src/share/vm/c1/c1_Runtime1.cpp

Tue, 30 Nov 2010 23:23:40 -0800

author
iveresov
date
Tue, 30 Nov 2010 23:23:40 -0800
changeset 2344
ac637b7220d1
parent 2314
f95d63e2154a
child 2462
8012aa3ccede
permissions
-rw-r--r--

6985015: C1 needs to support compressed oops
Summary: This change implements compressed oops for C1 for x64 and sparc. The changes are mostly on the codegen level, with a few exceptions when we do access things outside of the heap that are uncompressed from the IR. Compressed oops are now also enabled with tiered.
Reviewed-by: twisti, kvn, never, phh

duke@435 1 /*
trims@1907 2 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/codeBuffer.hpp"
stefank@2314 27 #include "c1/c1_CodeStubs.hpp"
stefank@2314 28 #include "c1/c1_Defs.hpp"
stefank@2314 29 #include "c1/c1_FrameMap.hpp"
stefank@2314 30 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 31 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 32 #include "c1/c1_Runtime1.hpp"
stefank@2314 33 #include "classfile/systemDictionary.hpp"
stefank@2314 34 #include "classfile/vmSymbols.hpp"
stefank@2314 35 #include "code/codeBlob.hpp"
stefank@2314 36 #include "code/compiledIC.hpp"
stefank@2314 37 #include "code/pcDesc.hpp"
stefank@2314 38 #include "code/scopeDesc.hpp"
stefank@2314 39 #include "code/vtableStubs.hpp"
stefank@2314 40 #include "compiler/disassembler.hpp"
stefank@2314 41 #include "gc_interface/collectedHeap.hpp"
stefank@2314 42 #include "interpreter/bytecode.hpp"
stefank@2314 43 #include "interpreter/interpreter.hpp"
stefank@2314 44 #include "memory/allocation.inline.hpp"
stefank@2314 45 #include "memory/barrierSet.hpp"
stefank@2314 46 #include "memory/oopFactory.hpp"
stefank@2314 47 #include "memory/resourceArea.hpp"
stefank@2314 48 #include "oops/objArrayKlass.hpp"
stefank@2314 49 #include "oops/oop.inline.hpp"
stefank@2314 50 #include "runtime/biasedLocking.hpp"
stefank@2314 51 #include "runtime/compilationPolicy.hpp"
stefank@2314 52 #include "runtime/interfaceSupport.hpp"
stefank@2314 53 #include "runtime/javaCalls.hpp"
stefank@2314 54 #include "runtime/sharedRuntime.hpp"
stefank@2314 55 #include "runtime/threadCritical.hpp"
stefank@2314 56 #include "runtime/vframe.hpp"
stefank@2314 57 #include "runtime/vframeArray.hpp"
stefank@2314 58 #include "utilities/copy.hpp"
stefank@2314 59 #include "utilities/events.hpp"
duke@435 60
duke@435 61
duke@435 62 // Implementation of StubAssembler
duke@435 63
duke@435 64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
duke@435 65 _name = name;
duke@435 66 _must_gc_arguments = false;
duke@435 67 _frame_size = no_frame_size;
duke@435 68 _num_rt_args = 0;
duke@435 69 _stub_id = stub_id;
duke@435 70 }
duke@435 71
duke@435 72
duke@435 73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
duke@435 74 _name = name;
duke@435 75 _must_gc_arguments = must_gc_arguments;
duke@435 76 }
duke@435 77
duke@435 78
duke@435 79 void StubAssembler::set_frame_size(int size) {
duke@435 80 if (_frame_size == no_frame_size) {
duke@435 81 _frame_size = size;
duke@435 82 }
duke@435 83 assert(_frame_size == size, "can't change the frame size");
duke@435 84 }
duke@435 85
duke@435 86
duke@435 87 void StubAssembler::set_num_rt_args(int args) {
duke@435 88 if (_num_rt_args == 0) {
duke@435 89 _num_rt_args = args;
duke@435 90 }
duke@435 91 assert(_num_rt_args == args, "can't change the number of args");
duke@435 92 }
duke@435 93
duke@435 94 // Implementation of Runtime1
duke@435 95
duke@435 96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
duke@435 97 const char *Runtime1::_blob_names[] = {
duke@435 98 RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
duke@435 99 };
duke@435 100
duke@435 101 #ifndef PRODUCT
duke@435 102 // statistics
duke@435 103 int Runtime1::_generic_arraycopy_cnt = 0;
duke@435 104 int Runtime1::_primitive_arraycopy_cnt = 0;
duke@435 105 int Runtime1::_oop_arraycopy_cnt = 0;
duke@435 106 int Runtime1::_arraycopy_slowcase_cnt = 0;
duke@435 107 int Runtime1::_new_type_array_slowcase_cnt = 0;
duke@435 108 int Runtime1::_new_object_array_slowcase_cnt = 0;
duke@435 109 int Runtime1::_new_instance_slowcase_cnt = 0;
duke@435 110 int Runtime1::_new_multi_array_slowcase_cnt = 0;
duke@435 111 int Runtime1::_monitorenter_slowcase_cnt = 0;
duke@435 112 int Runtime1::_monitorexit_slowcase_cnt = 0;
duke@435 113 int Runtime1::_patch_code_slowcase_cnt = 0;
duke@435 114 int Runtime1::_throw_range_check_exception_count = 0;
duke@435 115 int Runtime1::_throw_index_exception_count = 0;
duke@435 116 int Runtime1::_throw_div0_exception_count = 0;
duke@435 117 int Runtime1::_throw_null_pointer_exception_count = 0;
duke@435 118 int Runtime1::_throw_class_cast_exception_count = 0;
duke@435 119 int Runtime1::_throw_incompatible_class_change_error_count = 0;
duke@435 120 int Runtime1::_throw_array_store_exception_count = 0;
duke@435 121 int Runtime1::_throw_count = 0;
duke@435 122 #endif
duke@435 123
duke@435 124 // Simple helper to see if the caller of a runtime stub which
duke@435 125 // entered the VM has been deoptimized
duke@435 126
duke@435 127 static bool caller_is_deopted() {
duke@435 128 JavaThread* thread = JavaThread::current();
duke@435 129 RegisterMap reg_map(thread, false);
duke@435 130 frame runtime_frame = thread->last_frame();
duke@435 131 frame caller_frame = runtime_frame.sender(&reg_map);
duke@435 132 assert(caller_frame.is_compiled_frame(), "must be compiled");
duke@435 133 return caller_frame.is_deoptimized_frame();
duke@435 134 }
duke@435 135
duke@435 136 // Stress deoptimization
duke@435 137 static void deopt_caller() {
duke@435 138 if ( !caller_is_deopted()) {
duke@435 139 JavaThread* thread = JavaThread::current();
duke@435 140 RegisterMap reg_map(thread, false);
duke@435 141 frame runtime_frame = thread->last_frame();
duke@435 142 frame caller_frame = runtime_frame.sender(&reg_map);
dcubed@1648 143 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 144 assert(caller_is_deopted(), "Must be deoptimized");
duke@435 145 }
duke@435 146 }
duke@435 147
duke@435 148
iveresov@1939 149 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
duke@435 150 assert(0 <= id && id < number_of_ids, "illegal stub id");
