src/share/vm/gc_implementation/g1/concurrentMark.cpp

Thu, 24 May 2018 18:41:44 +0800

author
aoqi
date
Thu, 24 May 2018 18:41:44 +0800
changeset 8856
ac27a9c85bea
parent 8662
9975dd8382d5
parent 7994
04ff2f6cd0eb
child 9448
73d689add964
permissions
-rw-r--r--

Merge

aoqi@0 1 /*
tschatzl@8662 2 * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
stefank@7333 26 #include "classfile/metadataOnStackMark.hpp"
aoqi@0 27 #include "classfile/symbolTable.hpp"
stefank@6992 28 #include "code/codeCache.hpp"
aoqi@0 29 #include "gc_implementation/g1/concurrentMark.inline.hpp"
aoqi@0 30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
aoqi@0 31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
aoqi@0 32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
aoqi@0 33 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
aoqi@0 34 #include "gc_implementation/g1/g1Log.hpp"
aoqi@0 35 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
aoqi@0 36 #include "gc_implementation/g1/g1RemSet.hpp"
aoqi@0 37 #include "gc_implementation/g1/heapRegion.inline.hpp"
tschatzl@7091 38 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
aoqi@0 39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
tschatzl@7051 40 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
aoqi@0 41 #include "gc_implementation/shared/vmGCOperations.hpp"
aoqi@0 42 #include "gc_implementation/shared/gcTimer.hpp"
aoqi@0 43 #include "gc_implementation/shared/gcTrace.hpp"
aoqi@0 44 #include "gc_implementation/shared/gcTraceTime.hpp"
stefank@6992 45 #include "memory/allocation.hpp"
aoqi@0 46 #include "memory/genOopClosures.inline.hpp"
aoqi@0 47 #include "memory/referencePolicy.hpp"
aoqi@0 48 #include "memory/resourceArea.hpp"
aoqi@0 49 #include "oops/oop.inline.hpp"
aoqi@0 50 #include "runtime/handles.inline.hpp"
aoqi@0 51 #include "runtime/java.hpp"
goetz@6912 52 #include "runtime/prefetch.inline.hpp"
aoqi@0 53 #include "services/memTracker.hpp"
aoqi@0 54
aoqi@0 55 // Concurrent marking bit map wrapper
aoqi@0 56
aoqi@0 57 CMBitMapRO::CMBitMapRO(int shifter) :
aoqi@0 58 _bm(),
aoqi@0 59 _shifter(shifter) {
aoqi@0 60 _bmStartWord = 0;
aoqi@0 61 _bmWordSize = 0;
aoqi@0 62 }
aoqi@0 63
stefank@6992 64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
stefank@6992 65 const HeapWord* limit) const {
aoqi@0 66 // First we must round addr *up* to a possible object boundary.
aoqi@0 67 addr = (HeapWord*)align_size_up((intptr_t)addr,
aoqi@0 68 HeapWordSize << _shifter);
aoqi@0 69 size_t addrOffset = heapWordToOffset(addr);
aoqi@0 70 if (limit == NULL) {
aoqi@0 71 limit = _bmStartWord + _bmWordSize;
aoqi@0 72 }
aoqi@0 73 size_t limitOffset = heapWordToOffset(limit);
aoqi@0 74 size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
aoqi@0 75 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
aoqi@0 76 assert(nextAddr >= addr, "get_next_one postcondition");
aoqi@0 77 assert(nextAddr == limit || isMarked(nextAddr),
aoqi@0 78 "get_next_one postcondition");
aoqi@0 79 return nextAddr;
aoqi@0 80 }
aoqi@0 81
stefank@6992 82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
stefank@6992 83 const HeapWord* limit) const {
aoqi@0 84 size_t addrOffset = heapWordToOffset(addr);
aoqi@0 85 if (limit == NULL) {
aoqi@0 86 limit = _bmStartWord + _bmWordSize;
aoqi@0 87 }
aoqi@0 88 size_t limitOffset = heapWordToOffset(limit);
aoqi@0 89 size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
aoqi@0 90 HeapWord* nextAddr = offsetToHeapWord(nextOffset);
aoqi@0 91 assert(nextAddr >= addr, "get_next_one postcondition");
aoqi@0 92 assert(nextAddr == limit || !isMarked(nextAddr),
aoqi@0 93 "get_next_one postcondition");
aoqi@0 94 return nextAddr;
aoqi@0 95 }
aoqi@0 96
aoqi@0 97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
aoqi@0 98 assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
aoqi@0 99 return (int) (diff >> _shifter);
aoqi@0 100 }
aoqi@0 101
aoqi@0 102 #ifndef PRODUCT
tschatzl@7051 103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
aoqi@0 104 // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
aoqi@0 105 assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
aoqi@0 106 "size inconsistency");
tschatzl@7051 107 return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
tschatzl@7051 108 _bmWordSize == heap_rs.word_size();
aoqi@0 109 }
aoqi@0 110 #endif
aoqi@0 111
aoqi@0 112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
aoqi@0 113 _bm.print_on_error(st, prefix);
aoqi@0 114 }
aoqi@0 115
tschatzl@7051 116 size_t CMBitMap::compute_size(size_t heap_size) {
tschatzl@7781 117 return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
tschatzl@7051 118 }
tschatzl@7051 119
tschatzl@7051 120 size_t CMBitMap::mark_distance() {
tschatzl@7051 121 return MinObjAlignmentInBytes * BitsPerByte;
tschatzl@7051 122 }
tschatzl@7051 123
tschatzl@7051 124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
tschatzl@7051 125 _bmStartWord = heap.start();
tschatzl@7051 126 _bmWordSize = heap.word_size();
tschatzl@7051 127
tschatzl@7051 128 _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
tschatzl@7051 129 _bm.set_size(_bmWordSize >> _shifter);
tschatzl@7051 130
tschatzl@7051 131 storage->set_mapping_changed_listener(&_listener);
tschatzl@7051 132 }
tschatzl@7051 133
tschatzl@7257 134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
tschatzl@7257 135 if (zero_filled) {
tschatzl@7257 136 return;
tschatzl@7257 137 }
tschatzl@7051 138 // We need to clear the bitmap on commit, removing any existing information.
tschatzl@7051 139 MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
tschatzl@7051 140 _bm->clearRange(mr);
tschatzl@7051 141 }
tschatzl@7051 142
tschatzl@7051 143 // Closure used for clearing the given mark bitmap.
tschatzl@7051 144 class ClearBitmapHRClosure : public HeapRegionClosure {
tschatzl@7051 145 private:
tschatzl@7051 146 ConcurrentMark* _cm;
tschatzl@7051 147 CMBitMap* _bitmap;
tschatzl@7051 148 bool _may_yield; // The closure may yield during iteration. If yielded, abort the iteration.
tschatzl@7051 149 public:
tschatzl@7051 150 ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
tschatzl@7051 151 assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
tschatzl@7051 152 }
tschatzl@7051 153
tschatzl@7051 154 virtual bool doHeapRegion(HeapRegion* r) {
tschatzl@7051 155 size_t const chunk_size_in_words = M / HeapWordSize;
tschatzl@7051 156
tschatzl@7051 157 HeapWord* cur = r->bottom();
tschatzl@7051 158 HeapWord* const end = r->end();
tschatzl@7051 159
tschatzl@7051 160 while (cur < end) {
tschatzl@7051 161 MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
tschatzl@7051 162 _bitmap->clearRange(mr);
tschatzl@7051 163
tschatzl@7051 164 cur += chunk_size_in_words;
tschatzl@7051 165
tschatzl@7051 166 // Abort iteration if after yielding the marking has been aborted.
tschatzl@7051 167 if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
tschatzl@7051 168 return true;
tschatzl@7051 169 }
tschatzl@7051 170 // Repeat the asserts from before the start of the closure. We will do them
tschatzl@7051 171 // as asserts here to minimize their overhead on the product. However, we
tschatzl@7051 172 // will have them as guarantees at the beginning / end of the bitmap
tschatzl@7051 173 // clearing to get some checking in the product.
tschatzl@7051 174 assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
tschatzl@7051 175 assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
tschatzl@7051 176 }
tschatzl@7051 177
aoqi@0 178 return false;
aoqi@0 179 }
tschatzl@7051 180 };
aoqi@0 181
aoqi@0 182 void CMBitMap::clearAll() {
tschatzl@7051 183 ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
tschatzl@7051 184 G1CollectedHeap::heap()->heap_region_iterate(&cl);
tschatzl@7051 185 guarantee(cl.complete(), "Must have completed iteration.");
aoqi@0 186 return;
aoqi@0 187 }
aoqi@0 188
aoqi@0 189 void CMBitMap::markRange(MemRegion mr) {
aoqi@0 190 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
aoqi@0 191 assert(!mr.is_empty(), "unexpected empty region");
aoqi@0 192 assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
aoqi@0 193 ((HeapWord *) mr.end())),
aoqi@0 194 "markRange memory region end is not card aligned");
aoqi@0 195 // convert address range into offset range
aoqi@0 196 _bm.at_put_range(heapWordToOffset(mr.start()),
aoqi@0 197 heapWordToOffset(mr.end()), true);
aoqi@0 198 }
aoqi@0 199
aoqi@0 200 void CMBitMap::clearRange(MemRegion mr) {
aoqi@0 201 mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
aoqi@0 202 assert(!mr.is_empty(), "unexpected empty region");
aoqi@0 203 // convert address range into offset range
aoqi@0 204 _bm.at_put_range(heapWordToOffset(mr.start()),
aoqi@0 205 heapWordToOffset(mr.end()), false);
aoqi@0 206 }
aoqi@0 207
aoqi@0 208 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
aoqi@0 209 HeapWord* end_addr) {
aoqi@0 210 HeapWord* start = getNextMarkedWordAddress(addr);
aoqi@0 211 start = MIN2(start, end_addr);
aoqi@0 212 HeapWord* end = getNextUnmarkedWordAddress(start);
aoqi@0 213 end = MIN2(end, end_addr);
aoqi@0 214 assert(start <= end, "Consistency check");
aoqi@0 215 MemRegion mr(start, end);
aoqi@0 216 if (!mr.is_empty()) {
aoqi@0 217 clearRange(mr);
aoqi@0 218 }
aoqi@0 219 return mr;
aoqi@0 220 }
aoqi@0 221
aoqi@0 222 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
aoqi@0 223 _base(NULL), _cm(cm)
aoqi@0 224 #ifdef ASSERT
aoqi@0 225 , _drain_in_progress(false)
aoqi@0 226 , _drain_in_progress_yields(false)
aoqi@0 227 #endif
aoqi@0 228 {}
aoqi@0 229
aoqi@0 230 bool CMMarkStack::allocate(size_t capacity) {
aoqi@0 231 // allocate a stack of the requisite depth
aoqi@0 232 ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
aoqi@0 233 if (!rs.is_reserved()) {
aoqi@0 234 warning("ConcurrentMark MarkStack allocation failure");
aoqi@0 235 return false;
aoqi@0 236 }
aoqi@0 237 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
aoqi@0 238 if (!_virtual_space.initialize(rs, rs.size())) {
aoqi@0 239 warning("ConcurrentMark MarkStack backing store failure");
aoqi@0 240 // Release the virtual memory reserved for the marking stack
aoqi@0 241 rs.release();
aoqi@0 242 return false;
aoqi@0 243 }
aoqi@0 244 assert(_virtual_space.committed_size() == rs.size(),
aoqi@0 245 "Didn't reserve backing store for all of ConcurrentMark stack?");
aoqi@0 246 _base = (oop*) _virtual_space.low();
aoqi@0 247 setEmpty();
aoqi@0 248 _capacity = (jint) capacity;
aoqi@0 249 _saved_index = -1;
aoqi@0 250 _should_expand = false;
aoqi@0 251 NOT_PRODUCT(_max_depth = 0);
aoqi@0 252 return true;
aoqi@0 253 }
aoqi@0 254
aoqi@0 255 void CMMarkStack::expand() {
aoqi@0 256 // Called, during remark, if we've overflown the marking stack during marking.
aoqi@0 257 assert(isEmpty(), "stack should been emptied while handling overflow");
aoqi@0 258 assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
aoqi@0 259 // Clear expansion flag
aoqi@0 260 _should_expand = false;
aoqi@0 261 if (_capacity == (jint) MarkStackSizeMax) {
aoqi@0 262 if (PrintGCDetails && Verbose) {
aoqi@0 263 gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
aoqi@0 264 }
aoqi@0 265 return;
aoqi@0 266 }
aoqi@0 267 // Double capacity if possible
aoqi@0 268 jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
aoqi@0 269 // Do not give up existing stack until we have managed to
aoqi@0 270 // get the double capacity that we desired.
aoqi@0 271 ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
aoqi@0 272 sizeof(oop)));
aoqi@0 273 if (rs.is_reserved()) {
aoqi@0 274 // Release the backing store associated with old stack
aoqi@0 275 _virtual_space.release();
aoqi@0 276 // Reinitialize virtual space for new stack
aoqi@0 277 if (!_virtual_space.initialize(rs, rs.size())) {
aoqi@0 278 fatal("Not enough swap for expanded marking stack capacity");
aoqi@0 279 }
aoqi@0 280 _base = (oop*)(_virtual_space.low());
aoqi@0 281 _index = 0;
aoqi@0 282 _capacity = new_capacity;
aoqi@0 283 } else {
aoqi@0 284 if (PrintGCDetails && Verbose) {
aoqi@0 285 // Failed to double capacity, continue;
aoqi@0 286 gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
aoqi@0 287 SIZE_FORMAT"K to " SIZE_FORMAT"K",
aoqi@0 288 _capacity / K, new_capacity / K);
aoqi@0 289 }
aoqi@0 290 }
aoqi@0 291 }
aoqi@0 292
aoqi@0 293 void CMMarkStack::set_should_expand() {
aoqi@0 294 // If we're resetting the marking state because of an
aoqi@0 295 // marking stack overflow, record that we should, if
aoqi@0 296 // possible, expand the stack.
aoqi@0 297 _should_expand = _cm->has_overflown();
aoqi@0 298 }
aoqi@0 299
aoqi@0 300 CMMarkStack::~CMMarkStack() {
aoqi@0 301 if (_base != NULL) {
aoqi@0 302 _base = NULL;
aoqi@0 303 _virtual_space.release();
aoqi@0 304 }
aoqi@0 305 }
aoqi@0 306
aoqi@0 307 void CMMarkStack::par_push(oop ptr) {
aoqi@0 308 while (true) {
aoqi@0 309 if (isFull()) {
aoqi@0 310 _overflow = true;
aoqi@0 311 return;
aoqi@0 312 }
aoqi@0 313 // Otherwise...
aoqi@0 314 jint index = _index;
aoqi@0 315 jint next_index = index+1;
aoqi@0 316 jint res = Atomic::cmpxchg(next_index, &_index, index);
aoqi@0 317 if (res == index) {
aoqi@0 318 _base[index] = ptr;
aoqi@0 319 // Note that we don't maintain this atomically. We could, but it
aoqi@0 320 // doesn't seem necessary.
aoqi@0 321 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
aoqi@0 322 return;
aoqi@0 323 }
aoqi@0 324 // Otherwise, we need to try again.
aoqi@0 325 }
aoqi@0 326 }
aoqi@0 327
aoqi@0 328 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
aoqi@0 329 while (true) {
aoqi@0 330 if (isFull()) {
aoqi@0 331 _overflow = true;
aoqi@0 332 return;
aoqi@0 333 }
aoqi@0 334 // Otherwise...
aoqi@0 335 jint index = _index;
aoqi@0 336 jint next_index = index + n;
aoqi@0 337 if (next_index > _capacity) {
aoqi@0 338 _overflow = true;
aoqi@0 339 return;
aoqi@0 340 }
aoqi@0 341 jint res = Atomic::cmpxchg(next_index, &_index, index);
aoqi@0 342 if (res == index) {
aoqi@0 343 for (int i = 0; i < n; i++) {
aoqi@0 344 int ind = index + i;
aoqi@0 345 assert(ind < _capacity, "By overflow test above.");
aoqi@0 346 _base[ind] = ptr_arr[i];
aoqi@0 347 }
aoqi@0 348 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
aoqi@0 349 return;
aoqi@0 350 }
aoqi@0 351 // Otherwise, we need to try again.
aoqi@0 352 }
aoqi@0 353 }
aoqi@0 354
aoqi@0 355 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
aoqi@0 356 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 357 jint start = _index;
aoqi@0 358 jint next_index = start + n;
aoqi@0 359 if (next_index > _capacity) {
aoqi@0 360 _overflow = true;
aoqi@0 361 return;
aoqi@0 362 }
aoqi@0 363 // Otherwise.
