr - handled in v-call
duke@435 640 Bad, // OopPtr - handled in v-call
duke@435 641 Bad, // InstPtr - handled in v-call
duke@435 642 Bad, // AryPtr - handled in v-call
duke@435 643 Bad, // KlassPtr - handled in v-call
duke@435 644
duke@435 645 Bad, // Function - handled in v-call
duke@435 646 Abio, // Abio
duke@435 647 Return_Address,// Return_Address
duke@435 648 Memory, // Memory
duke@435 649 FloatBot, // FloatTop
duke@435 650 FloatCon, // FloatCon
duke@435 651 FloatTop, // FloatBot
duke@435 652 DoubleBot, // DoubleTop
duke@435 653 DoubleCon, // DoubleCon
duke@435 654 DoubleTop, // DoubleBot
duke@435 655 Top // Bottom
duke@435 656 };
duke@435 657
duke@435 658 const Type *Type::xdual() const {
duke@435 659 // Note: the base() accessor asserts the sanity of _base.
duke@435 660 assert(dual_type[base()] != Bad, "implement with v-call");
duke@435 661 return new Type(dual_type[_base]);
duke@435 662 }
duke@435 663
duke@435 664 //------------------------------has_memory-------------------------------------
duke@435 665 bool Type::has_memory() const {
duke@435 666 Type::TYPES tx = base();
duke@435 667 if (tx == Memory) return true;
duke@435 668 if (tx == Tuple) {
duke@435 669 const TypeTuple *t = is_tuple();
duke@435 670 for (uint i=0; i < t->cnt(); i++) {
duke@435 671 tx = t->field_at(i)->base();
duke@435 672 if (tx == Memory) return true;
duke@435 673 }
duke@435 674 }
duke@435 675 return false;
duke@435 676 }
duke@435 677
duke@435 678 #ifndef PRODUCT
duke@435 679 //------------------------------dump2------------------------------------------
duke@435 680 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 681 st->print(msg[_base]);
duke@435 682 }
duke@435 683
duke@435 684 //------------------------------dump-------------------------------------------
duke@435 685 void Type::dump_on(outputStream *st) const {
duke@435 686 ResourceMark rm;
duke@435 687 Dict d(cmpkey,hashkey); // Stop recursive type dumping
duke@435 688 dump2(d,1, st);
kvn@598 689 if (is_ptr_to_narrowoop()) {
coleenp@548 690 st->print(" [narrow]");
coleenp@548 691 }
duke@435 692 }
duke@435 693
duke@435 694 //------------------------------data-------------------------------------------
duke@435 695 const char * const Type::msg[Type::lastype] = {
coleenp@548 696 "bad","control","top","int:","long:","half", "narrowoop:",
duke@435 697 "tuple:", "aryptr",
duke@435 698 "anyptr:", "rawptr:", "java:", "inst:", "ary:", "klass:",
duke@435 699 "func", "abIO", "return_address", "memory",
duke@435 700 "float_top", "ftcon:", "float",
duke@435 701 "double_top", "dblcon:", "double",
duke@435 702 "bottom"
duke@435 703 };
duke@435 704 #endif
duke@435 705
duke@435 706 //------------------------------singleton--------------------------------------
duke@435 707 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 708 // constants (Ldi nodes). Singletons are integer, float or double constants.
duke@435 709 bool Type::singleton(void) const {
duke@435 710 return _base == Top || _base == Half;
duke@435 711 }
duke@435 712
duke@435 713 //------------------------------empty------------------------------------------
duke@435 714 // TRUE if Type is a type with no values, FALSE otherwise.
duke@435 715 bool Type::empty(void) const {
duke@435 716 switch (_base) {
duke@435 717 case DoubleTop:
duke@435 718 case FloatTop:
duke@435 719 case Top:
duke@435 720 return true;
duke@435 721
duke@435 722 case Half:
duke@435 723 case Abio:
duke@435 724 case Return_Address:
duke@435 725 case Memory:
duke@435 726 case Bottom:
duke@435 727 case FloatBot:
duke@435 728 case DoubleBot:
duke@435 729 return false; // never a singleton, therefore never empty
duke@435 730 }
duke@435 731
duke@435 732 ShouldNotReachHere();
duke@435 733 return false;
duke@435 734 }
duke@435 735
duke@435 736 //------------------------------dump_stats-------------------------------------
duke@435 737 // Dump collected statistics to stderr
duke@435 738 #ifndef PRODUCT
duke@435 739 void Type::dump_stats() {
duke@435 740 tty->print("Types made: %d\n", type_dict()->Size());
duke@435 741 }
duke@435 742 #endif
duke@435 743
duke@435 744 //------------------------------typerr-----------------------------------------
duke@435 745 void Type::typerr( const Type *t ) const {
duke@435 746 #ifndef PRODUCT
duke@435 747 tty->print("\nError mixing types: ");
duke@435 748 dump();
duke@435 749 tty->print(" and ");
duke@435 750 t->dump();
duke@435 751 tty->print("\n");
duke@435 752 #endif
duke@435 753 ShouldNotReachHere();
duke@435 754 }
duke@435 755
duke@435 756 //------------------------------isa_oop_ptr------------------------------------
duke@435 757 // Return true if type is an oop pointer type. False for raw pointers.
duke@435 758 static char isa_oop_ptr_tbl[Type::lastype] = {
coleenp@548 759 0,0,0,0,0,0,0/*narrowoop*/,0/*tuple*/, 0/*ary*/,
duke@435 760 0/*anyptr*/,0/*rawptr*/,1/*OopPtr*/,1/*InstPtr*/,1/*AryPtr*/,1/*KlassPtr*/,
duke@435 761 0/*func*/,0,0/*return_address*/,0,
duke@435 762 /*floats*/0,0,0, /*doubles*/0,0,0,
duke@435 763 0
duke@435 764 };
duke@435 765 bool Type::isa_oop_ptr() const {
duke@435 766 return isa_oop_ptr_tbl[_base] != 0;
duke@435 767 }
duke@435 768
duke@435 769 //------------------------------dump_stats-------------------------------------
duke@435 770 // // Check that arrays match type enum
duke@435 771 #ifndef PRODUCT
duke@435 772 void Type::verify_lastype() {
duke@435 773 // Check that arrays match enumeration
duke@435 774 assert( Type::dual_type [Type::lastype - 1] == Type::Top, "did not update array");
duke@435 775 assert( strcmp(Type::msg [Type::lastype - 1],"bottom") == 0, "did not update array");
duke@435 776 // assert( PhiNode::tbl [Type::lastype - 1] == NULL, "did not update array");
duke@435 777 assert( Matcher::base2reg[Type::lastype - 1] == 0, "did not update array");
duke@435 778 assert( isa_oop_ptr_tbl [Type::lastype - 1] == (char)0, "did not update array");
duke@435 779 }
duke@435 780 #endif
duke@435 781
duke@435 782 //=============================================================================
duke@435 783 // Convenience common pre-built types.
duke@435 784 const TypeF *TypeF::ZERO; // Floating point zero
duke@435 785 const TypeF *TypeF::ONE; // Floating point one
duke@435 786
duke@435 787 //------------------------------make-------------------------------------------
duke@435 788 // Create a float constant
duke@435 789 const TypeF *TypeF::make(float f) {
duke@435 790 return (TypeF*)(new TypeF(f))->hashcons();
duke@435 791 }
duke@435 792
duke@435 793 //------------------------------meet-------------------------------------------
duke@435 794 // Compute the MEET of two types. It returns a new Type object.
duke@435 795 const Type *TypeF::xmeet( const Type *t ) const {
duke@435 796 // Perform a fast test for common case; meeting the same types together.
duke@435 797 if( this == t ) return this; // Meeting same type-rep?
duke@435 798
duke@435 799 // Current "this->_base" is FloatCon
duke@435 800 switch (t->base()) { // Switch on original type
duke@435 801 case AnyPtr: // Mixing with oops happens when javac
duke@435 802 case RawPtr: // reuses local variables
duke@435 803 case OopPtr:
duke@435 804 case InstPtr:
duke@435 805 case KlassPtr:
duke@435 806 case AryPtr:
duke@435 807 case Int:
duke@435 808 case Long:
duke@435 809 case DoubleTop:
duke@435 810 case DoubleCon:
duke@435 811 case DoubleBot:
duke@435 812 case Bottom: // Ye Olde Default
duke@435 813 return Type::BOTTOM;
duke@435 814
duke@435 815 case FloatBot:
duke@435 816 return t;
duke@435 817
duke@435 818 default: // All else is a mistake
duke@435 819 typerr(t);
duke@435 820
duke@435 821 case FloatCon: // Float-constant vs Float-constant?
duke@435 822 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
duke@435 823 // must compare bitwise as positive zero, negative zero and NaN have
duke@435 824 // all the same representation in C++
duke@435 825 return FLOAT; // Return generic float
duke@435 826 // Equal constants
duke@435 827 case Top:
duke@435 828 case FloatTop:
duke@435 829 break; // Return the float constant
duke@435 830 }
duke@435 831 return this; // Return the float constant
duke@435 832 }
duke@435 833
duke@435 834 //------------------------------xdual------------------------------------------
duke@435 835 // Dual: symmetric
duke@435 836 const Type *TypeF::xdual() const {
duke@435 837 return this;
duke@435 838 }
duke@435 839
duke@435 840 //------------------------------eq---------------------------------------------
duke@435 841 // Structural equality check for Type representations
duke@435 842 bool TypeF::eq( const Type *t ) const {
duke@435 843 if( g_isnan(_f) ||
duke@435 844 g_isnan(t->getf()) ) {
duke@435 845 // One or both are NANs. If both are NANs return true, else false.
duke@435 846 return (g_isnan(_f) && g_isnan(t->getf()));
duke@435 847 }
duke@435 848 if (_f == t->getf()) {
duke@435 849 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 850 if (_f == 0.0) {
duke@435 851 // difference between positive and negative zero
duke@435 852 if (jint_cast(_f) != jint_cast(t->getf())) return false;
duke@435 853 }
duke@435 854 return true;
duke@435 855 }
duke@435 856 return false;
duke@435 857 }
duke@435 858
duke@435 859 //------------------------------hash-------------------------------------------
duke@435 860 // Type-specific hashing function.
duke@435 861 int TypeF::hash(void) const {
duke@435 862 return *(int*)(&_f);
duke@435 863 }
duke@435 864
duke@435 865 //------------------------------is_finite--------------------------------------
duke@435 866 // Has a finite value
duke@435 867 bool TypeF::is_finite() const {
duke@435 868 return g_isfinite(getf()) != 0;
duke@435 869 }
duke@435 870
duke@435 871 //------------------------------is_nan-----------------------------------------
duke@435 872 // Is not a number (NaN)
duke@435 873 bool TypeF::is_nan() const {
duke@435 874 return g_isnan(getf()) != 0;
duke@435 875 }
duke@435 876
duke@435 877 //------------------------------dump2------------------------------------------
duke@435 878 // Dump float constant Type
duke@435 879 #ifndef PRODUCT
duke@435 880 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 881 Type::dump2(d,depth, st);
duke@435 882 st->print("%f", _f);
duke@435 883 }
duke@435 884 #endif
duke@435 885
duke@435 886 //------------------------------singleton--------------------------------------
duke@435 887 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 888 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 889 // or a single symbol.
duke@435 890 bool TypeF::singleton(void) const {
duke@435 891 return true; // Always a singleton
duke@435 892 }
duke@435 893
duke@435 894 bool TypeF::empty(void) const {
duke@435 895 return false; // always exactly a singleton
duke@435 896 }
duke@435 897
duke@435 898 //=============================================================================
duke@435 899 // Convenience common pre-built types.
duke@435 900 const TypeD *TypeD::ZERO; // Floating point zero
duke@435 901 const TypeD *TypeD::ONE; // Floating point one
duke@435 902
duke@435 903 //------------------------------make-------------------------------------------
duke@435 904 const TypeD *TypeD::make(double d) {
duke@435 905 return (TypeD*)(new TypeD(d))->hashcons();
duke@435 906 }
duke@435 907
duke@435 908 //------------------------------meet-------------------------------------------
duke@435 909 // Compute the MEET of two types. It returns a new Type object.
duke@435 910 const Type *TypeD::xmeet( const Type *t ) const {
duke@435 911 // Perform a fast test for common case; meeting the same types together.
duke@435 912 if( this == t ) return this; // Meeting same type-rep?
duke@435 913
duke@435 914 // Current "this->_base" is DoubleCon
duke@435 915 switch (t->base()) { // Switch on original type
duke@435 916 case AnyPtr: // Mixing with oops happens when javac
duke@435 917 case RawPtr: // reuses local variables
duke@435 918 case OopPtr:
duke@435 919 case InstPtr:
duke@435 920 case KlassPtr:
duke@435 921 case AryPtr:
never@618 922 case NarrowOop:
duke@435 923 case Int:
duke@435 924 case Long:
duke@435 925 case FloatTop:
duke@435 926 case FloatCon:
duke@435 927 case FloatBot:
duke@435 928 case Bottom: // Ye Olde Default
duke@435 929 return Type::BOTTOM;
duke@435 930
duke@435 931 case DoubleBot:
duke@435 932 return t;
duke@435 933
duke@435 934 default: // All else is a mistake
duke@435 935 typerr(t);
duke@435 936
duke@435 937 case DoubleCon: // Double-constant vs Double-constant?
duke@435 938 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
duke@435 939 return DOUBLE; // Return generic double
duke@435 940 case Top:
duke@435 941 case DoubleTop:
duke@435 942 break;
duke@435 943 }
duke@435 944 return this; // Return the double constant
duke@435 945 }
duke@435 946
duke@435 947 //------------------------------xdual------------------------------------------
duke@435 948 // Dual: symmetric
duke@435 949 const Type *TypeD::xdual() const {
duke@435 950 return this;
duke@435 951 }
duke@435 952
duke@435 953 //------------------------------eq---------------------------------------------
duke@435 954 // Structural equality check for Type representations
duke@435 955 bool TypeD::eq( const Type *t ) const {
duke@435 956 if( g_isnan(_d) ||
duke@435 957 g_isnan(t->getd()) ) {
duke@435 958 // One or both are NANs. If both are NANs return true, else false.
duke@435 959 return (g_isnan(_d) && g_isnan(t->getd()));
duke@435 960 }
duke@435 961 if (_d == t->getd()) {
duke@435 962 // (NaN is impossible at this point, since it is not equal even to itself)
duke@435 963 if (_d == 0.0) {
duke@435 964 // difference between positive and negative zero
duke@435 965 if (jlong_cast(_d) != jlong_cast(t->getd())) return false;
duke@435 966 }
duke@435 967 return true;
duke@435 968 }
duke@435 969 return false;
duke@435 970 }
duke@435 971
duke@435 972 //------------------------------hash-------------------------------------------
duke@435 973 // Type-specific hashing function.
duke@435 974 int TypeD::hash(void) const {
duke@435 975 return *(int*)(&_d);
duke@435 976 }
duke@435 977
duke@435 978 //------------------------------is_finite--------------------------------------
duke@435 979 // Has a finite value
duke@435 980 bool TypeD::is_finite() const {
duke@435 981 return g_isfinite(getd()) != 0;
duke@435 982 }
duke@435 983
duke@435 984 //------------------------------is_nan-----------------------------------------
duke@435 985 // Is not a number (NaN)
duke@435 986 bool TypeD::is_nan() const {
duke@435 987 return g_isnan(getd()) != 0;
duke@435 988 }
duke@435 989
duke@435 990 //------------------------------dump2------------------------------------------
duke@435 991 // Dump double constant Type
duke@435 992 #ifndef PRODUCT
duke@435 993 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 994 Type::dump2(d,depth,st);
duke@435 995 st->print("%f", _d);
duke@435 996 }
duke@435 997 #endif
duke@435 998
duke@435 999 //------------------------------singleton--------------------------------------
duke@435 1000 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1001 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1002 // or a single symbol.
duke@435 1003 bool TypeD::singleton(void) const {
duke@435 1004 return true; // Always a singleton
duke@435 1005 }
duke@435 1006
duke@435 1007 bool TypeD::empty(void) const {
duke@435 1008 return false; // always exactly a singleton
duke@435 1009 }
duke@435 1010
duke@435 1011 //=============================================================================
duke@435 1012 // Convience common pre-built types.
duke@435 1013 const TypeInt *TypeInt::MINUS_1;// -1
duke@435 1014 const TypeInt *TypeInt::ZERO; // 0
duke@435 1015 const TypeInt *TypeInt::ONE; // 1
duke@435 1016 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
duke@435 1017 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
duke@435 1018 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
duke@435 1019 const TypeInt *TypeInt::CC_GT; // [1] == ONE
duke@435 1020 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
duke@435 1021 const TypeInt *TypeInt::CC_LE; // [-1,0]
duke@435 1022 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
duke@435 1023 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
duke@435 1024 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
duke@435 1025 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
duke@435 1026 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
duke@435 1027 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
duke@435 1028 const TypeInt *TypeInt::INT; // 32-bit integers
duke@435 1029 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
duke@435 1030
duke@435 1031 //------------------------------TypeInt----------------------------------------
duke@435 1032 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
duke@435 1033 }
duke@435 1034
duke@435 1035 //------------------------------make-------------------------------------------
duke@435 1036 const TypeInt *TypeInt::make( jint lo ) {
duke@435 1037 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
duke@435 1038 }
duke@435 1039
duke@435 1040 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
duke@435 1041
duke@435 1042 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
duke@435 1043 // Certain normalizations keep us sane when comparing types.
duke@435 1044 // The 'SMALLINT' covers constants and also CC and its relatives.
duke@435 1045 assert(CC == NULL || (juint)(CC->_hi - CC->_lo) <= SMALLINT, "CC is truly small");
duke@435 1046 if (lo <= hi) {
duke@435 1047 if ((juint)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1048 if ((juint)(hi - lo) >= max_juint) w = Type::WidenMax; // plain int
duke@435 1049 }
duke@435 1050 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
duke@435 1051 }
duke@435 1052
duke@435 1053 //------------------------------meet-------------------------------------------
duke@435 1054 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1055 // with reference count equal to the number of Types pointing at it.
duke@435 1056 // Caller should wrap a Types around it.
duke@435 1057 const Type *TypeInt::xmeet( const Type *t ) const {
duke@435 1058 // Perform a fast test for common case; meeting the same types together.
duke@435 1059 if( this == t ) return this; // Meeting same type?
duke@435 1060
duke@435 1061 // Currently "this->_base" is a TypeInt
duke@435 1062 switch (t->base()) { // Switch on original type
duke@435 1063 case AnyPtr: // Mixing with oops happens when javac
duke@435 1064 case RawPtr: // reuses local variables
duke@435 1065 case OopPtr:
duke@435 1066 case InstPtr:
duke@435 1067 case KlassPtr:
duke@435 1068 case AryPtr:
never@618 1069 case NarrowOop:
duke@435 1070 case Long:
duke@435 1071 case FloatTop:
duke@435 1072 case FloatCon:
duke@435 1073 case FloatBot:
duke@435 1074 case DoubleTop:
duke@435 1075 case DoubleCon:
duke@435 1076 case DoubleBot:
duke@435 1077 case Bottom: // Ye Olde Default
duke@435 1078 return Type::BOTTOM;
duke@435 1079 default: // All else is a mistake
duke@435 1080 typerr(t);
duke@435 1081 case Top: // No change
duke@435 1082 return this;
duke@435 1083 case Int: // Int vs Int?
duke@435 1084 break;
duke@435 1085 }
duke@435 1086
duke@435 1087 // Expand covered set
duke@435 1088 const TypeInt *r = t->is_int();
duke@435 1089 // (Avoid TypeInt::make, to avoid the argument normalizations it enforces.)
