src/share/vm/gc_implementation/parallelScavenge/cardTableExtension.cpp

Wed, 24 Apr 2013 20:13:37 +0200

author
stefank
date
Wed, 24 Apr 2013 20:13:37 +0200
changeset 5018
b06ac540229e
parent 4128
f81a7c0c618d
child 4993
746b070f5022
permissions
-rw-r--r--

8013132: Add a flag to turn off the output of the verbose verification code
Reviewed-by: johnc, brutisso

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
stefank@2314 27 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
stefank@2314 28 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
stefank@2314 29 #include "gc_implementation/parallelScavenge/psTasks.hpp"
stefank@2314 30 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
stefank@2314 31 #include "oops/oop.inline.hpp"
stefank@2314 32 #include "oops/oop.psgc.inline.hpp"
duke@435 33
duke@435 34 // Checks an individual oop for missing precise marks. Mark
duke@435 35 // may be either dirty or newgen.
duke@435 36 class CheckForUnmarkedOops : public OopClosure {
coleenp@548 37 private:
coleenp@548 38 PSYoungGen* _young_gen;
duke@435 39 CardTableExtension* _card_table;
coleenp@548 40 HeapWord* _unmarked_addr;
coleenp@548 41 jbyte* _unmarked_card;
duke@435 42
coleenp@548 43 protected:
coleenp@548 44 template <class T> void do_oop_work(T* p) {
stefank@3712 45 oop obj = oopDesc::load_decode_heap_oop(p);
coleenp@548 46 if (_young_gen->is_in_reserved(obj) &&
duke@435 47 !_card_table->addr_is_marked_imprecise(p)) {
duke@435 48 // Don't overwrite the first missing card mark
duke@435 49 if (_unmarked_addr == NULL) {
duke@435 50 _unmarked_addr = (HeapWord*)p;
duke@435 51 _unmarked_card = _card_table->byte_for(p);
duke@435 52 }
duke@435 53 }
duke@435 54 }
duke@435 55
coleenp@548 56 public:
coleenp@548 57 CheckForUnmarkedOops(PSYoungGen* young_gen, CardTableExtension* card_table) :
coleenp@548 58 _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
coleenp@548 59
coleenp@548 60 virtual void do_oop(oop* p) { CheckForUnmarkedOops::do_oop_work(p); }
coleenp@548 61 virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
coleenp@548 62
duke@435 63 bool has_unmarked_oop() {
duke@435 64 return _unmarked_addr != NULL;
duke@435 65 }
duke@435 66 };
duke@435 67
duke@435 68 // Checks all objects for the existance of some type of mark,
duke@435 69 // precise or imprecise, dirty or newgen.
duke@435 70 class CheckForUnmarkedObjects : public ObjectClosure {
coleenp@548 71 private:
coleenp@548 72 PSYoungGen* _young_gen;
duke@435 73 CardTableExtension* _card_table;
duke@435 74
duke@435 75 public:
duke@435 76 CheckForUnmarkedObjects() {
duke@435 77 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 78 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 79
duke@435 80 _young_gen = heap->young_gen();
duke@435 81 _card_table = (CardTableExtension*)heap->barrier_set();
duke@435 82 // No point in asserting barrier set type here. Need to make CardTableExtension
duke@435 83 // a unique barrier set type.
duke@435 84 }
duke@435 85
duke@435 86 // Card marks are not precise. The current system can leave us with
twisti@1040 87 // a mismash of precise marks and beginning of object marks. This means
duke@435 88 // we test for missing precise marks first. If any are found, we don't
duke@435 89 // fail unless the object head is also unmarked.
duke@435 90 virtual void do_object(oop obj) {
coleenp@548 91 CheckForUnmarkedOops object_check(_young_gen, _card_table);
coleenp@4037 92 obj->oop_iterate_no_header(&object_check);
duke@435 93 if (object_check.has_unmarked_oop()) {
duke@435 94 assert(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
duke@435 95 }
duke@435 96 }
duke@435 97 };
duke@435 98
duke@435 99 // Checks for precise marking of oops as newgen.