duke@435 151 ResourceMark rm;
duke@435 152 // create code buffer for code storage
twisti@2103 153 CodeBuffer code(buffer_blob);
duke@435 154
iveresov@1939 155 Compilation::setup_code_buffer(&code, 0);
duke@435 156
duke@435 157 // create assembler for code generation
duke@435 158 StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
duke@435 159 // generate code for runtime stub
duke@435 160 OopMapSet* oop_maps;
duke@435 161 oop_maps = generate_code_for(id, sasm);
duke@435 162 assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
duke@435 163 "if stub has an oop map it must have a valid frame size");
duke@435 164
duke@435 165 #ifdef ASSERT
duke@435 166 // Make sure that stubs that need oopmaps have them
duke@435 167 switch (id) {
duke@435 168 // These stubs don't need to have an oopmap
duke@435 169 case dtrace_object_alloc_id:
ysr@777 170 case g1_pre_barrier_slow_id:
ysr@777 171 case g1_post_barrier_slow_id:
duke@435 172 case slow_subtype_check_id:
duke@435 173 case fpu2long_stub_id:
duke@435 174 case unwind_exception_id:
iveresov@2138 175 case counter_overflow_id:
bobv@2036 176 #if defined(SPARC) || defined(PPC)
duke@435 177 case handle_exception_nofpu_id: // Unused on sparc
duke@435 178 #endif
duke@435 179 break;
duke@435 180
duke@435 181 // All other stubs should have oopmaps
duke@435 182 default:
duke@435 183 assert(oop_maps != NULL, "must have an oopmap");
duke@435 184 }
duke@435 185 #endif
duke@435 186
duke@435 187 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
duke@435 188 sasm->align(BytesPerWord);
duke@435 189 // make sure all code is in code buffer
duke@435 190 sasm->flush();
duke@435 191 // create blob - distinguish a few special cases
duke@435 192 CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
duke@435 193 &code,
duke@435 194 CodeOffsets::frame_never_safe,
duke@435 195 sasm->frame_size(),
duke@435 196 oop_maps,
duke@435 197 sasm->must_gc_arguments());
duke@435 198 // install blob
duke@435 199 assert(blob != NULL, "blob must exist");
duke@435 200 _blobs[id] = blob;
duke@435 201 }
duke@435 202
duke@435 203
iveresov@1939 204 void Runtime1::initialize(BufferBlob* blob) {
iveresov@1939 205 // platform-dependent initialization
iveresov@1939 206 initialize_pd();
iveresov@1939 207 // generate stubs
iveresov@1939 208 for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
iveresov@1939 209 // printing
duke@435 210 #ifndef PRODUCT
iveresov@1939 211 if (PrintSimpleStubs) {
iveresov@1939 212 ResourceMark rm;
iveresov@1939 213 for (int id = 0; id < number_of_ids; id++) {
iveresov@1939 214 _blobs[id]->print();
iveresov@1939 215 if (_blobs[id]->oop_maps() != NULL) {
iveresov@1939 216 _blobs[id]->oop_maps()->print();
duke@435 217 }
duke@435 218 }
iveresov@1939 219 }
duke@435 220 #endif
duke@435 221 }
duke@435 222
duke@435 223
duke@435 224 CodeBlob* Runtime1::blob_for(StubID id) {
duke@435 225 assert(0 <= id && id < number_of_ids, "illegal stub id");
duke@435 226 return _blobs[id];
duke@435 227 }
duke@435 228
duke@435 229
duke@435 230 const char* Runtime1::name_for(StubID id) {
duke@435 231 assert(0 <= id && id < number_of_ids, "illegal stub id");
duke@435 232 return _blob_names[id];
duke@435 233 }
duke@435 234
duke@435 235 const char* Runtime1::name_for_address(address entry) {
duke@435 236 for (int id = 0; id < number_of_ids; id++) {
duke@435 237 if (entry == entry_for((StubID)id)) return name_for((StubID)id);
duke@435 238 }
duke@435 239
duke@435 240 #define FUNCTION_CASE(a, f) \
duke@435 241 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
duke@435 242
duke@435 243 FUNCTION_CASE(entry, os::javaTimeMillis);
duke@435 244 FUNCTION_CASE(entry, os::javaTimeNanos);
duke@435 245 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
duke@435 246 FUNCTION_CASE(entry, SharedRuntime::d2f);
duke@435 247 FUNCTION_CASE(entry, SharedRuntime::d2i);
duke@435 248 FUNCTION_CASE(entry, SharedRuntime::d2l);
duke@435 249 FUNCTION_CASE(entry, SharedRuntime::dcos);
duke@435 250 FUNCTION_CASE(entry, SharedRuntime::dexp);
duke@435 251 FUNCTION_CASE(entry, SharedRuntime::dlog);
duke@435 252 FUNCTION_CASE(entry, SharedRuntime::dlog10);
duke@435 253 FUNCTION_CASE(entry, SharedRuntime::dpow);
duke@435 254 FUNCTION_CASE(entry, SharedRuntime::drem);
duke@435 255 FUNCTION_CASE(entry, SharedRuntime::dsin);
duke@435 256 FUNCTION_CASE(entry, SharedRuntime::dtan);
duke@435 257 FUNCTION_CASE(entry, SharedRuntime::f2i);
duke@435 258 FUNCTION_CASE(entry, SharedRuntime::f2l);
duke@435 259 FUNCTION_CASE(entry, SharedRuntime::frem);
duke@435 260 FUNCTION_CASE(entry, SharedRuntime::l2d);
duke@435 261 FUNCTION_CASE(entry, SharedRuntime::l2f);
duke@435 262 FUNCTION_CASE(entry, SharedRuntime::ldiv);
duke@435 263 FUNCTION_CASE(entry, SharedRuntime::lmul);
duke@435 264 FUNCTION_CASE(entry, SharedRuntime::lrem);
duke@435 265 FUNCTION_CASE(entry, SharedRuntime::lrem);
duke@435 266 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
duke@435 267 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
duke@435 268 FUNCTION_CASE(entry, trace_block_entry);
duke@435 269
duke@435 270 #undef FUNCTION_CASE
duke@435 271
bobv@2036 272 // Soft float adds more runtime names.
bobv@2036 273 return pd_name_for_address(entry);
duke@435 274 }
duke@435 275
duke@435 276
duke@435 277 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
duke@435 278 NOT_PRODUCT(_new_instance_slowcase_cnt++;)
duke@435 279
duke@435 280 assert(oop(klass)->is_klass(), "not a class");
duke@435 281 instanceKlassHandle h(thread, klass);
duke@435 282 h->check_valid_for_instantiation(true, CHECK);
duke@435 283 // make sure klass is initialized
duke@435 284 h->initialize(CHECK);
duke@435 285 // allocate instance and return via TLS
duke@435 286 oop obj = h->allocate_instance(CHECK);
duke@435 287 thread->set_vm_result(obj);
duke@435 288 JRT_END
duke@435 289
duke@435 290
duke@435 291 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
duke@435 292 NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
duke@435 293 // Note: no handle for klass needed since they are not used
duke@435 294 // anymore after new_typeArray() and no GC can happen before.
duke@435 295 // (This may have to change if this code changes!)