aoqi@0 364 _index = next_index;
aoqi@0 365 for (int i = 0; i < n; i++) {
aoqi@0 366 int ind = start + i;
aoqi@0 367 assert(ind < _capacity, "By overflow test above.");
aoqi@0 368 _base[ind] = ptr_arr[i];
aoqi@0 369 }
aoqi@0 370 NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
aoqi@0 371 }
aoqi@0 372
aoqi@0 373 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
aoqi@0 374 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 375 jint index = _index;
aoqi@0 376 if (index == 0) {
aoqi@0 377 *n = 0;
aoqi@0 378 return false;
aoqi@0 379 } else {
aoqi@0 380 int k = MIN2(max, index);
aoqi@0 381 jint new_ind = index - k;
aoqi@0 382 for (int j = 0; j < k; j++) {
aoqi@0 383 ptr_arr[j] = _base[new_ind + j];
aoqi@0 384 }
aoqi@0 385 _index = new_ind;
aoqi@0 386 *n = k;
aoqi@0 387 return true;
aoqi@0 388 }
aoqi@0 389 }
aoqi@0 390
aoqi@0 391 template<class OopClosureClass>
aoqi@0 392 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
aoqi@0 393 assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
aoqi@0 394 || SafepointSynchronize::is_at_safepoint(),
aoqi@0 395 "Drain recursion must be yield-safe.");
aoqi@0 396 bool res = true;
aoqi@0 397 debug_only(_drain_in_progress = true);
aoqi@0 398 debug_only(_drain_in_progress_yields = yield_after);
aoqi@0 399 while (!isEmpty()) {
aoqi@0 400 oop newOop = pop();
aoqi@0 401 assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
aoqi@0 402 assert(newOop->is_oop(), "Expected an oop");
aoqi@0 403 assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
aoqi@0 404 "only grey objects on this stack");
aoqi@0 405 newOop->oop_iterate(cl);
aoqi@0 406 if (yield_after && _cm->do_yield_check()) {
aoqi@0 407 res = false;
aoqi@0 408 break;
aoqi@0 409 }
aoqi@0 410 }
aoqi@0 411 debug_only(_drain_in_progress = false);
aoqi@0 412 return res;
aoqi@0 413 }
aoqi@0 414
aoqi@0 415 void CMMarkStack::note_start_of_gc() {
aoqi@0 416 assert(_saved_index == -1,
aoqi@0 417 "note_start_of_gc()/end_of_gc() bracketed incorrectly");
aoqi@0 418 _saved_index = _index;
aoqi@0 419 }
aoqi@0 420
aoqi@0 421 void CMMarkStack::note_end_of_gc() {
aoqi@0 422 // This is intentionally a guarantee, instead of an assert. If we
aoqi@0 423 // accidentally add something to the mark stack during GC, it
aoqi@0 424 // will be a correctness issue so it's better if we crash. we'll
aoqi@0 425 // only check this once per GC anyway, so it won't be a performance
aoqi@0 426 // issue in any way.
aoqi@0 427 guarantee(_saved_index == _index,
aoqi@0 428 err_msg("saved index: %d index: %d", _saved_index, _index));
aoqi@0 429 _saved_index = -1;
aoqi@0 430 }
aoqi@0 431
aoqi@0 432 void CMMarkStack::oops_do(OopClosure* f) {
aoqi@0 433 assert(_saved_index == _index,
aoqi@0 434 err_msg("saved index: %d index: %d", _saved_index, _index));
aoqi@0 435 for (int i = 0; i < _index; i += 1) {
aoqi@0 436 f->do_oop(&_base[i]);
aoqi@0 437 }
aoqi@0 438 }
aoqi@0 439
aoqi@0 440 CMRootRegions::CMRootRegions() :
aoqi@0 441 _young_list(NULL), _cm(NULL), _scan_in_progress(false),
aoqi@0 442 _should_abort(false), _next_survivor(NULL) { }
aoqi@0 443
aoqi@0 444 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
aoqi@0 445 _young_list = g1h->young_list();
aoqi@0 446 _cm = cm;
aoqi@0 447 }
aoqi@0 448
aoqi@0 449 void CMRootRegions::prepare_for_scan() {
aoqi@0 450 assert(!scan_in_progress(), "pre-condition");
aoqi@0 451
aoqi@0 452 // Currently, only survivors can be root regions.
aoqi@0 453 assert(_next_survivor == NULL, "pre-condition");
aoqi@0 454 _next_survivor = _young_list->first_survivor_region();
aoqi@0 455 _scan_in_progress = (_next_survivor != NULL);
aoqi@0 456 _should_abort = false;
aoqi@0 457 }
aoqi@0 458
aoqi@0 459 HeapRegion* CMRootRegions::claim_next() {
aoqi@0 460 if (_should_abort) {
aoqi@0 461 // If someone has set the should_abort flag, we return NULL to
aoqi@0 462 // force the caller to bail out of their loop.
aoqi@0 463 return NULL;
aoqi@0 464 }
aoqi@0 465
aoqi@0 466 // Currently, only survivors can be root regions.
aoqi@0 467 HeapRegion* res = _next_survivor;
aoqi@0 468 if (res != NULL) {
aoqi@0 469 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 470 // Read it again in case it changed while we were waiting for the lock.
aoqi@0 471 res = _next_survivor;
aoqi@0 472 if (res != NULL) {
aoqi@0 473 if (res == _young_list->last_survivor_region()) {
aoqi@0 474 // We just claimed the last survivor so store NULL to indicate
aoqi@0 475 // that we're done.
aoqi@0 476 _next_survivor = NULL;
aoqi@0 477 } else {
aoqi@0 478 _next_survivor = res->get_next_young_region();
aoqi@0 479 }
aoqi@0 480 } else {
aoqi@0 481 // Someone else claimed the last survivor while we were trying
aoqi@0 482 // to take the lock so nothing else to do.
aoqi@0 483 }
aoqi@0 484 }
aoqi@0 485 assert(res == NULL || res->is_survivor(), "post-condition");
aoqi@0 486
aoqi@0 487 return res;
aoqi@0 488 }
aoqi@0 489
aoqi@0 490 void CMRootRegions::scan_finished() {
aoqi@0 491 assert(scan_in_progress(), "pre-condition");
aoqi@0 492
aoqi@0 493 // Currently, only survivors can be root regions.
aoqi@0 494 if (!_should_abort) {
aoqi@0 495 assert(_next_survivor == NULL, "we should have claimed all survivors");
aoqi@0 496 }
aoqi@0 497 _next_survivor = NULL;
aoqi@0 498
aoqi@0 499 {
aoqi@0 500 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 501 _scan_in_progress = false;
aoqi@0 502 RootRegionScan_lock->notify_all();
aoqi@0 503 }
aoqi@0 504 }
aoqi@0 505
aoqi@0 506 bool CMRootRegions::wait_until_scan_finished() {
aoqi@0 507 if (!scan_in_progress()) return false;
aoqi@0 508
aoqi@0 509 {
aoqi@0 510 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 511 while (scan_in_progress()) {
aoqi@0 512 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
aoqi@0 513 }
aoqi@0 514 }
aoqi@0 515 return true;
aoqi@0 516 }
aoqi@0 517
aoqi@0 518 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
aoqi@0 519 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
aoqi@0 520 #endif // _MSC_VER
aoqi@0 521
aoqi@0 522 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
aoqi@0 523 return MAX2((n_par_threads + 2) / 4, 1U);
aoqi@0 524 }
aoqi@0 525
tschatzl@7051 526 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
aoqi@0 527 _g1h(g1h),
tschatzl@7051 528 _markBitMap1(),
tschatzl@7051 529 _markBitMap2(),
aoqi@0 530 _parallel_marking_threads(0),
aoqi@0 531 _max_parallel_marking_threads(0),
aoqi@0 532 _sleep_factor(0.0),
aoqi@0 533 _marking_task_overhead(1.0),
aoqi@0 534 _cleanup_sleep_factor(0.0),
aoqi@0 535 _cleanup_task_overhead(1.0),
aoqi@0 536 _cleanup_list("Cleanup List"),
aoqi@0 537 _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
tschatzl@7051 538 _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
aoqi@0 539 CardTableModRefBS::card_shift,
aoqi@0 540 false /* in_resource_area*/),
aoqi@0 541
aoqi@0 542 _prevMarkBitMap(&_markBitMap1),
aoqi@0 543 _nextMarkBitMap(&_markBitMap2),
aoqi@0 544
aoqi@0 545 _markStack(this),
aoqi@0 546 // _finger set in set_non_marking_state
aoqi@0 547
aoqi@0 548 _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
aoqi@0 549 // _active_tasks set in set_non_marking_state
aoqi@0 550 // _tasks set inside the constructor
aoqi@0 551 _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
aoqi@0 552 _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
aoqi@0 553
aoqi@0 554 _has_overflown(false),
aoqi@0 555 _concurrent(false),
aoqi@0 556 _has_aborted(false),
brutisso@6904 557 _aborted_gc_id(GCId::undefined()),
aoqi@0 558 _restart_for_overflow(false),
aoqi@0 559 _concurrent_marking_in_progress(false),
aoqi@0 560
aoqi@0 561 // _verbose_level set below
aoqi@0 562
aoqi@0 563 _init_times(),
aoqi@0 564 _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
aoqi@0 565 _cleanup_times(),
aoqi@0 566 _total_counting_time(0.0),
aoqi@0 567 _total_rs_scrub_time(0.0),
aoqi@0 568
aoqi@0 569 _parallel_workers(NULL),
aoqi@0 570
aoqi@0 571 _count_card_bitmaps(NULL),
aoqi@0 572 _count_marked_bytes(NULL),
aoqi@0 573 _completed_initialization(false) {
aoqi@0 574 CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
aoqi@0 575 if (verbose_level < no_verbose) {
aoqi@0 576 verbose_level = no_verbose;
aoqi@0 577 }
aoqi@0 578 if (verbose_level > high_verbose) {
aoqi@0 579 verbose_level = high_verbose;
aoqi@0 580 }
aoqi@0 581 _verbose_level = verbose_level;
aoqi@0 582
aoqi@0 583 if (verbose_low()) {
aoqi@0 584 gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
aoqi@0 585 "heap end = " INTPTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
aoqi@0 586 }
aoqi@0 587
tschatzl@7051 588 _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
tschatzl@7051 589 _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
aoqi@0 590
aoqi@0 591 // Create & start a ConcurrentMark thread.
aoqi@0 592 _cmThread = new ConcurrentMarkThread(this);
aoqi@0 593 assert(cmThread() != NULL, "CM Thread should have been created");
aoqi@0 594 assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
aoqi@0 595 if (_cmThread->osthread() == NULL) {
aoqi@0 596 vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
aoqi@0 597 }
aoqi@0 598
aoqi@0 599 assert(CGC_lock != NULL, "Where's the CGC_lock?");
tschatzl@7051 600 assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
tschatzl@7051 601 assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
aoqi@0 602
aoqi@0 603 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
aoqi@0 604 satb_qs.set_buffer_size(G1SATBBufferSize);
aoqi@0 605
aoqi@0 606 _root_regions.init(_g1h, this);
aoqi@0 607
aoqi@0 608 if (ConcGCThreads > ParallelGCThreads) {
aoqi@0 609 warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
aoqi@0 610 "than ParallelGCThreads (" UINTX_FORMAT ").",
aoqi@0 611 ConcGCThreads, ParallelGCThreads);
aoqi@0 612 return;
aoqi@0 613 }
aoqi@0 614 if (ParallelGCThreads == 0) {
aoqi@0 615 // if we are not running with any parallel GC threads we will not
aoqi@0 616 // spawn any marking threads either
aoqi@0 617 _parallel_marking_threads = 0;
aoqi@0 618 _max_parallel_marking_threads = 0;
aoqi@0 619 _sleep_factor = 0.0;
aoqi@0 620 _marking_task_overhead = 1.0;
aoqi@0 621 } else {
aoqi@0 622 if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
aoqi@0 623 // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
aoqi@0 624 // if both are set
aoqi@0 625 _sleep_factor = 0.0;
aoqi@0 626 _marking_task_overhead = 1.0;
aoqi@0 627 } else if (G1MarkingOverheadPercent > 0) {
aoqi@0 628 // We will calculate the number of parallel marking threads based
aoqi@0 629 // on a target overhead with respect to the soft real-time goal
aoqi@0 630 double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
aoqi@0 631 double overall_cm_overhead =
aoqi@0 632 (double) MaxGCPauseMillis * marking_overhead /
aoqi@0 633 (double) GCPauseIntervalMillis;
tschatzl@8662 634 double cpu_ratio = 1.0 / os::initial_active_processor_count();
aoqi@0 635 double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
aoqi@0 636 double marking_task_overhead =
tschatzl@8662 637 overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
aoqi@0 638 double sleep_factor =
aoqi@0 639 (1.0 - marking_task_overhead) / marking_task_overhead;
aoqi@0 640
aoqi@0 641 FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
aoqi@0 642 _sleep_factor = sleep_factor;
aoqi@0 643 _marking_task_overhead = marking_task_overhead;
aoqi@0 644 } else {
aoqi@0 645 // Calculate the number of parallel marking threads by scaling
aoqi@0 646 // the number of parallel GC threads.
aoqi@0 647 uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
aoqi@0 648 FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
aoqi@0 649 _sleep_factor = 0.0;
aoqi@0 650 _marking_task_overhead = 1.0;
aoqi@0 651 }
aoqi@0 652
aoqi@0 653 assert(ConcGCThreads > 0, "Should have been set");
aoqi@0 654 _parallel_marking_threads = (uint) ConcGCThreads;
aoqi@0 655 _max_parallel_marking_threads = _parallel_marking_threads;
aoqi@0 656
aoqi@0 657 if (parallel_marking_threads() > 1) {
aoqi@0 658 _cleanup_task_overhead = 1.0;
aoqi@0 659 } else {
aoqi@0 660 _cleanup_task_overhead = marking_task_overhead();
aoqi@0 661 }
aoqi@0 662 _cleanup_sleep_factor =
aoqi@0 663 (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
aoqi@0 664
aoqi@0 665 #if 0
aoqi@0 666 gclog_or_tty->print_cr("Marking Threads %d", parallel_marking_threads());
aoqi@0 667 gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
aoqi@0 668 gclog_or_tty->print_cr("CM Sleep Factor %1.4lf", sleep_factor());
aoqi@0 669 gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
aoqi@0 670 gclog_or_tty->print_cr("CL Sleep Factor %1.4lf", cleanup_sleep_factor());
aoqi@0 671 #endif
aoqi@0 672
aoqi@0 673 guarantee(parallel_marking_threads() > 0, "peace of mind");
aoqi@0 674 _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
aoqi@0 675 _max_parallel_marking_threads, false, true);
aoqi@0 676 if (_parallel_workers == NULL) {
aoqi@0 677 vm_exit_during_initialization("Failed necessary allocation.");
aoqi@0 678 } else {
aoqi@0 679 _parallel_workers->initialize_workers();
aoqi@0 680 }
aoqi@0 681 }
aoqi@0 682
aoqi@0 683 if (FLAG_IS_DEFAULT(MarkStackSize)) {
aoqi@0 684 uintx mark_stack_size =
aoqi@0 685 MIN2(MarkStackSizeMax,
aoqi@0 686 MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
aoqi@0 687 // Verify that the calculated value for MarkStackSize is in range.
aoqi@0 688 // It would be nice to use the private utility routine from Arguments.
aoqi@0 689 if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
aoqi@0 690 warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
aoqi@0 691 "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
aoqi@0 692 mark_stack_size, (uintx) 1, MarkStackSizeMax);
aoqi@0 693 return;
aoqi@0 694 }
aoqi@0 695 FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
aoqi@0 696 } else {
aoqi@0 697 // Verify MarkStackSize is in range.
aoqi@0 698 if (FLAG_IS_CMDLINE(MarkStackSize)) {
aoqi@0 699 if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
aoqi@0 700 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
aoqi@0 701 warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
aoqi@0 702 "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
aoqi@0 703 MarkStackSize, (uintx) 1, MarkStackSizeMax);
aoqi@0 704 return;
aoqi@0 705 }
aoqi@0 706 } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
aoqi@0 707 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
aoqi@0 708 warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
aoqi@0 709 " or for MarkStackSizeMax (" UINTX_FORMAT ")",
aoqi@0 710 MarkStackSize, MarkStackSizeMax);
aoqi@0 711 return;
aoqi@0 712 }
aoqi@0 713 }
aoqi@0 714 }
aoqi@0 715 }
aoqi@0 716
aoqi@0 717 if (!_markStack.allocate(MarkStackSize)) {
aoqi@0 718 warning("Failed to allocate CM marking stack");
aoqi@0 719 return;
aoqi@0 720 }
aoqi@0 721
aoqi@0 722 _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
aoqi@0 723 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
aoqi@0 724
aoqi@0 725 _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap, _max_worker_id, mtGC);
aoqi@0 726 _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
aoqi@0 727
aoqi@0 728 BitMap::idx_t card_bm_size = _card_bm.size();
aoqi@0 729
aoqi@0 730 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
aoqi@0 731 _active_tasks = _max_worker_id;
aoqi@0 732
aoqi@0 733 size_t max_regions = (size_t) _g1h->max_regions();
aoqi@0 734 for (uint i = 0; i < _max_worker_id; ++i) {
aoqi@0 735 CMTaskQueue* task_queue = new CMTaskQueue();
aoqi@0 736 task_queue->initialize();
aoqi@0 737 _task_queues->register_queue(i, task_queue);
aoqi@0 738
aoqi@0 739 _count_card_bitmaps[i] = BitMap(card_bm_size, false);
aoqi@0 740 _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
aoqi@0 741
aoqi@0 742 _tasks[i] = new CMTask(i, this,
aoqi@0 743 _count_marked_bytes[i],
aoqi@0 744 &_count_card_bitmaps[i],
aoqi@0 745 task_queue, _task_queues);
aoqi@0 746
aoqi@0 747 _accum_task_vtime[i] = 0.0;
aoqi@0 748 }
aoqi@0 749
aoqi@0 750 // Calculate the card number for the bottom of the heap. Used
aoqi@0 751 // in biasing indexes into the accounting card bitmaps.