duke@435 100 class CheckForPreciseMarks : public OopClosure {
coleenp@548 101 private:
coleenp@548 102 PSYoungGen* _young_gen;
duke@435 103 CardTableExtension* _card_table;
duke@435 104
coleenp@548 105 protected:
coleenp@548 106 template <class T> void do_oop_work(T* p) {
coleenp@548 107 oop obj = oopDesc::load_decode_heap_oop_not_null(p);
coleenp@548 108 if (_young_gen->is_in_reserved(obj)) {
coleenp@548 109 assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
coleenp@548 110 _card_table->set_card_newgen(p);
coleenp@548 111 }
coleenp@548 112 }
coleenp@548 113
duke@435 114 public:
duke@435 115 CheckForPreciseMarks( PSYoungGen* young_gen, CardTableExtension* card_table ) :
duke@435 116 _young_gen(young_gen), _card_table(card_table) { }
duke@435 117
coleenp@548 118 virtual void do_oop(oop* p) { CheckForPreciseMarks::do_oop_work(p); }
coleenp@548 119 virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
duke@435 120 };
duke@435 121
duke@435 122 // We get passed the space_top value to prevent us from traversing into
duke@435 123 // the old_gen promotion labs, which cannot be safely parsed.
duke@435 124
jmasa@4128 125 // Do not call this method if the space is empty.
jmasa@4128 126 // It is a waste to start tasks and get here only to
jmasa@4128 127 // do no work. If this method needs to be called
jmasa@4128 128 // when the space is empty, fix the calculation of
jmasa@4128 129 // end_card to allow sp_top == sp->bottom().
duke@435 130
duke@435 131 void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_array,
duke@435 132 MutableSpace* sp,
duke@435 133 HeapWord* space_top,
duke@435 134 PSPromotionManager* pm,
jmasa@3294 135 uint stripe_number,
jmasa@3294 136 uint stripe_total) {
duke@435 137 int ssize = 128; // Naked constant! Work unit = 64k.
duke@435 138 int dirty_card_count = 0;
duke@435 139
jmasa@4128 140 // It is a waste to get here if empty.
jmasa@4128 141 assert(sp->bottom() < sp->top(), "Should not be called if empty");
duke@435 142 oop* sp_top = (oop*)space_top;
duke@435 143 jbyte* start_card = byte_for(sp->bottom());
jmasa@4128 144 jbyte* end_card = byte_for(sp_top - 1) + 1;
duke@435 145 oop* last_scanned = NULL; // Prevent scanning objects more than once
jmasa@3294 146 // The width of the stripe ssize*stripe_total must be
jmasa@3294 147 // consistent with the number of stripes so that the complete slice
jmasa@3294 148 // is covered.
jmasa@3294 149 size_t slice_width = ssize * stripe_total;
jmasa@3294 150 for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
duke@435 151 jbyte* worker_start_card = slice + stripe_number * ssize;
duke@435 152 if (worker_start_card >= end_card)
duke@435 153 return; // We're done.
duke@435 154
duke@435 155 jbyte* worker_end_card = worker_start_card + ssize;
duke@435 156 if (worker_end_card > end_card)
duke@435 157 worker_end_card = end_card;
duke@435 158
duke@435 159 // We do not want to scan objects more than once. In order to accomplish
duke@435 160 // this, we assert that any object with an object head inside our 'slice'
duke@435 161 // belongs to us. We may need to extend the range of scanned cards if the
duke@435 162 // last object continues into the next 'slice'.
duke@435 163 //
duke@435 164 // Note! ending cards are exclusive!
duke@435 165 HeapWord* slice_start = addr_for(worker_start_card);
duke@435 166 HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
duke@435 167
jmasa@4128 168 #ifdef ASSERT
jmasa@4128 169 if (GCWorkerDelayMillis > 0) {
jmasa@4128 170 // Delay 1 worker so that it proceeds after all the work
jmasa@4128 171 // has been completed.
jmasa@4128 172 if (stripe_number < 2) {
jmasa@4128 173 os::sleep(Thread::current(), GCWorkerDelayMillis, false);
jmasa@4128 174 }
jmasa@4128 175 }
jmasa@4128 176 #endif
jmasa@4128 177
duke@435 178 // If there are not objects starting within the chunk, skip it.