duke@435 1090 return (new TypeInt( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1091 }
duke@435 1092
duke@435 1093 //------------------------------xdual------------------------------------------
duke@435 1094 // Dual: reverse hi & lo; flip widen
duke@435 1095 const Type *TypeInt::xdual() const {
duke@435 1096 return new TypeInt(_hi,_lo,WidenMax-_widen);
duke@435 1097 }
duke@435 1098
duke@435 1099 //------------------------------widen------------------------------------------
duke@435 1100 // Only happens for optimistic top-down optimizations.
duke@435 1101 const Type *TypeInt::widen( const Type *old ) const {
duke@435 1102 // Coming from TOP or such; no widening
duke@435 1103 if( old->base() != Int ) return this;
duke@435 1104 const TypeInt *ot = old->is_int();
duke@435 1105
duke@435 1106 // If new guy is equal to old guy, no widening
duke@435 1107 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1108 return old;
duke@435 1109
duke@435 1110 // If new guy contains old, then we widened
duke@435 1111 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1112 // New contains old
duke@435 1113 // If new guy is already wider than old, no widening
duke@435 1114 if( _widen > ot->_widen ) return this;
duke@435 1115 // If old guy was a constant, do not bother
duke@435 1116 if (ot->_lo == ot->_hi) return this;
duke@435 1117 // Now widen new guy.
duke@435 1118 // Check for widening too far
duke@435 1119 if (_widen == WidenMax) {
duke@435 1120 if (min_jint < _lo && _hi < max_jint) {
duke@435 1121 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1122 // which is closer to its respective limit.
duke@435 1123 if (_lo >= 0 || // easy common case
duke@435 1124 (juint)(_lo - min_jint) >= (juint)(max_jint - _hi)) {
duke@435 1125 // Try to widen to an unsigned range type of 31 bits:
duke@435 1126 return make(_lo, max_jint, WidenMax);
duke@435 1127 } else {
duke@435 1128 return make(min_jint, _hi, WidenMax);
duke@435 1129 }
duke@435 1130 }
duke@435 1131 return TypeInt::INT;
duke@435 1132 }
duke@435 1133 // Returned widened new guy
duke@435 1134 return make(_lo,_hi,_widen+1);
duke@435 1135 }
duke@435 1136
duke@435 1137 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1138 // bottom. Return the wider fellow.
duke@435 1139 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1140 return old;
duke@435 1141
duke@435 1142 //fatal("Integer value range is not subset");
duke@435 1143 //return this;
duke@435 1144 return TypeInt::INT;
duke@435 1145 }
duke@435 1146
duke@435 1147 //------------------------------narrow---------------------------------------
duke@435 1148 // Only happens for pessimistic optimizations.
duke@435 1149 const Type *TypeInt::narrow( const Type *old ) const {
duke@435 1150 if (_lo >= _hi) return this; // already narrow enough
duke@435 1151 if (old == NULL) return this;
duke@435 1152 const TypeInt* ot = old->isa_int();
duke@435 1153 if (ot == NULL) return this;
duke@435 1154 jint olo = ot->_lo;
duke@435 1155 jint ohi = ot->_hi;
duke@435 1156
duke@435 1157 // If new guy is equal to old guy, no narrowing
duke@435 1158 if (_lo == olo && _hi == ohi) return old;
duke@435 1159
duke@435 1160 // If old guy was maximum range, allow the narrowing
duke@435 1161 if (olo == min_jint && ohi == max_jint) return this;
duke@435 1162
duke@435 1163 if (_lo < olo || _hi > ohi)
duke@435 1164 return this; // doesn't narrow; pretty wierd
duke@435 1165
duke@435 1166 // The new type narrows the old type, so look for a "death march".
duke@435 1167 // See comments on PhaseTransform::saturate.
duke@435 1168 juint nrange = _hi - _lo;
duke@435 1169 juint orange = ohi - olo;
duke@435 1170 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1171 // Use the new type only if the range shrinks a lot.
duke@435 1172 // We do not want the optimizer computing 2^31 point by point.
duke@435 1173 return old;
duke@435 1174 }
duke@435 1175
duke@435 1176 return this;
duke@435 1177 }
duke@435 1178
duke@435 1179 //-----------------------------filter------------------------------------------
duke@435 1180 const Type *TypeInt::filter( const Type *kills ) const {
duke@435 1181 const TypeInt* ft = join(kills)->isa_int();
duke@435 1182 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1183 return Type::TOP; // Canonical empty value
duke@435 1184 if (ft->_widen < this->_widen) {
duke@435 1185 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1186 // The widen bits must be allowed to run freely through the graph.
duke@435 1187 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1188 }
duke@435 1189 return ft;
duke@435 1190 }
duke@435 1191
duke@435 1192 //------------------------------eq---------------------------------------------
duke@435 1193 // Structural equality check for Type representations
duke@435 1194 bool TypeInt::eq( const Type *t ) const {
duke@435 1195 const TypeInt *r = t->is_int(); // Handy access
duke@435 1196 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1197 }
duke@435 1198
duke@435 1199 //------------------------------hash-------------------------------------------
duke@435 1200 // Type-specific hashing function.
duke@435 1201 int TypeInt::hash(void) const {
duke@435 1202 return _lo+_hi+_widen+(int)Type::Int;
duke@435 1203 }
duke@435 1204
duke@435 1205 //------------------------------is_finite--------------------------------------
duke@435 1206 // Has a finite value
duke@435 1207 bool TypeInt::is_finite() const {
duke@435 1208 return true;
duke@435 1209 }
duke@435 1210
duke@435 1211 //------------------------------dump2------------------------------------------
duke@435 1212 // Dump TypeInt
duke@435 1213 #ifndef PRODUCT
duke@435 1214 static const char* intname(char* buf, jint n) {
duke@435 1215 if (n == min_jint)
duke@435 1216 return "min";
duke@435 1217 else if (n < min_jint + 10000)
duke@435 1218 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
duke@435 1219 else if (n == max_jint)
duke@435 1220 return "max";
duke@435 1221 else if (n > max_jint - 10000)
duke@435 1222 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
duke@435 1223 else
duke@435 1224 sprintf(buf, INT32_FORMAT, n);
duke@435 1225 return buf;
duke@435 1226 }
duke@435 1227
duke@435 1228 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1229 char buf[40], buf2[40];
duke@435 1230 if (_lo == min_jint && _hi == max_jint)
duke@435 1231 st->print("int");
duke@435 1232 else if (is_con())
duke@435 1233 st->print("int:%s", intname(buf, get_con()));
duke@435 1234 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
duke@435 1235 st->print("bool");
duke@435 1236 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
duke@435 1237 st->print("byte");
duke@435 1238 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
duke@435 1239 st->print("char");
duke@435 1240 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
duke@435 1241 st->print("short");
duke@435 1242 else if (_hi == max_jint)
duke@435 1243 st->print("int:>=%s", intname(buf, _lo));
duke@435 1244 else if (_lo == min_jint)
duke@435 1245 st->print("int:<=%s", intname(buf, _hi));
duke@435 1246 else
duke@435 1247 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
duke@435 1248
duke@435 1249 if (_widen != 0 && this != TypeInt::INT)
duke@435 1250 st->print(":%.*s", _widen, "wwww");
duke@435 1251 }
duke@435 1252 #endif
duke@435 1253
duke@435 1254 //------------------------------singleton--------------------------------------
duke@435 1255 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1256 // constants.
duke@435 1257 bool TypeInt::singleton(void) const {
duke@435 1258 return _lo >= _hi;
duke@435 1259 }
duke@435 1260
duke@435 1261 bool TypeInt::empty(void) const {
duke@435 1262 return _lo > _hi;
duke@435 1263 }
duke@435 1264
duke@435 1265 //=============================================================================
duke@435 1266 // Convenience common pre-built types.
duke@435 1267 const TypeLong *TypeLong::MINUS_1;// -1
duke@435 1268 const TypeLong *TypeLong::ZERO; // 0
duke@435 1269 const TypeLong *TypeLong::ONE; // 1
duke@435 1270 const TypeLong *TypeLong::POS; // >=0
duke@435 1271 const TypeLong *TypeLong::LONG; // 64-bit integers
duke@435 1272 const TypeLong *TypeLong::INT; // 32-bit subrange
duke@435 1273 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
duke@435 1274
duke@435 1275 //------------------------------TypeLong---------------------------------------
duke@435 1276 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
duke@435 1277 }
duke@435 1278
duke@435 1279 //------------------------------make-------------------------------------------
duke@435 1280 const TypeLong *TypeLong::make( jlong lo ) {
duke@435 1281 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
duke@435 1282 }
duke@435 1283
duke@435 1284 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
duke@435 1285 // Certain normalizations keep us sane when comparing types.
duke@435 1286 // The '1' covers constants.
duke@435 1287 if (lo <= hi) {
duke@435 1288 if ((julong)(hi - lo) <= SMALLINT) w = Type::WidenMin;
duke@435 1289 if ((julong)(hi - lo) >= max_julong) w = Type::WidenMax; // plain long
duke@435 1290 }
duke@435 1291 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
duke@435 1292 }
duke@435 1293
duke@435 1294
duke@435 1295 //------------------------------meet-------------------------------------------
duke@435 1296 // Compute the MEET of two types. It returns a new Type representation object
duke@435 1297 // with reference count equal to the number of Types pointing at it.
duke@435 1298 // Caller should wrap a Types around it.
duke@435 1299 const Type *TypeLong::xmeet( const Type *t ) const {
duke@435 1300 // Perform a fast test for common case; meeting the same types together.
duke@435 1301 if( this == t ) return this; // Meeting same type?
duke@435 1302
duke@435 1303 // Currently "this->_base" is a TypeLong
duke@435 1304 switch (t->base()) { // Switch on original type
duke@435 1305 case AnyPtr: // Mixing with oops happens when javac
duke@435 1306 case RawPtr: // reuses local variables
duke@435 1307 case OopPtr:
duke@435 1308 case InstPtr:
duke@435 1309 case KlassPtr:
duke@435 1310 case AryPtr:
never@618 1311 case NarrowOop:
duke@435 1312 case Int:
duke@435 1313 case FloatTop:
duke@435 1314 case FloatCon:
duke@435 1315 case FloatBot:
duke@435 1316 case DoubleTop:
duke@435 1317 case DoubleCon:
duke@435 1318 case DoubleBot:
duke@435 1319 case Bottom: // Ye Olde Default
duke@435 1320 return Type::BOTTOM;
duke@435 1321 default: // All else is a mistake
duke@435 1322 typerr(t);
duke@435 1323 case Top: // No change
duke@435 1324 return this;
duke@435 1325 case Long: // Long vs Long?
duke@435 1326 break;
duke@435 1327 }
duke@435 1328
duke@435 1329 // Expand covered set
duke@435 1330 const TypeLong *r = t->is_long(); // Turn into a TypeLong
duke@435 1331 // (Avoid TypeLong::make, to avoid the argument normalizations it enforces.)
duke@435 1332 return (new TypeLong( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ))->hashcons();
duke@435 1333 }
duke@435 1334
duke@435 1335 //------------------------------xdual------------------------------------------
duke@435 1336 // Dual: reverse hi & lo; flip widen
duke@435 1337 const Type *TypeLong::xdual() const {
duke@435 1338 return new TypeLong(_hi,_lo,WidenMax-_widen);
duke@435 1339 }
duke@435 1340
duke@435 1341 //------------------------------widen------------------------------------------
duke@435 1342 // Only happens for optimistic top-down optimizations.
duke@435 1343 const Type *TypeLong::widen( const Type *old ) const {
duke@435 1344 // Coming from TOP or such; no widening
duke@435 1345 if( old->base() != Long ) return this;
duke@435 1346 const TypeLong *ot = old->is_long();
duke@435 1347
duke@435 1348 // If new guy is equal to old guy, no widening
duke@435 1349 if( _lo == ot->_lo && _hi == ot->_hi )
duke@435 1350 return old;
duke@435 1351
duke@435 1352 // If new guy contains old, then we widened
duke@435 1353 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
duke@435 1354 // New contains old
duke@435 1355 // If new guy is already wider than old, no widening
duke@435 1356 if( _widen > ot->_widen ) return this;
duke@435 1357 // If old guy was a constant, do not bother
duke@435 1358 if (ot->_lo == ot->_hi) return this;
duke@435 1359 // Now widen new guy.
duke@435 1360 // Check for widening too far
duke@435 1361 if (_widen == WidenMax) {
duke@435 1362 if (min_jlong < _lo && _hi < max_jlong) {
duke@435 1363 // If neither endpoint is extremal yet, push out the endpoint
duke@435 1364 // which is closer to its respective limit.
duke@435 1365 if (_lo >= 0 || // easy common case
duke@435 1366 (julong)(_lo - min_jlong) >= (julong)(max_jlong - _hi)) {
duke@435 1367 // Try to widen to an unsigned range type of 32/63 bits:
duke@435 1368 if (_hi < max_juint)
duke@435 1369 return make(_lo, max_juint, WidenMax);
duke@435 1370 else
duke@435 1371 return make(_lo, max_jlong, WidenMax);
duke@435 1372 } else {
duke@435 1373 return make(min_jlong, _hi, WidenMax);
duke@435 1374 }
duke@435 1375 }
duke@435 1376 return TypeLong::LONG;
duke@435 1377 }
duke@435 1378 // Returned widened new guy
duke@435 1379 return make(_lo,_hi,_widen+1);
duke@435 1380 }
duke@435 1381
duke@435 1382 // If old guy contains new, then we probably widened too far & dropped to
duke@435 1383 // bottom. Return the wider fellow.
duke@435 1384 if ( ot->_lo <= _lo && ot->_hi >= _hi )
duke@435 1385 return old;
duke@435 1386
duke@435 1387 // fatal("Long value range is not subset");
duke@435 1388 // return this;
duke@435 1389 return TypeLong::LONG;
duke@435 1390 }
duke@435 1391
duke@435 1392 //------------------------------narrow----------------------------------------
duke@435 1393 // Only happens for pessimistic optimizations.
duke@435 1394 const Type *TypeLong::narrow( const Type *old ) const {
duke@435 1395 if (_lo >= _hi) return this; // already narrow enough
duke@435 1396 if (old == NULL) return this;
duke@435 1397 const TypeLong* ot = old->isa_long();
duke@435 1398 if (ot == NULL) return this;
duke@435 1399 jlong olo = ot->_lo;
duke@435 1400 jlong ohi = ot->_hi;
duke@435 1401
duke@435 1402 // If new guy is equal to old guy, no narrowing
duke@435 1403 if (_lo == olo && _hi == ohi) return old;
duke@435 1404
duke@435 1405 // If old guy was maximum range, allow the narrowing
duke@435 1406 if (olo == min_jlong && ohi == max_jlong) return this;
duke@435 1407
duke@435 1408 if (_lo < olo || _hi > ohi)
duke@435 1409 return this; // doesn't narrow; pretty wierd
duke@435 1410
duke@435 1411 // The new type narrows the old type, so look for a "death march".
duke@435 1412 // See comments on PhaseTransform::saturate.
duke@435 1413 julong nrange = _hi - _lo;
duke@435 1414 julong orange = ohi - olo;
duke@435 1415 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
duke@435 1416 // Use the new type only if the range shrinks a lot.
duke@435 1417 // We do not want the optimizer computing 2^31 point by point.
duke@435 1418 return old;
duke@435 1419 }
duke@435 1420
duke@435 1421 return this;
duke@435 1422 }
duke@435 1423
duke@435 1424 //-----------------------------filter------------------------------------------
duke@435 1425 const Type *TypeLong::filter( const Type *kills ) const {
duke@435 1426 const TypeLong* ft = join(kills)->isa_long();
duke@435 1427 if (ft == NULL || ft->_lo > ft->_hi)
duke@435 1428 return Type::TOP; // Canonical empty value
duke@435 1429 if (ft->_widen < this->_widen) {
duke@435 1430 // Do not allow the value of kill->_widen to affect the outcome.
duke@435 1431 // The widen bits must be allowed to run freely through the graph.
duke@435 1432 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
duke@435 1433 }
duke@435 1434 return ft;
duke@435 1435 }
duke@435 1436
duke@435 1437 //------------------------------eq---------------------------------------------
duke@435 1438 // Structural equality check for Type representations
duke@435 1439 bool TypeLong::eq( const Type *t ) const {
duke@435 1440 const TypeLong *r = t->is_long(); // Handy access
duke@435 1441 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
duke@435 1442 }
duke@435 1443
duke@435 1444 //------------------------------hash-------------------------------------------
duke@435 1445 // Type-specific hashing function.
duke@435 1446 int TypeLong::hash(void) const {
duke@435 1447 return (int)(_lo+_hi+_widen+(int)Type::Long);
duke@435 1448 }
duke@435 1449
duke@435 1450 //------------------------------is_finite--------------------------------------
duke@435 1451 // Has a finite value
duke@435 1452 bool TypeLong::is_finite() const {
duke@435 1453 return true;
duke@435 1454 }
duke@435 1455
duke@435 1456 //------------------------------dump2------------------------------------------
duke@435 1457 // Dump TypeLong
duke@435 1458 #ifndef PRODUCT
duke@435 1459 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
duke@435 1460 if (n > x) {
duke@435 1461 if (n >= x + 10000) return NULL;
duke@435 1462 sprintf(buf, "%s+" INT64_FORMAT, xname, n - x);
duke@435 1463 } else if (n < x) {
duke@435 1464 if (n <= x - 10000) return NULL;
duke@435 1465 sprintf(buf, "%s-" INT64_FORMAT, xname, x - n);
duke@435 1466 } else {
duke@435 1467 return xname;
duke@435 1468 }
duke@435 1469 return buf;
duke@435 1470 }
duke@435 1471
duke@435 1472 static const char* longname(char* buf, jlong n) {
duke@435 1473 const char* str;
duke@435 1474 if (n == min_jlong)
duke@435 1475 return "min";
duke@435 1476 else if (n < min_jlong + 10000)
duke@435 1477 sprintf(buf, "min+" INT64_FORMAT, n - min_jlong);
duke@435 1478 else if (n == max_jlong)
duke@435 1479 return "max";
duke@435 1480 else if (n > max_jlong - 10000)
duke@435 1481 sprintf(buf, "max-" INT64_FORMAT, max_jlong - n);
duke@435 1482 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
duke@435 1483 return str;
duke@435 1484 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
duke@435 1485 return str;
duke@435 1486 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
duke@435 1487 return str;
duke@435 1488 else
duke@435 1489 sprintf(buf, INT64_FORMAT, n);
duke@435 1490 return buf;
duke@435 1491 }
duke@435 1492
duke@435 1493 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1494 char buf[80], buf2[80];
duke@435 1495 if (_lo == min_jlong && _hi == max_jlong)
duke@435 1496 st->print("long");
duke@435 1497 else if (is_con())
duke@435 1498 st->print("long:%s", longname(buf, get_con()));
duke@435 1499 else if (_hi == max_jlong)
duke@435 1500 st->print("long:>=%s", longname(buf, _lo));
duke@435 1501 else if (_lo == min_jlong)
duke@435 1502 st->print("long:<=%s", longname(buf, _hi));
duke@435 1503 else
duke@435 1504 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
duke@435 1505
duke@435 1506 if (_widen != 0 && this != TypeLong::LONG)
duke@435 1507 st->print(":%.*s", _widen, "wwww");
duke@435 1508 }
duke@435 1509 #endif
duke@435 1510
duke@435 1511 //------------------------------singleton--------------------------------------
duke@435 1512 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1513 // constants
duke@435 1514 bool TypeLong::singleton(void) const {
duke@435 1515 return _lo >= _hi;
duke@435 1516 }
duke@435 1517
duke@435 1518 bool TypeLong::empty(void) const {
duke@435 1519 return _lo > _hi;
duke@435 1520 }
duke@435 1521
duke@435 1522 //=============================================================================
duke@435 1523 // Convenience common pre-built types.