duke@435 296 assert(oop(klass)->is_klass(), "not a class");
duke@435 297 BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
duke@435 298 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
duke@435 299 thread->set_vm_result(obj);
duke@435 300 // This is pretty rare but this runtime patch is stressful to deoptimization
duke@435 301 // if we deoptimize here so force a deopt to stress the path.
duke@435 302 if (DeoptimizeALot) {
duke@435 303 deopt_caller();
duke@435 304 }
duke@435 305
duke@435 306 JRT_END
duke@435 307
duke@435 308
duke@435 309 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
duke@435 310 NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
duke@435 311
duke@435 312 // Note: no handle for klass needed since they are not used
duke@435 313 // anymore after new_objArray() and no GC can happen before.
duke@435 314 // (This may have to change if this code changes!)
duke@435 315 assert(oop(array_klass)->is_klass(), "not a class");
duke@435 316 klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
duke@435 317 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
duke@435 318 thread->set_vm_result(obj);
duke@435 319 // This is pretty rare but this runtime patch is stressful to deoptimization
duke@435 320 // if we deoptimize here so force a deopt to stress the path.
duke@435 321 if (DeoptimizeALot) {
duke@435 322 deopt_caller();
duke@435 323 }
duke@435 324 JRT_END
duke@435 325
duke@435 326
duke@435 327 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
duke@435 328 NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
duke@435 329
duke@435 330 assert(oop(klass)->is_klass(), "not a class");
duke@435 331 assert(rank >= 1, "rank must be nonzero");
duke@435 332 oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
duke@435 333 thread->set_vm_result(obj);
duke@435 334 JRT_END
duke@435 335
duke@435 336
duke@435 337 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
duke@435 338 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
duke@435 339 JRT_END
duke@435 340
duke@435 341
duke@435 342 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
duke@435 343 THROW(vmSymbolHandles::java_lang_ArrayStoreException());
duke@435 344 JRT_END
duke@435 345
duke@435 346
duke@435 347 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
dcubed@1648 348 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 349 vframeStream vfst(thread, true);
duke@435 350 address bcp = vfst.method()->bcp_from(vfst.bci());
duke@435 351 JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
duke@435 352 }
duke@435 353 JRT_END
duke@435 354
iveresov@2138 355 // This is a helper to allow us to safepoint but allow the outer entry
iveresov@2138 356 // to be safepoint free if we need to do an osr
iveresov@2138 357 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
iveresov@2138 358 nmethod* osr_nm = NULL;
iveresov@2138 359 methodHandle method(THREAD, m);
iveresov@2138 360
iveresov@2138 361 RegisterMap map(THREAD, false);
iveresov@2138 362 frame fr = THREAD->last_frame().sender(&map);
duke@435 363 nmethod* nm = (nmethod*) fr.cb();
iveresov@2138 364 assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
iveresov@2138 365 methodHandle enclosing_method(THREAD, nm->method());
iveresov@2138 366
iveresov@2138 367 CompLevel level = (CompLevel)nm->comp_level();
iveresov@2138 368 int bci = InvocationEntryBci;
iveresov@2138 369 if (branch_bci != InvocationEntryBci) {
iveresov@2138 370 // Compute desination bci
iveresov@2138 371 address pc = method()->code_base() + branch_bci;
iveresov@2138 372 Bytecodes::Code branch = Bytecodes::code_at(pc, method());
iveresov@2138 373 int offset = 0;
iveresov@2138 374 switch (branch) {
iveresov@2138 375 case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
iveresov@2138 376 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
iveresov@2138 377 case Bytecodes::_if_icmple: case Bytecodes::_ifle:
iveresov@2138 378 case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
iveresov@2138 379 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
iveresov@2138 380 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
iveresov@2138 381 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
iveresov@2138 382 offset = (int16_t)Bytes::get_Java_u2(pc + 1);
iveresov@2138 383 break;
iveresov@2138 384 case Bytecodes::_goto_w:
iveresov@2138 385 offset = Bytes::get_Java_u4(pc + 1);
iveresov@2138 386 break;
iveresov@2138 387 default: ;
duke@435 388 }
iveresov@2138 389 bci = branch_bci + offset;
iveresov@2138 390 }
iveresov@2138 391
iveresov@2138 392 osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
iveresov@2138 393 return osr_nm;
iveresov@2138 394 }
iveresov@2138 395
iveresov@2138 396 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
iveresov@2138 397 nmethod* osr_nm;
iveresov@2138 398 JRT_BLOCK
iveresov@2138 399 osr_nm = counter_overflow_helper(thread, bci, method);
iveresov@2138 400 if (osr_nm != NULL) {
iveresov@2138 401 RegisterMap map(thread, false);
iveresov@2138 402 frame fr = thread->last_frame().sender(&map);
never@2260 403 Deoptimization::deoptimize_frame(thread, fr.id());
duke@435 404 }
iveresov@2138 405 JRT_BLOCK_END
iveresov@2138 406 return NULL;
duke@435 407 JRT_END
duke@435 408
duke@435 409 extern void vm_exit(int code);
duke@435 410
duke@435 411 // Enter this method from compiled code handler below. This is where we transition
duke@435 412 // to VM mode. This is done as a helper routine so that the method called directly
duke@435 413 // from compiled code does not have to transition to VM. This allows the entry
duke@435 414 // method to see if the nmethod that we have just looked up a handler for has
duke@435 415 // been deoptimized while we were in the vm. This simplifies the assembly code
duke@435 416 // cpu directories.
duke@435 417 //
duke@435 418 // We are entering here from exception stub (via the entry method below)
duke@435 419 // If there is a compiled exception handler in this method, we will continue there;
duke@435 420 // otherwise we will unwind the stack and continue at the caller of top frame method
duke@435 421 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
duke@435 422 // control the area where we can allow a safepoint. After we exit the safepoint area we can
duke@435 423 // check to see if the handler we are going to return is now in a nmethod that has
duke@435 424 // been deoptimized. If that is the case we return the deopt blob
duke@435 425 // unpack_with_exception entry instead. This makes life for the exception blob easier
duke@435 426 // because making that same check and diverting is painful from assembly language.
duke@435 427 //
duke@435 428
duke@435 429
duke@435 430 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
duke@435 431
duke@435 432 Handle exception(thread, ex);
duke@435 433 nm = CodeCache::find_nmethod(pc);
duke@435 434 assert(nm != NULL, "this is not an nmethod");
duke@435 435 // Adjust the pc as needed/
duke@435 436 if (nm->is_deopt_pc(pc)) {
duke@435 437 RegisterMap map(thread, false);
duke@435 438 frame exception_frame = thread->last_frame().sender(&map);
duke@435 439 // if the frame isn't deopted then pc must not correspond to the caller of last_frame
duke@435 440 assert(exception_frame.is_deoptimized_frame(), "must be deopted");
duke@435 441 pc = exception_frame.pc();
duke@435 442 }
duke@435 443 #ifdef ASSERT
duke@435 444 assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
duke@435 445 assert(exception->is_oop(), "just checking");
duke@435 446 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
never@1577 447 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
duke@435 448 if (ExitVMOnVerifyError) vm_exit(-1);
duke@435 449 ShouldNotReachHere();
duke@435 450 }
duke@435 451 #endif
duke@435 452
duke@435 453 // Check the stack guard pages and reenable them if necessary and there is
duke@435 454 // enough space on the stack to do so. Use fast exceptions only if the guard
duke@435 455 // pages are enabled.