duke@435 179 if (!start_array->object_starts_in_range(slice_start, slice_end)) {
duke@435 180 continue;
duke@435 181 }
twisti@1040 182 // Update our beginning addr
duke@435 183 HeapWord* first_object = start_array->object_start(slice_start);
duke@435 184 debug_only(oop* first_object_within_slice = (oop*) first_object;)
duke@435 185 if (first_object < slice_start) {
duke@435 186 last_scanned = (oop*)(first_object + oop(first_object)->size());
duke@435 187 debug_only(first_object_within_slice = last_scanned;)
duke@435 188 worker_start_card = byte_for(last_scanned);
duke@435 189 }
duke@435 190
duke@435 191 // Update the ending addr
duke@435 192 if (slice_end < (HeapWord*)sp_top) {
duke@435 193 // The subtraction is important! An object may start precisely at slice_end.
duke@435 194 HeapWord* last_object = start_array->object_start(slice_end - 1);
duke@435 195 slice_end = last_object + oop(last_object)->size();
duke@435 196 // worker_end_card is exclusive, so bump it one past the end of last_object's
duke@435 197 // covered span.
duke@435 198 worker_end_card = byte_for(slice_end) + 1;
duke@435 199
duke@435 200 if (worker_end_card > end_card)
duke@435 201 worker_end_card = end_card;
duke@435 202 }
duke@435 203
duke@435 204 assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
duke@435 205 assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
duke@435 206 assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
duke@435 207 // Note that worker_start_card >= worker_end_card is legal, and happens when
duke@435 208 // an object spans an entire slice.
duke@435 209 assert(worker_start_card <= end_card, "worker start card beyond end card");
duke@435 210 assert(worker_end_card <= end_card, "worker end card beyond end card");
duke@435 211
duke@435 212 jbyte* current_card = worker_start_card;
duke@435 213 while (current_card < worker_end_card) {
duke@435 214 // Find an unclean card.
duke@435 215 while (current_card < worker_end_card && card_is_clean(*current_card)) {
duke@435 216 current_card++;
duke@435 217 }
duke@435 218 jbyte* first_unclean_card = current_card;
duke@435 219
duke@435 220 // Find the end of a run of contiguous unclean cards
duke@435 221 while (current_card < worker_end_card && !card_is_clean(*current_card)) {
duke@435 222 while (current_card < worker_end_card && !card_is_clean(*current_card)) {
duke@435 223 current_card++;
duke@435 224 }
duke@435 225
duke@435 226 if (current_card < worker_end_card) {
duke@435 227 // Some objects may be large enough to span several cards. If such
duke@435 228 // an object has more than one dirty card, separated by a clean card,
duke@435 229 // we will attempt to scan it twice. The test against "last_scanned"
duke@435 230 // prevents the redundant object scan, but it does not prevent newly
duke@435 231 // marked cards from being cleaned.
duke@435 232 HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
duke@435 233 size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
duke@435 234 HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
duke@435 235 jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
duke@435 236 assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
duke@435 237 if (ending_card_of_last_object > current_card) {
duke@435 238 // This means the object spans the next complete card.
duke@435 239 // We need to bump the current_card to ending_card_of_last_object
duke@435 240 current_card = ending_card_of_last_object;
duke@435 241 }
duke@435 242 }
duke@435 243 }
duke@435 244 jbyte* following_clean_card = current_card;
duke@435 245
duke@435 246 if (first_unclean_card < worker_end_card) {
duke@435 247 oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
duke@435 248 assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
duke@435 249 // "p" should always be >= "last_scanned" because newly GC dirtied
duke@435 250 // cards are no longer scanned again (see comment at end
duke@435 251 // of loop on the increment of "current_card"). Test that
duke@435 252 // hypothesis before removing this code.
duke@435 253 // If this code is removed, deal with the first time through
duke@435 254 // the loop when the last_scanned is the object starting in
duke@435 255 // the previous slice.
duke@435 256 assert((p >= last_scanned) ||
duke@435 257 (last_scanned == first_object_within_slice),
duke@435 258 "Should no longer be possible");
duke@435 259 if (p < last_scanned) {
duke@435 260 // Avoid scanning more than once; this can happen because
duke@435 261 // newgen cards set by GC may a different set than the
duke@435 262 // originally dirty set
duke@435 263 p = last_scanned;
duke@435 264 }
duke@435 265 oop* to = (oop*)addr_for(following_clean_card);
duke@435 266
duke@435 267 // Test slice_end first!