aoqi@0 752 _heap_bottom_card_num =
aoqi@0 753 intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
aoqi@0 754 CardTableModRefBS::card_shift);
aoqi@0 755
aoqi@0 756 // Clear all the liveness counting data
aoqi@0 757 clear_all_count_data();
aoqi@0 758
aoqi@0 759 // so that the call below can read a sensible value
tschatzl@7051 760 _heap_start = g1h->reserved_region().start();
aoqi@0 761 set_non_marking_state();
aoqi@0 762 _completed_initialization = true;
aoqi@0 763 }
aoqi@0 764
aoqi@0 765 void ConcurrentMark::reset() {
aoqi@0 766 // Starting values for these two. This should be called in a STW
tschatzl@7051 767 // phase.
tschatzl@7051 768 MemRegion reserved = _g1h->g1_reserved();
tschatzl@7051 769 _heap_start = reserved.start();
tschatzl@7051 770 _heap_end = reserved.end();
aoqi@0 771
aoqi@0 772 // Separated the asserts so that we know which one fires.
aoqi@0 773 assert(_heap_start != NULL, "heap bounds should look ok");
aoqi@0 774 assert(_heap_end != NULL, "heap bounds should look ok");
aoqi@0 775 assert(_heap_start < _heap_end, "heap bounds should look ok");
aoqi@0 776
aoqi@0 777 // Reset all the marking data structures and any necessary flags
aoqi@0 778 reset_marking_state();
aoqi@0 779
aoqi@0 780 if (verbose_low()) {
aoqi@0 781 gclog_or_tty->print_cr("[global] resetting");
aoqi@0 782 }
aoqi@0 783
aoqi@0 784 // We do reset all of them, since different phases will use
aoqi@0 785 // different number of active threads. So, it's easiest to have all
aoqi@0 786 // of them ready.
aoqi@0 787 for (uint i = 0; i < _max_worker_id; ++i) {
aoqi@0 788 _tasks[i]->reset(_nextMarkBitMap);
aoqi@0 789 }
aoqi@0 790
aoqi@0 791 // we need this to make sure that the flag is on during the evac
aoqi@0 792 // pause with initial mark piggy-backed
aoqi@0 793 set_concurrent_marking_in_progress();
aoqi@0 794 }
aoqi@0 795
aoqi@0 796
aoqi@0 797 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
aoqi@0 798 _markStack.set_should_expand();
aoqi@0 799 _markStack.setEmpty(); // Also clears the _markStack overflow flag
aoqi@0 800 if (clear_overflow) {
aoqi@0 801 clear_has_overflown();
aoqi@0 802 } else {
aoqi@0 803 assert(has_overflown(), "pre-condition");
aoqi@0 804 }
aoqi@0 805 _finger = _heap_start;
aoqi@0 806
aoqi@0 807 for (uint i = 0; i < _max_worker_id; ++i) {
aoqi@0 808 CMTaskQueue* queue = _task_queues->queue(i);
aoqi@0 809 queue->set_empty();
aoqi@0 810 }
aoqi@0 811 }
aoqi@0 812
aoqi@0 813 void ConcurrentMark::set_concurrency(uint active_tasks) {
aoqi@0 814 assert(active_tasks <= _max_worker_id, "we should not have more");
aoqi@0 815
aoqi@0 816 _active_tasks = active_tasks;
aoqi@0 817 // Need to update the three data structures below according to the
aoqi@0 818 // number of active threads for this phase.
aoqi@0 819 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
aoqi@0 820 _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
aoqi@0 821 _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
aoqi@0 822 }
aoqi@0 823
aoqi@0 824 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
aoqi@0 825 set_concurrency(active_tasks);
aoqi@0 826
aoqi@0 827 _concurrent = concurrent;
aoqi@0 828 // We propagate this to all tasks, not just the active ones.
aoqi@0 829 for (uint i = 0; i < _max_worker_id; ++i)
aoqi@0 830 _tasks[i]->set_concurrent(concurrent);
aoqi@0 831
aoqi@0 832 if (concurrent) {
aoqi@0 833 set_concurrent_marking_in_progress();
aoqi@0 834 } else {
aoqi@0 835 // We currently assume that the concurrent flag has been set to
aoqi@0 836 // false before we start remark. At this point we should also be
aoqi@0 837 // in a STW phase.
aoqi@0 838 assert(!concurrent_marking_in_progress(), "invariant");
aoqi@0 839 assert(out_of_regions(),
aoqi@0 840 err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
aoqi@0 841 p2i(_finger), p2i(_heap_end)));
aoqi@0 842 }
aoqi@0 843 }
aoqi@0 844
aoqi@0 845 void ConcurrentMark::set_non_marking_state() {
aoqi@0 846 // We set the global marking state to some default values when we're
aoqi@0 847 // not doing marking.
aoqi@0 848 reset_marking_state();
aoqi@0 849 _active_tasks = 0;
aoqi@0 850 clear_concurrent_marking_in_progress();
aoqi@0 851 }
aoqi@0 852
aoqi@0 853 ConcurrentMark::~ConcurrentMark() {
aoqi@0 854 // The ConcurrentMark instance is never freed.
aoqi@0 855 ShouldNotReachHere();
aoqi@0 856 }
aoqi@0 857
aoqi@0 858 void ConcurrentMark::clearNextBitmap() {
aoqi@0 859 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 860
aoqi@0 861 // Make sure that the concurrent mark thread looks to still be in
aoqi@0 862 // the current cycle.
aoqi@0 863 guarantee(cmThread()->during_cycle(), "invariant");
aoqi@0 864
aoqi@0 865 // We are finishing up the current cycle by clearing the next
aoqi@0 866 // marking bitmap and getting it ready for the next cycle. During
aoqi@0 867 // this time no other cycle can start. So, let's make sure that this
aoqi@0 868 // is the case.
aoqi@0 869 guarantee(!g1h->mark_in_progress(), "invariant");
aoqi@0 870
tschatzl@7051 871 ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
tschatzl@7051 872 g1h->heap_region_iterate(&cl);
tschatzl@7051 873
tschatzl@7051 874 // Clear the liveness counting data. If the marking has been aborted, the abort()
tschatzl@7051 875 // call already did that.
tschatzl@7051 876 if (cl.complete()) {
tschatzl@7051 877 clear_all_count_data();
aoqi@0 878 }
aoqi@0 879
aoqi@0 880 // Repeat the asserts from above.
aoqi@0 881 guarantee(cmThread()->during_cycle(), "invariant");
aoqi@0 882 guarantee(!g1h->mark_in_progress(), "invariant");
aoqi@0 883 }
aoqi@0 884
tschatzl@7051 885 class CheckBitmapClearHRClosure : public HeapRegionClosure {
tschatzl@7051 886 CMBitMap* _bitmap;
tschatzl@7051 887 bool _error;
tschatzl@7051 888 public:
tschatzl@7051 889 CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
tschatzl@7051 890 }
tschatzl@7051 891
tschatzl@7051 892 virtual bool doHeapRegion(HeapRegion* r) {
tschatzl@7100 893 // This closure can be called concurrently to the mutator, so we must make sure
tschatzl@7100 894 // that the result of the getNextMarkedWordAddress() call is compared to the
tschatzl@7100 895 // value passed to it as limit to detect any found bits.
tschatzl@7100 896 // We can use the region's orig_end() for the limit and the comparison value
tschatzl@7100 897 // as it always contains the "real" end of the region that never changes and
tschatzl@7100 898 // has no side effects.
tschatzl@7100 899 // Due to the latter, there can also be no problem with the compiler generating
tschatzl@7100 900 // reloads of the orig_end() call.
tschatzl@7100 901 HeapWord* end = r->orig_end();
tschatzl@7100 902 return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
tschatzl@7051 903 }
tschatzl@7051 904 };
tschatzl@7051 905
tschatzl@7016 906 bool ConcurrentMark::nextMarkBitmapIsClear() {
tschatzl@7051 907 CheckBitmapClearHRClosure cl(_nextMarkBitMap);
tschatzl@7051 908 _g1h->heap_region_iterate(&cl);
tschatzl@7051 909 return cl.complete();
tschatzl@7016 910 }
tschatzl@7016 911
aoqi@0 912 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
aoqi@0 913 public:
aoqi@0 914 bool doHeapRegion(HeapRegion* r) {
aoqi@0 915 if (!r->continuesHumongous()) {
aoqi@0 916 r->note_start_of_marking();
aoqi@0 917 }
aoqi@0 918 return false;
aoqi@0 919 }
aoqi@0 920 };
aoqi@0 921
aoqi@0 922 void ConcurrentMark::checkpointRootsInitialPre() {
aoqi@0 923 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 924 G1CollectorPolicy* g1p = g1h->g1_policy();
aoqi@0 925
aoqi@0 926 _has_aborted = false;
aoqi@0 927
aoqi@0 928 #ifndef PRODUCT
aoqi@0 929 if (G1PrintReachableAtInitialMark) {
aoqi@0 930 print_reachable("at-cycle-start",
aoqi@0 931 VerifyOption_G1UsePrevMarking, true /* all */);
aoqi@0 932 }
aoqi@0 933 #endif
aoqi@0 934
aoqi@0 935 // Initialise marking structures. This has to be done in a STW phase.
aoqi@0 936 reset();
aoqi@0 937
aoqi@0 938 // For each region note start of marking.
aoqi@0 939 NoteStartOfMarkHRClosure startcl;
aoqi@0 940 g1h->heap_region_iterate(&startcl);
aoqi@0 941 }
aoqi@0 942
aoqi@0 943
aoqi@0 944 void ConcurrentMark::checkpointRootsInitialPost() {
aoqi@0 945 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 946
aoqi@0 947 // If we force an overflow during remark, the remark operation will
aoqi@0 948 // actually abort and we'll restart concurrent marking. If we always
aoqi@0 949 // force an oveflow during remark we'll never actually complete the
aoqi@0 950 // marking phase. So, we initilize this here, at the start of the
aoqi@0 951 // cycle, so that at the remaining overflow number will decrease at
aoqi@0 952 // every remark and we'll eventually not need to cause one.
aoqi@0 953 force_overflow_stw()->init();
aoqi@0 954
aoqi@0 955 // Start Concurrent Marking weak-reference discovery.
aoqi@0 956 ReferenceProcessor* rp = g1h->ref_processor_cm();
aoqi@0 957 // enable ("weak") refs discovery
aoqi@0 958 rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
aoqi@0 959 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
aoqi@0 960
aoqi@0 961 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
aoqi@0 962 // This is the start of the marking cycle, we're expected all
aoqi@0 963 // threads to have SATB queues with active set to false.
aoqi@0 964 satb_mq_set.set_active_all_threads(true, /* new active value */
aoqi@0 965 false /* expected_active */);
aoqi@0 966
aoqi@0 967 _root_regions.prepare_for_scan();
aoqi@0 968
aoqi@0 969 // update_g1_committed() will be called at the end of an evac pause
aoqi@0 970 // when marking is on. So, it's also called at the end of the
aoqi@0 971 // initial-mark pause to update the heap end, if the heap expands
aoqi@0 972 // during it. No need to call it here.
aoqi@0 973 }
aoqi@0 974
aoqi@0 975 /*
aoqi@0 976 * Notice that in the next two methods, we actually leave the STS
aoqi@0 977 * during the barrier sync and join it immediately afterwards. If we
aoqi@0 978 * do not do this, the following deadlock can occur: one thread could
aoqi@0 979 * be in the barrier sync code, waiting for the other thread to also
aoqi@0 980 * sync up, whereas another one could be trying to yield, while also
aoqi@0 981 * waiting for the other threads to sync up too.
aoqi@0 982 *
aoqi@0 983 * Note, however, that this code is also used during remark and in
aoqi@0 984 * this case we should not attempt to leave / enter the STS, otherwise
aoqi@0 985 * we'll either hit an asseert (debug / fastdebug) or deadlock
aoqi@0 986 * (product). So we should only leave / enter the STS if we are
aoqi@0 987 * operating concurrently.
aoqi@0 988 *
aoqi@0 989 * Because the thread that does the sync barrier has left the STS, it
aoqi@0 990 * is possible to be suspended for a Full GC or an evacuation pause
aoqi@0 991 * could occur. This is actually safe, since the entering the sync
aoqi@0 992 * barrier is one of the last things do_marking_step() does, and it
aoqi@0 993 * doesn't manipulate any data structures afterwards.
aoqi@0 994 */
aoqi@0 995
aoqi@0 996 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
aoqi@0 997 if (verbose_low()) {
aoqi@0 998 gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
aoqi@0 999 }
aoqi@0 1000
aoqi@0 1001 if (concurrent()) {
pliden@6906 1002 SuspendibleThreadSet::leave();
aoqi@0 1003 }
aoqi@0 1004
aoqi@0 1005 bool barrier_aborted = !_first_overflow_barrier_sync.enter();
aoqi@0 1006
aoqi@0 1007 if (concurrent()) {
pliden@6906 1008 SuspendibleThreadSet::join();
aoqi@0 1009 }
aoqi@0 1010 // at this point everyone should have synced up and not be doing any
aoqi@0 1011 // more work
aoqi@0 1012
aoqi@0 1013 if (verbose_low()) {
aoqi@0 1014 if (barrier_aborted) {
aoqi@0 1015 gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
aoqi@0 1016 } else {
aoqi@0 1017 gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
aoqi@0 1018 }
aoqi@0 1019 }
aoqi@0 1020
aoqi@0 1021 if (barrier_aborted) {
aoqi@0 1022 // If the barrier aborted we ignore the overflow condition and
aoqi@0 1023 // just abort the whole marking phase as quickly as possible.
aoqi@0 1024 return;
aoqi@0 1025 }
aoqi@0 1026
aoqi@0 1027 // If we're executing the concurrent phase of marking, reset the marking
aoqi@0 1028 // state; otherwise the marking state is reset after reference processing,
aoqi@0 1029 // during the remark pause.
aoqi@0 1030 // If we reset here as a result of an overflow during the remark we will
aoqi@0 1031 // see assertion failures from any subsequent set_concurrency_and_phase()
aoqi@0 1032 // calls.
aoqi@0 1033 if (concurrent()) {
aoqi@0 1034 // let the task associated with with worker 0 do this
aoqi@0 1035 if (worker_id == 0) {
aoqi@0 1036 // task 0 is responsible for clearing the global data structures
aoqi@0 1037 // We should be here because of an overflow. During STW we should
aoqi@0 1038 // not clear the overflow flag since we rely on it being true when
aoqi@0 1039 // we exit this method to abort the pause and restart concurent
aoqi@0 1040 // marking.