duke@435 456 bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
duke@435 457 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
duke@435 458
dcubed@1648 459 if (JvmtiExport::can_post_on_exceptions()) {
duke@435 460 // To ensure correct notification of exception catches and throws
duke@435 461 // we have to deoptimize here. If we attempted to notify the
duke@435 462 // catches and throws during this exception lookup it's possible
duke@435 463 // we could deoptimize on the way out of the VM and end back in
duke@435 464 // the interpreter at the throw site. This would result in double
duke@435 465 // notifications since the interpreter would also notify about
duke@435 466 // these same catches and throws as it unwound the frame.
duke@435 467
duke@435 468 RegisterMap reg_map(thread);
duke@435 469 frame stub_frame = thread->last_frame();
duke@435 470 frame caller_frame = stub_frame.sender(&reg_map);
duke@435 471
duke@435 472 // We don't really want to deoptimize the nmethod itself since we
duke@435 473 // can actually continue in the exception handler ourselves but I
duke@435 474 // don't see an easy way to have the desired effect.
never@2260 475 Deoptimization::deoptimize_frame(thread, caller_frame.id());
never@2260 476 assert(caller_is_deopted(), "Must be deoptimized");
duke@435 477
duke@435 478 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
duke@435 479 }
duke@435 480
duke@435 481 // ExceptionCache is used only for exceptions at call and not for implicit exceptions
duke@435 482 if (guard_pages_enabled) {
duke@435 483 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
duke@435 484 if (fast_continuation != NULL) {
duke@435 485 if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
duke@435 486 return fast_continuation;
duke@435 487 }
duke@435 488 }
duke@435 489
duke@435 490 // If the stack guard pages are enabled, check whether there is a handler in
duke@435 491 // the current method. Otherwise (guard pages disabled), force an unwind and
duke@435 492 // skip the exception cache update (i.e., just leave continuation==NULL).
duke@435 493 address continuation = NULL;
duke@435 494 if (guard_pages_enabled) {
duke@435 495
duke@435 496 // New exception handling mechanism can support inlined methods
duke@435 497 // with exception handlers since the mappings are from PC to PC
duke@435 498
duke@435 499 // debugging support
duke@435 500 // tracing
duke@435 501 if (TraceExceptions) {
duke@435 502 ttyLocker ttyl;
duke@435 503 ResourceMark rm;
duke@435 504 tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
duke@435 505 exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
duke@435 506 }
duke@435 507 // for AbortVMOnException flag
duke@435 508 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
duke@435 509
duke@435 510 // Clear out the exception oop and pc since looking up an
duke@435 511 // exception handler can cause class loading, which might throw an
duke@435 512 // exception and those fields are expected to be clear during
duke@435 513 // normal bytecode execution.
duke@435 514 thread->set_exception_oop(NULL);
duke@435 515 thread->set_exception_pc(NULL);
duke@435 516
duke@435 517 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
duke@435 518 // If an exception was thrown during exception dispatch, the exception oop may have changed
duke@435 519 thread->set_exception_oop(exception());
duke@435 520 thread->set_exception_pc(pc);
duke@435 521
duke@435 522 // the exception cache is used only by non-implicit exceptions
duke@435 523 if (continuation == NULL) {
duke@435 524 nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
duke@435 525 } else {
duke@435 526 nm->add_handler_for_exception_and_pc(exception, pc, continuation);
duke@435 527 }
duke@435 528 }
duke@435 529
duke@435 530 thread->set_vm_result(exception());
duke@435 531
duke@435 532 if (TraceExceptions) {
duke@435 533 ttyLocker ttyl;
duke@435 534 ResourceMark rm;
duke@435 535 tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
duke@435 536 thread, continuation, pc);
duke@435 537 }
duke@435 538
duke@435 539 return continuation;
duke@435 540 JRT_END
duke@435 541
duke@435 542 // Enter this method from compiled code only if there is a Java exception handler
duke@435 543 // in the method handling the exception
duke@435 544 // We are entering here from exception stub. We don't do a normal VM transition here.
duke@435 545 // We do it in a helper. This is so we can check to see if the nmethod we have just
duke@435 546 // searched for an exception handler has been deoptimized in the meantime.
duke@435 547 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
duke@435 548 oop exception = thread->exception_oop();
duke@435 549 address pc = thread->exception_pc();
duke@435 550 // Still in Java mode
duke@435 551 debug_only(ResetNoHandleMark rnhm);
duke@435 552 nmethod* nm = NULL;
duke@435 553 address continuation = NULL;
duke@435 554 {
duke@435 555 // Enter VM mode by calling the helper
duke@435 556
duke@435 557 ResetNoHandleMark rnhm;
duke@435 558 continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
duke@435 559 }
duke@435 560 // Back in JAVA, use no oops DON'T safepoint
duke@435 561
duke@435 562 // Now check to see if the nmethod we were called from is now deoptimized.
duke@435 563 // If so we must return to the deopt blob and deoptimize the nmethod
duke@435 564
duke@435 565 if (nm != NULL && caller_is_deopted()) {
duke@435 566 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
duke@435 567 }
duke@435 568
duke@435 569 return continuation;
duke@435 570 }
duke@435 571
duke@435 572
duke@435 573 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
duke@435 574 NOT_PRODUCT(_throw_range_check_exception_count++;)
duke@435 575 Events::log("throw_range_check");
duke@435 576 char message[jintAsStringSize];
duke@435 577 sprintf(message, "%d", index);
duke@435 578 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
duke@435 579 JRT_END
duke@435 580
duke@435 581
duke@435 582 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
duke@435 583 NOT_PRODUCT(_throw_index_exception_count++;)
duke@435 584 Events::log("throw_index");
duke@435 585 char message[16];
duke@435 586 sprintf(message, "%d", index);
duke@435 587 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
duke@435 588 JRT_END
duke@435 589
duke@435 590
duke@435 591 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
duke@435 592 NOT_PRODUCT(_throw_div0_exception_count++;)
duke@435 593 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
duke@435 594 JRT_END
duke@435 595
duke@435 596
duke@435 597 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
duke@435 598 NOT_PRODUCT(_throw_null_pointer_exception_count++;)
duke@435 599 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
duke@435 600 JRT_END
duke@435 601
duke@435 602
duke@435 603 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
duke@435 604 NOT_PRODUCT(_throw_class_cast_exception_count++;)
duke@435 605 ResourceMark rm(thread);
duke@435 606 char* message = SharedRuntime::generate_class_cast_message(
duke@435 607 thread, Klass::cast(object->klass())->external_name());
duke@435 608 SharedRuntime::throw_and_post_jvmti_exception(
duke@435 609 thread, vmSymbols::java_lang_ClassCastException(), message);
duke@435 610 JRT_END
duke@435 611
duke@435 612
duke@435 613 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
duke@435 614 NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
duke@435 615 ResourceMark rm(thread);
duke@435 616 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
duke@435 617 JRT_END
duke@435 618
duke@435 619
duke@435 620 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
duke@435 621 NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
duke@435 622 if (PrintBiasedLockingStatistics) {
duke@435 623 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
duke@435 624 }
duke@435 625 Handle h_obj(thread, obj);
duke@435 626 assert(h_obj()->is_oop(), "must be NULL or an object");
duke@435 627 if (UseBiasedLocking) {
duke@435 628 // Retry fast entry if bias is revoked to avoid unnecessary inflation
duke@435 629 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
duke@435 630 } else {
duke@435 631 if (UseFastLocking) {
duke@435 632 // When using fast locking, the compiled code has already tried the fast case
duke@435 633 assert(obj == lock->obj(), "must match");