duke@435 268 if ((HeapWord*)to > slice_end) {
duke@435 269 to = (oop*)slice_end;
duke@435 270 } else if (to > sp_top) {
duke@435 271 to = sp_top;
duke@435 272 }
duke@435 273
duke@435 274 // we know which cards to scan, now clear them
duke@435 275 if (first_unclean_card <= worker_start_card+1)
duke@435 276 first_unclean_card = worker_start_card+1;
duke@435 277 if (following_clean_card >= worker_end_card-1)
duke@435 278 following_clean_card = worker_end_card-1;
duke@435 279
duke@435 280 while (first_unclean_card < following_clean_card) {
duke@435 281 *first_unclean_card++ = clean_card;
duke@435 282 }
duke@435 283
duke@435 284 const int interval = PrefetchScanIntervalInBytes;
duke@435 285 // scan all objects in the range
duke@435 286 if (interval != 0) {
tonyp@2061 287 while (p < to) {
tonyp@2061 288 Prefetch::write(p, interval);
tonyp@2061 289 oop m = oop(p);
tonyp@2061 290 assert(m->is_oop_or_null(), "check for header");
tonyp@2061 291 m->push_contents(pm);
tonyp@2061 292 p += m->size();
duke@435 293 }
tonyp@2061 294 pm->drain_stacks_cond_depth();
duke@435 295 } else {
tonyp@2061 296 while (p < to) {
tonyp@2061 297 oop m = oop(p);
tonyp@2061 298 assert(m->is_oop_or_null(), "check for header");
tonyp@2061 299 m->push_contents(pm);
tonyp@2061 300 p += m->size();
duke@435 301 }
tonyp@2061 302 pm->drain_stacks_cond_depth();
duke@435 303 }
duke@435 304 last_scanned = p;
duke@435 305 }
duke@435 306 // "current_card" is still the "following_clean_card" or
duke@435 307 // the current_card is >= the worker_end_card so the
duke@435 308 // loop will not execute again.
duke@435 309 assert((current_card == following_clean_card) ||
duke@435 310 (current_card >= worker_end_card),
duke@435 311 "current_card should only be incremented if it still equals "
duke@435 312 "following_clean_card");
duke@435 313 // Increment current_card so that it is not processed again.
duke@435 314 // It may now be dirty because a old-to-young pointer was
duke@435 315 // found on it an updated. If it is now dirty, it cannot be
duke@435 316 // be safely cleaned in the next iteration.
duke@435 317 current_card++;
duke@435 318 }
duke@435 319 }
duke@435 320 }
duke@435 321
duke@435 322 // This should be called before a scavenge.
duke@435 323 void CardTableExtension::verify_all_young_refs_imprecise() {
duke@435 324 CheckForUnmarkedObjects check;
duke@435 325
duke@435 326 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 327 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 328
duke@435 329 PSOldGen* old_gen = heap->old_gen();
duke@435 330
duke@435 331 old_gen->object_iterate(&check);
duke@435 332 }
duke@435 333
duke@435 334 // This should be called immediately after a scavenge, before mutators resume.