aoqi@0 1041 reset_marking_state(true /* clear_overflow */);
aoqi@0 1042 force_overflow()->update();
aoqi@0 1043
aoqi@0 1044 if (G1Log::fine()) {
brutisso@6904 1045 gclog_or_tty->gclog_stamp(concurrent_gc_id());
aoqi@0 1046 gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
aoqi@0 1047 }
aoqi@0 1048 }
aoqi@0 1049 }
aoqi@0 1050
aoqi@0 1051 // after this, each task should reset its own data structures then
aoqi@0 1052 // then go into the second barrier
aoqi@0 1053 }
aoqi@0 1054
aoqi@0 1055 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
aoqi@0 1056 if (verbose_low()) {
aoqi@0 1057 gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
aoqi@0 1058 }
aoqi@0 1059
aoqi@0 1060 if (concurrent()) {
pliden@6906 1061 SuspendibleThreadSet::leave();
aoqi@0 1062 }
aoqi@0 1063
aoqi@0 1064 bool barrier_aborted = !_second_overflow_barrier_sync.enter();
aoqi@0 1065
aoqi@0 1066 if (concurrent()) {
pliden@6906 1067 SuspendibleThreadSet::join();
aoqi@0 1068 }
aoqi@0 1069 // at this point everything should be re-initialized and ready to go
aoqi@0 1070
aoqi@0 1071 if (verbose_low()) {
aoqi@0 1072 if (barrier_aborted) {
aoqi@0 1073 gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
aoqi@0 1074 } else {
aoqi@0 1075 gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
aoqi@0 1076 }
aoqi@0 1077 }
aoqi@0 1078 }
aoqi@0 1079
aoqi@0 1080 #ifndef PRODUCT
aoqi@0 1081 void ForceOverflowSettings::init() {
aoqi@0 1082 _num_remaining = G1ConcMarkForceOverflow;
aoqi@0 1083 _force = false;
aoqi@0 1084 update();
aoqi@0 1085 }
aoqi@0 1086
aoqi@0 1087 void ForceOverflowSettings::update() {
aoqi@0 1088 if (_num_remaining > 0) {
aoqi@0 1089 _num_remaining -= 1;
aoqi@0 1090 _force = true;
aoqi@0 1091 } else {
aoqi@0 1092 _force = false;
aoqi@0 1093 }
aoqi@0 1094 }
aoqi@0 1095
aoqi@0 1096 bool ForceOverflowSettings::should_force() {
aoqi@0 1097 if (_force) {
aoqi@0 1098 _force = false;
aoqi@0 1099 return true;
aoqi@0 1100 } else {
aoqi@0 1101 return false;
aoqi@0 1102 }
aoqi@0 1103 }
aoqi@0 1104 #endif // !PRODUCT
aoqi@0 1105
aoqi@0 1106 class CMConcurrentMarkingTask: public AbstractGangTask {
aoqi@0 1107 private:
aoqi@0 1108 ConcurrentMark* _cm;
aoqi@0 1109 ConcurrentMarkThread* _cmt;
aoqi@0 1110
aoqi@0 1111 public:
aoqi@0 1112 void work(uint worker_id) {
aoqi@0 1113 assert(Thread::current()->is_ConcurrentGC_thread(),
aoqi@0 1114 "this should only be done by a conc GC thread");
aoqi@0 1115 ResourceMark rm;
aoqi@0 1116
aoqi@0 1117 double start_vtime = os::elapsedVTime();
aoqi@0 1118
pliden@6906 1119 SuspendibleThreadSet::join();
aoqi@0 1120
aoqi@0 1121 assert(worker_id < _cm->active_tasks(), "invariant");
aoqi@0 1122 CMTask* the_task = _cm->task(worker_id);
aoqi@0 1123 the_task->record_start_time();
aoqi@0 1124 if (!_cm->has_aborted()) {
aoqi@0 1125 do {
aoqi@0 1126 double start_vtime_sec = os::elapsedVTime();
aoqi@0 1127 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
aoqi@0 1128
aoqi@0 1129 the_task->do_marking_step(mark_step_duration_ms,
aoqi@0 1130 true /* do_termination */,
aoqi@0 1131 false /* is_serial*/);
aoqi@0 1132
aoqi@0 1133 double end_vtime_sec = os::elapsedVTime();
aoqi@0 1134 double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
aoqi@0 1135 _cm->clear_has_overflown();
aoqi@0 1136
tschatzl@7094 1137 _cm->do_yield_check(worker_id);
aoqi@0 1138
aoqi@0 1139 jlong sleep_time_ms;
aoqi@0 1140 if (!_cm->has_aborted() && the_task->has_aborted()) {
aoqi@0 1141 sleep_time_ms =
aoqi@0 1142 (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
pliden@6906 1143 SuspendibleThreadSet::leave();
aoqi@0 1144 os::sleep(Thread::current(), sleep_time_ms, false);
pliden@6906 1145 SuspendibleThreadSet::join();
aoqi@0 1146 }
aoqi@0 1147 } while (!_cm->has_aborted() && the_task->has_aborted());
aoqi@0 1148 }
aoqi@0 1149 the_task->record_end_time();
aoqi@0 1150 guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
aoqi@0 1151
pliden@6906 1152 SuspendibleThreadSet::leave();
aoqi@0 1153
aoqi@0 1154 double end_vtime = os::elapsedVTime();
aoqi@0 1155 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
aoqi@0 1156 }
aoqi@0 1157
aoqi@0 1158 CMConcurrentMarkingTask(ConcurrentMark* cm,
aoqi@0 1159 ConcurrentMarkThread* cmt) :
aoqi@0 1160 AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
aoqi@0 1161
aoqi@0 1162 ~CMConcurrentMarkingTask() { }
aoqi@0 1163 };
aoqi@0 1164
aoqi@0 1165 // Calculates the number of active workers for a concurrent
aoqi@0 1166 // phase.
aoqi@0 1167 uint ConcurrentMark::calc_parallel_marking_threads() {
aoqi@0 1168 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1169 uint n_conc_workers = 0;
aoqi@0 1170 if (!UseDynamicNumberOfGCThreads ||
aoqi@0 1171 (!FLAG_IS_DEFAULT(ConcGCThreads) &&
aoqi@0 1172 !ForceDynamicNumberOfGCThreads)) {
aoqi@0 1173 n_conc_workers = max_parallel_marking_threads();
aoqi@0 1174 } else {
aoqi@0 1175 n_conc_workers =
aoqi@0 1176 AdaptiveSizePolicy::calc_default_active_workers(
aoqi@0 1177 max_parallel_marking_threads(),
aoqi@0 1178 1, /* Minimum workers */
aoqi@0 1179 parallel_marking_threads(),
aoqi@0 1180 Threads::number_of_non_daemon_threads());
aoqi@0 1181 // Don't scale down "n_conc_workers" by scale_parallel_threads() because
aoqi@0 1182 // that scaling has already gone into "_max_parallel_marking_threads".
aoqi@0 1183 }
aoqi@0 1184 assert(n_conc_workers > 0, "Always need at least 1");
aoqi@0 1185 return n_conc_workers;
aoqi@0 1186 }
aoqi@0 1187 // If we are not running with any parallel GC threads we will not
aoqi@0 1188 // have spawned any marking threads either. Hence the number of
aoqi@0 1189 // concurrent workers should be 0.
aoqi@0 1190 return 0;
aoqi@0 1191 }
aoqi@0 1192
aoqi@0 1193 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
aoqi@0 1194 // Currently, only survivors can be root regions.
aoqi@0 1195 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
aoqi@0 1196 G1RootRegionScanClosure cl(_g1h, this, worker_id);
aoqi@0 1197
aoqi@0 1198 const uintx interval = PrefetchScanIntervalInBytes;
aoqi@0 1199 HeapWord* curr = hr->bottom();
aoqi@0 1200 const HeapWord* end = hr->top();
aoqi@0 1201 while (curr < end) {
aoqi@0 1202 Prefetch::read(curr, interval);
aoqi@0 1203 oop obj = oop(curr);
aoqi@0 1204 int size = obj->oop_iterate(&cl);
aoqi@0 1205 assert(size == obj->size(), "sanity");
aoqi@0 1206 curr += size;
aoqi@0 1207 }
aoqi@0 1208 }
aoqi@0 1209
aoqi@0 1210 class CMRootRegionScanTask : public AbstractGangTask {
aoqi@0 1211 private:
aoqi@0 1212 ConcurrentMark* _cm;
aoqi@0 1213
aoqi@0 1214 public:
aoqi@0 1215 CMRootRegionScanTask(ConcurrentMark* cm) :
aoqi@0 1216 AbstractGangTask("Root Region Scan"), _cm(cm) { }
aoqi@0 1217
aoqi@0 1218 void work(uint worker_id) {
aoqi@0 1219 assert(Thread::current()->is_ConcurrentGC_thread(),
aoqi@0 1220 "this should only be done by a conc GC thread");
aoqi@0 1221
aoqi@0 1222 CMRootRegions* root_regions = _cm->root_regions();
aoqi@0 1223 HeapRegion* hr = root_regions->claim_next();
aoqi@0 1224 while (hr != NULL) {
aoqi@0 1225 _cm->scanRootRegion(hr, worker_id);
aoqi@0 1226 hr = root_regions->claim_next();
aoqi@0 1227 }
aoqi@0 1228 }
aoqi@0 1229 };
aoqi@0 1230
aoqi@0 1231 void ConcurrentMark::scanRootRegions() {
stefank@6992 1232 // Start of concurrent marking.
stefank@6992 1233 ClassLoaderDataGraph::clear_claimed_marks();
stefank@6992 1234
aoqi@0 1235 // scan_in_progress() will have been set to true only if there was
aoqi@0 1236 // at least one root region to scan. So, if it's false, we
aoqi@0 1237 // should not attempt to do any further work.
aoqi@0 1238 if (root_regions()->scan_in_progress()) {
aoqi@0 1239 _parallel_marking_threads = calc_parallel_marking_threads();
aoqi@0 1240 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
aoqi@0 1241 "Maximum number of marking threads exceeded");
aoqi@0 1242 uint active_workers = MAX2(1U, parallel_marking_threads());
aoqi@0 1243
aoqi@0 1244 CMRootRegionScanTask task(this);
aoqi@0 1245 if (use_parallel_marking_threads()) {
aoqi@0 1246 _parallel_workers->set_active_workers((int) active_workers);
aoqi@0 1247 _parallel_workers->run_task(&task);
aoqi@0 1248 } else {
aoqi@0 1249 task.work(0);
aoqi@0 1250 }
aoqi@0 1251
aoqi@0 1252 // It's possible that has_aborted() is true here without actually
aoqi@0 1253 // aborting the survivor scan earlier. This is OK as it's
aoqi@0 1254 // mainly used for sanity checking.
aoqi@0 1255 root_regions()->scan_finished();
aoqi@0 1256 }
aoqi@0 1257 }
aoqi@0 1258
aoqi@0 1259 void ConcurrentMark::markFromRoots() {
aoqi@0 1260 // we might be tempted to assert that:
aoqi@0 1261 // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
aoqi@0 1262 // "inconsistent argument?");
aoqi@0 1263 // However that wouldn't be right, because it's possible that
aoqi@0 1264 // a safepoint is indeed in progress as a younger generation
aoqi@0 1265 // stop-the-world GC happens even as we mark in this generation.
aoqi@0 1266
aoqi@0 1267 _restart_for_overflow = false;
aoqi@0 1268 force_overflow_conc()->init();
aoqi@0 1269
aoqi@0 1270 // _g1h has _n_par_threads
aoqi@0 1271 _parallel_marking_threads = calc_parallel_marking_threads();
aoqi@0 1272 assert(parallel_marking_threads() <= max_parallel_marking_threads(),
aoqi@0 1273 "Maximum number of marking threads exceeded");
aoqi@0 1274
aoqi@0 1275 uint active_workers = MAX2(1U, parallel_marking_threads());
aoqi@0 1276
aoqi@0 1277 // Parallel task terminator is set in "set_concurrency_and_phase()"
aoqi@0 1278 set_concurrency_and_phase(active_workers, true /* concurrent */);
aoqi@0 1279
aoqi@0 1280 CMConcurrentMarkingTask markingTask(this, cmThread());
aoqi@0 1281 if (use_parallel_marking_threads()) {
aoqi@0 1282 _parallel_workers->set_active_workers((int)active_workers);
stefank@6992 1283 // Don't set _n_par_threads because it affects MT in process_roots()
aoqi@0 1284 // and the decisions on that MT processing is made elsewhere.
aoqi@0 1285 assert(_parallel_workers->active_workers() > 0, "Should have been set");
aoqi@0 1286 _parallel_workers->run_task(&markingTask);
aoqi@0 1287 } else {
aoqi@0 1288 markingTask.work(0);
aoqi@0 1289 }
aoqi@0 1290 print_stats();
aoqi@0 1291 }
aoqi@0 1292
aoqi@0 1293 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
aoqi@0 1294 // world is stopped at this checkpoint
aoqi@0 1295 assert(SafepointSynchronize::is_at_safepoint(),
aoqi@0 1296 "world should be stopped");
aoqi@0 1297
aoqi@0 1298 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 1299
aoqi@0 1300 // If a full collection has happened, we shouldn't do this.
aoqi@0 1301 if (has_aborted()) {
aoqi@0 1302 g1h->set_marking_complete(); // So bitmap clearing isn't confused
aoqi@0 1303 return;
aoqi@0 1304 }
aoqi@0 1305
aoqi@0 1306 SvcGCMarker sgcm(SvcGCMarker::OTHER);
aoqi@0 1307
aoqi@0 1308 if (VerifyDuringGC) {
aoqi@0 1309 HandleMark hm; // handle scope
aoqi@0 1310 Universe::heap()->prepare_for_verify();
aoqi@0 1311 Universe::verify(VerifyOption_G1UsePrevMarking,
aoqi@0 1312 " VerifyDuringGC:(before)");
aoqi@0 1313 }
brutisso@7005 1314 g1h->check_bitmaps("Remark Start");
aoqi@0 1315
aoqi@0 1316 G1CollectorPolicy* g1p = g1h->g1_policy();
aoqi@0 1317 g1p->record_concurrent_mark_remark_start();
aoqi@0 1318
aoqi@0 1319 double start = os::elapsedTime();
aoqi@0 1320
aoqi@0 1321 checkpointRootsFinalWork();
aoqi@0 1322
aoqi@0 1323 double mark_work_end = os::elapsedTime();
aoqi@0 1324
aoqi@0 1325 weakRefsWork(clear_all_soft_refs);
aoqi@0 1326
aoqi@0 1327 if (has_overflown()) {
aoqi@0 1328 // Oops. We overflowed. Restart concurrent marking.
aoqi@0 1329 _restart_for_overflow = true;
aoqi@0 1330 if (G1TraceMarkStackOverflow) {
aoqi@0 1331 gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
aoqi@0 1332 }
aoqi@0 1333
aoqi@0 1334 // Verify the heap w.r.t. the previous marking bitmap.
aoqi@0 1335 if (VerifyDuringGC) {
aoqi@0 1336 HandleMark hm; // handle scope
aoqi@0 1337 Universe::heap()->prepare_for_verify();
aoqi@0 1338 Universe::verify(VerifyOption_G1UsePrevMarking,
aoqi@0 1339 " VerifyDuringGC:(overflow)");
aoqi@0 1340 }
aoqi@0 1341
aoqi@0 1342 // Clear the marking state because we will be restarting
aoqi@0 1343 // marking due to overflowing the global mark stack.
aoqi@0 1344 reset_marking_state();
aoqi@0 1345 } else {
aoqi@0 1346 // Aggregate the per-task counting data that we have accumulated
aoqi@0 1347 // while marking.
aoqi@0 1348 aggregate_count_data();
aoqi@0 1349
aoqi@0 1350 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
aoqi@0 1351 // We're done with marking.
aoqi@0 1352 // This is the end of the marking cycle, we're expected all
aoqi@0 1353 // threads to have SATB queues with active set to true.
aoqi@0 1354 satb_mq_set.set_active_all_threads(false, /* new active value */
aoqi@0 1355 true /* expected_active */);
aoqi@0 1356
aoqi@0 1357 if (VerifyDuringGC) {
aoqi@0 1358 HandleMark hm; // handle scope
aoqi@0 1359 Universe::heap()->prepare_for_verify();
aoqi@0 1360 Universe::verify(VerifyOption_G1UseNextMarking,
aoqi@0 1361 " VerifyDuringGC:(after)");
aoqi@0 1362 }
brutisso@7005 1363 g1h->check_bitmaps("Remark End");
aoqi@0 1364 assert(!restart_for_overflow(), "sanity");
aoqi@0 1365 // Completely reset the marking state since marking completed
aoqi@0 1366 set_non_marking_state();
aoqi@0 1367 }
aoqi@0 1368
aoqi@0 1369 // Expand the marking stack, if we have to and if we can.
aoqi@0 1370 if (_markStack.should_expand()) {
aoqi@0 1371 _markStack.expand();
aoqi@0 1372 }
aoqi@0 1373
aoqi@0 1374 // Statistics
aoqi@0 1375 double now = os::elapsedTime();
aoqi@0 1376 _remark_mark_times.add((mark_work_end - start) * 1000.0);
aoqi@0 1377 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
aoqi@0 1378 _remark_times.add((now - start) * 1000.0);
aoqi@0 1379
aoqi@0 1380 g1p->record_concurrent_mark_remark_end();
aoqi@0 1381
aoqi@0 1382 G1CMIsAliveClosure is_alive(g1h);
aoqi@0 1383 g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
aoqi@0 1384 }
aoqi@0 1385
aoqi@0 1386 // Base class of the closures that finalize and verify the
aoqi@0 1387 // liveness counting data.
aoqi@0 1388 class CMCountDataClosureBase: public HeapRegionClosure {
aoqi@0 1389 protected:
aoqi@0 1390 G1CollectedHeap* _g1h;
aoqi@0 1391 ConcurrentMark* _cm;
aoqi@0 1392 CardTableModRefBS* _ct_bs;
aoqi@0 1393
aoqi@0 1394 BitMap* _region_bm;
aoqi@0 1395 BitMap* _card_bm;
aoqi@0 1396
aoqi@0 1397 // Takes a region that's not empty (i.e., it has at least one
aoqi@0 1398 // live object in it and sets its corresponding bit on the region
aoqi@0 1399 // bitmap to 1. If the region is "starts humongous" it will also set
aoqi@0 1400 // to 1 the bits on the region bitmap that correspond to its
aoqi@0 1401 // associated "continues humongous" regions.
aoqi@0 1402 void set_bit_for_region(HeapRegion* hr) {
aoqi@0 1403 assert(!hr->continuesHumongous(), "should have filtered those out");
aoqi@0 1404
tschatzl@7091 1405 BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
aoqi@0 1406 if (!hr->startsHumongous()) {
aoqi@0 1407 // Normal (non-humongous) case: just set the bit.
aoqi@0 1408 _region_bm->par_at_put(index, true);
aoqi@0 1409 } else {
aoqi@0 1410 // Starts humongous case: calculate how many regions are part of
aoqi@0 1411 // this humongous region and then set the bit range.