duke@435 634 ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
duke@435 635 } else {
duke@435 636 lock->set_obj(obj);
duke@435 637 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
duke@435 638 }
duke@435 639 }
duke@435 640 JRT_END
duke@435 641
duke@435 642
duke@435 643 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
duke@435 644 NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
duke@435 645 assert(thread == JavaThread::current(), "threads must correspond");
duke@435 646 assert(thread->last_Java_sp(), "last_Java_sp must be set");
duke@435 647 // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
duke@435 648 EXCEPTION_MARK;
duke@435 649
duke@435 650 oop obj = lock->obj();
duke@435 651 assert(obj->is_oop(), "must be NULL or an object");
duke@435 652 if (UseFastLocking) {
duke@435 653 // When using fast locking, the compiled code has already tried the fast case
duke@435 654 ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
duke@435 655 } else {
duke@435 656 ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
duke@435 657 }
duke@435 658 JRT_END
duke@435 659
duke@435 660
duke@435 661 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
jrose@1957 662 Bytecode_field* field_access = Bytecode_field_at(caller, bci);
duke@435 663 // This can be static or non-static field access
duke@435 664 Bytecodes::Code code = field_access->code();
duke@435 665
duke@435 666 // We must load class, initialize class and resolvethe field
duke@435 667 FieldAccessInfo result; // initialize class if needed
duke@435 668 constantPoolHandle constants(THREAD, caller->constants());
duke@435 669 LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
duke@435 670 return result.klass()();
duke@435 671 }
duke@435 672
duke@435 673
duke@435 674 //
duke@435 675 // This routine patches sites where a class wasn't loaded or
duke@435 676 // initialized at the time the code was generated. It handles
duke@435 677 // references to classes, fields and forcing of initialization. Most
duke@435 678 // of the cases are straightforward and involving simply forcing
duke@435 679 // resolution of a class, rewriting the instruction stream with the
duke@435 680 // needed constant and replacing the call in this function with the
duke@435 681 // patched code. The case for static field is more complicated since
duke@435 682 // the thread which is in the process of initializing a class can
duke@435 683 // access it's static fields but other threads can't so the code
duke@435 684 // either has to deoptimize when this case is detected or execute a
duke@435 685 // check that the current thread is the initializing thread. The
duke@435 686 // current
duke@435 687 //
duke@435 688 // Patches basically look like this:
duke@435 689 //
duke@435 690 //
duke@435 691 // patch_site: jmp patch stub ;; will be patched
duke@435 692 // continue: ...
duke@435 693 // ...
duke@435 694 // ...
duke@435 695 // ...
duke@435 696 //
duke@435 697 // They have a stub which looks like this:
duke@435 698 //
duke@435 699 // ;; patch body
duke@435 700 // movl <const>, reg (for class constants)
duke@435 701 // <or> movl [reg1 + <const>], reg (for field offsets)
duke@435 702 // <or> movl reg, [reg1 + <const>] (for field offsets)
duke@435 703 // <being_init offset> <bytes to copy> <bytes to skip>
duke@435 704 // patch_stub: call Runtime1::patch_code (through a runtime stub)
duke@435 705 // jmp patch_site
duke@435 706 //
duke@435 707 //
duke@435 708 // A normal patch is done by rewriting the patch body, usually a move,
duke@435 709 // and then copying it into place over top of the jmp instruction
duke@435 710 // being careful to flush caches and doing it in an MP-safe way. The
duke@435 711 // constants following the patch body are used to find various pieces
duke@435 712 // of the patch relative to the call site for Runtime1::patch_code.
duke@435 713 // The case for getstatic and putstatic is more complicated because
duke@435 714 // getstatic and putstatic have special semantics when executing while
duke@435 715 // the class is being initialized. getstatic/putstatic on a class
duke@435 716 // which is being_initialized may be executed by the initializing
duke@435 717 // thread but other threads have to block when they execute it. This
duke@435 718 // is accomplished in compiled code by executing a test of the current
duke@435 719 // thread against the initializing thread of the class. It's emitted
duke@435 720 // as boilerplate in their stub which allows the patched code to be
duke@435 721 // executed before it's copied back into the main body of the nmethod.
duke@435 722 //
duke@435 723 // being_init: get_thread(<tmp reg>
duke@435 724 // cmpl [reg1 + <init_thread_offset>], <tmp reg>
duke@435 725 // jne patch_stub
duke@435 726 // movl [reg1 + <const>], reg (for field offsets) <or>
duke@435 727 // movl reg, [reg1 + <const>] (for field offsets)
duke@435 728 // jmp continue
duke@435 729 // <being_init offset> <bytes to copy> <bytes to skip>
duke@435 730 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
duke@435 731 // jmp patch_site
duke@435 732 //
duke@435 733 // If the class is being initialized the patch body is rewritten and
duke@435 734 // the patch site is rewritten to jump to being_init, instead of
duke@435 735 // patch_stub. Whenever this code is executed it checks the current
duke@435 736 // thread against the intializing thread so other threads will enter
duke@435 737 // the runtime and end up blocked waiting the class to finish
duke@435 738 // initializing inside the calls to resolve_field below. The
duke@435 739 // initializing class will continue on it's way. Once the class is
duke@435 740 // fully_initialized, the intializing_thread of the class becomes
duke@435 741 // NULL, so the next thread to execute this code will fail the test,
duke@435 742 // call into patch_code and complete the patching process by copying
duke@435 743 // the patch body back into the main part of the nmethod and resume
duke@435 744 // executing.
duke@435 745 //
duke@435 746 //
duke@435 747
duke@435 748 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
duke@435 749 NOT_PRODUCT(_patch_code_slowcase_cnt++;)
duke@435 750
duke@435 751 ResourceMark rm(thread);
duke@435 752 RegisterMap reg_map(thread, false);
duke@435 753 frame runtime_frame = thread->last_frame();
duke@435 754 frame caller_frame = runtime_frame.sender(&reg_map);
duke@435 755
duke@435 756 // last java frame on stack
duke@435 757 vframeStream vfst(thread, true);
duke@435 758 assert(!vfst.at_end(), "Java frame must exist");
duke@435 759
duke@435 760 methodHandle caller_method(THREAD, vfst.method());
duke@435 761 // Note that caller_method->code() may not be same as caller_code because of OSR's
duke@435 762 // Note also that in the presence of inlining it is not guaranteed
duke@435 763 // that caller_method() == caller_code->method()
duke@435 764
duke@435 765
duke@435 766 int bci = vfst.bci();
duke@435 767
duke@435 768 Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
duke@435 769
duke@435 770 Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
duke@435 771
duke@435 772 #ifndef PRODUCT
duke@435 773 // this is used by assertions in the access_field_patching_id
duke@435 774 BasicType patch_field_type = T_ILLEGAL;
duke@435 775 #endif // PRODUCT
duke@435 776 bool deoptimize_for_volatile = false;
duke@435 777 int patch_field_offset = -1;
duke@435 778 KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
duke@435 779 Handle load_klass(THREAD, NULL); // oop needed by load_klass_patching code
duke@435 780 if (stub_id == Runtime1::access_field_patching_id) {
duke@435 781
jrose@1957 782 Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
duke@435 783 FieldAccessInfo result; // initialize class if needed
duke@435 784 Bytecodes::Code code = field_access->code();
duke@435 785 constantPoolHandle constants(THREAD, caller_method->constants());
duke@435 786 LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
duke@435 787 patch_field_offset = result.field_offset();
duke@435 788
duke@435 789 // If we're patching a field which is volatile then at compile it
duke@435 790 // must not have been know to be volatile, so the generated code
duke@435 791 // isn't correct for a volatile reference. The nmethod has to be
duke@435 792 // deoptimized so that the code can be regenerated correctly.