duke@435 1524 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
duke@435 1525 const TypeTuple *TypeTuple::IFFALSE;
duke@435 1526 const TypeTuple *TypeTuple::IFTRUE;
duke@435 1527 const TypeTuple *TypeTuple::IFNEITHER;
duke@435 1528 const TypeTuple *TypeTuple::LOOPBODY;
duke@435 1529 const TypeTuple *TypeTuple::MEMBAR;
duke@435 1530 const TypeTuple *TypeTuple::STORECONDITIONAL;
duke@435 1531 const TypeTuple *TypeTuple::START_I2C;
duke@435 1532 const TypeTuple *TypeTuple::INT_PAIR;
duke@435 1533 const TypeTuple *TypeTuple::LONG_PAIR;
duke@435 1534
duke@435 1535
duke@435 1536 //------------------------------make-------------------------------------------
duke@435 1537 // Make a TypeTuple from the range of a method signature
duke@435 1538 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
duke@435 1539 ciType* return_type = sig->return_type();
duke@435 1540 uint total_fields = TypeFunc::Parms + return_type->size();
duke@435 1541 const Type **field_array = fields(total_fields);
duke@435 1542 switch (return_type->basic_type()) {
duke@435 1543 case T_LONG:
duke@435 1544 field_array[TypeFunc::Parms] = TypeLong::LONG;
duke@435 1545 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1546 break;
duke@435 1547 case T_DOUBLE:
duke@435 1548 field_array[TypeFunc::Parms] = Type::DOUBLE;
duke@435 1549 field_array[TypeFunc::Parms+1] = Type::HALF;
duke@435 1550 break;
duke@435 1551 case T_OBJECT:
duke@435 1552 case T_ARRAY:
duke@435 1553 case T_BOOLEAN:
duke@435 1554 case T_CHAR:
duke@435 1555 case T_FLOAT:
duke@435 1556 case T_BYTE:
duke@435 1557 case T_SHORT:
duke@435 1558 case T_INT:
duke@435 1559 field_array[TypeFunc::Parms] = get_const_type(return_type);
duke@435 1560 break;
duke@435 1561 case T_VOID:
duke@435 1562 break;
duke@435 1563 default:
duke@435 1564 ShouldNotReachHere();
duke@435 1565 }
duke@435 1566 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1567 }
duke@435 1568
duke@435 1569 // Make a TypeTuple from the domain of a method signature
duke@435 1570 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
duke@435 1571 uint total_fields = TypeFunc::Parms + sig->size();
duke@435 1572
duke@435 1573 uint pos = TypeFunc::Parms;
duke@435 1574 const Type **field_array;
duke@435 1575 if (recv != NULL) {
duke@435 1576 total_fields++;
duke@435 1577 field_array = fields(total_fields);
duke@435 1578 // Use get_const_type here because it respects UseUniqueSubclasses:
duke@435 1579 field_array[pos++] = get_const_type(recv)->join(TypePtr::NOTNULL);
duke@435 1580 } else {
duke@435 1581 field_array = fields(total_fields);
duke@435 1582 }
duke@435 1583
duke@435 1584 int i = 0;
duke@435 1585 while (pos < total_fields) {
duke@435 1586 ciType* type = sig->type_at(i);
duke@435 1587
duke@435 1588 switch (type->basic_type()) {
duke@435 1589 case T_LONG:
duke@435 1590 field_array[pos++] = TypeLong::LONG;
duke@435 1591 field_array[pos++] = Type::HALF;
duke@435 1592 break;
duke@435 1593 case T_DOUBLE:
duke@435 1594 field_array[pos++] = Type::DOUBLE;
duke@435 1595 field_array[pos++] = Type::HALF;
duke@435 1596 break;
duke@435 1597 case T_OBJECT:
duke@435 1598 case T_ARRAY:
duke@435 1599 case T_BOOLEAN:
duke@435 1600 case T_CHAR:
duke@435 1601 case T_FLOAT:
duke@435 1602 case T_BYTE:
duke@435 1603 case T_SHORT:
duke@435 1604 case T_INT:
duke@435 1605 field_array[pos++] = get_const_type(type);
duke@435 1606 break;
duke@435 1607 default:
duke@435 1608 ShouldNotReachHere();
duke@435 1609 }
duke@435 1610 i++;
duke@435 1611 }
duke@435 1612 return (TypeTuple*)(new TypeTuple(total_fields,field_array))->hashcons();
duke@435 1613 }
duke@435 1614
duke@435 1615 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
duke@435 1616 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
duke@435 1617 }
duke@435 1618
duke@435 1619 //------------------------------fields-----------------------------------------
duke@435 1620 // Subroutine call type with space allocated for argument types
duke@435 1621 const Type **TypeTuple::fields( uint arg_cnt ) {
duke@435 1622 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
duke@435 1623 flds[TypeFunc::Control ] = Type::CONTROL;
duke@435 1624 flds[TypeFunc::I_O ] = Type::ABIO;
duke@435 1625 flds[TypeFunc::Memory ] = Type::MEMORY;
duke@435 1626 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
duke@435 1627 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
duke@435 1628
duke@435 1629 return flds;
duke@435 1630 }
duke@435 1631
duke@435 1632 //------------------------------meet-------------------------------------------
duke@435 1633 // Compute the MEET of two types. It returns a new Type object.
duke@435 1634 const Type *TypeTuple::xmeet( const Type *t ) const {
duke@435 1635 // Perform a fast test for common case; meeting the same types together.
duke@435 1636 if( this == t ) return this; // Meeting same type-rep?
duke@435 1637
duke@435 1638 // Current "this->_base" is Tuple
duke@435 1639 switch (t->base()) { // switch on original type
duke@435 1640
duke@435 1641 case Bottom: // Ye Olde Default
duke@435 1642 return t;
duke@435 1643
duke@435 1644 default: // All else is a mistake
duke@435 1645 typerr(t);
duke@435 1646
duke@435 1647 case Tuple: { // Meeting 2 signatures?
duke@435 1648 const TypeTuple *x = t->is_tuple();
duke@435 1649 assert( _cnt == x->_cnt, "" );
duke@435 1650 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1651 for( uint i=0; i<_cnt; i++ )
duke@435 1652 fields[i] = field_at(i)->xmeet( x->field_at(i) );
duke@435 1653 return TypeTuple::make(_cnt,fields);
duke@435 1654 }
duke@435 1655 case Top:
duke@435 1656 break;
duke@435 1657 }
duke@435 1658 return this; // Return the double constant
duke@435 1659 }
duke@435 1660
duke@435 1661 //------------------------------xdual------------------------------------------
duke@435 1662 // Dual: compute field-by-field dual
duke@435 1663 const Type *TypeTuple::xdual() const {
duke@435 1664 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
duke@435 1665 for( uint i=0; i<_cnt; i++ )
duke@435 1666 fields[i] = _fields[i]->dual();
duke@435 1667 return new TypeTuple(_cnt,fields);
duke@435 1668 }
duke@435 1669
duke@435 1670 //------------------------------eq---------------------------------------------
duke@435 1671 // Structural equality check for Type representations
duke@435 1672 bool TypeTuple::eq( const Type *t ) const {
duke@435 1673 const TypeTuple *s = (const TypeTuple *)t;
duke@435 1674 if (_cnt != s->_cnt) return false; // Unequal field counts
duke@435 1675 for (uint i = 0; i < _cnt; i++)
duke@435 1676 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
duke@435 1677 return false; // Missed
duke@435 1678 return true;
duke@435 1679 }
duke@435 1680
duke@435 1681 //------------------------------hash-------------------------------------------
duke@435 1682 // Type-specific hashing function.
duke@435 1683 int TypeTuple::hash(void) const {
duke@435 1684 intptr_t sum = _cnt;
duke@435 1685 for( uint i=0; i<_cnt; i++ )
duke@435 1686 sum += (intptr_t)_fields[i]; // Hash on pointers directly
duke@435 1687 return sum;
duke@435 1688 }
duke@435 1689
duke@435 1690 //------------------------------dump2------------------------------------------
duke@435 1691 // Dump signature Type
duke@435 1692 #ifndef PRODUCT
duke@435 1693 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1694 st->print("{");
duke@435 1695 if( !depth || d[this] ) { // Check for recursive print
duke@435 1696 st->print("...}");
duke@435 1697 return;
duke@435 1698 }
duke@435 1699 d.Insert((void*)this, (void*)this); // Stop recursion
duke@435 1700 if( _cnt ) {
duke@435 1701 uint i;
duke@435 1702 for( i=0; i<_cnt-1; i++ ) {
duke@435 1703 st->print("%d:", i);
duke@435 1704 _fields[i]->dump2(d, depth-1, st);
duke@435 1705 st->print(", ");
duke@435 1706 }
duke@435 1707 st->print("%d:", i);
duke@435 1708 _fields[i]->dump2(d, depth-1, st);
duke@435 1709 }
duke@435 1710 st->print("}");
duke@435 1711 }
duke@435 1712 #endif
duke@435 1713
duke@435 1714 //------------------------------singleton--------------------------------------
duke@435 1715 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1716 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1717 // or a single symbol.
duke@435 1718 bool TypeTuple::singleton(void) const {
duke@435 1719 return false; // Never a singleton
duke@435 1720 }
duke@435 1721
duke@435 1722 bool TypeTuple::empty(void) const {
duke@435 1723 for( uint i=0; i<_cnt; i++ ) {
duke@435 1724 if (_fields[i]->empty()) return true;
duke@435 1725 }
duke@435 1726 return false;
duke@435 1727 }
duke@435 1728
duke@435 1729 //=============================================================================
duke@435 1730 // Convenience common pre-built types.
duke@435 1731
duke@435 1732 inline const TypeInt* normalize_array_size(const TypeInt* size) {
duke@435 1733 // Certain normalizations keep us sane when comparing types.
duke@435 1734 // We do not want arrayOop variables to differ only by the wideness
duke@435 1735 // of their index types. Pick minimum wideness, since that is the
duke@435 1736 // forced wideness of small ranges anyway.
duke@435 1737 if (size->_widen != Type::WidenMin)
duke@435 1738 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
duke@435 1739 else
duke@435 1740 return size;
duke@435 1741 }
duke@435 1742
duke@435 1743 //------------------------------make-------------------------------------------
duke@435 1744 const TypeAry *TypeAry::make( const Type *elem, const TypeInt *size) {
coleenp@548 1745 if (UseCompressedOops && elem->isa_oopptr()) {
kvn@656 1746 elem = elem->make_narrowoop();
coleenp@548 1747 }
duke@435 1748 size = normalize_array_size(size);
duke@435 1749 return (TypeAry*)(new TypeAry(elem,size))->hashcons();
duke@435 1750 }
duke@435 1751
duke@435 1752 //------------------------------meet-------------------------------------------
duke@435 1753 // Compute the MEET of two types. It returns a new Type object.
duke@435 1754 const Type *TypeAry::xmeet( const Type *t ) const {
duke@435 1755 // Perform a fast test for common case; meeting the same types together.
duke@435 1756 if( this == t ) return this; // Meeting same type-rep?
duke@435 1757
duke@435 1758 // Current "this->_base" is Ary
duke@435 1759 switch (t->base()) { // switch on original type
duke@435 1760
duke@435 1761 case Bottom: // Ye Olde Default
duke@435 1762 return t;
duke@435 1763
duke@435 1764 default: // All else is a mistake
duke@435 1765 typerr(t);
duke@435 1766
duke@435 1767 case Array: { // Meeting 2 arrays?
duke@435 1768 const TypeAry *a = t->is_ary();
duke@435 1769 return TypeAry::make(_elem->meet(a->_elem),
duke@435 1770 _size->xmeet(a->_size)->is_int());
duke@435 1771 }
duke@435 1772 case Top:
duke@435 1773 break;
duke@435 1774 }
duke@435 1775 return this; // Return the double constant
duke@435 1776 }
duke@435 1777
duke@435 1778 //------------------------------xdual------------------------------------------
duke@435 1779 // Dual: compute field-by-field dual
duke@435 1780 const Type *TypeAry::xdual() const {
duke@435 1781 const TypeInt* size_dual = _size->dual()->is_int();
duke@435 1782 size_dual = normalize_array_size(size_dual);
duke@435 1783 return new TypeAry( _elem->dual(), size_dual);
duke@435 1784 }
duke@435 1785
duke@435 1786 //------------------------------eq---------------------------------------------
duke@435 1787 // Structural equality check for Type representations
duke@435 1788 bool TypeAry::eq( const Type *t ) const {
duke@435 1789 const TypeAry *a = (const TypeAry*)t;
duke@435 1790 return _elem == a->_elem &&
duke@435 1791 _size == a->_size;
duke@435 1792 }
duke@435 1793
duke@435 1794 //------------------------------hash-------------------------------------------
duke@435 1795 // Type-specific hashing function.
duke@435 1796 int TypeAry::hash(void) const {
duke@435 1797 return (intptr_t)_elem + (intptr_t)_size;
duke@435 1798 }
duke@435 1799
duke@435 1800 //------------------------------dump2------------------------------------------
duke@435 1801 #ifndef PRODUCT
duke@435 1802 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1803 _elem->dump2(d, depth, st);
duke@435 1804 st->print("[");
duke@435 1805 _size->dump2(d, depth, st);
duke@435 1806 st->print("]");
duke@435 1807 }
duke@435 1808 #endif
duke@435 1809
duke@435 1810 //------------------------------singleton--------------------------------------
duke@435 1811 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1812 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 1813 // or a single symbol.
duke@435 1814 bool TypeAry::singleton(void) const {
duke@435 1815 return false; // Never a singleton
duke@435 1816 }
duke@435 1817
duke@435 1818 bool TypeAry::empty(void) const {
duke@435 1819 return _elem->empty() || _size->empty();
duke@435 1820 }
duke@435 1821
duke@435 1822 //--------------------------ary_must_be_exact----------------------------------
duke@435 1823 bool TypeAry::ary_must_be_exact() const {
duke@435 1824 if (!UseExactTypes) return false;
duke@435 1825 // This logic looks at the element type of an array, and returns true
duke@435 1826 // if the element type is either a primitive or a final instance class.
duke@435 1827 // In such cases, an array built on this ary must have no subclasses.
duke@435 1828 if (_elem == BOTTOM) return false; // general array not exact
duke@435 1829 if (_elem == TOP ) return false; // inverted general array not exact
coleenp@548 1830 const TypeOopPtr* toop = NULL;
kvn@656 1831 if (UseCompressedOops && _elem->isa_narrowoop()) {
kvn@656 1832 toop = _elem->make_ptr()->isa_oopptr();
coleenp@548 1833 } else {
coleenp@548 1834 toop = _elem->isa_oopptr();
coleenp@548 1835 }
duke@435 1836 if (!toop) return true; // a primitive type, like int
duke@435 1837 ciKlass* tklass = toop->klass();
duke@435 1838 if (tklass == NULL) return false; // unloaded class
duke@435 1839 if (!tklass->is_loaded()) return false; // unloaded class
coleenp@548 1840 const TypeInstPtr* tinst;
coleenp@548 1841 if (_elem->isa_narrowoop())
kvn@656 1842 tinst = _elem->make_ptr()->isa_instptr();
coleenp@548 1843 else
coleenp@548 1844 tinst = _elem->isa_instptr();
kvn@656 1845 if (tinst)
kvn@656 1846 return tklass->as_instance_klass()->is_final();
coleenp@548 1847 const TypeAryPtr* tap;
coleenp@548 1848 if (_elem->isa_narrowoop())
kvn@656 1849 tap = _elem->make_ptr()->isa_aryptr();
coleenp@548 1850 else
coleenp@548 1851 tap = _elem->isa_aryptr();
kvn@656 1852 if (tap)
kvn@656 1853 return tap->ary()->ary_must_be_exact();
duke@435 1854 return false;
duke@435 1855 }
duke@435 1856
duke@435 1857 //=============================================================================
duke@435 1858 // Convenience common pre-built types.
duke@435 1859 const TypePtr *TypePtr::NULL_PTR;
duke@435 1860 const TypePtr *TypePtr::NOTNULL;
duke@435 1861 const TypePtr *TypePtr::BOTTOM;
duke@435 1862
duke@435 1863 //------------------------------meet-------------------------------------------
duke@435 1864 // Meet over the PTR enum
duke@435 1865 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
duke@435 1866 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
duke@435 1867 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
duke@435 1868 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1869 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
duke@435 1870 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
duke@435 1871 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
duke@435 1872 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
duke@435 1873 };
duke@435 1874
duke@435 1875 //------------------------------make-------------------------------------------
duke@435 1876 const TypePtr *TypePtr::make( TYPES t, enum PTR ptr, int offset ) {
duke@435 1877 return (TypePtr*)(new TypePtr(t,ptr,offset))->hashcons();
duke@435 1878 }
duke@435 1879
duke@435 1880 //------------------------------cast_to_ptr_type-------------------------------
duke@435 1881 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
duke@435 1882 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
duke@435 1883 if( ptr == _ptr ) return this;
duke@435 1884 return make(_base, ptr, _offset);
duke@435 1885 }
duke@435 1886
duke@435 1887 //------------------------------get_con----------------------------------------
duke@435 1888 intptr_t TypePtr::get_con() const {
duke@435 1889 assert( _ptr == Null, "" );
duke@435 1890 return _offset;
duke@435 1891 }
duke@435 1892
duke@435 1893 //------------------------------meet-------------------------------------------
duke@435 1894 // Compute the MEET of two types. It returns a new Type object.
duke@435 1895 const Type *TypePtr::xmeet( const Type *t ) const {
duke@435 1896 // Perform a fast test for common case; meeting the same types together.
duke@435 1897 if( this == t ) return this; // Meeting same type-rep?
duke@435 1898
duke@435 1899 // Current "this->_base" is AnyPtr
duke@435 1900 switch (t->base()) { // switch on original type
duke@435 1901 case Int: // Mixing ints & oops happens when javac
duke@435 1902 case Long: // reuses local variables
duke@435 1903 case FloatTop:
duke@435 1904 case FloatCon:
duke@435 1905 case FloatBot:
duke@435 1906 case DoubleTop:
duke@435 1907 case DoubleCon:
duke@435 1908 case DoubleBot:
coleenp@548 1909 case NarrowOop:
duke@435 1910 case Bottom: // Ye Olde Default
duke@435 1911 return Type::BOTTOM;
duke@435 1912 case Top:
duke@435 1913 return this;
duke@435 1914
duke@435 1915 case AnyPtr: { // Meeting to AnyPtrs
duke@435 1916 const TypePtr *tp = t->is_ptr();
duke@435 1917 return make( AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 1918 }
duke@435 1919 case RawPtr: // For these, flip the call around to cut down
duke@435 1920 case OopPtr:
duke@435 1921 case InstPtr: // on the cases I have to handle.
duke@435 1922 case KlassPtr:
duke@435 1923 case AryPtr:
duke@435 1924 return t->xmeet(this); // Call in reverse direction
duke@435 1925 default: // All else is a mistake
duke@435 1926 typerr(t);
duke@435 1927
duke@435 1928 }
duke@435 1929 return this;
duke@435 1930 }
duke@435 1931
duke@435 1932 //------------------------------meet_offset------------------------------------
duke@435 1933 int TypePtr::meet_offset( int offset ) const {
duke@435 1934 // Either is 'TOP' offset? Return the other offset!