aoqi@0 1412 BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
aoqi@0 1413 _region_bm->par_at_put_range(index, end_index, true);
aoqi@0 1414 }
aoqi@0 1415 }
aoqi@0 1416
aoqi@0 1417 public:
aoqi@0 1418 CMCountDataClosureBase(G1CollectedHeap* g1h,
aoqi@0 1419 BitMap* region_bm, BitMap* card_bm):
aoqi@0 1420 _g1h(g1h), _cm(g1h->concurrent_mark()),
aoqi@0 1421 _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
aoqi@0 1422 _region_bm(region_bm), _card_bm(card_bm) { }
aoqi@0 1423 };
aoqi@0 1424
aoqi@0 1425 // Closure that calculates the # live objects per region. Used
aoqi@0 1426 // for verification purposes during the cleanup pause.
aoqi@0 1427 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
aoqi@0 1428 CMBitMapRO* _bm;
aoqi@0 1429 size_t _region_marked_bytes;
aoqi@0 1430
aoqi@0 1431 public:
aoqi@0 1432 CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
aoqi@0 1433 BitMap* region_bm, BitMap* card_bm) :
aoqi@0 1434 CMCountDataClosureBase(g1h, region_bm, card_bm),
aoqi@0 1435 _bm(bm), _region_marked_bytes(0) { }
aoqi@0 1436
aoqi@0 1437 bool doHeapRegion(HeapRegion* hr) {
aoqi@0 1438
aoqi@0 1439 if (hr->continuesHumongous()) {
aoqi@0 1440 // We will ignore these here and process them when their
aoqi@0 1441 // associated "starts humongous" region is processed (see
aoqi@0 1442 // set_bit_for_heap_region()). Note that we cannot rely on their
aoqi@0 1443 // associated "starts humongous" region to have their bit set to
aoqi@0 1444 // 1 since, due to the region chunking in the parallel region
aoqi@0 1445 // iteration, a "continues humongous" region might be visited
aoqi@0 1446 // before its associated "starts humongous".
aoqi@0 1447 return false;
aoqi@0 1448 }
aoqi@0 1449
aoqi@0 1450 HeapWord* ntams = hr->next_top_at_mark_start();
aoqi@0 1451 HeapWord* start = hr->bottom();
aoqi@0 1452
aoqi@0 1453 assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
aoqi@0 1454 err_msg("Preconditions not met - "
aoqi@0 1455 "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
aoqi@0 1456 p2i(start), p2i(ntams), p2i(hr->end())));
aoqi@0 1457
aoqi@0 1458 // Find the first marked object at or after "start".
aoqi@0 1459 start = _bm->getNextMarkedWordAddress(start, ntams);
aoqi@0 1460
aoqi@0 1461 size_t marked_bytes = 0;
aoqi@0 1462
aoqi@0 1463 while (start < ntams) {
aoqi@0 1464 oop obj = oop(start);
aoqi@0 1465 int obj_sz = obj->size();
aoqi@0 1466 HeapWord* obj_end = start + obj_sz;
aoqi@0 1467
aoqi@0 1468 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
aoqi@0 1469 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
aoqi@0 1470
aoqi@0 1471 // Note: if we're looking at the last region in heap - obj_end
aoqi@0 1472 // could be actually just beyond the end of the heap; end_idx
aoqi@0 1473 // will then correspond to a (non-existent) card that is also
aoqi@0 1474 // just beyond the heap.
aoqi@0 1475 if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
aoqi@0 1476 // end of object is not card aligned - increment to cover
aoqi@0 1477 // all the cards spanned by the object
aoqi@0 1478 end_idx += 1;
aoqi@0 1479 }
aoqi@0 1480
aoqi@0 1481 // Set the bits in the card BM for the cards spanned by this object.
aoqi@0 1482 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
aoqi@0 1483
aoqi@0 1484 // Add the size of this object to the number of marked bytes.
aoqi@0 1485 marked_bytes += (size_t)obj_sz * HeapWordSize;
aoqi@0 1486
aoqi@0 1487 // Find the next marked object after this one.
aoqi@0 1488 start = _bm->getNextMarkedWordAddress(obj_end, ntams);
aoqi@0 1489 }
aoqi@0 1490
aoqi@0 1491 // Mark the allocated-since-marking portion...
aoqi@0 1492 HeapWord* top = hr->top();
aoqi@0 1493 if (ntams < top) {
aoqi@0 1494 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
aoqi@0 1495 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
aoqi@0 1496
aoqi@0 1497 // Note: if we're looking at the last region in heap - top
aoqi@0 1498 // could be actually just beyond the end of the heap; end_idx
aoqi@0 1499 // will then correspond to a (non-existent) card that is also
aoqi@0 1500 // just beyond the heap.
aoqi@0 1501 if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
aoqi@0 1502 // end of object is not card aligned - increment to cover
aoqi@0 1503 // all the cards spanned by the object
aoqi@0 1504 end_idx += 1;
aoqi@0 1505 }
aoqi@0 1506 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
aoqi@0 1507
aoqi@0 1508 // This definitely means the region has live objects.
aoqi@0 1509 set_bit_for_region(hr);
aoqi@0 1510 }
aoqi@0 1511
aoqi@0 1512 // Update the live region bitmap.
aoqi@0 1513 if (marked_bytes > 0) {
aoqi@0 1514 set_bit_for_region(hr);
aoqi@0 1515 }
aoqi@0 1516
aoqi@0 1517 // Set the marked bytes for the current region so that
aoqi@0 1518 // it can be queried by a calling verificiation routine
aoqi@0 1519 _region_marked_bytes = marked_bytes;
aoqi@0 1520
aoqi@0 1521 return false;
aoqi@0 1522 }
aoqi@0 1523
aoqi@0 1524 size_t region_marked_bytes() const { return _region_marked_bytes; }
aoqi@0 1525 };
aoqi@0 1526
aoqi@0 1527 // Heap region closure used for verifying the counting data
aoqi@0 1528 // that was accumulated concurrently and aggregated during
aoqi@0 1529 // the remark pause. This closure is applied to the heap
aoqi@0 1530 // regions during the STW cleanup pause.
aoqi@0 1531
aoqi@0 1532 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
aoqi@0 1533 G1CollectedHeap* _g1h;
aoqi@0 1534 ConcurrentMark* _cm;
aoqi@0 1535 CalcLiveObjectsClosure _calc_cl;
aoqi@0 1536 BitMap* _region_bm; // Region BM to be verified
aoqi@0 1537 BitMap* _card_bm; // Card BM to be verified
aoqi@0 1538 bool _verbose; // verbose output?
aoqi@0 1539
aoqi@0 1540 BitMap* _exp_region_bm; // Expected Region BM values
aoqi@0 1541 BitMap* _exp_card_bm; // Expected card BM values
aoqi@0 1542
aoqi@0 1543 int _failures;
aoqi@0 1544
aoqi@0 1545 public:
aoqi@0 1546 VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
aoqi@0 1547 BitMap* region_bm,
aoqi@0 1548 BitMap* card_bm,
aoqi@0 1549 BitMap* exp_region_bm,
aoqi@0 1550 BitMap* exp_card_bm,
aoqi@0 1551 bool verbose) :
aoqi@0 1552 _g1h(g1h), _cm(g1h->concurrent_mark()),
aoqi@0 1553 _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
aoqi@0 1554 _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
aoqi@0 1555 _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
aoqi@0 1556 _failures(0) { }
aoqi@0 1557
aoqi@0 1558 int failures() const { return _failures; }
aoqi@0 1559
aoqi@0 1560 bool doHeapRegion(HeapRegion* hr) {
aoqi@0 1561 if (hr->continuesHumongous()) {
aoqi@0 1562 // We will ignore these here and process them when their
aoqi@0 1563 // associated "starts humongous" region is processed (see
aoqi@0 1564 // set_bit_for_heap_region()). Note that we cannot rely on their
aoqi@0 1565 // associated "starts humongous" region to have their bit set to
aoqi@0 1566 // 1 since, due to the region chunking in the parallel region
aoqi@0 1567 // iteration, a "continues humongous" region might be visited
aoqi@0 1568 // before its associated "starts humongous".
aoqi@0 1569 return false;
aoqi@0 1570 }
aoqi@0 1571
aoqi@0 1572 int failures = 0;
aoqi@0 1573
aoqi@0 1574 // Call the CalcLiveObjectsClosure to walk the marking bitmap for
aoqi@0 1575 // this region and set the corresponding bits in the expected region
aoqi@0 1576 // and card bitmaps.
aoqi@0 1577 bool res = _calc_cl.doHeapRegion(hr);
aoqi@0 1578 assert(res == false, "should be continuing");
aoqi@0 1579
aoqi@0 1580 MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
aoqi@0 1581 Mutex::_no_safepoint_check_flag);
aoqi@0 1582
aoqi@0 1583 // Verify the marked bytes for this region.
aoqi@0 1584 size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
aoqi@0 1585 size_t act_marked_bytes = hr->next_marked_bytes();
aoqi@0 1586
aoqi@0 1587 // We're not OK if expected marked bytes > actual marked bytes. It means
aoqi@0 1588 // we have missed accounting some objects during the actual marking.
aoqi@0 1589 if (exp_marked_bytes > act_marked_bytes) {
aoqi@0 1590 if (_verbose) {
aoqi@0 1591 gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
aoqi@0 1592 "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
tschatzl@7091 1593 hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
aoqi@0 1594 }
aoqi@0 1595 failures += 1;
aoqi@0 1596 }
aoqi@0 1597
aoqi@0 1598 // Verify the bit, for this region, in the actual and expected
aoqi@0 1599 // (which was just calculated) region bit maps.
aoqi@0 1600 // We're not OK if the bit in the calculated expected region
aoqi@0 1601 // bitmap is set and the bit in the actual region bitmap is not.
tschatzl@7091 1602 BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
aoqi@0 1603
aoqi@0 1604 bool expected = _exp_region_bm->at(index);
aoqi@0 1605 bool actual = _region_bm->at(index);
aoqi@0 1606 if (expected && !actual) {
aoqi@0 1607 if (_verbose) {
aoqi@0 1608 gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
aoqi@0 1609 "expected: %s, actual: %s",
tschatzl@7091 1610 hr->hrm_index(),
aoqi@0 1611 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
aoqi@0 1612 }
aoqi@0 1613 failures += 1;
aoqi@0 1614 }
aoqi@0 1615
aoqi@0 1616 // Verify that the card bit maps for the cards spanned by the current
aoqi@0 1617 // region match. We have an error if we have a set bit in the expected
aoqi@0 1618 // bit map and the corresponding bit in the actual bitmap is not set.
aoqi@0 1619
aoqi@0 1620 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
aoqi@0 1621 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
aoqi@0 1622
aoqi@0 1623 for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
aoqi@0 1624 expected = _exp_card_bm->at(i);
aoqi@0 1625 actual = _card_bm->at(i);
aoqi@0 1626
aoqi@0 1627 if (expected && !actual) {
aoqi@0 1628 if (_verbose) {
aoqi@0 1629 gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
aoqi@0 1630 "expected: %s, actual: %s",
tschatzl@7091 1631 hr->hrm_index(), i,
aoqi@0 1632 BOOL_TO_STR(expected), BOOL_TO_STR(actual));
aoqi@0 1633 }
aoqi@0 1634 failures += 1;
aoqi@0 1635 }
aoqi@0 1636 }
aoqi@0 1637
aoqi@0 1638 if (failures > 0 && _verbose) {
aoqi@0 1639 gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
aoqi@0 1640 "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
aoqi@0 1641 HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
aoqi@0 1642 _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
aoqi@0 1643 }
aoqi@0 1644
aoqi@0 1645 _failures += failures;
aoqi@0 1646
aoqi@0 1647 // We could stop iteration over the heap when we
aoqi@0 1648 // find the first violating region by returning true.
aoqi@0 1649 return false;
aoqi@0 1650 }
aoqi@0 1651 };
aoqi@0 1652
aoqi@0 1653 class G1ParVerifyFinalCountTask: public AbstractGangTask {
aoqi@0 1654 protected:
aoqi@0 1655 G1CollectedHeap* _g1h;
aoqi@0 1656 ConcurrentMark* _cm;
aoqi@0 1657 BitMap* _actual_region_bm;
aoqi@0 1658 BitMap* _actual_card_bm;
aoqi@0 1659
aoqi@0 1660 uint _n_workers;
aoqi@0 1661
aoqi@0 1662 BitMap* _expected_region_bm;
aoqi@0 1663 BitMap* _expected_card_bm;
aoqi@0 1664
aoqi@0 1665 int _failures;
aoqi@0 1666 bool _verbose;
aoqi@0 1667
aoqi@0 1668 public:
aoqi@0 1669 G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
aoqi@0 1670 BitMap* region_bm, BitMap* card_bm,
aoqi@0 1671 BitMap* expected_region_bm, BitMap* expected_card_bm)
aoqi@0 1672 : AbstractGangTask("G1 verify final counting"),
aoqi@0 1673 _g1h(g1h), _cm(_g1h->concurrent_mark()),
aoqi@0 1674 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
aoqi@0 1675 _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
aoqi@0 1676 _failures(0), _verbose(false),
aoqi@0 1677 _n_workers(0) {
aoqi@0 1678 assert(VerifyDuringGC, "don't call this otherwise");
aoqi@0 1679
aoqi@0 1680 // Use the value already set as the number of active threads
aoqi@0 1681 // in the call to run_task().
aoqi@0 1682 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1683 assert( _g1h->workers()->active_workers() > 0,
aoqi@0 1684 "Should have been previously set");
aoqi@0 1685 _n_workers = _g1h->workers()->active_workers();
aoqi@0 1686 } else {
aoqi@0 1687 _n_workers = 1;
aoqi@0 1688 }
aoqi@0 1689
aoqi@0 1690 assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
aoqi@0 1691 assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
aoqi@0 1692
aoqi@0 1693 _verbose = _cm->verbose_medium();
aoqi@0 1694 }
aoqi@0 1695
aoqi@0 1696 void work(uint worker_id) {
aoqi@0 1697 assert(worker_id < _n_workers, "invariant");
aoqi@0 1698
aoqi@0 1699 VerifyLiveObjectDataHRClosure verify_cl(_g1h,
aoqi@0 1700 _actual_region_bm, _actual_card_bm,
aoqi@0 1701 _expected_region_bm,
aoqi@0 1702 _expected_card_bm,
aoqi@0 1703 _verbose);
aoqi@0 1704
aoqi@0 1705 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1706 _g1h->heap_region_par_iterate_chunked(&verify_cl,
aoqi@0 1707 worker_id,
aoqi@0 1708 _n_workers,
aoqi@0 1709 HeapRegion::VerifyCountClaimValue);
aoqi@0 1710 } else {
aoqi@0 1711 _g1h->heap_region_iterate(&verify_cl);
aoqi@0 1712 }
aoqi@0 1713
aoqi@0 1714 Atomic::add(verify_cl.failures(), &_failures);
aoqi@0 1715 }
aoqi@0 1716
aoqi@0 1717 int failures() const { return _failures; }
aoqi@0 1718 };
aoqi@0 1719
aoqi@0 1720 // Closure that finalizes the liveness counting data.
aoqi@0 1721 // Used during the cleanup pause.
aoqi@0 1722 // Sets the bits corresponding to the interval [NTAMS, top]
aoqi@0 1723 // (which contains the implicitly live objects) in the
aoqi@0 1724 // card liveness bitmap. Also sets the bit for each region,
aoqi@0 1725 // containing live data, in the region liveness bitmap.
aoqi@0 1726
aoqi@0 1727 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
aoqi@0 1728 public:
aoqi@0 1729 FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
aoqi@0 1730 BitMap* region_bm,
aoqi@0 1731 BitMap* card_bm) :
aoqi@0 1732 CMCountDataClosureBase(g1h, region_bm, card_bm) { }
aoqi@0 1733
aoqi@0 1734 bool doHeapRegion(HeapRegion* hr) {
aoqi@0 1735
aoqi@0 1736 if (hr->continuesHumongous()) {
aoqi@0 1737 // We will ignore these here and process them when their
aoqi@0 1738 // associated "starts humongous" region is processed (see
aoqi@0 1739 // set_bit_for_heap_region()). Note that we cannot rely on their
aoqi@0 1740 // associated "starts humongous" region to have their bit set to
aoqi@0 1741 // 1 since, due to the region chunking in the parallel region
aoqi@0 1742 // iteration, a "continues humongous" region might be visited
aoqi@0 1743 // before its associated "starts humongous".
aoqi@0 1744 return false;
aoqi@0 1745 }
aoqi@0 1746
aoqi@0 1747 HeapWord* ntams = hr->next_top_at_mark_start();
aoqi@0 1748 HeapWord* top = hr->top();
aoqi@0 1749
aoqi@0 1750 assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
aoqi@0 1751
aoqi@0 1752 // Mark the allocated-since-marking portion...
aoqi@0 1753 if (ntams < top) {
aoqi@0 1754 // This definitely means the region has live objects.