duke@435 335 void CardTableExtension::verify_all_young_refs_precise() {
duke@435 336 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 337 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
duke@435 338
duke@435 339 PSOldGen* old_gen = heap->old_gen();
duke@435 340
duke@435 341 CheckForPreciseMarks check(heap->young_gen(), (CardTableExtension*)heap->barrier_set());
duke@435 342
coleenp@4037 343 old_gen->oop_iterate_no_header(&check);
duke@435 344
duke@435 345 verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
duke@435 346 }
duke@435 347
duke@435 348 void CardTableExtension::verify_all_young_refs_precise_helper(MemRegion mr) {
duke@435 349 CardTableExtension* card_table = (CardTableExtension*)Universe::heap()->barrier_set();
duke@435 350 // FIX ME ASSERT HERE
duke@435 351
duke@435 352 jbyte* bot = card_table->byte_for(mr.start());
duke@435 353 jbyte* top = card_table->byte_for(mr.end());
duke@435 354 while(bot <= top) {
duke@435 355 assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
duke@435 356 if (*bot == verify_card)
duke@435 357 *bot = youngergen_card;
duke@435 358 bot++;
duke@435 359 }
duke@435 360 }
duke@435 361
duke@435 362 bool CardTableExtension::addr_is_marked_imprecise(void *addr) {
duke@435 363 jbyte* p = byte_for(addr);
duke@435 364 jbyte val = *p;
duke@435 365
duke@435 366 if (card_is_dirty(val))
duke@435 367 return true;
duke@435 368
duke@435 369 if (card_is_newgen(val))
duke@435 370 return true;
duke@435 371
duke@435 372 if (card_is_clean(val))
duke@435 373 return false;
duke@435 374
duke@435 375 assert(false, "Found unhandled card mark type");
duke@435 376
duke@435 377 return false;
duke@435 378 }
duke@435 379
duke@435 380 // Also includes verify_card
duke@435 381 bool CardTableExtension::addr_is_marked_precise(void *addr) {
duke@435 382 jbyte* p = byte_for(addr);
duke@435 383 jbyte val = *p;
duke@435 384
duke@435 385 if (card_is_newgen(val))
duke@435 386 return true;
duke@435 387
duke@435 388 if (card_is_verify(val))
duke@435 389 return true;
duke@435 390
duke@435 391 if (card_is_clean(val))
duke@435 392 return false;
duke@435 393
duke@435 394 if (card_is_dirty(val))
duke@435 395 return false;
duke@435 396
duke@435 397 assert(false, "Found unhandled card mark type");
duke@435 398
duke@435 399 return false;
duke@435 400 }
duke@435 401
duke@435 402 // Assumes that only the base or the end changes. This allows indentification
duke@435 403 // of the region that is being resized. The
duke@435 404 // CardTableModRefBS::resize_covered_region() is used for the normal case
duke@435 405 // where the covered regions are growing or shrinking at the high end.
duke@435 406 // The method resize_covered_region_by_end() is analogous to
duke@435 407 // CardTableModRefBS::resize_covered_region() but
duke@435 408 // for regions that grow or shrink at the low end.
duke@435 409 void CardTableExtension::resize_covered_region(MemRegion new_region) {
duke@435 410
duke@435 411 for (int i = 0; i < _cur_covered_regions; i++) {
duke@435 412 if (_covered[i].start() == new_region.start()) {
duke@435 413 // Found a covered region with the same start as the
duke@435 414 // new region. The region is growing or shrinking
duke@435 415 // from the start of the region.
duke@435 416 resize_covered_region_by_start(new_region);
duke@435 417 return;
duke@435 418 }
duke@435 419 if (_covered[i].start() > new_region.start()) {
duke@435 420 break;
duke@435 421 }
duke@435 422 }
duke@435 423
duke@435 424 int changed_region = -1;
duke@435 425 for (int j = 0; j < _cur_covered_regions; j++) {
duke@435 426 if (_covered[j].end() == new_region.end()) {
duke@435 427 changed_region = j;
duke@435 428 // This is a case where the covered region is growing or shrinking
duke@435 429 // at the start of the region.
duke@435 430 assert(changed_region != -1, "Don't expect to add a covered region");
duke@435 431 assert(_covered[changed_region].byte_size() != new_region.byte_size(),
duke@435 432 "The sizes should be different here");
duke@435 433 resize_covered_region_by_end(changed_region, new_region);
duke@435 434 return;
duke@435 435 }
duke@435 436 }
duke@435 437 // This should only be a new covered region (where no existing
duke@435 438 // covered region matches at the start or the end).