duke@435 1935 if( _offset == OffsetTop ) return offset;
duke@435 1936 if( offset == OffsetTop ) return _offset;
duke@435 1937 // If either is different, return 'BOTTOM' offset
duke@435 1938 if( _offset != offset ) return OffsetBot;
duke@435 1939 return _offset;
duke@435 1940 }
duke@435 1941
duke@435 1942 //------------------------------dual_offset------------------------------------
duke@435 1943 int TypePtr::dual_offset( ) const {
duke@435 1944 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
duke@435 1945 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
duke@435 1946 return _offset; // Map everything else into self
duke@435 1947 }
duke@435 1948
duke@435 1949 //------------------------------xdual------------------------------------------
duke@435 1950 // Dual: compute field-by-field dual
duke@435 1951 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
duke@435 1952 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
duke@435 1953 };
duke@435 1954 const Type *TypePtr::xdual() const {
duke@435 1955 return new TypePtr( AnyPtr, dual_ptr(), dual_offset() );
duke@435 1956 }
duke@435 1957
duke@435 1958 //------------------------------add_offset-------------------------------------
duke@435 1959 const TypePtr *TypePtr::add_offset( int offset ) const {
duke@435 1960 if( offset == 0 ) return this; // No change
duke@435 1961 if( _offset == OffsetBot ) return this;
duke@435 1962 if( offset == OffsetBot ) offset = OffsetBot;
duke@435 1963 else if( _offset == OffsetTop || offset == OffsetTop ) offset = OffsetTop;
duke@435 1964 else offset += _offset;
duke@435 1965 return make( AnyPtr, _ptr, offset );
duke@435 1966 }
duke@435 1967
duke@435 1968 //------------------------------eq---------------------------------------------
duke@435 1969 // Structural equality check for Type representations
duke@435 1970 bool TypePtr::eq( const Type *t ) const {
duke@435 1971 const TypePtr *a = (const TypePtr*)t;
duke@435 1972 return _ptr == a->ptr() && _offset == a->offset();
duke@435 1973 }
duke@435 1974
duke@435 1975 //------------------------------hash-------------------------------------------
duke@435 1976 // Type-specific hashing function.
duke@435 1977 int TypePtr::hash(void) const {
duke@435 1978 return _ptr + _offset;
duke@435 1979 }
duke@435 1980
duke@435 1981 //------------------------------dump2------------------------------------------
duke@435 1982 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
duke@435 1983 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
duke@435 1984 };
duke@435 1985
duke@435 1986 #ifndef PRODUCT
duke@435 1987 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 1988 if( _ptr == Null ) st->print("NULL");
duke@435 1989 else st->print("%s *", ptr_msg[_ptr]);
duke@435 1990 if( _offset == OffsetTop ) st->print("+top");
duke@435 1991 else if( _offset == OffsetBot ) st->print("+bot");
duke@435 1992 else if( _offset ) st->print("+%d", _offset);
duke@435 1993 }
duke@435 1994 #endif
duke@435 1995
duke@435 1996 //------------------------------singleton--------------------------------------
duke@435 1997 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 1998 // constants
duke@435 1999 bool TypePtr::singleton(void) const {
duke@435 2000 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2001 return (_offset != OffsetBot) && !below_centerline(_ptr);
duke@435 2002 }
duke@435 2003
duke@435 2004 bool TypePtr::empty(void) const {
duke@435 2005 return (_offset == OffsetTop) || above_centerline(_ptr);
duke@435 2006 }
duke@435 2007
duke@435 2008 //=============================================================================
duke@435 2009 // Convenience common pre-built types.
duke@435 2010 const TypeRawPtr *TypeRawPtr::BOTTOM;
duke@435 2011 const TypeRawPtr *TypeRawPtr::NOTNULL;
duke@435 2012
duke@435 2013 //------------------------------make-------------------------------------------
duke@435 2014 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
duke@435 2015 assert( ptr != Constant, "what is the constant?" );
duke@435 2016 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2017 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
duke@435 2018 }
duke@435 2019
duke@435 2020 const TypeRawPtr *TypeRawPtr::make( address bits ) {
duke@435 2021 assert( bits, "Use TypePtr for NULL" );
duke@435 2022 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
duke@435 2023 }
duke@435 2024
duke@435 2025 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2026 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2027 assert( ptr != Constant, "what is the constant?" );
duke@435 2028 assert( ptr != Null, "Use TypePtr for NULL" );
duke@435 2029 assert( _bits==0, "Why cast a constant address?");
duke@435 2030 if( ptr == _ptr ) return this;
duke@435 2031 return make(ptr);
duke@435 2032 }
duke@435 2033
duke@435 2034 //------------------------------get_con----------------------------------------
duke@435 2035 intptr_t TypeRawPtr::get_con() const {
duke@435 2036 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2037 return (intptr_t)_bits;
duke@435 2038 }
duke@435 2039
duke@435 2040 //------------------------------meet-------------------------------------------
duke@435 2041 // Compute the MEET of two types. It returns a new Type object.
duke@435 2042 const Type *TypeRawPtr::xmeet( const Type *t ) const {
duke@435 2043 // Perform a fast test for common case; meeting the same types together.
duke@435 2044 if( this == t ) return this; // Meeting same type-rep?
duke@435 2045
duke@435 2046 // Current "this->_base" is RawPtr
duke@435 2047 switch( t->base() ) { // switch on original type
duke@435 2048 case Bottom: // Ye Olde Default
duke@435 2049 return t;
duke@435 2050 case Top:
duke@435 2051 return this;
duke@435 2052 case AnyPtr: // Meeting to AnyPtrs
duke@435 2053 break;
duke@435 2054 case RawPtr: { // might be top, bot, any/not or constant
duke@435 2055 enum PTR tptr = t->is_ptr()->ptr();
duke@435 2056 enum PTR ptr = meet_ptr( tptr );
duke@435 2057 if( ptr == Constant ) { // Cannot be equal constants, so...
duke@435 2058 if( tptr == Constant && _ptr != Constant) return t;
duke@435 2059 if( _ptr == Constant && tptr != Constant) return this;
duke@435 2060 ptr = NotNull; // Fall down in lattice
duke@435 2061 }
duke@435 2062 return make( ptr );
duke@435 2063 }
duke@435 2064
duke@435 2065 case OopPtr:
duke@435 2066 case InstPtr:
duke@435 2067 case KlassPtr:
duke@435 2068 case AryPtr:
duke@435 2069 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2070 default: // All else is a mistake
duke@435 2071 typerr(t);
duke@435 2072 }
duke@435 2073
duke@435 2074 // Found an AnyPtr type vs self-RawPtr type
duke@435 2075 const TypePtr *tp = t->is_ptr();
duke@435 2076 switch (tp->ptr()) {
duke@435 2077 case TypePtr::TopPTR: return this;
duke@435 2078 case TypePtr::BotPTR: return t;
duke@435 2079 case TypePtr::Null:
duke@435 2080 if( _ptr == TypePtr::TopPTR ) return t;
duke@435 2081 return TypeRawPtr::BOTTOM;
duke@435 2082 case TypePtr::NotNull: return TypePtr::make( AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0) );
duke@435 2083 case TypePtr::AnyNull:
duke@435 2084 if( _ptr == TypePtr::Constant) return this;
duke@435 2085 return make( meet_ptr(TypePtr::AnyNull) );
duke@435 2086 default: ShouldNotReachHere();
duke@435 2087 }
duke@435 2088 return this;
duke@435 2089 }
duke@435 2090
duke@435 2091 //------------------------------xdual------------------------------------------
duke@435 2092 // Dual: compute field-by-field dual
duke@435 2093 const Type *TypeRawPtr::xdual() const {
duke@435 2094 return new TypeRawPtr( dual_ptr(), _bits );
duke@435 2095 }
duke@435 2096
duke@435 2097 //------------------------------add_offset-------------------------------------
duke@435 2098 const TypePtr *TypeRawPtr::add_offset( int offset ) const {
duke@435 2099 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
duke@435 2100 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
duke@435 2101 if( offset == 0 ) return this; // No change
duke@435 2102 switch (_ptr) {
duke@435 2103 case TypePtr::TopPTR:
duke@435 2104 case TypePtr::BotPTR:
duke@435 2105 case TypePtr::NotNull:
duke@435 2106 return this;
duke@435 2107 case TypePtr::Null:
duke@435 2108 case TypePtr::Constant:
duke@435 2109 return make( _bits+offset );
duke@435 2110 default: ShouldNotReachHere();
duke@435 2111 }
duke@435 2112 return NULL; // Lint noise
duke@435 2113 }
duke@435 2114
duke@435 2115 //------------------------------eq---------------------------------------------
duke@435 2116 // Structural equality check for Type representations
duke@435 2117 bool TypeRawPtr::eq( const Type *t ) const {
duke@435 2118 const TypeRawPtr *a = (const TypeRawPtr*)t;
duke@435 2119 return _bits == a->_bits && TypePtr::eq(t);
duke@435 2120 }
duke@435 2121
duke@435 2122 //------------------------------hash-------------------------------------------
duke@435 2123 // Type-specific hashing function.
duke@435 2124 int TypeRawPtr::hash(void) const {
duke@435 2125 return (intptr_t)_bits + TypePtr::hash();
duke@435 2126 }
duke@435 2127
duke@435 2128 //------------------------------dump2------------------------------------------
duke@435 2129 #ifndef PRODUCT
duke@435 2130 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2131 if( _ptr == Constant )
duke@435 2132 st->print(INTPTR_FORMAT, _bits);
duke@435 2133 else
duke@435 2134 st->print("rawptr:%s", ptr_msg[_ptr]);
duke@435 2135 }
duke@435 2136 #endif
duke@435 2137
duke@435 2138 //=============================================================================
duke@435 2139 // Convenience common pre-built type.
duke@435 2140 const TypeOopPtr *TypeOopPtr::BOTTOM;
duke@435 2141
kvn@598 2142 //------------------------------TypeOopPtr-------------------------------------
kvn@598 2143 TypeOopPtr::TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id )
kvn@598 2144 : TypePtr(t, ptr, offset),
kvn@598 2145 _const_oop(o), _klass(k),
kvn@598 2146 _klass_is_exact(xk),
kvn@598 2147 _is_ptr_to_narrowoop(false),
kvn@598 2148 _instance_id(instance_id) {
kvn@598 2149 #ifdef _LP64
kvn@598 2150 if (UseCompressedOops && _offset != 0) {
kvn@598 2151 if (klass() == NULL) {
kvn@598 2152 assert(this->isa_aryptr(), "only arrays without klass");
kvn@598 2153 _is_ptr_to_narrowoop = true;
kvn@598 2154 } else if (_offset == oopDesc::klass_offset_in_bytes()) {
kvn@598 2155 _is_ptr_to_narrowoop = true;
kvn@598 2156 } else if (this->isa_aryptr()) {
kvn@598 2157 _is_ptr_to_narrowoop = (klass()->is_obj_array_klass() &&
kvn@598 2158 _offset != arrayOopDesc::length_offset_in_bytes());
kvn@598 2159 } else if (klass() == ciEnv::current()->Class_klass() &&
kvn@598 2160 (_offset == java_lang_Class::klass_offset_in_bytes() ||
kvn@598 2161 _offset == java_lang_Class::array_klass_offset_in_bytes())) {
kvn@598 2162 // Special hidden fields from the Class.
kvn@598 2163 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2164 _is_ptr_to_narrowoop = true;
kvn@598 2165 } else if (klass()->is_instance_klass()) {
kvn@598 2166 ciInstanceKlass* ik = klass()->as_instance_klass();
kvn@598 2167 ciField* field = NULL;
kvn@598 2168 if (this->isa_klassptr()) {
kvn@598 2169 // Perm objects don't use compressed references, except for
kvn@598 2170 // static fields which are currently compressed.
kvn@598 2171 field = ik->get_field_by_offset(_offset, true);
kvn@598 2172 if (field != NULL) {
kvn@598 2173 BasicType basic_elem_type = field->layout_type();
kvn@598 2174 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2175 basic_elem_type == T_ARRAY);
kvn@598 2176 }
kvn@598 2177 } else if (_offset == OffsetBot || _offset == OffsetTop) {
kvn@598 2178 // unsafe access
kvn@598 2179 _is_ptr_to_narrowoop = true;
kvn@598 2180 } else { // exclude unsafe ops
kvn@598 2181 assert(this->isa_instptr(), "must be an instance ptr.");
kvn@598 2182 // Field which contains a compressed oop references.
kvn@598 2183 field = ik->get_field_by_offset(_offset, false);
kvn@598 2184 if (field != NULL) {
kvn@598 2185 BasicType basic_elem_type = field->layout_type();
kvn@598 2186 _is_ptr_to_narrowoop = (basic_elem_type == T_OBJECT ||
kvn@598 2187 basic_elem_type == T_ARRAY);
kvn@598 2188 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@598 2189 // Compile::find_alias_type() cast exactness on all types to verify
kvn@598 2190 // that it does not affect alias type.
kvn@598 2191 _is_ptr_to_narrowoop = true;
kvn@598 2192 } else {
kvn@598 2193 // Type for the copy start in LibraryCallKit::inline_native_clone().
kvn@598 2194 assert(!klass_is_exact(), "only non-exact klass");
kvn@598 2195 _is_ptr_to_narrowoop = true;
kvn@598 2196 }
kvn@598 2197 }
kvn@598 2198 }
kvn@598 2199 }
kvn@598 2200 #endif
kvn@598 2201 }
kvn@598 2202
duke@435 2203 //------------------------------make-------------------------------------------
duke@435 2204 const TypeOopPtr *TypeOopPtr::make(PTR ptr,
duke@435 2205 int offset) {
duke@435 2206 assert(ptr != Constant, "no constant generic pointers");
duke@435 2207 ciKlass* k = ciKlassKlass::make();
duke@435 2208 bool xk = false;
duke@435 2209 ciObject* o = NULL;
kvn@658 2210 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, InstanceBot))->hashcons();
duke@435 2211 }
duke@435 2212
duke@435 2213
duke@435 2214 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2215 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2216 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 2217 if( ptr == _ptr ) return this;
duke@435 2218 return make(ptr, _offset);
duke@435 2219 }
duke@435 2220
kvn@682 2221 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2222 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
duke@435 2223 // There are no instances of a general oop.
duke@435 2224 // Return self unchanged.
duke@435 2225 return this;
duke@435 2226 }
duke@435 2227
duke@435 2228 //-----------------------------cast_to_exactness-------------------------------
duke@435 2229 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2230 // There is no such thing as an exact general oop.
duke@435 2231 // Return self unchanged.
duke@435 2232 return this;
duke@435 2233 }
duke@435 2234
duke@435 2235
duke@435 2236 //------------------------------as_klass_type----------------------------------
duke@435 2237 // Return the klass type corresponding to this instance or array type.
duke@435 2238 // It is the type that is loaded from an object of this type.
duke@435 2239 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
duke@435 2240 ciKlass* k = klass();
duke@435 2241 bool xk = klass_is_exact();
duke@435 2242 if (k == NULL || !k->is_java_klass())
duke@435 2243 return TypeKlassPtr::OBJECT;
duke@435 2244 else
duke@435 2245 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
duke@435 2246 }
duke@435 2247
duke@435 2248
duke@435 2249 //------------------------------meet-------------------------------------------
duke@435 2250 // Compute the MEET of two types. It returns a new Type object.
duke@435 2251 const Type *TypeOopPtr::xmeet( const Type *t ) const {
duke@435 2252 // Perform a fast test for common case; meeting the same types together.
duke@435 2253 if( this == t ) return this; // Meeting same type-rep?
duke@435 2254
duke@435 2255 // Current "this->_base" is OopPtr
duke@435 2256 switch (t->base()) { // switch on original type
duke@435 2257
duke@435 2258 case Int: // Mixing ints & oops happens when javac
duke@435 2259 case Long: // reuses local variables
duke@435 2260 case FloatTop:
duke@435 2261 case FloatCon:
duke@435 2262 case FloatBot:
duke@435 2263 case DoubleTop:
duke@435 2264 case DoubleCon:
duke@435 2265 case DoubleBot:
duke@435 2266 case Bottom: // Ye Olde Default
duke@435 2267 return Type::BOTTOM;
duke@435 2268 case Top:
duke@435 2269 return this;
duke@435 2270
duke@435 2271 default: // All else is a mistake
duke@435 2272 typerr(t);
duke@435 2273
duke@435 2274 case RawPtr:
duke@435 2275 return TypePtr::BOTTOM; // Oop meet raw is not well defined
duke@435 2276
duke@435 2277 case AnyPtr: {
duke@435 2278 // Found an AnyPtr type vs self-OopPtr type
duke@435 2279 const TypePtr *tp = t->is_ptr();
duke@435 2280 int offset = meet_offset(tp->offset());
duke@435 2281 PTR ptr = meet_ptr(tp->ptr());
duke@435 2282 switch (tp->ptr()) {
duke@435 2283 case Null:
duke@435 2284 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2285 // else fall through:
duke@435 2286 case TopPTR:
duke@435 2287 case AnyNull:
duke@435 2288 return make(ptr, offset);
duke@435 2289 case BotPTR:
duke@435 2290 case NotNull:
duke@435 2291 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 2292 default: typerr(t);
duke@435 2293 }
duke@435 2294 }
duke@435 2295
duke@435 2296 case OopPtr: { // Meeting to other OopPtrs
duke@435 2297 const TypeOopPtr *tp = t->is_oopptr();
duke@435 2298 return make( meet_ptr(tp->ptr()), meet_offset(tp->offset()) );
duke@435 2299 }
duke@435 2300
duke@435 2301 case InstPtr: // For these, flip the call around to cut down
duke@435 2302 case KlassPtr: // on the cases I have to handle.
duke@435 2303 case AryPtr:
duke@435 2304 return t->xmeet(this); // Call in reverse direction
duke@435 2305
duke@435 2306 } // End of switch
duke@435 2307 return this; // Return the double constant
duke@435 2308 }
duke@435 2309
duke@435 2310
duke@435 2311 //------------------------------xdual------------------------------------------
duke@435 2312 // Dual of a pure heap pointer. No relevant klass or oop information.
duke@435 2313 const Type *TypeOopPtr::xdual() const {
duke@435 2314 assert(klass() == ciKlassKlass::make(), "no klasses here");
duke@435 2315 assert(const_oop() == NULL, "no constants here");
kvn@658 2316 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 2317 }
duke@435 2318
duke@435 2319 //--------------------------make_from_klass_common-----------------------------
duke@435 2320 // Computes the element-type given a klass.
duke@435 2321 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
duke@435 2322 assert(klass->is_java_klass(), "must be java language klass");
duke@435 2323 if (klass->is_instance_klass()) {
duke@435 2324 Compile* C = Compile::current();
duke@435 2325 Dependencies* deps = C->dependencies();
duke@435 2326 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
duke@435 2327 // Element is an instance
duke@435 2328 bool klass_is_exact = false;
duke@435 2329 if (klass->is_loaded()) {
duke@435 2330 // Try to set klass_is_exact.
duke@435 2331 ciInstanceKlass* ik = klass->as_instance_klass();
duke@435 2332 klass_is_exact = ik->is_final();
duke@435 2333 if (!klass_is_exact && klass_change
duke@435 2334 && deps != NULL && UseUniqueSubclasses) {
duke@435 2335 ciInstanceKlass* sub = ik->unique_concrete_subklass();
duke@435 2336 if (sub != NULL) {
duke@435 2337 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
duke@435 2338 klass = ik = sub;
duke@435 2339 klass_is_exact = sub->is_final();
duke@435 2340 }
duke@435 2341 }
duke@435 2342 if (!klass_is_exact && try_for_exact
duke@435 2343 && deps != NULL && UseExactTypes) {
duke@435 2344 if (!ik->is_interface() && !ik->has_subklass()) {
duke@435 2345 // Add a dependence; if concrete subclass added we need to recompile
duke@435 2346 deps->assert_leaf_type(ik);
duke@435 2347 klass_is_exact = true;
duke@435 2348 }
duke@435 2349 }
duke@435 2350 }
duke@435 2351 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
duke@435 2352 } else if (klass->is_obj_array_klass()) {
duke@435 2353 // Element is an object array. Recursively call ourself.
duke@435 2354 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
duke@435 2355 bool xk = etype->klass_is_exact();
duke@435 2356 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2357 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2358 // are all not-null. This is not true in generally, as code can
duke@435 2359 // slam NULLs down in the subarrays.
duke@435 2360 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
duke@435 2361 return arr;
duke@435 2362 } else if (klass->is_type_array_klass()) {
duke@435 2363 // Element is an typeArray
duke@435 2364 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2365 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2366 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2367 // is not-null. That was not true in general.