aoqi@0 1755 set_bit_for_region(hr);
aoqi@0 1756
aoqi@0 1757 // Now set the bits in the card bitmap for [ntams, top)
aoqi@0 1758 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
aoqi@0 1759 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
aoqi@0 1760
aoqi@0 1761 // Note: if we're looking at the last region in heap - top
aoqi@0 1762 // could be actually just beyond the end of the heap; end_idx
aoqi@0 1763 // will then correspond to a (non-existent) card that is also
aoqi@0 1764 // just beyond the heap.
aoqi@0 1765 if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
aoqi@0 1766 // end of object is not card aligned - increment to cover
aoqi@0 1767 // all the cards spanned by the object
aoqi@0 1768 end_idx += 1;
aoqi@0 1769 }
aoqi@0 1770
aoqi@0 1771 assert(end_idx <= _card_bm->size(),
aoqi@0 1772 err_msg("oob: end_idx= "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
aoqi@0 1773 end_idx, _card_bm->size()));
aoqi@0 1774 assert(start_idx < _card_bm->size(),
aoqi@0 1775 err_msg("oob: start_idx= "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
aoqi@0 1776 start_idx, _card_bm->size()));
aoqi@0 1777
aoqi@0 1778 _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
aoqi@0 1779 }
aoqi@0 1780
aoqi@0 1781 // Set the bit for the region if it contains live data
aoqi@0 1782 if (hr->next_marked_bytes() > 0) {
aoqi@0 1783 set_bit_for_region(hr);
aoqi@0 1784 }
aoqi@0 1785
aoqi@0 1786 return false;
aoqi@0 1787 }
aoqi@0 1788 };
aoqi@0 1789
aoqi@0 1790 class G1ParFinalCountTask: public AbstractGangTask {
aoqi@0 1791 protected:
aoqi@0 1792 G1CollectedHeap* _g1h;
aoqi@0 1793 ConcurrentMark* _cm;
aoqi@0 1794 BitMap* _actual_region_bm;
aoqi@0 1795 BitMap* _actual_card_bm;
aoqi@0 1796
aoqi@0 1797 uint _n_workers;
aoqi@0 1798
aoqi@0 1799 public:
aoqi@0 1800 G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
aoqi@0 1801 : AbstractGangTask("G1 final counting"),
aoqi@0 1802 _g1h(g1h), _cm(_g1h->concurrent_mark()),
aoqi@0 1803 _actual_region_bm(region_bm), _actual_card_bm(card_bm),
aoqi@0 1804 _n_workers(0) {
aoqi@0 1805 // Use the value already set as the number of active threads
aoqi@0 1806 // in the call to run_task().
aoqi@0 1807 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1808 assert( _g1h->workers()->active_workers() > 0,
aoqi@0 1809 "Should have been previously set");
aoqi@0 1810 _n_workers = _g1h->workers()->active_workers();
aoqi@0 1811 } else {
aoqi@0 1812 _n_workers = 1;
aoqi@0 1813 }
aoqi@0 1814 }
aoqi@0 1815
aoqi@0 1816 void work(uint worker_id) {
aoqi@0 1817 assert(worker_id < _n_workers, "invariant");
aoqi@0 1818
aoqi@0 1819 FinalCountDataUpdateClosure final_update_cl(_g1h,
aoqi@0 1820 _actual_region_bm,
aoqi@0 1821 _actual_card_bm);
aoqi@0 1822
aoqi@0 1823 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1824 _g1h->heap_region_par_iterate_chunked(&final_update_cl,
aoqi@0 1825 worker_id,
aoqi@0 1826 _n_workers,
aoqi@0 1827 HeapRegion::FinalCountClaimValue);
aoqi@0 1828 } else {
aoqi@0 1829 _g1h->heap_region_iterate(&final_update_cl);
aoqi@0 1830 }
aoqi@0 1831 }
aoqi@0 1832 };
aoqi@0 1833
aoqi@0 1834 class G1ParNoteEndTask;
aoqi@0 1835
aoqi@0 1836 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
aoqi@0 1837 G1CollectedHeap* _g1;
aoqi@0 1838 size_t _max_live_bytes;
aoqi@0 1839 uint _regions_claimed;
aoqi@0 1840 size_t _freed_bytes;
aoqi@0 1841 FreeRegionList* _local_cleanup_list;
aoqi@0 1842 HeapRegionSetCount _old_regions_removed;
aoqi@0 1843 HeapRegionSetCount _humongous_regions_removed;
aoqi@0 1844 HRRSCleanupTask* _hrrs_cleanup_task;
aoqi@0 1845 double _claimed_region_time;
aoqi@0 1846 double _max_region_time;
aoqi@0 1847
aoqi@0 1848 public:
aoqi@0 1849 G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
aoqi@0 1850 FreeRegionList* local_cleanup_list,
aoqi@0 1851 HRRSCleanupTask* hrrs_cleanup_task) :
aoqi@0 1852 _g1(g1),
aoqi@0 1853 _max_live_bytes(0), _regions_claimed(0),
aoqi@0 1854 _freed_bytes(0),
aoqi@0 1855 _claimed_region_time(0.0), _max_region_time(0.0),
aoqi@0 1856 _local_cleanup_list(local_cleanup_list),
aoqi@0 1857 _old_regions_removed(),
aoqi@0 1858 _humongous_regions_removed(),
aoqi@0 1859 _hrrs_cleanup_task(hrrs_cleanup_task) { }
aoqi@0 1860
aoqi@0 1861 size_t freed_bytes() { return _freed_bytes; }
aoqi@0 1862 const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
aoqi@0 1863 const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
aoqi@0 1864
aoqi@0 1865 bool doHeapRegion(HeapRegion *hr) {
aoqi@0 1866 if (hr->continuesHumongous()) {
aoqi@0 1867 return false;
aoqi@0 1868 }
aoqi@0 1869 // We use a claim value of zero here because all regions
aoqi@0 1870 // were claimed with value 1 in the FinalCount task.
aoqi@0 1871 _g1->reset_gc_time_stamps(hr);
aoqi@0 1872 double start = os::elapsedTime();
aoqi@0 1873 _regions_claimed++;
aoqi@0 1874 hr->note_end_of_marking();
aoqi@0 1875 _max_live_bytes += hr->max_live_bytes();
aoqi@0 1876
aoqi@0 1877 if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
aoqi@0 1878 _freed_bytes += hr->used();
aoqi@0 1879 hr->set_containing_set(NULL);
aoqi@0 1880 if (hr->isHumongous()) {
aoqi@0 1881 assert(hr->startsHumongous(), "we should only see starts humongous");
aoqi@0 1882 _humongous_regions_removed.increment(1u, hr->capacity());
aoqi@0 1883 _g1->free_humongous_region(hr, _local_cleanup_list, true);
aoqi@0 1884 } else {
aoqi@0 1885 _old_regions_removed.increment(1u, hr->capacity());
aoqi@0 1886 _g1->free_region(hr, _local_cleanup_list, true);
aoqi@0 1887 }
aoqi@0 1888 } else {
aoqi@0 1889 hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
aoqi@0 1890 }
aoqi@0 1891
aoqi@0 1892 double region_time = (os::elapsedTime() - start);
aoqi@0 1893 _claimed_region_time += region_time;
aoqi@0 1894 if (region_time > _max_region_time) {
aoqi@0 1895 _max_region_time = region_time;
aoqi@0 1896 }
aoqi@0 1897 return false;
aoqi@0 1898 }
aoqi@0 1899
aoqi@0 1900 size_t max_live_bytes() { return _max_live_bytes; }
aoqi@0 1901 uint regions_claimed() { return _regions_claimed; }
aoqi@0 1902 double claimed_region_time_sec() { return _claimed_region_time; }
aoqi@0 1903 double max_region_time_sec() { return _max_region_time; }
aoqi@0 1904 };
aoqi@0 1905
aoqi@0 1906 class G1ParNoteEndTask: public AbstractGangTask {
aoqi@0 1907 friend class G1NoteEndOfConcMarkClosure;
aoqi@0 1908
aoqi@0 1909 protected:
aoqi@0 1910 G1CollectedHeap* _g1h;
aoqi@0 1911 size_t _max_live_bytes;
aoqi@0 1912 size_t _freed_bytes;
aoqi@0 1913 FreeRegionList* _cleanup_list;
aoqi@0 1914
aoqi@0 1915 public:
aoqi@0 1916 G1ParNoteEndTask(G1CollectedHeap* g1h,
aoqi@0 1917 FreeRegionList* cleanup_list) :
aoqi@0 1918 AbstractGangTask("G1 note end"), _g1h(g1h),
aoqi@0 1919 _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
aoqi@0 1920
aoqi@0 1921 void work(uint worker_id) {
aoqi@0 1922 double start = os::elapsedTime();
aoqi@0 1923 FreeRegionList local_cleanup_list("Local Cleanup List");
aoqi@0 1924 HRRSCleanupTask hrrs_cleanup_task;
aoqi@0 1925 G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
aoqi@0 1926 &hrrs_cleanup_task);
aoqi@0 1927 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1928 _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
aoqi@0 1929 _g1h->workers()->active_workers(),
aoqi@0 1930 HeapRegion::NoteEndClaimValue);
aoqi@0 1931 } else {
aoqi@0 1932 _g1h->heap_region_iterate(&g1_note_end);
aoqi@0 1933 }
aoqi@0 1934 assert(g1_note_end.complete(), "Shouldn't have yielded!");
aoqi@0 1935
aoqi@0 1936 // Now update the lists
aoqi@0 1937 _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
aoqi@0 1938 {
aoqi@0 1939 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 1940 _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
aoqi@0 1941 _max_live_bytes += g1_note_end.max_live_bytes();
aoqi@0 1942 _freed_bytes += g1_note_end.freed_bytes();
aoqi@0 1943
aoqi@0 1944 // If we iterate over the global cleanup list at the end of
aoqi@0 1945 // cleanup to do this printing we will not guarantee to only
aoqi@0 1946 // generate output for the newly-reclaimed regions (the list
aoqi@0 1947 // might not be empty at the beginning of cleanup; we might
aoqi@0 1948 // still be working on its previous contents). So we do the
aoqi@0 1949 // printing here, before we append the new regions to the global
aoqi@0 1950 // cleanup list.
aoqi@0 1951
aoqi@0 1952 G1HRPrinter* hr_printer = _g1h->hr_printer();
aoqi@0 1953 if (hr_printer->is_active()) {
aoqi@0 1954 FreeRegionListIterator iter(&local_cleanup_list);
aoqi@0 1955 while (iter.more_available()) {
aoqi@0 1956 HeapRegion* hr = iter.get_next();
aoqi@0 1957 hr_printer->cleanup(hr);
aoqi@0 1958 }
aoqi@0 1959 }
aoqi@0 1960
aoqi@0 1961 _cleanup_list->add_ordered(&local_cleanup_list);
aoqi@0 1962 assert(local_cleanup_list.is_empty(), "post-condition");
aoqi@0 1963
aoqi@0 1964 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
aoqi@0 1965 }
aoqi@0 1966 }
aoqi@0 1967 size_t max_live_bytes() { return _max_live_bytes; }
aoqi@0 1968 size_t freed_bytes() { return _freed_bytes; }
aoqi@0 1969 };
aoqi@0 1970
aoqi@0 1971 class G1ParScrubRemSetTask: public AbstractGangTask {
aoqi@0 1972 protected:
aoqi@0 1973 G1RemSet* _g1rs;
aoqi@0 1974 BitMap* _region_bm;
aoqi@0 1975 BitMap* _card_bm;
aoqi@0 1976 public:
aoqi@0 1977 G1ParScrubRemSetTask(G1CollectedHeap* g1h,
aoqi@0 1978 BitMap* region_bm, BitMap* card_bm) :
aoqi@0 1979 AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
aoqi@0 1980 _region_bm(region_bm), _card_bm(card_bm) { }
aoqi@0 1981
aoqi@0 1982 void work(uint worker_id) {
aoqi@0 1983 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 1984 _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
aoqi@0 1985 HeapRegion::ScrubRemSetClaimValue);
aoqi@0 1986 } else {
aoqi@0 1987 _g1rs->scrub(_region_bm, _card_bm);
aoqi@0 1988 }
aoqi@0 1989 }
aoqi@0 1990
aoqi@0 1991 };
aoqi@0 1992
aoqi@0 1993 void ConcurrentMark::cleanup() {
aoqi@0 1994 // world is stopped at this checkpoint
aoqi@0 1995 assert(SafepointSynchronize::is_at_safepoint(),
aoqi@0 1996 "world should be stopped");
aoqi@0 1997 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 1998
aoqi@0 1999 // If a full collection has happened, we shouldn't do this.
aoqi@0 2000 if (has_aborted()) {
aoqi@0 2001 g1h->set_marking_complete(); // So bitmap clearing isn't confused
aoqi@0 2002 return;
aoqi@0 2003 }
aoqi@0 2004
aoqi@0 2005 g1h->verify_region_sets_optional();
aoqi@0 2006
aoqi@0 2007 if (VerifyDuringGC) {
aoqi@0 2008 HandleMark hm; // handle scope
aoqi@0 2009 Universe::heap()->prepare_for_verify();
aoqi@0 2010 Universe::verify(VerifyOption_G1UsePrevMarking,
aoqi@0 2011 " VerifyDuringGC:(before)");
aoqi@0 2012 }
brutisso@7005 2013 g1h->check_bitmaps("Cleanup Start");
aoqi@0 2014
aoqi@0 2015 G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
aoqi@0 2016 g1p->record_concurrent_mark_cleanup_start();
aoqi@0 2017
aoqi@0 2018 double start = os::elapsedTime();
aoqi@0 2019
aoqi@0 2020 HeapRegionRemSet::reset_for_cleanup_tasks();
aoqi@0 2021
aoqi@0 2022 uint n_workers;
aoqi@0 2023
aoqi@0 2024 // Do counting once more with the world stopped for good measure.
aoqi@0 2025 G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
aoqi@0 2026
aoqi@0 2027 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 2028 assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
aoqi@0 2029 "sanity check");
aoqi@0 2030
aoqi@0 2031 g1h->set_par_threads();
aoqi@0 2032 n_workers = g1h->n_par_threads();
aoqi@0 2033 assert(g1h->n_par_threads() == n_workers,
aoqi@0 2034 "Should not have been reset");
aoqi@0 2035 g1h->workers()->run_task(&g1_par_count_task);
aoqi@0 2036 // Done with the parallel phase so reset to 0.
aoqi@0 2037 g1h->set_par_threads(0);
aoqi@0 2038
aoqi@0 2039 assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
aoqi@0 2040 "sanity check");
aoqi@0 2041 } else {
aoqi@0 2042 n_workers = 1;
aoqi@0 2043 g1_par_count_task.work(0);
aoqi@0 2044 }
aoqi@0 2045
aoqi@0 2046 if (VerifyDuringGC) {
aoqi@0 2047 // Verify that the counting data accumulated during marking matches
aoqi@0 2048 // that calculated by walking the marking bitmap.
aoqi@0 2049
aoqi@0 2050 // Bitmaps to hold expected values
mgerdin@6977 2051 BitMap expected_region_bm(_region_bm.size(), true);
mgerdin@6977 2052 BitMap expected_card_bm(_card_bm.size(), true);
aoqi@0 2053
aoqi@0 2054 G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
aoqi@0 2055 &_region_bm,
aoqi@0 2056 &_card_bm,
aoqi@0 2057 &expected_region_bm,
aoqi@0 2058 &expected_card_bm);
aoqi@0 2059
aoqi@0 2060 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 2061 g1h->set_par_threads((int)n_workers);
aoqi@0 2062 g1h->workers()->run_task(&g1_par_verify_task);
aoqi@0 2063 // Done with the parallel phase so reset to 0.
aoqi@0 2064 g1h->set_par_threads(0);
aoqi@0 2065
aoqi@0 2066 assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
aoqi@0 2067 "sanity check");
aoqi@0 2068 } else {
aoqi@0 2069 g1_par_verify_task.work(0);
aoqi@0 2070 }
aoqi@0 2071
aoqi@0 2072 guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
aoqi@0 2073 }
aoqi@0 2074
aoqi@0 2075 size_t start_used_bytes = g1h->used();
aoqi@0 2076 g1h->set_marking_complete();
aoqi@0 2077
aoqi@0 2078 double count_end = os::elapsedTime();
aoqi@0 2079 double this_final_counting_time = (count_end - start);
aoqi@0 2080 _total_counting_time += this_final_counting_time;
aoqi@0 2081
aoqi@0 2082 if (G1PrintRegionLivenessInfo) {
aoqi@0 2083 G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
aoqi@0 2084 _g1h->heap_region_iterate(&cl);
aoqi@0 2085 }
aoqi@0 2086
aoqi@0 2087 // Install newly created mark bitMap as "prev".
aoqi@0 2088 swapMarkBitMaps();
aoqi@0 2089
aoqi@0 2090 g1h->reset_gc_time_stamp();
aoqi@0 2091
aoqi@0 2092 // Note end of marking in all heap regions.