duke@435 439 assert(_cur_covered_regions < _max_covered_regions,
duke@435 440 "An existing region should have been found");
duke@435 441 resize_covered_region_by_start(new_region);
duke@435 442 }
duke@435 443
duke@435 444 void CardTableExtension::resize_covered_region_by_start(MemRegion new_region) {
duke@435 445 CardTableModRefBS::resize_covered_region(new_region);
duke@435 446 debug_only(verify_guard();)
duke@435 447 }
duke@435 448
duke@435 449 void CardTableExtension::resize_covered_region_by_end(int changed_region,
duke@435 450 MemRegion new_region) {
duke@435 451 assert(SafepointSynchronize::is_at_safepoint(),
duke@435 452 "Only expect an expansion at the low end at a GC");
duke@435 453 debug_only(verify_guard();)
duke@435 454 #ifdef ASSERT
duke@435 455 for (int k = 0; k < _cur_covered_regions; k++) {
duke@435 456 if (_covered[k].end() == new_region.end()) {
duke@435 457 assert(changed_region == k, "Changed region is incorrect");
duke@435 458 break;
duke@435 459 }
duke@435 460 }
duke@435 461 #endif
duke@435 462
duke@435 463 // Commit new or uncommit old pages, if necessary.
jmasa@1967 464 if (resize_commit_uncommit(changed_region, new_region)) {
jmasa@1967 465 // Set the new start of the committed region
jmasa@1967 466 resize_update_committed_table(changed_region, new_region);
jmasa@1967 467 }
duke@435 468
duke@435 469 // Update card table entries
duke@435 470 resize_update_card_table_entries(changed_region, new_region);
duke@435 471
duke@435 472 // Update the covered region
duke@435 473 resize_update_covered_table(changed_region, new_region);
duke@435 474
duke@435 475 if (TraceCardTableModRefBS) {
duke@435 476 int ind = changed_region;
duke@435 477 gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
duke@435 478 gclog_or_tty->print_cr(" "
duke@435 479 " _covered[%d].start(): " INTPTR_FORMAT
duke@435 480 " _covered[%d].last(): " INTPTR_FORMAT,
duke@435 481 ind, _covered[ind].start(),
duke@435 482 ind, _covered[ind].last());
duke@435 483 gclog_or_tty->print_cr(" "
duke@435 484 " _committed[%d].start(): " INTPTR_FORMAT
duke@435 485 " _committed[%d].last(): " INTPTR_FORMAT,
duke@435 486 ind, _committed[ind].start(),
duke@435 487 ind, _committed[ind].last());
duke@435 488 gclog_or_tty->print_cr(" "
duke@435 489 " byte_for(start): " INTPTR_FORMAT
duke@435 490 " byte_for(last): " INTPTR_FORMAT,
duke@435 491 byte_for(_covered[ind].start()),
duke@435 492 byte_for(_covered[ind].last()));
duke@435 493 gclog_or_tty->print_cr(" "
duke@435 494 " addr_for(start): " INTPTR_FORMAT
duke@435 495 " addr_for(last): " INTPTR_FORMAT,
duke@435 496 addr_for((jbyte*) _committed[ind].start()),
duke@435 497 addr_for((jbyte*) _committed[ind].last()));
duke@435 498 }
duke@435 499 debug_only(verify_guard();)
duke@435 500 }
duke@435 501
jmasa@1967 502 bool CardTableExtension::resize_commit_uncommit(int changed_region,
duke@435 503 MemRegion new_region) {
jmasa@1967 504 bool result = false;
duke@435 505 // Commit new or uncommit old pages, if necessary.
duke@435 506 MemRegion cur_committed = _committed[changed_region];
duke@435 507 assert(_covered[changed_region].end() == new_region.end(),
duke@435 508 "The ends of the regions are expected to match");
duke@435 509 // Extend the start of this _committed region to
duke@435 510 // to cover the start of any previous _committed region.
duke@435 511 // This forms overlapping regions, but never interior regions.
duke@435 512 HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
duke@435 513 if (min_prev_start < cur_committed.start()) {
duke@435 514 // Only really need to set start of "cur_committed" to
duke@435 515 // the new start (min_prev_start) but assertion checking code
duke@435 516 // below use cur_committed.end() so make it correct.
duke@435 517 MemRegion new_committed =
duke@435 518 MemRegion(min_prev_start, cur_committed.end());
duke@435 519 cur_committed = new_committed;
duke@435 520 }
duke@435 521 #ifdef ASSERT
duke@435 522 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
duke@435 523 assert(cur_committed.start() ==
duke@435 524 (HeapWord*) align_size_up((uintptr_t) cur_committed.start(),
duke@435 525 os::vm_page_size()),
duke@435 526 "Starts should have proper alignment");
duke@435 527 #endif
duke@435 528
duke@435 529 jbyte* new_start = byte_for(new_region.start());
duke@435 530 // Round down because this is for the start address
duke@435 531 HeapWord* new_start_aligned =
duke@435 532 (HeapWord*)align_size_down((uintptr_t)new_start, os::vm_page_size());
duke@435 533 // The guard page is always committed and should not be committed over.