duke@435 2368 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
duke@435 2369 return arr;
duke@435 2370 } else {
duke@435 2371 ShouldNotReachHere();
duke@435 2372 return NULL;
duke@435 2373 }
duke@435 2374 }
duke@435 2375
duke@435 2376 //------------------------------make_from_constant-----------------------------
duke@435 2377 // Make a java pointer from an oop constant
duke@435 2378 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o) {
duke@435 2379 if (o->is_method_data() || o->is_method()) {
duke@435 2380 // Treat much like a typeArray of bytes, like below, but fake the type...
duke@435 2381 assert(o->has_encoding(), "must be a perm space object");
duke@435 2382 const Type* etype = (Type*)get_const_basic_type(T_BYTE);
duke@435 2383 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
duke@435 2384 ciKlass *klass = ciTypeArrayKlass::make((BasicType) T_BYTE);
duke@435 2385 assert(o->has_encoding(), "method data oops should be tenured");
duke@435 2386 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2387 return arr;
duke@435 2388 } else {
duke@435 2389 assert(o->is_java_object(), "must be java language object");
duke@435 2390 assert(!o->is_null_object(), "null object not yet handled here.");
duke@435 2391 ciKlass *klass = o->klass();
duke@435 2392 if (klass->is_instance_klass()) {
duke@435 2393 // Element is an instance
duke@435 2394 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2395 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2396 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
duke@435 2397 }
duke@435 2398 return TypeInstPtr::make(o);
duke@435 2399 } else if (klass->is_obj_array_klass()) {
duke@435 2400 // Element is an object array. Recursively call ourself.
duke@435 2401 const Type *etype =
duke@435 2402 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
duke@435 2403 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2404 // We used to pass NotNull in here, asserting that the sub-arrays
duke@435 2405 // are all not-null. This is not true in generally, as code can
duke@435 2406 // slam NULLs down in the subarrays.
duke@435 2407 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2408 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2409 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2410 }
duke@435 2411 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2412 return arr;
duke@435 2413 } else if (klass->is_type_array_klass()) {
duke@435 2414 // Element is an typeArray
duke@435 2415 const Type* etype =
duke@435 2416 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
duke@435 2417 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
duke@435 2418 // We used to pass NotNull in here, asserting that the array pointer
duke@435 2419 // is not-null. That was not true in general.
duke@435 2420 if (!o->has_encoding()) { // not a perm-space constant
duke@435 2421 // %%% remove this restriction by rewriting non-perm ConPNodes in a later phase
duke@435 2422 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
duke@435 2423 }
duke@435 2424 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
duke@435 2425 return arr;
duke@435 2426 }
duke@435 2427 }
duke@435 2428
duke@435 2429 ShouldNotReachHere();
duke@435 2430 return NULL;
duke@435 2431 }
duke@435 2432
duke@435 2433 //------------------------------get_con----------------------------------------
duke@435 2434 intptr_t TypeOopPtr::get_con() const {
duke@435 2435 assert( _ptr == Null || _ptr == Constant, "" );
duke@435 2436 assert( _offset >= 0, "" );
duke@435 2437
duke@435 2438 if (_offset != 0) {
duke@435 2439 // After being ported to the compiler interface, the compiler no longer
duke@435 2440 // directly manipulates the addresses of oops. Rather, it only has a pointer
duke@435 2441 // to a handle at compile time. This handle is embedded in the generated
duke@435 2442 // code and dereferenced at the time the nmethod is made. Until that time,
duke@435 2443 // it is not reasonable to do arithmetic with the addresses of oops (we don't
duke@435 2444 // have access to the addresses!). This does not seem to currently happen,
duke@435 2445 // but this assertion here is to help prevent its occurrance.
duke@435 2446 tty->print_cr("Found oop constant with non-zero offset");
duke@435 2447 ShouldNotReachHere();
duke@435 2448 }
duke@435 2449
duke@435 2450 return (intptr_t)const_oop()->encoding();
duke@435 2451 }
duke@435 2452
duke@435 2453
duke@435 2454 //-----------------------------filter------------------------------------------
duke@435 2455 // Do not allow interface-vs.-noninterface joins to collapse to top.
duke@435 2456 const Type *TypeOopPtr::filter( const Type *kills ) const {
duke@435 2457
duke@435 2458 const Type* ft = join(kills);
duke@435 2459 const TypeInstPtr* ftip = ft->isa_instptr();
duke@435 2460 const TypeInstPtr* ktip = kills->isa_instptr();
duke@435 2461
duke@435 2462 if (ft->empty()) {
duke@435 2463 // Check for evil case of 'this' being a class and 'kills' expecting an
duke@435 2464 // interface. This can happen because the bytecodes do not contain
duke@435 2465 // enough type info to distinguish a Java-level interface variable
duke@435 2466 // from a Java-level object variable. If we meet 2 classes which
duke@435 2467 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 2468 // doesn't implement I, we have no way to tell if the result should
duke@435 2469 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 2470 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 2471 // uplift the type.
duke@435 2472 if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
duke@435 2473 return kills; // Uplift to interface
duke@435 2474
duke@435 2475 return Type::TOP; // Canonical empty value
duke@435 2476 }
duke@435 2477
duke@435 2478 // If we have an interface-typed Phi or cast and we narrow to a class type,
duke@435 2479 // the join should report back the class. However, if we have a J/L/Object
duke@435 2480 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 2481 // join report an interface back out. This isn't possible but happens
duke@435 2482 // because the type system doesn't interact well with interfaces.
duke@435 2483 if (ftip != NULL && ktip != NULL &&
duke@435 2484 ftip->is_loaded() && ftip->klass()->is_interface() &&
duke@435 2485 ktip->is_loaded() && !ktip->klass()->is_interface()) {
duke@435 2486 // Happens in a CTW of rt.jar, 320-341, no extra flags
duke@435 2487 return ktip->cast_to_ptr_type(ftip->ptr());
duke@435 2488 }
duke@435 2489
duke@435 2490 return ft;
duke@435 2491 }
duke@435 2492
duke@435 2493 //------------------------------eq---------------------------------------------
duke@435 2494 // Structural equality check for Type representations
duke@435 2495 bool TypeOopPtr::eq( const Type *t ) const {
duke@435 2496 const TypeOopPtr *a = (const TypeOopPtr*)t;
duke@435 2497 if (_klass_is_exact != a->_klass_is_exact ||
duke@435 2498 _instance_id != a->_instance_id) return false;
duke@435 2499 ciObject* one = const_oop();
duke@435 2500 ciObject* two = a->const_oop();
duke@435 2501 if (one == NULL || two == NULL) {
duke@435 2502 return (one == two) && TypePtr::eq(t);
duke@435 2503 } else {
duke@435 2504 return one->equals(two) && TypePtr::eq(t);
duke@435 2505 }
duke@435 2506 }
duke@435 2507
duke@435 2508 //------------------------------hash-------------------------------------------
duke@435 2509 // Type-specific hashing function.
duke@435 2510 int TypeOopPtr::hash(void) const {
duke@435 2511 return
duke@435 2512 (const_oop() ? const_oop()->hash() : 0) +
duke@435 2513 _klass_is_exact +
duke@435 2514 _instance_id +
duke@435 2515 TypePtr::hash();
duke@435 2516 }
duke@435 2517
duke@435 2518 //------------------------------dump2------------------------------------------
duke@435 2519 #ifndef PRODUCT
duke@435 2520 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 2521 st->print("oopptr:%s", ptr_msg[_ptr]);
duke@435 2522 if( _klass_is_exact ) st->print(":exact");
duke@435 2523 if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
duke@435 2524 switch( _offset ) {
duke@435 2525 case OffsetTop: st->print("+top"); break;
duke@435 2526 case OffsetBot: st->print("+any"); break;
duke@435 2527 case 0: break;
duke@435 2528 default: st->print("+%d",_offset); break;
duke@435 2529 }
kvn@658 2530 if (_instance_id == InstanceTop)
kvn@658 2531 st->print(",iid=top");
kvn@658 2532 else if (_instance_id != InstanceBot)
duke@435 2533 st->print(",iid=%d",_instance_id);
duke@435 2534 }
duke@435 2535 #endif
duke@435 2536
duke@435 2537 //------------------------------singleton--------------------------------------
duke@435 2538 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 2539 // constants
duke@435 2540 bool TypeOopPtr::singleton(void) const {
duke@435 2541 // detune optimizer to not generate constant oop + constant offset as a constant!
duke@435 2542 // TopPTR, Null, AnyNull, Constant are all singletons
duke@435 2543 return (_offset == 0) && !below_centerline(_ptr);
duke@435 2544 }
duke@435 2545
duke@435 2546 //------------------------------xadd_offset------------------------------------
duke@435 2547 int TypeOopPtr::xadd_offset( int offset ) const {
duke@435 2548 // Adding to 'TOP' offset? Return 'TOP'!
duke@435 2549 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
duke@435 2550 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
duke@435 2551 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
duke@435 2552
duke@435 2553 // assert( _offset >= 0 && _offset+offset >= 0, "" );
duke@435 2554 // It is possible to construct a negative offset during PhaseCCP
duke@435 2555
duke@435 2556 return _offset+offset; // Sum valid offsets
duke@435 2557 }
duke@435 2558
duke@435 2559 //------------------------------add_offset-------------------------------------
duke@435 2560 const TypePtr *TypeOopPtr::add_offset( int offset ) const {
duke@435 2561 return make( _ptr, xadd_offset(offset) );
duke@435 2562 }
duke@435 2563
kvn@658 2564 //------------------------------meet_instance_id--------------------------------
kvn@658 2565 int TypeOopPtr::meet_instance_id( int instance_id ) const {
kvn@658 2566 // Either is 'TOP' instance? Return the other instance!
kvn@658 2567 if( _instance_id == InstanceTop ) return instance_id;
kvn@658 2568 if( instance_id == InstanceTop ) return _instance_id;
kvn@658 2569 // If either is different, return 'BOTTOM' instance
kvn@658 2570 if( _instance_id != instance_id ) return InstanceBot;
kvn@658 2571 return _instance_id;
duke@435 2572 }
duke@435 2573
kvn@658 2574 //------------------------------dual_instance_id--------------------------------
kvn@658 2575 int TypeOopPtr::dual_instance_id( ) const {
kvn@658 2576 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
kvn@658 2577 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
kvn@658 2578 return _instance_id; // Map everything else into self
kvn@658 2579 }
kvn@658 2580
kvn@658 2581
duke@435 2582 //=============================================================================
duke@435 2583 // Convenience common pre-built types.
duke@435 2584 const TypeInstPtr *TypeInstPtr::NOTNULL;
duke@435 2585 const TypeInstPtr *TypeInstPtr::BOTTOM;
duke@435 2586 const TypeInstPtr *TypeInstPtr::MIRROR;
duke@435 2587 const TypeInstPtr *TypeInstPtr::MARK;
duke@435 2588 const TypeInstPtr *TypeInstPtr::KLASS;
duke@435 2589
duke@435 2590 //------------------------------TypeInstPtr-------------------------------------
duke@435 2591 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, int instance_id)
duke@435 2592 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id), _name(k->name()) {
duke@435 2593 assert(k != NULL &&
duke@435 2594 (k->is_loaded() || o == NULL),
duke@435 2595 "cannot have constants with non-loaded klass");
duke@435 2596 };
duke@435 2597
duke@435 2598 //------------------------------make-------------------------------------------
duke@435 2599 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
duke@435 2600 ciKlass* k,
duke@435 2601 bool xk,
duke@435 2602 ciObject* o,
duke@435 2603 int offset,
duke@435 2604 int instance_id) {
duke@435 2605 assert( !k->is_loaded() || k->is_instance_klass() ||
duke@435 2606 k->is_method_klass(), "Must be for instance or method");
duke@435 2607 // Either const_oop() is NULL or else ptr is Constant
duke@435 2608 assert( (!o && ptr != Constant) || (o && ptr == Constant),
duke@435 2609 "constant pointers must have a value supplied" );
duke@435 2610 // Ptr is never Null
duke@435 2611 assert( ptr != Null, "NULL pointers are not typed" );
duke@435 2612
kvn@682 2613 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 2614 if (!UseExactTypes) xk = false;
duke@435 2615 if (ptr == Constant) {
duke@435 2616 // Note: This case includes meta-object constants, such as methods.
duke@435 2617 xk = true;
duke@435 2618 } else if (k->is_loaded()) {
duke@435 2619 ciInstanceKlass* ik = k->as_instance_klass();
duke@435 2620 if (!xk && ik->is_final()) xk = true; // no inexact final klass
duke@435 2621 if (xk && ik->is_interface()) xk = false; // no exact interface
duke@435 2622 }
duke@435 2623
duke@435 2624 // Now hash this baby
duke@435 2625 TypeInstPtr *result =
duke@435 2626 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id))->hashcons();
duke@435 2627
duke@435 2628 return result;
duke@435 2629 }
duke@435 2630
duke@435 2631
duke@435 2632 //------------------------------cast_to_ptr_type-------------------------------
duke@435 2633 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 2634 if( ptr == _ptr ) return this;
duke@435 2635 // Reconstruct _sig info here since not a problem with later lazy
duke@435 2636 // construction, _sig will show up on demand.
kvn@658 2637 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id);
duke@435 2638 }
duke@435 2639
duke@435 2640
duke@435 2641 //-----------------------------cast_to_exactness-------------------------------
duke@435 2642 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 2643 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 2644 if (!UseExactTypes) return this;
duke@435 2645 if (!_klass->is_loaded()) return this;
duke@435 2646 ciInstanceKlass* ik = _klass->as_instance_klass();
duke@435 2647 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
duke@435 2648 if( ik->is_interface() ) return this; // cannot set xk
duke@435 2649 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id);
duke@435 2650 }
duke@435 2651
kvn@682 2652 //-----------------------------cast_to_instance_id----------------------------
kvn@658 2653 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
kvn@658 2654 if( instance_id == _instance_id ) return this;
kvn@682 2655 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id);
duke@435 2656 }
duke@435 2657
duke@435 2658 //------------------------------xmeet_unloaded---------------------------------
duke@435 2659 // Compute the MEET of two InstPtrs when at least one is unloaded.
duke@435 2660 // Assume classes are different since called after check for same name/class-loader
duke@435 2661 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
duke@435 2662 int off = meet_offset(tinst->offset());
duke@435 2663 PTR ptr = meet_ptr(tinst->ptr());
duke@435 2664
duke@435 2665 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
duke@435 2666 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
duke@435 2667 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 2668 //
duke@435 2669 // Meet unloaded class with java/lang/Object
duke@435 2670 //
duke@435 2671 // Meet
duke@435 2672 // | Unloaded Class
duke@435 2673 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
duke@435 2674 // ===================================================================
duke@435 2675 // TOP | ..........................Unloaded......................|
duke@435 2676 // AnyNull | U-AN |................Unloaded......................|
duke@435 2677 // Constant | ... O-NN .................................. | O-BOT |
duke@435 2678 // NotNull | ... O-NN .................................. | O-BOT |
duke@435 2679 // BOTTOM | ........................Object-BOTTOM ..................|
duke@435 2680 //
duke@435 2681 assert(loaded->ptr() != TypePtr::Null, "insanity check");
duke@435 2682 //
duke@435 2683 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2684 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make( ptr, unloaded->klass() ); }
duke@435 2685 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2686 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
duke@435 2687 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
duke@435 2688 else { return TypeInstPtr::NOTNULL; }
duke@435 2689 }
duke@435 2690 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
duke@435 2691
duke@435 2692 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
duke@435 2693 }
duke@435 2694
duke@435 2695 // Both are unloaded, not the same class, not Object
duke@435 2696 // Or meet unloaded with a different loaded class, not java/lang/Object
duke@435 2697 if( ptr != TypePtr::BotPTR ) {
duke@435 2698 return TypeInstPtr::NOTNULL;
duke@435 2699 }
duke@435 2700 return TypeInstPtr::BOTTOM;
duke@435 2701 }
duke@435 2702
duke@435 2703
duke@435 2704 //------------------------------meet-------------------------------------------
duke@435 2705 // Compute the MEET of two types. It returns a new Type object.
duke@435 2706 const Type *TypeInstPtr::xmeet( const Type *t ) const {
duke@435 2707 // Perform a fast test for common case; meeting the same types together.
duke@435 2708 if( this == t ) return this; // Meeting same type-rep?
duke@435 2709
duke@435 2710 // Current "this->_base" is Pointer
duke@435 2711 switch (t->base()) { // switch on original type
duke@435 2712
duke@435 2713 case Int: // Mixing ints & oops happens when javac
duke@435 2714 case Long: // reuses local variables
duke@435 2715 case FloatTop:
duke@435 2716 case FloatCon:
duke@435 2717 case FloatBot:
duke@435 2718 case DoubleTop:
duke@435 2719 case DoubleCon:
duke@435 2720 case DoubleBot:
coleenp@548 2721 case NarrowOop:
duke@435 2722 case Bottom: // Ye Olde Default
duke@435 2723 return Type::BOTTOM;
duke@435 2724 case Top:
duke@435 2725 return this;
duke@435 2726
duke@435 2727 default: // All else is a mistake
duke@435 2728 typerr(t);
duke@435 2729
duke@435 2730 case RawPtr: return TypePtr::BOTTOM;
duke@435 2731
duke@435 2732 case AryPtr: { // All arrays inherit from Object class
duke@435 2733 const TypeAryPtr *tp = t->is_aryptr();
duke@435 2734 int offset = meet_offset(tp->offset());
duke@435 2735 PTR ptr = meet_ptr(tp->ptr());
kvn@658 2736 int instance_id = meet_instance_id(tp->instance_id());
duke@435 2737 switch (ptr) {
duke@435 2738 case TopPTR:
duke@435 2739 case AnyNull: // Fall 'down' to dual of object klass
duke@435 2740 if (klass()->equals(ciEnv::current()->Object_klass())) {
kvn@658 2741 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2742 } else {
duke@435 2743 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 2744 ptr = NotNull;
kvn@658 2745 instance_id = InstanceBot;
kvn@658 2746 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id);
duke@435 2747 }
duke@435 2748 case Constant:
duke@435 2749 case NotNull:
duke@435 2750 case BotPTR: // Fall down to object klass
duke@435 2751 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 2752 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
duke@435 2753 // If 'this' (InstPtr) is above the centerline and it is Object class
duke@435 2754 // then we can subclass in the Java class heirarchy.
duke@435 2755 if (klass()->equals(ciEnv::current()->Object_klass())) {
duke@435 2756 // that is, tp's array type is a subtype of my klass
kvn@658 2757 return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id);
duke@435 2758 }
duke@435 2759 }
duke@435 2760 // The other case cannot happen, since I cannot be a subtype of an array.
duke@435 2761 // The meet falls down to Object class below centerline.