aoqi@0 2093 G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
aoqi@0 2094 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 2095 g1h->set_par_threads((int)n_workers);
aoqi@0 2096 g1h->workers()->run_task(&g1_par_note_end_task);
aoqi@0 2097 g1h->set_par_threads(0);
aoqi@0 2098
aoqi@0 2099 assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
aoqi@0 2100 "sanity check");
aoqi@0 2101 } else {
aoqi@0 2102 g1_par_note_end_task.work(0);
aoqi@0 2103 }
aoqi@0 2104 g1h->check_gc_time_stamps();
aoqi@0 2105
aoqi@0 2106 if (!cleanup_list_is_empty()) {
aoqi@0 2107 // The cleanup list is not empty, so we'll have to process it
aoqi@0 2108 // concurrently. Notify anyone else that might be wanting free
aoqi@0 2109 // regions that there will be more free regions coming soon.
aoqi@0 2110 g1h->set_free_regions_coming();
aoqi@0 2111 }
aoqi@0 2112
aoqi@0 2113 // call below, since it affects the metric by which we sort the heap
aoqi@0 2114 // regions.
aoqi@0 2115 if (G1ScrubRemSets) {
aoqi@0 2116 double rs_scrub_start = os::elapsedTime();
aoqi@0 2117 G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
aoqi@0 2118 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 2119 g1h->set_par_threads((int)n_workers);
aoqi@0 2120 g1h->workers()->run_task(&g1_par_scrub_rs_task);
aoqi@0 2121 g1h->set_par_threads(0);
aoqi@0 2122
aoqi@0 2123 assert(g1h->check_heap_region_claim_values(
aoqi@0 2124 HeapRegion::ScrubRemSetClaimValue),
aoqi@0 2125 "sanity check");
aoqi@0 2126 } else {
aoqi@0 2127 g1_par_scrub_rs_task.work(0);
aoqi@0 2128 }
aoqi@0 2129
aoqi@0 2130 double rs_scrub_end = os::elapsedTime();
aoqi@0 2131 double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
aoqi@0 2132 _total_rs_scrub_time += this_rs_scrub_time;
aoqi@0 2133 }
aoqi@0 2134
aoqi@0 2135 // this will also free any regions totally full of garbage objects,
aoqi@0 2136 // and sort the regions.
aoqi@0 2137 g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
aoqi@0 2138
aoqi@0 2139 // Statistics.
aoqi@0 2140 double end = os::elapsedTime();
aoqi@0 2141 _cleanup_times.add((end - start) * 1000.0);
aoqi@0 2142
aoqi@0 2143 if (G1Log::fine()) {
aoqi@0 2144 g1h->print_size_transition(gclog_or_tty,
aoqi@0 2145 start_used_bytes,
aoqi@0 2146 g1h->used(),
aoqi@0 2147 g1h->capacity());
aoqi@0 2148 }
aoqi@0 2149
aoqi@0 2150 // Clean up will have freed any regions completely full of garbage.
aoqi@0 2151 // Update the soft reference policy with the new heap occupancy.
aoqi@0 2152 Universe::update_heap_info_at_gc();
aoqi@0 2153
aoqi@0 2154 if (VerifyDuringGC) {
aoqi@0 2155 HandleMark hm; // handle scope
aoqi@0 2156 Universe::heap()->prepare_for_verify();
aoqi@0 2157 Universe::verify(VerifyOption_G1UsePrevMarking,
aoqi@0 2158 " VerifyDuringGC:(after)");
aoqi@0 2159 }
brutisso@7005 2160 g1h->check_bitmaps("Cleanup End");
aoqi@0 2161
aoqi@0 2162 g1h->verify_region_sets_optional();
stefank@6992 2163
stefank@6992 2164 // We need to make this be a "collection" so any collection pause that
stefank@6992 2165 // races with it goes around and waits for completeCleanup to finish.
stefank@6992 2166 g1h->increment_total_collections();
stefank@6992 2167
stefank@6992 2168 // Clean out dead classes and update Metaspace sizes.
stefank@6996 2169 if (ClassUnloadingWithConcurrentMark) {
stefank@6996 2170 ClassLoaderDataGraph::purge();
stefank@6996 2171 }
stefank@6992 2172 MetaspaceGC::compute_new_size();
stefank@6992 2173
stefank@6992 2174 // We reclaimed old regions so we should calculate the sizes to make
stefank@6992 2175 // sure we update the old gen/space data.
stefank@6992 2176 g1h->g1mm()->update_sizes();
sjohanss@7370 2177 g1h->allocation_context_stats().update_after_mark();
stefank@6992 2178
aoqi@0 2179 g1h->trace_heap_after_concurrent_cycle();
aoqi@0 2180 }
aoqi@0 2181
aoqi@0 2182 void ConcurrentMark::completeCleanup() {
aoqi@0 2183 if (has_aborted()) return;
aoqi@0 2184
aoqi@0 2185 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 2186
aoqi@0 2187 _cleanup_list.verify_optional();
aoqi@0 2188 FreeRegionList tmp_free_list("Tmp Free List");
aoqi@0 2189
aoqi@0 2190 if (G1ConcRegionFreeingVerbose) {
aoqi@0 2191 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
aoqi@0 2192 "cleanup list has %u entries",
aoqi@0 2193 _cleanup_list.length());
aoqi@0 2194 }
aoqi@0 2195
tschatzl@7051 2196 // No one else should be accessing the _cleanup_list at this point,
tschatzl@7051 2197 // so it is not necessary to take any locks
aoqi@0 2198 while (!_cleanup_list.is_empty()) {
tschatzl@7050 2199 HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
aoqi@0 2200 assert(hr != NULL, "Got NULL from a non-empty list");
aoqi@0 2201 hr->par_clear();
aoqi@0 2202 tmp_free_list.add_ordered(hr);
aoqi@0 2203
aoqi@0 2204 // Instead of adding one region at a time to the secondary_free_list,
aoqi@0 2205 // we accumulate them in the local list and move them a few at a
aoqi@0 2206 // time. This also cuts down on the number of notify_all() calls
aoqi@0 2207 // we do during this process. We'll also append the local list when
aoqi@0 2208 // _cleanup_list is empty (which means we just removed the last
aoqi@0 2209 // region from the _cleanup_list).
aoqi@0 2210 if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
aoqi@0 2211 _cleanup_list.is_empty()) {
aoqi@0 2212 if (G1ConcRegionFreeingVerbose) {
aoqi@0 2213 gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
aoqi@0 2214 "appending %u entries to the secondary_free_list, "
aoqi@0 2215 "cleanup list still has %u entries",
aoqi@0 2216 tmp_free_list.length(),
aoqi@0 2217 _cleanup_list.length());
aoqi@0 2218 }
aoqi@0 2219
aoqi@0 2220 {
aoqi@0 2221 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
aoqi@0 2222 g1h->secondary_free_list_add(&tmp_free_list);
aoqi@0 2223 SecondaryFreeList_lock->notify_all();
aoqi@0 2224 }
aoqi@0 2225
aoqi@0 2226 if (G1StressConcRegionFreeing) {
aoqi@0 2227 for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
aoqi@0 2228 os::sleep(Thread::current(), (jlong) 1, false);
aoqi@0 2229 }
aoqi@0 2230 }
aoqi@0 2231 }
aoqi@0 2232 }
aoqi@0 2233 assert(tmp_free_list.is_empty(), "post-condition");
aoqi@0 2234 }
aoqi@0 2235
aoqi@0 2236 // Supporting Object and Oop closures for reference discovery
aoqi@0 2237 // and processing in during marking
aoqi@0 2238
aoqi@0 2239 bool G1CMIsAliveClosure::do_object_b(oop obj) {
aoqi@0 2240 HeapWord* addr = (HeapWord*)obj;
aoqi@0 2241 return addr != NULL &&
aoqi@0 2242 (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
aoqi@0 2243 }
aoqi@0 2244
aoqi@0 2245 // 'Keep Alive' oop closure used by both serial parallel reference processing.
aoqi@0 2246 // Uses the CMTask associated with a worker thread (for serial reference
aoqi@0 2247 // processing the CMTask for worker 0 is used) to preserve (mark) and
aoqi@0 2248 // trace referent objects.
aoqi@0 2249 //
aoqi@0 2250 // Using the CMTask and embedded local queues avoids having the worker
aoqi@0 2251 // threads operating on the global mark stack. This reduces the risk
aoqi@0 2252 // of overflowing the stack - which we would rather avoid at this late
aoqi@0 2253 // state. Also using the tasks' local queues removes the potential
aoqi@0 2254 // of the workers interfering with each other that could occur if
aoqi@0 2255 // operating on the global stack.
aoqi@0 2256
aoqi@0 2257 class G1CMKeepAliveAndDrainClosure: public OopClosure {
aoqi@0 2258 ConcurrentMark* _cm;
aoqi@0 2259 CMTask* _task;
aoqi@0 2260 int _ref_counter_limit;
aoqi@0 2261 int _ref_counter;
aoqi@0 2262 bool _is_serial;
aoqi@0 2263 public:
aoqi@0 2264 G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
aoqi@0 2265 _cm(cm), _task(task), _is_serial(is_serial),
aoqi@0 2266 _ref_counter_limit(G1RefProcDrainInterval) {
aoqi@0 2267 assert(_ref_counter_limit > 0, "sanity");
aoqi@0 2268 assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
aoqi@0 2269 _ref_counter = _ref_counter_limit;
aoqi@0 2270 }
aoqi@0 2271
aoqi@0 2272 virtual void do_oop(narrowOop* p) { do_oop_work(p); }
aoqi@0 2273 virtual void do_oop( oop* p) { do_oop_work(p); }
aoqi@0 2274
aoqi@0 2275 template <class T> void do_oop_work(T* p) {
aoqi@0 2276 if (!_cm->has_overflown()) {
aoqi@0 2277 oop obj = oopDesc::load_decode_heap_oop(p);
aoqi@0 2278 if (_cm->verbose_high()) {
aoqi@0 2279 gclog_or_tty->print_cr("\t[%u] we're looking at location "
aoqi@0 2280 "*"PTR_FORMAT" = "PTR_FORMAT,
aoqi@0 2281 _task->worker_id(), p2i(p), p2i((void*) obj));
aoqi@0 2282 }
aoqi@0 2283
aoqi@0 2284 _task->deal_with_reference(obj);
aoqi@0 2285 _ref_counter--;
aoqi@0 2286
aoqi@0 2287 if (_ref_counter == 0) {
aoqi@0 2288 // We have dealt with _ref_counter_limit references, pushing them
aoqi@0 2289 // and objects reachable from them on to the local stack (and
aoqi@0 2290 // possibly the global stack). Call CMTask::do_marking_step() to
aoqi@0 2291 // process these entries.
aoqi@0 2292 //
aoqi@0 2293 // We call CMTask::do_marking_step() in a loop, which we'll exit if
aoqi@0 2294 // there's nothing more to do (i.e. we're done with the entries that
aoqi@0 2295 // were pushed as a result of the CMTask::deal_with_reference() calls
aoqi@0 2296 // above) or we overflow.
aoqi@0 2297 //
aoqi@0 2298 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
aoqi@0 2299 // flag while there may still be some work to do. (See the comment at
aoqi@0 2300 // the beginning of CMTask::do_marking_step() for those conditions -
aoqi@0 2301 // one of which is reaching the specified time target.) It is only
aoqi@0 2302 // when CMTask::do_marking_step() returns without setting the
aoqi@0 2303 // has_aborted() flag that the marking step has completed.
aoqi@0 2304 do {
aoqi@0 2305 double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
aoqi@0 2306 _task->do_marking_step(mark_step_duration_ms,
aoqi@0 2307 false /* do_termination */,
aoqi@0 2308 _is_serial);
aoqi@0 2309 } while (_task->has_aborted() && !_cm->has_overflown());
aoqi@0 2310 _ref_counter = _ref_counter_limit;
aoqi@0 2311 }
aoqi@0 2312 } else {
aoqi@0 2313 if (_cm->verbose_high()) {
aoqi@0 2314 gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
aoqi@0 2315 }
aoqi@0 2316 }
aoqi@0 2317 }
aoqi@0 2318 };
aoqi@0 2319
aoqi@0 2320 // 'Drain' oop closure used by both serial and parallel reference processing.
aoqi@0 2321 // Uses the CMTask associated with a given worker thread (for serial
aoqi@0 2322 // reference processing the CMtask for worker 0 is used). Calls the
aoqi@0 2323 // do_marking_step routine, with an unbelievably large timeout value,
aoqi@0 2324 // to drain the marking data structures of the remaining entries
aoqi@0 2325 // added by the 'keep alive' oop closure above.
aoqi@0 2326
aoqi@0 2327 class G1CMDrainMarkingStackClosure: public VoidClosure {
aoqi@0 2328 ConcurrentMark* _cm;
aoqi@0 2329 CMTask* _task;
aoqi@0 2330 bool _is_serial;
aoqi@0 2331 public:
aoqi@0 2332 G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
aoqi@0 2333 _cm(cm), _task(task), _is_serial(is_serial) {
aoqi@0 2334 assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
aoqi@0 2335 }
aoqi@0 2336
aoqi@0 2337 void do_void() {
aoqi@0 2338 do {
aoqi@0 2339 if (_cm->verbose_high()) {
aoqi@0 2340 gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
aoqi@0 2341 _task->worker_id(), BOOL_TO_STR(_is_serial));
aoqi@0 2342 }
aoqi@0 2343
aoqi@0 2344 // We call CMTask::do_marking_step() to completely drain the local
aoqi@0 2345 // and global marking stacks of entries pushed by the 'keep alive'
aoqi@0 2346 // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
aoqi@0 2347 //
aoqi@0 2348 // CMTask::do_marking_step() is called in a loop, which we'll exit
aoqi@0 2349 // if there's nothing more to do (i.e. we'completely drained the
aoqi@0 2350 // entries that were pushed as a a result of applying the 'keep alive'
aoqi@0 2351 // closure to the entries on the discovered ref lists) or we overflow
aoqi@0 2352 // the global marking stack.
aoqi@0 2353 //
aoqi@0 2354 // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
aoqi@0 2355 // flag while there may still be some work to do. (See the comment at
aoqi@0 2356 // the beginning of CMTask::do_marking_step() for those conditions -
aoqi@0 2357 // one of which is reaching the specified time target.) It is only
aoqi@0 2358 // when CMTask::do_marking_step() returns without setting the
aoqi@0 2359 // has_aborted() flag that the marking step has completed.
aoqi@0 2360
aoqi@0 2361 _task->do_marking_step(1000000000.0 /* something very large */,
aoqi@0 2362 true /* do_termination */,
aoqi@0 2363 _is_serial);
aoqi@0 2364 } while (_task->has_aborted() && !_cm->has_overflown());
aoqi@0 2365 }
aoqi@0 2366 };
aoqi@0 2367
aoqi@0 2368 // Implementation of AbstractRefProcTaskExecutor for parallel
aoqi@0 2369 // reference processing at the end of G1 concurrent marking
aoqi@0 2370
aoqi@0 2371 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
aoqi@0 2372 private:
aoqi@0 2373 G1CollectedHeap* _g1h;
aoqi@0 2374 ConcurrentMark* _cm;
aoqi@0 2375 WorkGang* _workers;
aoqi@0 2376 int _active_workers;
aoqi@0 2377
aoqi@0 2378 public:
aoqi@0 2379 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
aoqi@0 2380 ConcurrentMark* cm,
aoqi@0 2381 WorkGang* workers,
aoqi@0 2382 int n_workers) :
aoqi@0 2383 _g1h(g1h), _cm(cm),
aoqi@0 2384 _workers(workers), _active_workers(n_workers) { }
aoqi@0 2385
aoqi@0 2386 // Executes the given task using concurrent marking worker threads.
aoqi@0 2387 virtual void execute(ProcessTask& task);
aoqi@0 2388 virtual void execute(EnqueueTask& task);
aoqi@0 2389 };
aoqi@0 2390
aoqi@0 2391 class G1CMRefProcTaskProxy: public AbstractGangTask {
aoqi@0 2392 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
aoqi@0 2393 ProcessTask& _proc_task;
aoqi@0 2394 G1CollectedHeap* _g1h;
aoqi@0 2395 ConcurrentMark* _cm;
aoqi@0 2396
aoqi@0 2397 public:
aoqi@0 2398 G1CMRefProcTaskProxy(ProcessTask& proc_task,
aoqi@0 2399 G1CollectedHeap* g1h,
aoqi@0 2400 ConcurrentMark* cm) :
aoqi@0 2401 AbstractGangTask("Process reference objects in parallel"),
aoqi@0 2402 _proc_task(proc_task), _g1h(g1h), _cm(cm) {
aoqi@0 2403 ReferenceProcessor* rp = _g1h->ref_processor_cm();
aoqi@0 2404 assert(rp->processing_is_mt(), "shouldn't be here otherwise");
aoqi@0 2405 }
aoqi@0 2406
aoqi@0 2407 virtual void work(uint worker_id) {
mdoerr@7020 2408 ResourceMark rm;
mdoerr@7020 2409 HandleMark hm;
aoqi@0 2410 CMTask* task = _cm->task(worker_id);
aoqi@0 2411 G1CMIsAliveClosure g1_is_alive(_g1h);
aoqi@0 2412 G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
aoqi@0 2413 G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
aoqi@0 2414
aoqi@0 2415 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
aoqi@0 2416 }
aoqi@0 2417 };
aoqi@0 2418
aoqi@0 2419 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
aoqi@0 2420 assert(_workers != NULL, "Need parallel worker threads.");
aoqi@0 2421 assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
aoqi@0 2422
aoqi@0 2423 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
aoqi@0 2424
aoqi@0 2425 // We need to reset the concurrency level before each
aoqi@0 2426 // proxy task execution, so that the termination protocol
aoqi@0 2427 // and overflow handling in CMTask::do_marking_step() knows
aoqi@0 2428 // how many workers to wait for.