duke@435 534 // This method is used in cases where the generation is growing toward
duke@435 535 // lower addresses but the guard region is still at the end of the
duke@435 536 // card table. That still makes sense when looking for writes
duke@435 537 // off the end of the card table.
duke@435 538 if (new_start_aligned < cur_committed.start()) {
duke@435 539 // Expand the committed region
duke@435 540 //
duke@435 541 // Case A
duke@435 542 // |+ guard +|
duke@435 543 // |+ cur committed +++++++++|
duke@435 544 // |+ new committed +++++++++++++++++|
duke@435 545 //
duke@435 546 // Case B
duke@435 547 // |+ guard +|
duke@435 548 // |+ cur committed +|
duke@435 549 // |+ new committed +++++++|
duke@435 550 //
duke@435 551 // These are not expected because the calculation of the
duke@435 552 // cur committed region and the new committed region
duke@435 553 // share the same end for the covered region.
duke@435 554 // Case C
duke@435 555 // |+ guard +|
duke@435 556 // |+ cur committed +|
duke@435 557 // |+ new committed +++++++++++++++++|
duke@435 558 // Case D
duke@435 559 // |+ guard +|
duke@435 560 // |+ cur committed +++++++++++|
duke@435 561 // |+ new committed +++++++|
duke@435 562
duke@435 563 HeapWord* new_end_for_commit =
duke@435 564 MIN2(cur_committed.end(), _guard_region.start());
jmasa@698 565 if(new_start_aligned < new_end_for_commit) {
jmasa@698 566 MemRegion new_committed =
jmasa@698 567 MemRegion(new_start_aligned, new_end_for_commit);
duke@435 568 if (!os::commit_memory((char*)new_committed.start(),
duke@435 569 new_committed.byte_size())) {
duke@435 570 vm_exit_out_of_memory(new_committed.byte_size(),
duke@435 571 "card table expansion");
duke@435 572 }
duke@435 573 }
jmasa@1967 574 result = true;
duke@435 575 } else if (new_start_aligned > cur_committed.start()) {
duke@435 576 // Shrink the committed region
jmasa@1967 577 #if 0 // uncommitting space is currently unsafe because of the interactions
jmasa@1967 578 // of growing and shrinking regions. One region A can uncommit space
jmasa@1967 579 // that it owns but which is being used by another region B (maybe).
jmasa@1967 580 // Region B has not committed the space because it was already
jmasa@1967 581 // committed by region A.
duke@435 582 MemRegion uncommit_region = committed_unique_to_self(changed_region,
duke@435 583 MemRegion(cur_committed.start(), new_start_aligned));
duke@435 584 if (!uncommit_region.is_empty()) {
duke@435 585 if (!os::uncommit_memory((char*)uncommit_region.start(),
duke@435 586 uncommit_region.byte_size())) {
jmasa@1967 587 // If the uncommit fails, ignore it. Let the
jmasa@1967 588 // committed table resizing go even though the committed
jmasa@1967 589 // table will over state the committed space.