duke@435 793 // This check is only needed for access_field_patching since this
duke@435 794 // is the path for patching field offsets. load_klass is only
duke@435 795 // used for patching references to oops which don't need special
duke@435 796 // handling in the volatile case.
duke@435 797 deoptimize_for_volatile = result.access_flags().is_volatile();
duke@435 798
duke@435 799 #ifndef PRODUCT
duke@435 800 patch_field_type = result.field_type();
duke@435 801 #endif
duke@435 802 } else if (stub_id == Runtime1::load_klass_patching_id) {
duke@435 803 oop k;
duke@435 804 switch (code) {
duke@435 805 case Bytecodes::_putstatic:
duke@435 806 case Bytecodes::_getstatic:
duke@435 807 { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
duke@435 808 // Save a reference to the class that has to be checked for initialization
duke@435 809 init_klass = KlassHandle(THREAD, klass);
duke@435 810 k = klass;
duke@435 811 }
duke@435 812 break;
duke@435 813 case Bytecodes::_new:
duke@435 814 { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
duke@435 815 k = caller_method->constants()->klass_at(bnew->index(), CHECK);
duke@435 816 }
duke@435 817 break;
duke@435 818 case Bytecodes::_multianewarray:
duke@435 819 { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
duke@435 820 k = caller_method->constants()->klass_at(mna->index(), CHECK);
duke@435 821 }
duke@435 822 break;
duke@435 823 case Bytecodes::_instanceof:
duke@435 824 { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
duke@435 825 k = caller_method->constants()->klass_at(io->index(), CHECK);
duke@435 826 }
duke@435 827 break;
duke@435 828 case Bytecodes::_checkcast:
duke@435 829 { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
duke@435 830 k = caller_method->constants()->klass_at(cc->index(), CHECK);
duke@435 831 }
duke@435 832 break;
duke@435 833 case Bytecodes::_anewarray:
duke@435 834 { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
duke@435 835 klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
duke@435 836 k = Klass::cast(ek)->array_klass(CHECK);
duke@435 837 }
duke@435 838 break;
duke@435 839 case Bytecodes::_ldc:
duke@435 840 case Bytecodes::_ldc_w:
duke@435 841 {
jrose@1957 842 Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
jrose@1957 843 k = cc->resolve_constant(CHECK);
jrose@1957 844 assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
duke@435 845 }
duke@435 846 break;
duke@435 847 default: Unimplemented();
duke@435 848 }
duke@435 849 // convert to handle
duke@435 850 load_klass = Handle(THREAD, k);
duke@435 851 } else {
duke@435 852 ShouldNotReachHere();
duke@435 853 }
duke@435 854
duke@435 855 if (deoptimize_for_volatile) {
duke@435 856 // At compile time we assumed the field wasn't volatile but after
duke@435 857 // loading it turns out it was volatile so we have to throw the
duke@435 858 // compiled code out and let it be regenerated.
duke@435 859 if (TracePatching) {
duke@435 860 tty->print_cr("Deoptimizing for patching volatile field reference");
duke@435 861 }
never@920 862 // It's possible the nmethod was invalidated in the last
never@920 863 // safepoint, but if it's still alive then make it not_entrant.
never@920 864 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
never@920 865 if (nm != NULL) {
never@920 866 nm->make_not_entrant();
never@920 867 }
never@920 868
never@2260 869 Deoptimization::deoptimize_frame(thread, caller_frame.id());
duke@435 870
duke@435 871 // Return to the now deoptimized frame.
duke@435 872 }
duke@435 873
jrose@1957 874 // If we are patching in a non-perm oop, make sure the nmethod
jrose@1957 875 // is on the right list.
jrose@1957 876 if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
jrose@1957 877 MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
jrose@1957 878 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
jrose@1957 879 guarantee(nm != NULL, "only nmethods can contain non-perm oops");
jrose@1957 880 if (!nm->on_scavenge_root_list())
jrose@1957 881 CodeCache::add_scavenge_root_nmethod(nm);
jrose@1957 882 }
duke@435 883
duke@435 884 // Now copy code back
duke@435 885
duke@435 886 {
duke@435 887 MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 888 //
duke@435 889 // Deoptimization may have happened while we waited for the lock.
duke@435 890 // In that case we don't bother to do any patching we just return
duke@435 891 // and let the deopt happen
duke@435 892 if (!caller_is_deopted()) {
duke@435 893 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
duke@435 894 address instr_pc = jump->jump_destination();
duke@435 895 NativeInstruction* ni = nativeInstruction_at(instr_pc);
duke@435 896 if (ni->is_jump() ) {
duke@435 897 // the jump has not been patched yet
duke@435 898 // The jump destination is slow case and therefore not part of the stubs
duke@435 899 // (stubs are only for StaticCalls)
duke@435 900
duke@435 901 // format of buffer
duke@435 902 // ....
duke@435 903 // instr byte 0 <-- copy_buff
duke@435 904 // instr byte 1
duke@435 905 // ..
duke@435 906 // instr byte n-1
duke@435 907 // n
duke@435 908 // .... <-- call destination
duke@435 909
duke@435 910 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
duke@435 911 unsigned char* byte_count = (unsigned char*) (stub_location - 1);
duke@435 912 unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
duke@435 913 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
duke@435 914 address copy_buff = stub_location - *byte_skip - *byte_count;
duke@435 915 address being_initialized_entry = stub_location - *being_initialized_entry_offset;
duke@435 916 if (TracePatching) {
duke@435 917 tty->print_cr(" Patching %s at bci %d at address 0x%x (%s)", Bytecodes::name(code), bci,
duke@435 918 instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
duke@435 919 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
duke@435 920 assert(caller_code != NULL, "nmethod not found");
duke@435 921
duke@435 922 // NOTE we use pc() not original_pc() because we already know they are
duke@435 923 // identical otherwise we'd have never entered this block of code
duke@435 924
duke@435 925 OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
duke@435 926 assert(map != NULL, "null check");
duke@435 927 map->print();
duke@435 928 tty->cr();
duke@435 929
duke@435 930 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
duke@435 931 }
duke@435 932 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
duke@435 933 bool do_patch = true;
duke@435 934 if (stub_id == Runtime1::access_field_patching_id) {
duke@435 935 // The offset may not be correct if the class was not loaded at code generation time.
duke@435 936 // Set it now.