duke@435 2762 if( ptr == Constant )
duke@435 2763 ptr = NotNull;
kvn@658 2764 instance_id = InstanceBot;
kvn@658 2765 return make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id );
duke@435 2766 default: typerr(t);
duke@435 2767 }
duke@435 2768 }
duke@435 2769
duke@435 2770 case OopPtr: { // Meeting to OopPtrs
duke@435 2771 // Found a OopPtr type vs self-InstPtr type
duke@435 2772 const TypePtr *tp = t->is_oopptr();
duke@435 2773 int offset = meet_offset(tp->offset());
duke@435 2774 PTR ptr = meet_ptr(tp->ptr());
duke@435 2775 switch (tp->ptr()) {
duke@435 2776 case TopPTR:
kvn@658 2777 case AnyNull: {
kvn@658 2778 int instance_id = meet_instance_id(InstanceTop);
duke@435 2779 return make(ptr, klass(), klass_is_exact(),
kvn@658 2780 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2781 }
duke@435 2782 case NotNull:
duke@435 2783 case BotPTR:
duke@435 2784 return TypeOopPtr::make(ptr, offset);
duke@435 2785 default: typerr(t);
duke@435 2786 }
duke@435 2787 }
duke@435 2788
duke@435 2789 case AnyPtr: { // Meeting to AnyPtrs
duke@435 2790 // Found an AnyPtr type vs self-InstPtr type
duke@435 2791 const TypePtr *tp = t->is_ptr();
duke@435 2792 int offset = meet_offset(tp->offset());
duke@435 2793 PTR ptr = meet_ptr(tp->ptr());
duke@435 2794 switch (tp->ptr()) {
duke@435 2795 case Null:
duke@435 2796 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
kvn@658 2797 // else fall through to AnyNull
duke@435 2798 case TopPTR:
kvn@658 2799 case AnyNull: {
kvn@658 2800 int instance_id = meet_instance_id(InstanceTop);
duke@435 2801 return make( ptr, klass(), klass_is_exact(),
kvn@658 2802 (ptr == Constant ? const_oop() : NULL), offset, instance_id);
kvn@658 2803 }
duke@435 2804 case NotNull:
duke@435 2805 case BotPTR:
duke@435 2806 return TypePtr::make( AnyPtr, ptr, offset );
duke@435 2807 default: typerr(t);
duke@435 2808 }
duke@435 2809 }
duke@435 2810
duke@435 2811 /*
duke@435 2812 A-top }
duke@435 2813 / | \ } Tops
duke@435 2814 B-top A-any C-top }
duke@435 2815 | / | \ | } Any-nulls
duke@435 2816 B-any | C-any }
duke@435 2817 | | |
duke@435 2818 B-con A-con C-con } constants; not comparable across classes
duke@435 2819 | | |
duke@435 2820 B-not | C-not }
duke@435 2821 | \ | / | } not-nulls
duke@435 2822 B-bot A-not C-bot }
duke@435 2823 \ | / } Bottoms
duke@435 2824 A-bot }
duke@435 2825 */
duke@435 2826
duke@435 2827 case InstPtr: { // Meeting 2 Oops?
duke@435 2828 // Found an InstPtr sub-type vs self-InstPtr type
duke@435 2829 const TypeInstPtr *tinst = t->is_instptr();
duke@435 2830 int off = meet_offset( tinst->offset() );
duke@435 2831 PTR ptr = meet_ptr( tinst->ptr() );
kvn@658 2832 int instance_id = meet_instance_id(tinst->instance_id());
duke@435 2833
duke@435 2834 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 2835 // If we have constants, then we created oops so classes are loaded
duke@435 2836 // and we can handle the constants further down. This case handles
duke@435 2837 // both-not-loaded or both-loaded classes
duke@435 2838 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
duke@435 2839 return make( ptr, klass(), klass_is_exact(), NULL, off, instance_id );
duke@435 2840 }
duke@435 2841
duke@435 2842 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 2843 ciKlass* tinst_klass = tinst->klass();
duke@435 2844 ciKlass* this_klass = this->klass();
duke@435 2845 bool tinst_xk = tinst->klass_is_exact();
duke@435 2846 bool this_xk = this->klass_is_exact();
duke@435 2847 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
duke@435 2848 // One of these classes has not been loaded
duke@435 2849 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
duke@435 2850 #ifndef PRODUCT
duke@435 2851 if( PrintOpto && Verbose ) {
duke@435 2852 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
duke@435 2853 tty->print(" this == "); this->dump(); tty->cr();
duke@435 2854 tty->print(" tinst == "); tinst->dump(); tty->cr();
duke@435 2855 }
duke@435 2856 #endif
duke@435 2857 return unloaded_meet;
duke@435 2858 }
duke@435 2859
duke@435 2860 // Handle mixing oops and interfaces first.
duke@435 2861 if( this_klass->is_interface() && !tinst_klass->is_interface() ) {
duke@435 2862 ciKlass *tmp = tinst_klass; // Swap interface around
duke@435 2863 tinst_klass = this_klass;
duke@435 2864 this_klass = tmp;
duke@435 2865 bool tmp2 = tinst_xk;
duke@435 2866 tinst_xk = this_xk;
duke@435 2867 this_xk = tmp2;
duke@435 2868 }
duke@435 2869 if (tinst_klass->is_interface() &&
duke@435 2870 !(this_klass->is_interface() ||
duke@435 2871 // Treat java/lang/Object as an honorary interface,
duke@435 2872 // because we need a bottom for the interface hierarchy.
duke@435 2873 this_klass == ciEnv::current()->Object_klass())) {
duke@435 2874 // Oop meets interface!
duke@435 2875
duke@435 2876 // See if the oop subtypes (implements) interface.
duke@435 2877 ciKlass *k;
duke@435 2878 bool xk;
duke@435 2879 if( this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2880 // Oop indeed subtypes. Now keep oop or interface depending
duke@435 2881 // on whether we are both above the centerline or either is
duke@435 2882 // below the centerline. If we are on the centerline
duke@435 2883 // (e.g., Constant vs. AnyNull interface), use the constant.
duke@435 2884 k = below_centerline(ptr) ? tinst_klass : this_klass;
duke@435 2885 // If we are keeping this_klass, keep its exactness too.
duke@435 2886 xk = below_centerline(ptr) ? tinst_xk : this_xk;
duke@435 2887 } else { // Does not implement, fall to Object
duke@435 2888 // Oop does not implement interface, so mixing falls to Object
duke@435 2889 // just like the verifier does (if both are above the
duke@435 2890 // centerline fall to interface)
duke@435 2891 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
duke@435 2892 xk = above_centerline(ptr) ? tinst_xk : false;
duke@435 2893 // Watch out for Constant vs. AnyNull interface.
duke@435 2894 if (ptr == Constant) ptr = NotNull; // forget it was a constant
kvn@682 2895 instance_id = InstanceBot;
duke@435 2896 }
duke@435 2897 ciObject* o = NULL; // the Constant value, if any
duke@435 2898 if (ptr == Constant) {
duke@435 2899 // Find out which constant.
duke@435 2900 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
duke@435 2901 }
kvn@658 2902 return make( ptr, k, xk, o, off, instance_id );
duke@435 2903 }
duke@435 2904
duke@435 2905 // Either oop vs oop or interface vs interface or interface vs Object
duke@435 2906
duke@435 2907 // !!! Here's how the symmetry requirement breaks down into invariants:
duke@435 2908 // If we split one up & one down AND they subtype, take the down man.
duke@435 2909 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2910 // If both are up and they subtype, take the subtype class.
duke@435 2911 // If both are up and they do NOT subtype, "fall hard".
duke@435 2912 // If both are down and they subtype, take the supertype class.
duke@435 2913 // If both are down and they do NOT subtype, "fall hard".
duke@435 2914 // Constants treated as down.
duke@435 2915
duke@435 2916 // Now, reorder the above list; observe that both-down+subtype is also
duke@435 2917 // "fall hard"; "fall hard" becomes the default case:
duke@435 2918 // If we split one up & one down AND they subtype, take the down man.
duke@435 2919 // If both are up and they subtype, take the subtype class.
duke@435 2920
duke@435 2921 // If both are down and they subtype, "fall hard".
duke@435 2922 // If both are down and they do NOT subtype, "fall hard".
duke@435 2923 // If both are up and they do NOT subtype, "fall hard".
duke@435 2924 // If we split one up & one down AND they do NOT subtype, "fall hard".
duke@435 2925
duke@435 2926 // If a proper subtype is exact, and we return it, we return it exactly.
duke@435 2927 // If a proper supertype is exact, there can be no subtyping relationship!
duke@435 2928 // If both types are equal to the subtype, exactness is and-ed below the
duke@435 2929 // centerline and or-ed above it. (N.B. Constants are always exact.)
duke@435 2930
duke@435 2931 // Check for subtyping:
duke@435 2932 ciKlass *subtype = NULL;
duke@435 2933 bool subtype_exact = false;
duke@435 2934 if( tinst_klass->equals(this_klass) ) {
duke@435 2935 subtype = this_klass;
duke@435 2936 subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
duke@435 2937 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
duke@435 2938 subtype = this_klass; // Pick subtyping class
duke@435 2939 subtype_exact = this_xk;
duke@435 2940 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
duke@435 2941 subtype = tinst_klass; // Pick subtyping class
duke@435 2942 subtype_exact = tinst_xk;
duke@435 2943 }
duke@435 2944
duke@435 2945 if( subtype ) {
duke@435 2946 if( above_centerline(ptr) ) { // both are up?
duke@435 2947 this_klass = tinst_klass = subtype;
duke@435 2948 this_xk = tinst_xk = subtype_exact;
duke@435 2949 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
duke@435 2950 this_klass = tinst_klass; // tinst is down; keep down man
duke@435 2951 this_xk = tinst_xk;
duke@435 2952 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
duke@435 2953 tinst_klass = this_klass; // this is down; keep down man
duke@435 2954 tinst_xk = this_xk;
duke@435 2955 } else {
duke@435 2956 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
duke@435 2957 }
duke@435 2958 }
duke@435 2959
duke@435 2960 // Check for classes now being equal
duke@435 2961 if (tinst_klass->equals(this_klass)) {
duke@435 2962 // If the klasses are equal, the constants may still differ. Fall to
duke@435 2963 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 2964 // handled elsewhere).
duke@435 2965 ciObject* o = NULL; // Assume not constant when done
duke@435 2966 ciObject* this_oop = const_oop();
duke@435 2967 ciObject* tinst_oop = tinst->const_oop();
duke@435 2968 if( ptr == Constant ) {
duke@435 2969 if (this_oop != NULL && tinst_oop != NULL &&
duke@435 2970 this_oop->equals(tinst_oop) )
duke@435 2971 o = this_oop;
duke@435 2972 else if (above_centerline(this ->_ptr))
duke@435 2973 o = tinst_oop;
duke@435 2974 else if (above_centerline(tinst ->_ptr))
duke@435 2975 o = this_oop;
duke@435 2976 else
duke@435 2977 ptr = NotNull;
duke@435 2978 }
duke@435 2979 return make( ptr, this_klass, this_xk, o, off, instance_id );
duke@435 2980 } // Else classes are not equal
duke@435 2981
duke@435 2982 // Since klasses are different, we require a LCA in the Java
duke@435 2983 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 2984 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 2985 ptr = NotNull;
kvn@682 2986 instance_id = InstanceBot;
duke@435 2987
duke@435 2988 // Now we find the LCA of Java classes
duke@435 2989 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
kvn@658 2990 return make( ptr, k, false, NULL, off, instance_id );
duke@435 2991 } // End of case InstPtr
duke@435 2992
duke@435 2993 case KlassPtr:
duke@435 2994 return TypeInstPtr::BOTTOM;
duke@435 2995
duke@435 2996 } // End of switch
duke@435 2997 return this; // Return the double constant
duke@435 2998 }
duke@435 2999
duke@435 3000
duke@435 3001 //------------------------java_mirror_type--------------------------------------
duke@435 3002 ciType* TypeInstPtr::java_mirror_type() const {
duke@435 3003 // must be a singleton type
duke@435 3004 if( const_oop() == NULL ) return NULL;
duke@435 3005
duke@435 3006 // must be of type java.lang.Class
duke@435 3007 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
duke@435 3008
duke@435 3009 return const_oop()->as_instance()->java_mirror_type();
duke@435 3010 }
duke@435 3011
duke@435 3012
duke@435 3013 //------------------------------xdual------------------------------------------
duke@435 3014 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
duke@435 3015 // inheritence mechanism.
duke@435 3016 const Type *TypeInstPtr::xdual() const {
kvn@658 3017 return new TypeInstPtr( dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id() );
duke@435 3018 }
duke@435 3019
duke@435 3020 //------------------------------eq---------------------------------------------
duke@435 3021 // Structural equality check for Type representations
duke@435 3022 bool TypeInstPtr::eq( const Type *t ) const {
duke@435 3023 const TypeInstPtr *p = t->is_instptr();
duke@435 3024 return
duke@435 3025 klass()->equals(p->klass()) &&
duke@435 3026 TypeOopPtr::eq(p); // Check sub-type stuff
duke@435 3027 }
duke@435 3028
duke@435 3029 //------------------------------hash-------------------------------------------
duke@435 3030 // Type-specific hashing function.
duke@435 3031 int TypeInstPtr::hash(void) const {
duke@435 3032 int hash = klass()->hash() + TypeOopPtr::hash();
duke@435 3033 return hash;
duke@435 3034 }
duke@435 3035
duke@435 3036 //------------------------------dump2------------------------------------------
duke@435 3037 // Dump oop Type
duke@435 3038 #ifndef PRODUCT
duke@435 3039 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3040 // Print the name of the klass.
duke@435 3041 klass()->print_name_on(st);
duke@435 3042
duke@435 3043 switch( _ptr ) {
duke@435 3044 case Constant:
duke@435 3045 // TO DO: Make CI print the hex address of the underlying oop.
duke@435 3046 if (WizardMode || Verbose) {
duke@435 3047 const_oop()->print_oop(st);
duke@435 3048 }
duke@435 3049 case BotPTR:
duke@435 3050 if (!WizardMode && !Verbose) {
duke@435 3051 if( _klass_is_exact ) st->print(":exact");
duke@435 3052 break;
duke@435 3053 }
duke@435 3054 case TopPTR:
duke@435 3055 case AnyNull:
duke@435 3056 case NotNull:
duke@435 3057 st->print(":%s", ptr_msg[_ptr]);
duke@435 3058 if( _klass_is_exact ) st->print(":exact");
duke@435 3059 break;
duke@435 3060 }
duke@435 3061
duke@435 3062 if( _offset ) { // Dump offset, if any
duke@435 3063 if( _offset == OffsetBot ) st->print("+any");
duke@435 3064 else if( _offset == OffsetTop ) st->print("+unknown");
duke@435 3065 else st->print("+%d", _offset);
duke@435 3066 }
duke@435 3067
duke@435 3068 st->print(" *");
kvn@658 3069 if (_instance_id == InstanceTop)
kvn@658 3070 st->print(",iid=top");
kvn@658 3071 else if (_instance_id != InstanceBot)
duke@435 3072 st->print(",iid=%d",_instance_id);
duke@435 3073 }
duke@435 3074 #endif
duke@435 3075
duke@435 3076 //------------------------------add_offset-------------------------------------
duke@435 3077 const TypePtr *TypeInstPtr::add_offset( int offset ) const {
duke@435 3078 return make( _ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), _instance_id );
duke@435 3079 }
duke@435 3080
duke@435 3081 //=============================================================================
duke@435 3082 // Convenience common pre-built types.
duke@435 3083 const TypeAryPtr *TypeAryPtr::RANGE;
duke@435 3084 const TypeAryPtr *TypeAryPtr::OOPS;
kvn@598 3085 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
duke@435 3086 const TypeAryPtr *TypeAryPtr::BYTES;
duke@435 3087 const TypeAryPtr *TypeAryPtr::SHORTS;
duke@435 3088 const TypeAryPtr *TypeAryPtr::CHARS;
duke@435 3089 const TypeAryPtr *TypeAryPtr::INTS;
duke@435 3090 const TypeAryPtr *TypeAryPtr::LONGS;
duke@435 3091 const TypeAryPtr *TypeAryPtr::FLOATS;
duke@435 3092 const TypeAryPtr *TypeAryPtr::DOUBLES;
duke@435 3093
duke@435 3094 //------------------------------make-------------------------------------------
duke@435 3095 const TypeAryPtr *TypeAryPtr::make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3096 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3097 "integral arrays must be pre-equipped with a class");
duke@435 3098 if (!xk) xk = ary->ary_must_be_exact();
kvn@682 3099 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3100 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3101 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3102 }
duke@435 3103
duke@435 3104 //------------------------------make-------------------------------------------
duke@435 3105 const TypeAryPtr *TypeAryPtr::make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) {
duke@435 3106 assert(!(k == NULL && ary->_elem->isa_int()),
duke@435 3107 "integral arrays must be pre-equipped with a class");
duke@435 3108 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
duke@435 3109 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
kvn@682 3110 assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
duke@435 3111 if (!UseExactTypes) xk = (ptr == Constant);
duke@435 3112 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id))->hashcons();
duke@435 3113 }
duke@435 3114
duke@435 3115 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3116 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3117 if( ptr == _ptr ) return this;
kvn@658 3118 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3119 }
duke@435 3120
duke@435 3121
duke@435 3122 //-----------------------------cast_to_exactness-------------------------------
duke@435 3123 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3124 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3125 if (!UseExactTypes) return this;
duke@435 3126 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
duke@435 3127 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id);
duke@435 3128 }
duke@435 3129
kvn@682 3130 //-----------------------------cast_to_instance_id----------------------------
kvn@658 3131 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
kvn@658 3132 if( instance_id == _instance_id ) return this;
kvn@682 3133 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id);
duke@435 3134 }
duke@435 3135
duke@435 3136 //-----------------------------narrow_size_type-------------------------------
duke@435 3137 // Local cache for arrayOopDesc::max_array_length(etype),
duke@435 3138 // which is kind of slow (and cached elsewhere by other users).
duke@435 3139 static jint max_array_length_cache[T_CONFLICT+1];
duke@435 3140 static jint max_array_length(BasicType etype) {
duke@435 3141 jint& cache = max_array_length_cache[etype];
duke@435 3142 jint res = cache;
duke@435 3143 if (res == 0) {
duke@435 3144 switch (etype) {
coleenp@548 3145 case T_NARROWOOP:
coleenp@548 3146 etype = T_OBJECT;
coleenp@548 3147 break;
duke@435 3148 case T_CONFLICT:
duke@435 3149 case T_ILLEGAL:
duke@435 3150 case T_VOID:
duke@435 3151 etype = T_BYTE; // will produce conservatively high value
duke@435 3152 }
duke@435 3153 cache = res = arrayOopDesc::max_array_length(etype);
duke@435 3154 }
duke@435 3155 return res;
duke@435 3156 }
duke@435 3157
duke@435 3158 // Narrow the given size type to the index range for the given array base type.
duke@435 3159 // Return NULL if the resulting int type becomes empty.
duke@435 3160 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size, BasicType elem) {
duke@435 3161 jint hi = size->_hi;
duke@435 3162 jint lo = size->_lo;
duke@435 3163 jint min_lo = 0;
duke@435 3164 jint max_hi = max_array_length(elem);
duke@435 3165 //if (index_not_size) --max_hi; // type of a valid array index, FTR
duke@435 3166 bool chg = false;
duke@435 3167 if (lo < min_lo) { lo = min_lo; chg = true; }
duke@435 3168 if (hi > max_hi) { hi = max_hi; chg = true; }
duke@435 3169 if (lo > hi)
duke@435 3170 return NULL;
duke@435 3171 if (!chg)
duke@435 3172 return size;
duke@435 3173 return TypeInt::make(lo, hi, Type::WidenMin);
duke@435 3174 }
duke@435 3175
duke@435 3176 //-------------------------------cast_to_size----------------------------------
duke@435 3177 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
duke@435 3178 assert(new_size != NULL, "");
duke@435 3179 new_size = narrow_size_type(new_size, elem()->basic_type());
duke@435 3180 if (new_size == NULL) // Negative length arrays will produce weird
duke@435 3181 new_size = TypeInt::ZERO; // intermediate dead fast-path goo
duke@435 3182 if (new_size == size()) return this;
duke@435 3183 const TypeAry* new_ary = TypeAry::make(elem(), new_size);
kvn@658 3184 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id);
duke@435 3185 }
duke@435 3186
duke@435 3187
duke@435 3188 //------------------------------eq---------------------------------------------
duke@435 3189 // Structural equality check for Type representations
duke@435 3190 bool TypeAryPtr::eq( const Type *t ) const {
duke@435 3191 const TypeAryPtr *p = t->is_aryptr();
duke@435 3192 return
duke@435 3193 _ary == p->_ary && // Check array
duke@435 3194 TypeOopPtr::eq(p); // Check sub-parts
duke@435 3195 }
duke@435 3196
duke@435 3197 //------------------------------hash-------------------------------------------
duke@435 3198 // Type-specific hashing function.