duke@435 590 }
duke@435 591 }
jmasa@1967 592 #else
jmasa@1967 593 assert(!result, "Should be false with current workaround");
jmasa@1967 594 #endif
duke@435 595 }
duke@435 596 assert(_committed[changed_region].end() == cur_committed.end(),
duke@435 597 "end should not change");
jmasa@1967 598 return result;
duke@435 599 }
duke@435 600
duke@435 601 void CardTableExtension::resize_update_committed_table(int changed_region,
duke@435 602 MemRegion new_region) {
duke@435 603
duke@435 604 jbyte* new_start = byte_for(new_region.start());
duke@435 605 // Set the new start of the committed region
duke@435 606 HeapWord* new_start_aligned =
duke@435 607 (HeapWord*)align_size_down((uintptr_t)new_start,
duke@435 608 os::vm_page_size());
duke@435 609 MemRegion new_committed = MemRegion(new_start_aligned,
duke@435 610 _committed[changed_region].end());
duke@435 611 _committed[changed_region] = new_committed;
duke@435 612 _committed[changed_region].set_start(new_start_aligned);
duke@435 613 }
duke@435 614
duke@435 615 void CardTableExtension::resize_update_card_table_entries(int changed_region,
duke@435 616 MemRegion new_region) {
duke@435 617 debug_only(verify_guard();)
duke@435 618 MemRegion original_covered = _covered[changed_region];
duke@435 619 // Initialize the card entries. Only consider the
duke@435 620 // region covered by the card table (_whole_heap)
duke@435 621 jbyte* entry;
duke@435 622 if (new_region.start() < _whole_heap.start()) {
duke@435 623 entry = byte_for(_whole_heap.start());
duke@435 624 } else {
duke@435 625 entry = byte_for(new_region.start());
duke@435 626 }
duke@435 627 jbyte* end = byte_for(original_covered.start());
duke@435 628 // If _whole_heap starts at the original covered regions start,
duke@435 629 // this loop will not execute.
duke@435 630 while (entry < end) { *entry++ = clean_card; }
duke@435 631 }
duke@435 632
duke@435 633 void CardTableExtension::resize_update_covered_table(int changed_region,
duke@435 634 MemRegion new_region) {
duke@435 635 // Update the covered region
duke@435 636 _covered[changed_region].set_start(new_region.start());
duke@435 637 _covered[changed_region].set_word_size(new_region.word_size());
duke@435 638
duke@435 639 // reorder regions. There should only be at most 1 out
duke@435 640 // of order.
duke@435 641 for (int i = _cur_covered_regions-1 ; i > 0; i--) {
duke@435 642 if (_covered[i].start() < _covered[i-1].start()) {
duke@435 643 MemRegion covered_mr = _covered[i-1];
duke@435 644 _covered[i-1] = _covered[i];
duke@435 645 _covered[i] = covered_mr;
duke@435 646 MemRegion committed_mr = _committed[i-1];
duke@435 647 _committed[i-1] = _committed[i];
duke@435 648 _committed[i] = committed_mr;
duke@435 649 break;
duke@435 650 }
duke@435 651 }
duke@435 652 #ifdef ASSERT
duke@435 653 for (int m = 0; m < _cur_covered_regions-1; m++) {
duke@435 654 assert(_covered[m].start() <= _covered[m+1].start(),
duke@435 655 "Covered regions out of order");
duke@435 656 assert(_committed[m].start() <= _committed[m+1].start(),
duke@435 657 "Committed regions out of order");
duke@435 658 }
duke@435 659 #endif
duke@435 660 }
duke@435 661
duke@435 662 // Returns the start of any committed region that is lower than
duke@435 663 // the target committed region (index ind) and that intersects the
duke@435 664 // target region. If none, return start of target region.
duke@435 665 //
duke@435 666 // -------------
duke@435 667 // | |
duke@435 668 // -------------
duke@435 669 // ------------
duke@435 670 // | target |
duke@435 671 // ------------
duke@435 672 // -------------
duke@435 673 // | |
duke@435 674 // -------------
duke@435 675 // ^ returns this
duke@435 676 //
duke@435 677 // -------------
duke@435 678 // | |
duke@435 679 // -------------
duke@435 680 // ------------
duke@435 681 // | target |
duke@435 682 // ------------
duke@435 683 // -------------
duke@435 684 // | |
duke@435 685 // -------------
duke@435 686 // ^ returns this
duke@435 687
duke@435 688 HeapWord* CardTableExtension::lowest_prev_committed_start(int ind) const {
duke@435 689 assert(_cur_covered_regions >= 0, "Expecting at least on region");
duke@435 690 HeapWord* min_start = _committed[ind].start();
duke@435 691 for (int j = 0; j < ind; j++) {
duke@435 692 HeapWord* this_start = _committed[j].start();
duke@435 693 if ((this_start < min_start) &&
duke@435 694 !(_committed[j].intersection(_committed[ind])).is_empty()) {
duke@435 695 min_start = this_start;
duke@435 696 }
duke@435 697 }
duke@435 698 return min_start;
duke@435 699 }

mercurial