duke@435 937 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
duke@435 938 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
duke@435 939 assert(patch_field_offset >= 0, "illegal offset");
duke@435 940 n_move->add_offset_in_bytes(patch_field_offset);
duke@435 941 } else if (stub_id == Runtime1::load_klass_patching_id) {
duke@435 942 // If a getstatic or putstatic is referencing a klass which
duke@435 943 // isn't fully initialized, the patch body isn't copied into
duke@435 944 // place until initialization is complete. In this case the
duke@435 945 // patch site is setup so that any threads besides the
duke@435 946 // initializing thread are forced to come into the VM and
duke@435 947 // block.
duke@435 948 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
duke@435 949 instanceKlass::cast(init_klass())->is_initialized();
duke@435 950 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
duke@435 951 if (jump->jump_destination() == being_initialized_entry) {
duke@435 952 assert(do_patch == true, "initialization must be complete at this point");
duke@435 953 } else {
duke@435 954 // patch the instruction <move reg, klass>
duke@435 955 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
bobv@2036 956
bobv@2036 957 assert(n_copy->data() == 0 ||
iveresov@2138 958 n_copy->data() == (intptr_t)Universe::non_oop_word(),
bobv@2036 959 "illegal init value");
duke@435 960 assert(load_klass() != NULL, "klass not set");
duke@435 961 n_copy->set_data((intx) (load_klass()));
duke@435 962
duke@435 963 if (TracePatching) {
duke@435 964 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
duke@435 965 }
duke@435 966
bobv@2036 967 #if defined(SPARC) || defined(PPC)
duke@435 968 // Update the oop location in the nmethod with the proper
duke@435 969 // oop. When the code was generated, a NULL was stuffed
duke@435 970 // in the oop table and that table needs to be update to
duke@435 971 // have the right value. On intel the value is kept
duke@435 972 // directly in the instruction instead of in the oop
duke@435 973 // table, so set_data above effectively updated the value.
duke@435 974 nmethod* nm = CodeCache::find_nmethod(instr_pc);
duke@435 975 assert(nm != NULL, "invalid nmethod_pc");
duke@435 976 RelocIterator oops(nm, copy_buff, copy_buff + 1);
duke@435 977 bool found = false;
duke@435 978 while (oops.next() && !found) {
duke@435 979 if (oops.type() == relocInfo::oop_type) {
duke@435 980 oop_Relocation* r = oops.oop_reloc();
duke@435 981 oop* oop_adr = r->oop_addr();
duke@435 982 *oop_adr = load_klass();
duke@435 983 r->fix_oop_relocation();
duke@435 984 found = true;
duke@435 985 }
duke@435 986 }
duke@435 987 assert(found, "the oop must exist!");
duke@435 988 #endif
duke@435 989
duke@435 990 }
duke@435 991 } else {
duke@435 992 ShouldNotReachHere();
duke@435 993 }
duke@435 994 if (do_patch) {
duke@435 995 // replace instructions
duke@435 996 // first replace the tail, then the call
bobv@2036 997 #ifdef ARM
bobv@2036 998 if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
bobv@2036 999 copy_buff -= *byte_count;
bobv@2036 1000 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
bobv@2036 1001 n_copy2->set_data((intx) (load_klass()), instr_pc);
bobv@2036 1002 }
bobv@2036 1003 #endif
bobv@2036 1004
duke@435 1005 for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
duke@435 1006 address ptr = copy_buff + i;
duke@435 1007 int a_byte = (*ptr) & 0xFF;
duke@435 1008 address dst = instr_pc + i;
duke@435 1009 *(unsigned char*)dst = (unsigned char) a_byte;
duke@435 1010 }
duke@435 1011 ICache::invalidate_range(instr_pc, *byte_count);
duke@435 1012 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
duke@435 1013
duke@435 1014 if (stub_id == Runtime1::load_klass_patching_id) {
duke@435 1015 // update relocInfo to oop
duke@435 1016 nmethod* nm = CodeCache::find_nmethod(instr_pc);
duke@435 1017 assert(nm != NULL, "invalid nmethod_pc");
duke@435 1018
duke@435 1019 // The old patch site is now a move instruction so update
duke@435 1020 // the reloc info so that it will get updated during
duke@435 1021 // future GCs.
duke@435 1022 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
duke@435 1023 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
duke@435 1024 relocInfo::none, relocInfo::oop_type);
duke@435 1025 #ifdef SPARC
duke@435 1026 // Sparc takes two relocations for an oop so update the second one.
duke@435 1027 address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
duke@435 1028 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
duke@435 1029 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
duke@435 1030 relocInfo::none, relocInfo::oop_type);
duke@435 1031 #endif
bobv@2036 1032 #ifdef PPC
bobv@2036 1033 { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
bobv@2036 1034 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
bobv@2036 1035 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
bobv@2036 1036 }
bobv@2036 1037 #endif
duke@435 1038 }
duke@435 1039
duke@435 1040 } else {
duke@435 1041 ICache::invalidate_range(copy_buff, *byte_count);
duke@435 1042 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
duke@435 1043 }
duke@435 1044 }
duke@435 1045 }
duke@435 1046 }
duke@435 1047 JRT_END
duke@435 1048
duke@435 1049 //
duke@435 1050 // Entry point for compiled code. We want to patch a nmethod.
duke@435 1051 // We don't do a normal VM transition here because we want to
duke@435 1052 // know after the patching is complete and any safepoint(s) are taken
duke@435 1053 // if the calling nmethod was deoptimized. We do this by calling a
duke@435 1054 // helper method which does the normal VM transition and when it
duke@435 1055 // completes we can check for deoptimization. This simplifies the
duke@435 1056 // assembly code in the cpu directories.
duke@435 1057 //
duke@435 1058 int Runtime1::move_klass_patching(JavaThread* thread) {
duke@435 1059 //
duke@435 1060 // NOTE: we are still in Java
duke@435 1061 //
duke@435 1062 Thread* THREAD = thread;
duke@435 1063 debug_only(NoHandleMark nhm;)
duke@435 1064 {
duke@435 1065 // Enter VM mode
duke@435 1066
duke@435 1067 ResetNoHandleMark rnhm;
duke@435 1068 patch_code(thread, load_klass_patching_id);
duke@435 1069 }
duke@435 1070 // Back in JAVA, use no oops DON'T safepoint
duke@435 1071
duke@435 1072 // Return true if calling code is deoptimized
duke@435 1073
duke@435 1074 return caller_is_deopted();
duke@435 1075 }
duke@435 1076
duke@435 1077 //
duke@435 1078 // Entry point for compiled code. We want to patch a nmethod.
duke@435 1079 // We don't do a normal VM transition here because we want to
duke@435 1080 // know after the patching is complete and any safepoint(s) are taken
duke@435 1081 // if the calling nmethod was deoptimized. We do this by calling a
duke@435 1082 // helper method which does the normal VM transition and when it
duke@435 1083 // completes we can check for deoptimization. This simplifies the
duke@435 1084 // assembly code in the cpu directories.