duke@435 3199 int TypeAryPtr::hash(void) const {
duke@435 3200 return (intptr_t)_ary + TypeOopPtr::hash();
duke@435 3201 }
duke@435 3202
duke@435 3203 //------------------------------meet-------------------------------------------
duke@435 3204 // Compute the MEET of two types. It returns a new Type object.
duke@435 3205 const Type *TypeAryPtr::xmeet( const Type *t ) const {
duke@435 3206 // Perform a fast test for common case; meeting the same types together.
duke@435 3207 if( this == t ) return this; // Meeting same type-rep?
duke@435 3208 // Current "this->_base" is Pointer
duke@435 3209 switch (t->base()) { // switch on original type
duke@435 3210
duke@435 3211 // Mixing ints & oops happens when javac reuses local variables
duke@435 3212 case Int:
duke@435 3213 case Long:
duke@435 3214 case FloatTop:
duke@435 3215 case FloatCon:
duke@435 3216 case FloatBot:
duke@435 3217 case DoubleTop:
duke@435 3218 case DoubleCon:
duke@435 3219 case DoubleBot:
coleenp@548 3220 case NarrowOop:
duke@435 3221 case Bottom: // Ye Olde Default
duke@435 3222 return Type::BOTTOM;
duke@435 3223 case Top:
duke@435 3224 return this;
duke@435 3225
duke@435 3226 default: // All else is a mistake
duke@435 3227 typerr(t);
duke@435 3228
duke@435 3229 case OopPtr: { // Meeting to OopPtrs
duke@435 3230 // Found a OopPtr type vs self-AryPtr type
duke@435 3231 const TypePtr *tp = t->is_oopptr();
duke@435 3232 int offset = meet_offset(tp->offset());
duke@435 3233 PTR ptr = meet_ptr(tp->ptr());
duke@435 3234 switch (tp->ptr()) {
duke@435 3235 case TopPTR:
kvn@658 3236 case AnyNull: {
kvn@658 3237 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3238 return make(ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3239 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3240 }
duke@435 3241 case BotPTR:
duke@435 3242 case NotNull:
duke@435 3243 return TypeOopPtr::make(ptr, offset);
duke@435 3244 default: ShouldNotReachHere();
duke@435 3245 }
duke@435 3246 }
duke@435 3247
duke@435 3248 case AnyPtr: { // Meeting two AnyPtrs
duke@435 3249 // Found an AnyPtr type vs self-AryPtr type
duke@435 3250 const TypePtr *tp = t->is_ptr();
duke@435 3251 int offset = meet_offset(tp->offset());
duke@435 3252 PTR ptr = meet_ptr(tp->ptr());
duke@435 3253 switch (tp->ptr()) {
duke@435 3254 case TopPTR:
duke@435 3255 return this;
duke@435 3256 case BotPTR:
duke@435 3257 case NotNull:
duke@435 3258 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3259 case Null:
duke@435 3260 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset);
kvn@658 3261 // else fall through to AnyNull
kvn@658 3262 case AnyNull: {
kvn@658 3263 int instance_id = meet_instance_id(InstanceTop);
kvn@658 3264 return make( ptr, (ptr == Constant ? const_oop() : NULL),
kvn@658 3265 _ary, _klass, _klass_is_exact, offset, instance_id);
kvn@658 3266 }
duke@435 3267 default: ShouldNotReachHere();
duke@435 3268 }
duke@435 3269 }
duke@435 3270
duke@435 3271 case RawPtr: return TypePtr::BOTTOM;
duke@435 3272
duke@435 3273 case AryPtr: { // Meeting 2 references?
duke@435 3274 const TypeAryPtr *tap = t->is_aryptr();
duke@435 3275 int off = meet_offset(tap->offset());
duke@435 3276 const TypeAry *tary = _ary->meet(tap->_ary)->is_ary();
duke@435 3277 PTR ptr = meet_ptr(tap->ptr());
kvn@658 3278 int instance_id = meet_instance_id(tap->instance_id());
duke@435 3279 ciKlass* lazy_klass = NULL;
duke@435 3280 if (tary->_elem->isa_int()) {
duke@435 3281 // Integral array element types have irrelevant lattice relations.
duke@435 3282 // It is the klass that determines array layout, not the element type.
duke@435 3283 if (_klass == NULL)
duke@435 3284 lazy_klass = tap->_klass;
duke@435 3285 else if (tap->_klass == NULL || tap->_klass == _klass) {
duke@435 3286 lazy_klass = _klass;
duke@435 3287 } else {
duke@435 3288 // Something like byte[int+] meets char[int+].
duke@435 3289 // This must fall to bottom, not (int[-128..65535])[int+].
kvn@682 3290 instance_id = InstanceBot;
duke@435 3291 tary = TypeAry::make(Type::BOTTOM, tary->_size);
duke@435 3292 }
duke@435 3293 }
duke@435 3294 bool xk;
duke@435 3295 switch (tap->ptr()) {
duke@435 3296 case AnyNull:
duke@435 3297 case TopPTR:
duke@435 3298 // Compute new klass on demand, do not use tap->_klass
duke@435 3299 xk = (tap->_klass_is_exact | this->_klass_is_exact);
kvn@658 3300 return make( ptr, const_oop(), tary, lazy_klass, xk, off, instance_id );
duke@435 3301 case Constant: {
duke@435 3302 ciObject* o = const_oop();
duke@435 3303 if( _ptr == Constant ) {
duke@435 3304 if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
duke@435 3305 ptr = NotNull;
duke@435 3306 o = NULL;
kvn@682 3307 instance_id = InstanceBot;
duke@435 3308 }
duke@435 3309 } else if( above_centerline(_ptr) ) {
duke@435 3310 o = tap->const_oop();
duke@435 3311 }
duke@435 3312 xk = true;
kvn@658 3313 return TypeAryPtr::make( ptr, o, tary, tap->_klass, xk, off, instance_id );
duke@435 3314 }
duke@435 3315 case NotNull:
duke@435 3316 case BotPTR:
duke@435 3317 // Compute new klass on demand, do not use tap->_klass
duke@435 3318 if (above_centerline(this->_ptr))
duke@435 3319 xk = tap->_klass_is_exact;
duke@435 3320 else if (above_centerline(tap->_ptr))
duke@435 3321 xk = this->_klass_is_exact;
duke@435 3322 else xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
duke@435 3323 (klass() == tap->klass()); // Only precise for identical arrays
kvn@658 3324 return TypeAryPtr::make( ptr, NULL, tary, lazy_klass, xk, off, instance_id );
duke@435 3325 default: ShouldNotReachHere();
duke@435 3326 }
duke@435 3327 }
duke@435 3328
duke@435 3329 // All arrays inherit from Object class
duke@435 3330 case InstPtr: {
duke@435 3331 const TypeInstPtr *tp = t->is_instptr();
duke@435 3332 int offset = meet_offset(tp->offset());
duke@435 3333 PTR ptr = meet_ptr(tp->ptr());
kvn@658 3334 int instance_id = meet_instance_id(tp->instance_id());
duke@435 3335 switch (ptr) {
duke@435 3336 case TopPTR:
duke@435 3337 case AnyNull: // Fall 'down' to dual of object klass
duke@435 3338 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
kvn@658 3339 return TypeAryPtr::make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3340 } else {
duke@435 3341 // cannot subclass, so the meet has to fall badly below the centerline
duke@435 3342 ptr = NotNull;
kvn@658 3343 instance_id = InstanceBot;
kvn@658 3344 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3345 }
duke@435 3346 case Constant:
duke@435 3347 case NotNull:
duke@435 3348 case BotPTR: // Fall down to object klass
duke@435 3349 // LCA is object_klass, but if we subclass from the top we can do better
duke@435 3350 if (above_centerline(tp->ptr())) {
duke@435 3351 // If 'tp' is above the centerline and it is Object class
duke@435 3352 // then we can subclass in the Java class heirarchy.
duke@435 3353 if( tp->klass()->equals(ciEnv::current()->Object_klass()) ) {
duke@435 3354 // that is, my array type is a subtype of 'tp' klass
kvn@658 3355 return make( ptr, _ary, _klass, _klass_is_exact, offset, instance_id );
duke@435 3356 }
duke@435 3357 }
duke@435 3358 // The other case cannot happen, since t cannot be a subtype of an array.
duke@435 3359 // The meet falls down to Object class below centerline.
duke@435 3360 if( ptr == Constant )
duke@435 3361 ptr = NotNull;
kvn@658 3362 instance_id = InstanceBot;
kvn@658 3363 return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id);
duke@435 3364 default: typerr(t);
duke@435 3365 }
duke@435 3366 }
duke@435 3367
duke@435 3368 case KlassPtr:
duke@435 3369 return TypeInstPtr::BOTTOM;
duke@435 3370
duke@435 3371 }
duke@435 3372 return this; // Lint noise
duke@435 3373 }
duke@435 3374
duke@435 3375 //------------------------------xdual------------------------------------------
duke@435 3376 // Dual: compute field-by-field dual
duke@435 3377 const Type *TypeAryPtr::xdual() const {
kvn@658 3378 return new TypeAryPtr( dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id() );
duke@435 3379 }
duke@435 3380
duke@435 3381 //------------------------------dump2------------------------------------------
duke@435 3382 #ifndef PRODUCT
duke@435 3383 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3384 _ary->dump2(d,depth,st);
duke@435 3385 switch( _ptr ) {
duke@435 3386 case Constant:
duke@435 3387 const_oop()->print(st);
duke@435 3388 break;
duke@435 3389 case BotPTR:
duke@435 3390 if (!WizardMode && !Verbose) {
duke@435 3391 if( _klass_is_exact ) st->print(":exact");
duke@435 3392 break;
duke@435 3393 }
duke@435 3394 case TopPTR:
duke@435 3395 case AnyNull:
duke@435 3396 case NotNull:
duke@435 3397 st->print(":%s", ptr_msg[_ptr]);
duke@435 3398 if( _klass_is_exact ) st->print(":exact");
duke@435 3399 break;
duke@435 3400 }
duke@435 3401
kvn@499 3402 if( _offset != 0 ) {
kvn@499 3403 int header_size = objArrayOopDesc::header_size() * wordSize;
kvn@499 3404 if( _offset == OffsetTop ) st->print("+undefined");
kvn@499 3405 else if( _offset == OffsetBot ) st->print("+any");
kvn@499 3406 else if( _offset < header_size ) st->print("+%d", _offset);
kvn@499 3407 else {
kvn@499 3408 BasicType basic_elem_type = elem()->basic_type();
kvn@499 3409 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
kvn@499 3410 int elem_size = type2aelembytes(basic_elem_type);
kvn@499 3411 st->print("[%d]", (_offset - array_base)/elem_size);
kvn@499 3412 }
kvn@499 3413 }
kvn@499 3414 st->print(" *");
kvn@658 3415 if (_instance_id == InstanceTop)
kvn@658 3416 st->print(",iid=top");
kvn@658 3417 else if (_instance_id != InstanceBot)
duke@435 3418 st->print(",iid=%d",_instance_id);
duke@435 3419 }
duke@435 3420 #endif
duke@435 3421
duke@435 3422 bool TypeAryPtr::empty(void) const {
duke@435 3423 if (_ary->empty()) return true;
duke@435 3424 return TypeOopPtr::empty();
duke@435 3425 }
duke@435 3426
duke@435 3427 //------------------------------add_offset-------------------------------------
duke@435 3428 const TypePtr *TypeAryPtr::add_offset( int offset ) const {
duke@435 3429 return make( _ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id );
duke@435 3430 }
duke@435 3431
duke@435 3432
duke@435 3433 //=============================================================================
coleenp@548 3434 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
coleenp@548 3435 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
coleenp@548 3436
coleenp@548 3437
coleenp@548 3438 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
coleenp@548 3439 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
coleenp@548 3440 }
coleenp@548 3441
coleenp@548 3442 //------------------------------hash-------------------------------------------
coleenp@548 3443 // Type-specific hashing function.
coleenp@548 3444 int TypeNarrowOop::hash(void) const {
coleenp@548 3445 return _ooptype->hash() + 7;
coleenp@548 3446 }
coleenp@548 3447
coleenp@548 3448
coleenp@548 3449 bool TypeNarrowOop::eq( const Type *t ) const {
coleenp@548 3450 const TypeNarrowOop* tc = t->isa_narrowoop();
coleenp@548 3451 if (tc != NULL) {
coleenp@548 3452 if (_ooptype->base() != tc->_ooptype->base()) {
coleenp@548 3453 return false;
coleenp@548 3454 }
coleenp@548 3455 return tc->_ooptype->eq(_ooptype);
coleenp@548 3456 }
coleenp@548 3457 return false;
coleenp@548 3458 }
coleenp@548 3459
coleenp@548 3460 bool TypeNarrowOop::singleton(void) const { // TRUE if type is a singleton
coleenp@548 3461 return _ooptype->singleton();
coleenp@548 3462 }
coleenp@548 3463
coleenp@548 3464 bool TypeNarrowOop::empty(void) const {
coleenp@548 3465 return _ooptype->empty();
coleenp@548 3466 }
coleenp@548 3467
coleenp@548 3468 //------------------------------meet-------------------------------------------
coleenp@548 3469 // Compute the MEET of two types. It returns a new Type object.
coleenp@548 3470 const Type *TypeNarrowOop::xmeet( const Type *t ) const {
coleenp@548 3471 // Perform a fast test for common case; meeting the same types together.
coleenp@548 3472 if( this == t ) return this; // Meeting same type-rep?
coleenp@548 3473
coleenp@548 3474
coleenp@548 3475 // Current "this->_base" is OopPtr
coleenp@548 3476 switch (t->base()) { // switch on original type
coleenp@548 3477
coleenp@548 3478 case Int: // Mixing ints & oops happens when javac
coleenp@548 3479 case Long: // reuses local variables
coleenp@548 3480 case FloatTop:
coleenp@548 3481 case FloatCon:
coleenp@548 3482 case FloatBot:
coleenp@548 3483 case DoubleTop:
coleenp@548 3484 case DoubleCon:
coleenp@548 3485 case DoubleBot:
coleenp@548 3486 case Bottom: // Ye Olde Default
coleenp@548 3487 return Type::BOTTOM;
coleenp@548 3488 case Top:
coleenp@548 3489 return this;
coleenp@548 3490
coleenp@548 3491 case NarrowOop: {
kvn@656 3492 const Type* result = _ooptype->xmeet(t->make_ptr());
coleenp@548 3493 if (result->isa_ptr()) {
coleenp@548 3494 return TypeNarrowOop::make(result->is_ptr());
coleenp@548 3495 }
coleenp@548 3496 return result;
coleenp@548 3497 }
coleenp@548 3498
coleenp@548 3499 default: // All else is a mistake
coleenp@548 3500 typerr(t);
coleenp@548 3501
coleenp@548 3502 case RawPtr:
coleenp@548 3503 case AnyPtr:
coleenp@548 3504 case OopPtr:
coleenp@548 3505 case InstPtr:
coleenp@548 3506 case KlassPtr:
coleenp@548 3507 case AryPtr:
coleenp@548 3508 typerr(t);
coleenp@548 3509 return Type::BOTTOM;
coleenp@548 3510
coleenp@548 3511 } // End of switch
coleenp@548 3512 }
coleenp@548 3513
coleenp@548 3514 const Type *TypeNarrowOop::xdual() const { // Compute dual right now.
coleenp@548 3515 const TypePtr* odual = _ooptype->dual()->is_ptr();
coleenp@548 3516 return new TypeNarrowOop(odual);
coleenp@548 3517 }
coleenp@548 3518
coleenp@548 3519 const Type *TypeNarrowOop::filter( const Type *kills ) const {
coleenp@548 3520 if (kills->isa_narrowoop()) {
coleenp@548 3521 const Type* ft =_ooptype->filter(kills->is_narrowoop()->_ooptype);
coleenp@548 3522 if (ft->empty())
coleenp@548 3523 return Type::TOP; // Canonical empty value
coleenp@548 3524 if (ft->isa_ptr()) {
coleenp@548 3525 return make(ft->isa_ptr());
coleenp@548 3526 }
coleenp@548 3527 return ft;
coleenp@548 3528 } else if (kills->isa_ptr()) {
coleenp@548 3529 const Type* ft = _ooptype->join(kills);
coleenp@548 3530 if (ft->empty())
coleenp@548 3531 return Type::TOP; // Canonical empty value
coleenp@548 3532 return ft;
coleenp@548 3533 } else {
coleenp@548 3534 return Type::TOP;
coleenp@548 3535 }
coleenp@548 3536 }
coleenp@548 3537
coleenp@548 3538
coleenp@548 3539 intptr_t TypeNarrowOop::get_con() const {
coleenp@548 3540 return _ooptype->get_con();
coleenp@548 3541 }
coleenp@548 3542
coleenp@548 3543 #ifndef PRODUCT
coleenp@548 3544 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
coleenp@548 3545 tty->print("narrowoop: ");
coleenp@548 3546 _ooptype->dump2(d, depth, st);
coleenp@548 3547 }
coleenp@548 3548 #endif
coleenp@548 3549
coleenp@548 3550
coleenp@548 3551 //=============================================================================
duke@435 3552 // Convenience common pre-built types.
duke@435 3553
duke@435 3554 // Not-null object klass or below
duke@435 3555 const TypeKlassPtr *TypeKlassPtr::OBJECT;
duke@435 3556 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
duke@435 3557
duke@435 3558 //------------------------------TypeKlasPtr------------------------------------
duke@435 3559 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
duke@435 3560 : TypeOopPtr(KlassPtr, ptr, klass, (ptr==Constant), (ptr==Constant ? klass : NULL), offset, 0) {
duke@435 3561 }
duke@435 3562
duke@435 3563 //------------------------------make-------------------------------------------
duke@435 3564 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
duke@435 3565 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
duke@435 3566 assert( k != NULL, "Expect a non-NULL klass");
duke@435 3567 assert(k->is_instance_klass() || k->is_array_klass() ||
duke@435 3568 k->is_method_klass(), "Incorrect type of klass oop");
duke@435 3569 TypeKlassPtr *r =
duke@435 3570 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
duke@435 3571
duke@435 3572 return r;
duke@435 3573 }
duke@435 3574
duke@435 3575 //------------------------------eq---------------------------------------------
duke@435 3576 // Structural equality check for Type representations
duke@435 3577 bool TypeKlassPtr::eq( const Type *t ) const {
duke@435 3578 const TypeKlassPtr *p = t->is_klassptr();
duke@435 3579 return
duke@435 3580 klass()->equals(p->klass()) &&
duke@435 3581 TypeOopPtr::eq(p);
duke@435 3582 }
duke@435 3583
duke@435 3584 //------------------------------hash-------------------------------------------
duke@435 3585 // Type-specific hashing function.
duke@435 3586 int TypeKlassPtr::hash(void) const {
duke@435 3587 return klass()->hash() + TypeOopPtr::hash();
duke@435 3588 }
duke@435 3589
duke@435 3590
duke@435 3591 //------------------------------klass------------------------------------------
duke@435 3592 // Return the defining klass for this class
duke@435 3593 ciKlass* TypeAryPtr::klass() const {
duke@435 3594 if( _klass ) return _klass; // Return cached value, if possible
duke@435 3595
duke@435 3596 // Oops, need to compute _klass and cache it
duke@435 3597 ciKlass* k_ary = NULL;
duke@435 3598 const TypeInstPtr *tinst;
duke@435 3599 const TypeAryPtr *tary;
coleenp@548 3600 const Type* el = elem();
coleenp@548 3601 if (el->isa_narrowoop()) {
kvn@656 3602 el = el->make_ptr();
coleenp@548 3603 }
coleenp@548 3604
duke@435 3605 // Get element klass
coleenp@548 3606 if ((tinst = el->isa_instptr()) != NULL) {
duke@435 3607 // Compute array klass from element klass
duke@435 3608 k_ary = ciObjArrayKlass::make(tinst->klass());
coleenp@548 3609 } else if ((tary = el->isa_aryptr()) != NULL) {
duke@435 3610 // Compute array klass from element klass
duke@435 3611 ciKlass* k_elem = tary->klass();
duke@435 3612 // If element type is something like bottom[], k_elem will be null.
duke@435 3613 if (k_elem != NULL)
duke@435 3614 k_ary = ciObjArrayKlass::make(k_elem);
coleenp@548 3615 } else if ((el->base() == Type::Top) ||
coleenp@548 3616 (el->base() == Type::Bottom)) {
duke@435 3617 // element type of Bottom occurs from meet of basic type
duke@435 3618 // and object; Top occurs when doing join on Bottom.
duke@435 3619 // Leave k_ary at NULL.
duke@435 3620 } else {
duke@435 3621 // Cannot compute array klass directly from basic type,
duke@435 3622 // since subtypes of TypeInt all have basic type T_INT.
coleenp@548 3623 assert(!el->isa_int(),
duke@435 3624 "integral arrays must be pre-equipped with a class");
duke@435 3625 // Compute array klass directly from basic type
coleenp@548 3626 k_ary = ciTypeArrayKlass::make(el->basic_type());
duke@435 3627 }
duke@435 3628
kvn@598 3629 if( this != TypeAryPtr::OOPS ) {
duke@435 3630 // The _klass field acts as a cache of the underlying
duke@435 3631 // ciKlass for this array type. In order to set the field,
duke@435 3632 // we need to cast away const-ness.
duke@435 3633 //
duke@435 3634 // IMPORTANT NOTE: we *never* set the _klass field for the
duke@435 3635 // type TypeAryPtr::OOPS. This Type is shared between all
duke@435 3636 // active compilations. However, the ciKlass which represents
duke@435 3637 // this Type is *not* shared between compilations, so caching
duke@435 3638 // this value would result in fetching a dangling pointer.
duke@435 3639 //
duke@435 3640 // Recomputing the underlying ciKlass for each request is
duke@435 3641 // a bit less efficient than caching, but calls to
duke@435 3642 // TypeAryPtr::OOPS->klass() are not common enough to matter.
duke@435 3643 ((TypeAryPtr*)this)->_klass = k_ary;
kvn@598 3644 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
kvn@598 3645 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@598 3646 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
kvn@598 3647 }
kvn@598 3648 }
duke@435 3649 return k_ary;
duke@435 3650 }
duke@435 3651
duke@435 3652
duke@435 3653 //------------------------------add_offset-------------------------------------
duke@435 3654 // Access internals of klass object
duke@435 3655 const TypePtr *TypeKlassPtr::add_offset( int offset ) const {
duke@435 3656 return make( _ptr, klass(), xadd_offset(offset) );
duke@435 3657 }
duke@435 3658
duke@435 3659 //------------------------------cast_to_ptr_type-------------------------------
duke@435 3660 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
duke@435 3661 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
duke@435 3662 if( ptr == _ptr ) return this;
duke@435 3663 return make(ptr, _klass, _offset);
duke@435 3664 }
duke@435 3665
duke@435 3666
duke@435 3667 //-----------------------------cast_to_exactness-------------------------------
duke@435 3668 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
duke@435 3669 if( klass_is_exact == _klass_is_exact ) return this;
duke@435 3670 if (!UseExactTypes) return this;
duke@435 3671 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
duke@435 3672 }
duke@435 3673
duke@435 3674
duke@435 3675 //-----------------------------as_instance_type--------------------------------
duke@435 3676 // Corresponding type for an instance of the given class.
duke@435 3677 // It will be NotNull, and exact if and only if the klass type is exact.
duke@435 3678 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
duke@435 3679 ciKlass* k = klass();
duke@435 3680 bool xk = klass_is_exact();
duke@435 3681 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
duke@435 3682 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
duke@435 3683 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
duke@435 3684 return toop->cast_to_exactness(xk)->is_oopptr();
duke@435 3685 }
duke@435 3686
duke@435 3687
duke@435 3688 //------------------------------xmeet------------------------------------------
duke@435 3689 // Compute the MEET of two types, return a new Type object.
duke@435 3690 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
duke@435 3691 // Perform a fast test for common case; meeting the same types together.
duke@435 3692 if( this == t ) return this; // Meeting same type-rep?
duke@435 3693
duke@435 3694 // Current "this->_base" is Pointer
duke@435 3695 switch (t->base()) { // switch on original type
duke@435 3696
duke@435 3697 case Int: // Mixing ints & oops happens when javac
duke@435 3698 case Long: // reuses local variables
duke@435 3699 case FloatTop:
duke@435 3700 case FloatCon:
duke@435 3701 case FloatBot:
duke@435 3702 case DoubleTop:
duke@435 3703 case DoubleCon:
duke@435 3704 case DoubleBot:
duke@435 3705 case Bottom: // Ye Olde Default
duke@435 3706 return Type::BOTTOM;
duke@435 3707 case Top:
duke@435 3708 return this;
duke@435 3709
duke@435 3710 default: // All else is a mistake
duke@435 3711 typerr(t);
duke@435 3712
duke@435 3713 case RawPtr: return TypePtr::BOTTOM;
duke@435 3714
duke@435 3715 case OopPtr: { // Meeting to OopPtrs
duke@435 3716 // Found a OopPtr type vs self-KlassPtr type
duke@435 3717 const TypePtr *tp = t->is_oopptr();
duke@435 3718 int offset = meet_offset(tp->offset());
duke@435 3719 PTR ptr = meet_ptr(tp->ptr());
duke@435 3720 switch (tp->ptr()) {
duke@435 3721 case TopPTR:
duke@435 3722 case AnyNull:
duke@435 3723 return make(ptr, klass(), offset);
duke@435 3724 case BotPTR:
duke@435 3725 case NotNull:
duke@435 3726 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3727 default: typerr(t);
duke@435 3728 }
duke@435 3729 }
duke@435 3730
duke@435 3731 case AnyPtr: { // Meeting to AnyPtrs
duke@435 3732 // Found an AnyPtr type vs self-KlassPtr type
duke@435 3733 const TypePtr *tp = t->is_ptr();
duke@435 3734 int offset = meet_offset(tp->offset());
duke@435 3735 PTR ptr = meet_ptr(tp->ptr());
duke@435 3736 switch (tp->ptr()) {
duke@435 3737 case TopPTR:
duke@435 3738 return this;
duke@435 3739 case Null:
duke@435 3740 if( ptr == Null ) return TypePtr::make( AnyPtr, ptr, offset );
duke@435 3741 case AnyNull:
duke@435 3742 return make( ptr, klass(), offset );
duke@435 3743 case BotPTR:
duke@435 3744 case NotNull:
duke@435 3745 return TypePtr::make(AnyPtr, ptr, offset);
duke@435 3746 default: typerr(t);
duke@435 3747 }
duke@435 3748 }
duke@435 3749
duke@435 3750 case AryPtr: // Meet with AryPtr
duke@435 3751 case InstPtr: // Meet with InstPtr
duke@435 3752 return TypeInstPtr::BOTTOM;
duke@435 3753
duke@435 3754 //
duke@435 3755 // A-top }
duke@435 3756 // / | \ } Tops
duke@435 3757 // B-top A-any C-top }
duke@435 3758 // | / | \ | } Any-nulls
duke@435 3759 // B-any | C-any }
duke@435 3760 // | | |
duke@435 3761 // B-con A-con C-con } constants; not comparable across classes
duke@435 3762 // | | |
duke@435 3763 // B-not | C-not }
duke@435 3764 // | \ | / | } not-nulls
duke@435 3765 // B-bot A-not C-bot }
duke@435 3766 // \ | / } Bottoms
duke@435 3767 // A-bot }
duke@435 3768 //
duke@435 3769
duke@435 3770 case KlassPtr: { // Meet two KlassPtr types
duke@435 3771 const TypeKlassPtr *tkls = t->is_klassptr();
duke@435 3772 int off = meet_offset(tkls->offset());
duke@435 3773 PTR ptr = meet_ptr(tkls->ptr());
duke@435 3774
duke@435 3775 // Check for easy case; klasses are equal (and perhaps not loaded!)
duke@435 3776 // If we have constants, then we created oops so classes are loaded
duke@435 3777 // and we can handle the constants further down. This case handles
duke@435 3778 // not-loaded classes
duke@435 3779 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
duke@435 3780 return make( ptr, klass(), off );
duke@435 3781 }
duke@435 3782
duke@435 3783 // Classes require inspection in the Java klass hierarchy. Must be loaded.
duke@435 3784 ciKlass* tkls_klass = tkls->klass();
duke@435 3785 ciKlass* this_klass = this->klass();
duke@435 3786 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
duke@435 3787 assert( this_klass->is_loaded(), "This class should have been loaded.");
duke@435 3788
duke@435 3789 // If 'this' type is above the centerline and is a superclass of the
duke@435 3790 // other, we can treat 'this' as having the same type as the other.
duke@435 3791 if ((above_centerline(this->ptr())) &&
duke@435 3792 tkls_klass->is_subtype_of(this_klass)) {
duke@435 3793 this_klass = tkls_klass;
duke@435 3794 }
duke@435 3795 // If 'tinst' type is above the centerline and is a superclass of the
duke@435 3796 // other, we can treat 'tinst' as having the same type as the other.
duke@435 3797 if ((above_centerline(tkls->ptr())) &&
duke@435 3798 this_klass->is_subtype_of(tkls_klass)) {
duke@435 3799 tkls_klass = this_klass;
duke@435 3800 }
duke@435 3801
duke@435 3802 // Check for classes now being equal
duke@435 3803 if (tkls_klass->equals(this_klass)) {
duke@435 3804 // If the klasses are equal, the constants may still differ. Fall to
duke@435 3805 // NotNull if they do (neither constant is NULL; that is a special case
duke@435 3806 // handled elsewhere).
duke@435 3807 ciObject* o = NULL; // Assume not constant when done
duke@435 3808 ciObject* this_oop = const_oop();
duke@435 3809 ciObject* tkls_oop = tkls->const_oop();
duke@435 3810 if( ptr == Constant ) {
duke@435 3811 if (this_oop != NULL && tkls_oop != NULL &&
duke@435 3812 this_oop->equals(tkls_oop) )
duke@435 3813 o = this_oop;
duke@435 3814 else if (above_centerline(this->ptr()))
duke@435 3815 o = tkls_oop;
duke@435 3816 else if (above_centerline(tkls->ptr()))
duke@435 3817 o = this_oop;
duke@435 3818 else
duke@435 3819 ptr = NotNull;
duke@435 3820 }
duke@435 3821 return make( ptr, this_klass, off );
duke@435 3822 } // Else classes are not equal
duke@435 3823
duke@435 3824 // Since klasses are different, we require the LCA in the Java
duke@435 3825 // class hierarchy - which means we have to fall to at least NotNull.
duke@435 3826 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
duke@435 3827 ptr = NotNull;
duke@435 3828 // Now we find the LCA of Java classes
duke@435 3829 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
duke@435 3830 return make( ptr, k, off );
duke@435 3831 } // End of case KlassPtr
duke@435 3832
duke@435 3833 } // End of switch
duke@435 3834 return this; // Return the double constant
duke@435 3835 }
duke@435 3836
duke@435 3837 //------------------------------xdual------------------------------------------
duke@435 3838 // Dual: compute field-by-field dual
duke@435 3839 const Type *TypeKlassPtr::xdual() const {
duke@435 3840 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
duke@435 3841 }
duke@435 3842
duke@435 3843 //------------------------------dump2------------------------------------------
duke@435 3844 // Dump Klass Type
duke@435 3845 #ifndef PRODUCT
duke@435 3846 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
duke@435 3847 switch( _ptr ) {
duke@435 3848 case Constant:
duke@435 3849 st->print("precise ");
duke@435 3850 case NotNull:
duke@435 3851 {
duke@435 3852 const char *name = klass()->name()->as_utf8();
duke@435 3853 if( name ) {
duke@435 3854 st->print("klass %s: " INTPTR_FORMAT, name, klass());
duke@435 3855 } else {
duke@435 3856 ShouldNotReachHere();
duke@435 3857 }
duke@435 3858 }
duke@435 3859 case BotPTR:
duke@435 3860 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
duke@435 3861 case TopPTR:
duke@435 3862 case AnyNull:
duke@435 3863 st->print(":%s", ptr_msg[_ptr]);
duke@435 3864 if( _klass_is_exact ) st->print(":exact");
duke@435 3865 break;
duke@435 3866 }
duke@435 3867
duke@435 3868 if( _offset ) { // Dump offset, if any
duke@435 3869 if( _offset == OffsetBot ) { st->print("+any"); }
duke@435 3870 else if( _offset == OffsetTop ) { st->print("+unknown"); }
duke@435 3871 else { st->print("+%d", _offset); }
duke@435 3872 }
duke@435 3873
duke@435 3874 st->print(" *");
duke@435 3875 }
duke@435 3876 #endif
duke@435 3877
duke@435 3878
duke@435 3879
duke@435 3880 //=============================================================================
duke@435 3881 // Convenience common pre-built types.
duke@435 3882
duke@435 3883 //------------------------------make-------------------------------------------
duke@435 3884 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
duke@435 3885 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
duke@435 3886 }
duke@435 3887
duke@435 3888 //------------------------------make-------------------------------------------
duke@435 3889 const TypeFunc *TypeFunc::make(ciMethod* method) {
duke@435 3890 Compile* C = Compile::current();
duke@435 3891 const TypeFunc* tf = C->last_tf(method); // check cache
duke@435 3892 if (tf != NULL) return tf; // The hit rate here is almost 50%.
duke@435 3893 const TypeTuple *domain;
duke@435 3894 if (method->flags().is_static()) {
duke@435 3895 domain = TypeTuple::make_domain(NULL, method->signature());
duke@435 3896 } else {
duke@435 3897 domain = TypeTuple::make_domain(method->holder(), method->signature());
duke@435 3898 }
duke@435 3899 const TypeTuple *range = TypeTuple::make_range(method->signature());
duke@435 3900 tf = TypeFunc::make(domain, range);
duke@435 3901 C->set_last_tf(method, tf); // fill cache
duke@435 3902 return tf;
duke@435 3903 }
duke@435 3904
duke@435 3905 //------------------------------meet-------------------------------------------
duke@435 3906 // Compute the MEET of two types. It returns a new Type object.
duke@435 3907 const Type *TypeFunc::xmeet( const Type *t ) const {
duke@435 3908 // Perform a fast test for common case; meeting the same types together.
duke@435 3909 if( this == t ) return this; // Meeting same type-rep?
duke@435 3910
duke@435 3911 // Current "this->_base" is Func
duke@435 3912 switch (t->base()) { // switch on original type
duke@435 3913
duke@435 3914 case Bottom: // Ye Olde Default
duke@435 3915 return t;
duke@435 3916
duke@435 3917 default: // All else is a mistake
duke@435 3918 typerr(t);
duke@435 3919
duke@435 3920 case Top:
duke@435 3921 break;
duke@435 3922 }
duke@435 3923 return this; // Return the double constant
duke@435 3924 }
duke@435 3925
duke@435 3926 //------------------------------xdual------------------------------------------
duke@435 3927 // Dual: compute field-by-field dual
duke@435 3928 const Type *TypeFunc::xdual() const {
duke@435 3929 return this;
duke@435 3930 }
duke@435 3931
duke@435 3932 //------------------------------eq---------------------------------------------
duke@435 3933 // Structural equality check for Type representations
duke@435 3934 bool TypeFunc::eq( const Type *t ) const {
duke@435 3935 const TypeFunc *a = (const TypeFunc*)t;
duke@435 3936 return _domain == a->_domain &&
duke@435 3937 _range == a->_range;
duke@435 3938 }
duke@435 3939
duke@435 3940 //------------------------------hash-------------------------------------------
duke@435 3941 // Type-specific hashing function.
duke@435 3942 int TypeFunc::hash(void) const {
duke@435 3943 return (intptr_t)_domain + (intptr_t)_range;
duke@435 3944 }
duke@435 3945
duke@435 3946 //------------------------------dump2------------------------------------------
duke@435 3947 // Dump Function Type
duke@435 3948 #ifndef PRODUCT
duke@435 3949 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
duke@435 3950 if( _range->_cnt <= Parms )
duke@435 3951 st->print("void");
duke@435 3952 else {
duke@435 3953 uint i;
duke@435 3954 for (i = Parms; i < _range->_cnt-1; i++) {
duke@435 3955 _range->field_at(i)->dump2(d,depth,st);
duke@435 3956 st->print("/");
duke@435 3957 }
duke@435 3958 _range->field_at(i)->dump2(d,depth,st);
duke@435 3959 }
duke@435 3960 st->print(" ");
duke@435 3961 st->print("( ");
duke@435 3962 if( !depth || d[this] ) { // Check for recursive dump
duke@435 3963 st->print("...)");
duke@435 3964 return;
duke@435 3965 }
duke@435 3966 d.Insert((void*)this,(void*)this); // Stop recursion
duke@435 3967 if (Parms < _domain->_cnt)
duke@435 3968 _domain->field_at(Parms)->dump2(d,depth-1,st);
duke@435 3969 for (uint i = Parms+1; i < _domain->_cnt; i++) {
duke@435 3970 st->print(", ");
duke@435 3971 _domain->field_at(i)->dump2(d,depth-1,st);
duke@435 3972 }
duke@435 3973 st->print(" )");
duke@435 3974 }
duke@435 3975
duke@435 3976 //------------------------------print_flattened--------------------------------
duke@435 3977 // Print a 'flattened' signature
duke@435 3978 static const char * const flat_type_msg[Type::lastype] = {
coleenp@548 3979 "bad","control","top","int","long","_", "narrowoop",
duke@435 3980 "tuple:", "array:",
duke@435 3981 "ptr", "rawptr", "ptr", "ptr", "ptr", "ptr",
duke@435 3982 "func", "abIO", "return_address", "mem",
duke@435 3983 "float_top", "ftcon:", "flt",
duke@435 3984 "double_top", "dblcon:", "dbl",
duke@435 3985 "bottom"
duke@435 3986 };
duke@435 3987
duke@435 3988 void TypeFunc::print_flattened() const {
duke@435 3989 if( _range->_cnt <= Parms )
duke@435 3990 tty->print("void");
duke@435 3991 else {
duke@435 3992 uint i;
duke@435 3993 for (i = Parms; i < _range->_cnt-1; i++)
duke@435 3994 tty->print("%s/",flat_type_msg[_range->field_at(i)->base()]);
duke@435 3995 tty->print("%s",flat_type_msg[_range->field_at(i)->base()]);
duke@435 3996 }
duke@435 3997 tty->print(" ( ");
duke@435 3998 if (Parms < _domain->_cnt)
duke@435 3999 tty->print("%s",flat_type_msg[_domain->field_at(Parms)->base()]);
duke@435 4000 for (uint i = Parms+1; i < _domain->_cnt; i++)
duke@435 4001 tty->print(", %s",flat_type_msg[_domain->field_at(i)->base()]);
duke@435 4002 tty->print(" )");
duke@435 4003 }
duke@435 4004 #endif
duke@435 4005
duke@435 4006 //------------------------------singleton--------------------------------------
duke@435 4007 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
duke@435 4008 // constants (Ldi nodes). Singletons are integer, float or double constants
duke@435 4009 // or a single symbol.
duke@435 4010 bool TypeFunc::singleton(void) const {
duke@435 4011 return false; // Never a singleton
duke@435 4012 }
duke@435 4013
duke@435 4014 bool TypeFunc::empty(void) const {
duke@435 4015 return false; // Never empty
duke@435 4016 }
duke@435 4017
duke@435 4018
duke@435 4019 BasicType TypeFunc::return_type() const{
duke@435 4020 if (range()->cnt() == TypeFunc::Parms) {
duke@435 4021 return T_VOID;
duke@435 4022 }
duke@435 4023 return range()->field_at(TypeFunc::Parms)->basic_type();
duke@435 4024 }

mercurial