duke@435 1085 //
duke@435 1086
duke@435 1087 int Runtime1::access_field_patching(JavaThread* thread) {
duke@435 1088 //
duke@435 1089 // NOTE: we are still in Java
duke@435 1090 //
duke@435 1091 Thread* THREAD = thread;
duke@435 1092 debug_only(NoHandleMark nhm;)
duke@435 1093 {
duke@435 1094 // Enter VM mode
duke@435 1095
duke@435 1096 ResetNoHandleMark rnhm;
duke@435 1097 patch_code(thread, access_field_patching_id);
duke@435 1098 }
duke@435 1099 // Back in JAVA, use no oops DON'T safepoint
duke@435 1100
duke@435 1101 // Return true if calling code is deoptimized
duke@435 1102
duke@435 1103 return caller_is_deopted();
duke@435 1104 JRT_END
duke@435 1105
duke@435 1106
duke@435 1107 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
duke@435 1108 // for now we just print out the block id
duke@435 1109 tty->print("%d ", block_id);
duke@435 1110 JRT_END
duke@435 1111
duke@435 1112
coleenp@548 1113 // Array copy return codes.
coleenp@548 1114 enum {
coleenp@548 1115 ac_failed = -1, // arraycopy failed
coleenp@548 1116 ac_ok = 0 // arraycopy succeeded
coleenp@548 1117 };
coleenp@548 1118
coleenp@548 1119
ysr@1680 1120 // Below length is the # elements copied.
coleenp@548 1121 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
coleenp@548 1122 oopDesc* dst, T* dst_addr,
coleenp@548 1123 int length) {
coleenp@548 1124
coleenp@548 1125 // For performance reasons, we assume we are using a card marking write
coleenp@548 1126 // barrier. The assert will fail if this is not the case.
coleenp@548 1127 // Note that we use the non-virtual inlineable variant of write_ref_array.
coleenp@548 1128 BarrierSet* bs = Universe::heap()->barrier_set();
ysr@1680 1129 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
ysr@1680 1130 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
coleenp@548 1131 if (src == dst) {
coleenp@548 1132 // same object, no check
ysr@1680 1133 bs->write_ref_array_pre(dst_addr, length);
coleenp@548 1134 Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
ysr@1680 1135 bs->write_ref_array((HeapWord*)dst_addr, length);
coleenp@548 1136 return ac_ok;
coleenp@548 1137 } else {
coleenp@548 1138 klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
coleenp@548 1139 klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
coleenp@548 1140 if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
coleenp@548 1141 // Elements are guaranteed to be subtypes, so no check necessary
ysr@1680 1142 bs->write_ref_array_pre(dst_addr, length);
coleenp@548 1143 Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
ysr@1680 1144 bs->write_ref_array((HeapWord*)dst_addr, length);
coleenp@548 1145 return ac_ok;
coleenp@548 1146 }
coleenp@548 1147 }
coleenp@548 1148 return ac_failed;
coleenp@548 1149 }
coleenp@548 1150
duke@435 1151 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
duke@435 1152 // and we did not copy anything
duke@435 1153 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
duke@435 1154 #ifndef PRODUCT
duke@435 1155 _generic_arraycopy_cnt++; // Slow-path oop array copy
duke@435 1156 #endif
duke@435 1157
duke@435 1158 if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
duke@435 1159 if (!dst->is_array() || !src->is_array()) return ac_failed;
duke@435 1160 if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
duke@435 1161 if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
duke@435 1162
duke@435 1163 if (length == 0) return ac_ok;
duke@435 1164 if (src->is_typeArray()) {
duke@435 1165 const klassOop klass_oop = src->klass();
duke@435 1166 if (klass_oop != dst->klass()) return ac_failed;
duke@435 1167 typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
duke@435 1168 const int l2es = klass->log2_element_size();
duke@435 1169 const int ihs = klass->array_header_in_bytes() / wordSize;
duke@435 1170 char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
duke@435 1171 char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
duke@435 1172 // Potential problem: memmove is not guaranteed to be word atomic
duke@435 1173 // Revisit in Merlin
duke@435 1174 memmove(dst_addr, src_addr, length << l2es);
duke@435 1175 return ac_ok;
duke@435 1176 } else if (src->is_objArray() && dst->is_objArray()) {
iveresov@2344 1177 if (UseCompressedOops) {
coleenp@548 1178 narrowOop *src_addr = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
coleenp@548 1179 narrowOop *dst_addr = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
coleenp@548 1180 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
duke@435 1181 } else {
coleenp@548 1182 oop *src_addr = objArrayOop(src)->obj_at_addr<oop>(src_pos);
coleenp@548 1183 oop *dst_addr = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
coleenp@548 1184 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
duke@435 1185 }
duke@435 1186 }
duke@435 1187 return ac_failed;
duke@435 1188 JRT_END
duke@435 1189
duke@435 1190
duke@435 1191 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
duke@435 1192 #ifndef PRODUCT
duke@435 1193 _primitive_arraycopy_cnt++;
duke@435 1194 #endif
duke@435 1195
duke@435 1196 if (length == 0) return;
duke@435 1197 // Not guaranteed to be word atomic, but that doesn't matter
duke@435 1198 // for anything but an oop array, which is covered by oop_arraycopy.
kvn@1958 1199 Copy::conjoint_jbytes(src, dst, length);
duke@435 1200 JRT_END
duke@435 1201
duke@435 1202 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
duke@435 1203 #ifndef PRODUCT
duke@435 1204 _oop_arraycopy_cnt++;
duke@435 1205 #endif
duke@435 1206
duke@435 1207 if (num == 0) return;
ysr@1680 1208 BarrierSet* bs = Universe::heap()->barrier_set();
ysr@1680 1209 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
ysr@1680 1210 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
ysr@1680 1211 if (UseCompressedOops) {
ysr@1680 1212 bs->write_ref_array_pre((narrowOop*)dst, num);
iveresov@2344 1213 Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
ysr@1680 1214 } else {
ysr@1680 1215 bs->write_ref_array_pre((oop*)dst, num);
iveresov@2344 1216 Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
ysr@1680 1217 }
ysr@1680 1218 bs->write_ref_array(dst, num);
duke@435 1219 JRT_END
duke@435 1220
duke@435 1221
duke@435 1222 #ifndef PRODUCT
duke@435 1223 void Runtime1::print_statistics() {
duke@435 1224 tty->print_cr("C1 Runtime statistics:");
duke@435 1225 tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr);
duke@435 1226 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
duke@435 1227 tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr);
duke@435 1228 tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr);
duke@435 1229 tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr);
duke@435 1230 tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt);
duke@435 1231 tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt);
duke@435 1232 tty->print_cr(" _oop_arraycopy_cnt: %d", _oop_arraycopy_cnt);
duke@435 1233 tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt);
duke@435 1234
duke@435 1235 tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt);
duke@435 1236 tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt);
duke@435 1237 tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt);
duke@435 1238 tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt);
duke@435 1239 tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt);
duke@435 1240 tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt);
duke@435 1241 tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt);
duke@435 1242
duke@435 1243 tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count);
duke@435 1244 tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count);
duke@435 1245 tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count);
duke@435 1246 tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count);
duke@435 1247 tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count);
duke@435 1248 tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count);
duke@435 1249 tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count);
duke@435 1250 tty->print_cr(" _throw_count: %d:", _throw_count);
duke@435 1251
duke@435 1252 SharedRuntime::print_ic_miss_histogram();
duke@435 1253 tty->cr();
duke@435 1254 }
duke@435 1255 #endif // PRODUCT

mercurial