aoqi@0 2429 _cm->set_concurrency(_active_workers);
aoqi@0 2430 _g1h->set_par_threads(_active_workers);
aoqi@0 2431 _workers->run_task(&proc_task_proxy);
aoqi@0 2432 _g1h->set_par_threads(0);
aoqi@0 2433 }
aoqi@0 2434
aoqi@0 2435 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
aoqi@0 2436 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
aoqi@0 2437 EnqueueTask& _enq_task;
aoqi@0 2438
aoqi@0 2439 public:
aoqi@0 2440 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
aoqi@0 2441 AbstractGangTask("Enqueue reference objects in parallel"),
aoqi@0 2442 _enq_task(enq_task) { }
aoqi@0 2443
aoqi@0 2444 virtual void work(uint worker_id) {
aoqi@0 2445 _enq_task.work(worker_id);
aoqi@0 2446 }
aoqi@0 2447 };
aoqi@0 2448
aoqi@0 2449 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
aoqi@0 2450 assert(_workers != NULL, "Need parallel worker threads.");
aoqi@0 2451 assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
aoqi@0 2452
aoqi@0 2453 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
aoqi@0 2454
aoqi@0 2455 // Not strictly necessary but...
aoqi@0 2456 //
aoqi@0 2457 // We need to reset the concurrency level before each
aoqi@0 2458 // proxy task execution, so that the termination protocol
aoqi@0 2459 // and overflow handling in CMTask::do_marking_step() knows
aoqi@0 2460 // how many workers to wait for.
aoqi@0 2461 _cm->set_concurrency(_active_workers);
aoqi@0 2462 _g1h->set_par_threads(_active_workers);
aoqi@0 2463 _workers->run_task(&enq_task_proxy);
aoqi@0 2464 _g1h->set_par_threads(0);
aoqi@0 2465 }
aoqi@0 2466
stefank@6992 2467 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
stefank@6992 2468 G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
stefank@6992 2469 }
stefank@6992 2470
stefank@6992 2471 // Helper class to get rid of some boilerplate code.
stefank@6992 2472 class G1RemarkGCTraceTime : public GCTraceTime {
stefank@6992 2473 static bool doit_and_prepend(bool doit) {
stefank@6992 2474 if (doit) {
stefank@6992 2475 gclog_or_tty->put(' ');
stefank@6992 2476 }
stefank@6992 2477 return doit;
stefank@6992 2478 }
stefank@6992 2479
stefank@6992 2480 public:
stefank@6992 2481 G1RemarkGCTraceTime(const char* title, bool doit)
stefank@6992 2482 : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
stefank@6992 2483 G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
stefank@6992 2484 }
stefank@6992 2485 };
stefank@6992 2486
aoqi@0 2487 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
aoqi@0 2488 if (has_overflown()) {
aoqi@0 2489 // Skip processing the discovered references if we have
aoqi@0 2490 // overflown the global marking stack. Reference objects
aoqi@0 2491 // only get discovered once so it is OK to not
aoqi@0 2492 // de-populate the discovered reference lists. We could have,
aoqi@0 2493 // but the only benefit would be that, when marking restarts,
aoqi@0 2494 // less reference objects are discovered.
aoqi@0 2495 return;
aoqi@0 2496 }
aoqi@0 2497
aoqi@0 2498 ResourceMark rm;
aoqi@0 2499 HandleMark hm;
aoqi@0 2500
aoqi@0 2501 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 2502
aoqi@0 2503 // Is alive closure.
aoqi@0 2504 G1CMIsAliveClosure g1_is_alive(g1h);
aoqi@0 2505
aoqi@0 2506 // Inner scope to exclude the cleaning of the string and symbol
aoqi@0 2507 // tables from the displayed time.
aoqi@0 2508 {
aoqi@0 2509 if (G1Log::finer()) {
aoqi@0 2510 gclog_or_tty->put(' ');
aoqi@0 2511 }
brutisso@6904 2512 GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
aoqi@0 2513
aoqi@0 2514 ReferenceProcessor* rp = g1h->ref_processor_cm();
aoqi@0 2515
aoqi@0 2516 // See the comment in G1CollectedHeap::ref_processing_init()
aoqi@0 2517 // about how reference processing currently works in G1.
aoqi@0 2518
aoqi@0 2519 // Set the soft reference policy
aoqi@0 2520 rp->setup_policy(clear_all_soft_refs);
aoqi@0 2521 assert(_markStack.isEmpty(), "mark stack should be empty");
aoqi@0 2522
aoqi@0 2523 // Instances of the 'Keep Alive' and 'Complete GC' closures used
aoqi@0 2524 // in serial reference processing. Note these closures are also
aoqi@0 2525 // used for serially processing (by the the current thread) the
aoqi@0 2526 // JNI references during parallel reference processing.
aoqi@0 2527 //
aoqi@0 2528 // These closures do not need to synchronize with the worker
aoqi@0 2529 // threads involved in parallel reference processing as these
aoqi@0 2530 // instances are executed serially by the current thread (e.g.
aoqi@0 2531 // reference processing is not multi-threaded and is thus
aoqi@0 2532 // performed by the current thread instead of a gang worker).
aoqi@0 2533 //
aoqi@0 2534 // The gang tasks involved in parallel reference procssing create
aoqi@0 2535 // their own instances of these closures, which do their own
aoqi@0 2536 // synchronization among themselves.
aoqi@0 2537 G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
aoqi@0 2538 G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
aoqi@0 2539
aoqi@0 2540 // We need at least one active thread. If reference processing
aoqi@0 2541 // is not multi-threaded we use the current (VMThread) thread,
aoqi@0 2542 // otherwise we use the work gang from the G1CollectedHeap and
aoqi@0 2543 // we utilize all the worker threads we can.
aoqi@0 2544 bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
aoqi@0 2545 uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
aoqi@0 2546 active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
aoqi@0 2547
aoqi@0 2548 // Parallel processing task executor.
aoqi@0 2549 G1CMRefProcTaskExecutor par_task_executor(g1h, this,
aoqi@0 2550 g1h->workers(), active_workers);
aoqi@0 2551 AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
aoqi@0 2552
aoqi@0 2553 // Set the concurrency level. The phase was already set prior to
aoqi@0 2554 // executing the remark task.
aoqi@0 2555 set_concurrency(active_workers);
aoqi@0 2556
aoqi@0 2557 // Set the degree of MT processing here. If the discovery was done MT,
aoqi@0 2558 // the number of threads involved during discovery could differ from
aoqi@0 2559 // the number of active workers. This is OK as long as the discovered
aoqi@0 2560 // Reference lists are balanced (see balance_all_queues() and balance_queues()).
aoqi@0 2561 rp->set_active_mt_degree(active_workers);
aoqi@0 2562
aoqi@0 2563 // Process the weak references.
aoqi@0 2564 const ReferenceProcessorStats& stats =
aoqi@0 2565 rp->process_discovered_references(&g1_is_alive,
aoqi@0 2566 &g1_keep_alive,
aoqi@0 2567 &g1_drain_mark_stack,
aoqi@0 2568 executor,
brutisso@6904 2569 g1h->gc_timer_cm(),
brutisso@6904 2570 concurrent_gc_id());
aoqi@0 2571 g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
aoqi@0 2572
aoqi@0 2573 // The do_oop work routines of the keep_alive and drain_marking_stack
aoqi@0 2574 // oop closures will set the has_overflown flag if we overflow the
aoqi@0 2575 // global marking stack.
aoqi@0 2576
aoqi@0 2577 assert(_markStack.overflow() || _markStack.isEmpty(),
aoqi@0 2578 "mark stack should be empty (unless it overflowed)");
aoqi@0 2579
aoqi@0 2580 if (_markStack.overflow()) {
aoqi@0 2581 // This should have been done already when we tried to push an
aoqi@0 2582 // entry on to the global mark stack. But let's do it again.
aoqi@0 2583 set_has_overflown();
aoqi@0 2584 }
aoqi@0 2585
aoqi@0 2586 assert(rp->num_q() == active_workers, "why not");
aoqi@0 2587
aoqi@0 2588 rp->enqueue_discovered_references(executor);
aoqi@0 2589
aoqi@0 2590 rp->verify_no_references_recorded();
aoqi@0 2591 assert(!rp->discovery_enabled(), "Post condition");
aoqi@0 2592 }
aoqi@0 2593
aoqi@0 2594 if (has_overflown()) {
aoqi@0 2595 // We can not trust g1_is_alive if the marking stack overflowed
aoqi@0 2596 return;
aoqi@0 2597 }
aoqi@0 2598
stefank@6992 2599 assert(_markStack.isEmpty(), "Marking should have completed");
stefank@6992 2600
stefank@6992 2601 // Unload Klasses, String, Symbols, Code Cache, etc.
stefank@6992 2602 {
stefank@6996 2603 G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
stefank@6996 2604
stefank@6996 2605 if (ClassUnloadingWithConcurrentMark) {
stefank@7333 2606 // Cleaning of klasses depends on correct information from MetadataMarkOnStack. The CodeCache::mark_on_stack
stefank@7333 2607 // part is too slow to be done serially, so it is handled during the weakRefsWorkParallelPart phase.
stefank@7333 2608 // Defer the cleaning until we have complete on_stack data.
stefank@7333 2609 MetadataOnStackMark md_on_stack(false /* Don't visit the code cache at this point */);
stefank@7333 2610
stefank@6996 2611 bool purged_classes;
stefank@6996 2612
stefank@6996 2613 {
stefank@6996 2614 G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
stefank@7333 2615 purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
stefank@6996 2616 }
stefank@6996 2617
stefank@6996 2618 {
stefank@6996 2619 G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
stefank@6996 2620 weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
stefank@6996 2621 }
stefank@7333 2622
stefank@7333 2623 {
stefank@7333 2624 G1RemarkGCTraceTime trace("Deallocate Metadata", G1Log::finest());
stefank@7333 2625 ClassLoaderDataGraph::free_deallocate_lists();
stefank@7333 2626 }
stefank@6996 2627 }
stefank@6996 2628
stefank@6996 2629 if (G1StringDedup::is_enabled()) {
stefank@6996 2630 G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
stefank@6996 2631 G1StringDedup::unlink(&g1_is_alive);
stefank@6996 2632 }
stefank@6992 2633 }
aoqi@0 2634 }
aoqi@0 2635
aoqi@0 2636 void ConcurrentMark::swapMarkBitMaps() {
aoqi@0 2637 CMBitMapRO* temp = _prevMarkBitMap;
aoqi@0 2638 _prevMarkBitMap = (CMBitMapRO*)_nextMarkBitMap;
aoqi@0 2639 _nextMarkBitMap = (CMBitMap*) temp;
aoqi@0 2640 }
aoqi@0 2641
kbarrett@7834 2642 // Closure for marking entries in SATB buffers.
kbarrett@7834 2643 class CMSATBBufferClosure : public SATBBufferClosure {
stefank@6992 2644 private:
stefank@6992 2645 CMTask* _task;
kbarrett@7834 2646 G1CollectedHeap* _g1h;
kbarrett@7834 2647
kbarrett@7834 2648 // This is very similar to CMTask::deal_with_reference, but with
kbarrett@7834 2649 // more relaxed requirements for the argument, so this must be more
kbarrett@7834 2650 // circumspect about treating the argument as an object.
kbarrett@7834 2651 void do_entry(void* entry) const {
kbarrett@7834 2652 _task->increment_refs_reached();
kbarrett@7834 2653 HeapRegion* hr = _g1h->heap_region_containing_raw(entry);
kbarrett@7834 2654 if (entry < hr->next_top_at_mark_start()) {
kbarrett@7834 2655 // Until we get here, we don't know whether entry refers to a valid
kbarrett@7834 2656 // object; it could instead have been a stale reference.
kbarrett@7834 2657 oop obj = static_cast<oop>(entry);
kbarrett@7834 2658 assert(obj->is_oop(true /* ignore mark word */),
kbarrett@7834 2659 err_msg("Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj)));
kbarrett@7834 2660 _task->make_reference_grey(obj, hr);
kbarrett@7834 2661 }
kbarrett@7834 2662 }
stefank@6992 2663
stefank@6992 2664 public:
kbarrett@7834 2665 CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
kbarrett@7834 2666 : _task(task), _g1h(g1h) { }
kbarrett@7834 2667
kbarrett@7834 2668 virtual void do_buffer(void** buffer, size_t size) {
kbarrett@7834 2669 for (size_t i = 0; i < size; ++i) {
kbarrett@7834 2670 do_entry(buffer[i]);
kbarrett@7834 2671 }
stefank@6992 2672 }
stefank@6992 2673 };
stefank@6992 2674
stefank@6992 2675 class G1RemarkThreadsClosure : public ThreadClosure {
kbarrett@7834 2676 CMSATBBufferClosure _cm_satb_cl;
stefank@6992 2677 G1CMOopClosure _cm_cl;
stefank@6992 2678 MarkingCodeBlobClosure _code_cl;
stefank@6992 2679 int _thread_parity;
stefank@6992 2680 bool _is_par;
stefank@6992 2681
stefank@6992 2682 public:
stefank@6992 2683 G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
kbarrett@7834 2684 _cm_satb_cl(task, g1h),
kbarrett@7834 2685 _cm_cl(g1h, g1h->concurrent_mark(), task),
kbarrett@7834 2686 _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
stefank@6992 2687 _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
stefank@6992 2688
stefank@6992 2689 void do_thread(Thread* thread) {
stefank@6992 2690 if (thread->is_Java_thread()) {
stefank@6992 2691 if (thread->claim_oops_do(_is_par, _thread_parity)) {
stefank@6992 2692 JavaThread* jt = (JavaThread*)thread;
stefank@6992 2693
stefank@6992 2694 // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
stefank@6992 2695 // however the liveness of oops reachable from nmethods have very complex lifecycles:
stefank@6992 2696 // * Alive if on the stack of an executing method
stefank@6992 2697 // * Weakly reachable otherwise
stefank@6992 2698 // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
stefank@6992 2699 // live by the SATB invariant but other oops recorded in nmethods may behave differently.
stefank@6992 2700 jt->nmethods_do(&_code_cl);
stefank@6992 2701
kbarrett@7834 2702 jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
stefank@6992 2703 }
stefank@6992 2704 } else if (thread->is_VM_thread()) {
stefank@6992 2705 if (thread->claim_oops_do(_is_par, _thread_parity)) {
kbarrett@7834 2706 JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
stefank@6992 2707 }
stefank@6992 2708 }
stefank@6992 2709 }
stefank@6992 2710 };
stefank@6992 2711
aoqi@0 2712 class CMRemarkTask: public AbstractGangTask {
aoqi@0 2713 private:
aoqi@0 2714 ConcurrentMark* _cm;
aoqi@0 2715 bool _is_serial;
aoqi@0 2716 public:
aoqi@0 2717 void work(uint worker_id) {
aoqi@0 2718 // Since all available tasks are actually started, we should
aoqi@0 2719 // only proceed if we're supposed to be actived.
aoqi@0 2720 if (worker_id < _cm->active_tasks()) {
aoqi@0 2721 CMTask* task = _cm->task(worker_id);
aoqi@0 2722 task->record_start_time();
stefank@6992 2723 {
stefank@6992 2724 ResourceMark rm;
stefank@6992 2725 HandleMark hm;
stefank@6992 2726
stefank@6992 2727 G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
stefank@6992 2728 Threads::threads_do(&threads_f);
stefank@6992 2729 }
stefank@6992 2730
aoqi@0 2731 do {
aoqi@0 2732 task->do_marking_step(1000000000.0 /* something very large */,
aoqi@0 2733 true /* do_termination */,
aoqi@0 2734 _is_serial);
aoqi@0 2735 } while (task->has_aborted() && !_cm->has_overflown());
aoqi@0 2736 // If we overflow, then we do not want to restart. We instead
aoqi@0 2737 // want to abort remark and do concurrent marking again.
aoqi@0 2738 task->record_end_time();
aoqi@0 2739 }
aoqi@0 2740 }
aoqi@0 2741
aoqi@0 2742 CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
aoqi@0 2743 AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
aoqi@0 2744 _cm->terminator()->reset_for_reuse(active_workers);
aoqi@0 2745 }
aoqi@0 2746 };
aoqi@0 2747
aoqi@0 2748 void ConcurrentMark::checkpointRootsFinalWork() {
aoqi@0 2749 ResourceMark rm;
aoqi@0 2750 HandleMark hm;
aoqi@0 2751 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 2752
stefank@6992 2753 G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
stefank@6992 2754
aoqi@0 2755 g1h->ensure_parsability(false);
aoqi@0 2756
aoqi@0 2757 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 2758 G1CollectedHeap::StrongRootsScope srs(g1h);
aoqi@0 2759 // this is remark, so we'll use up all active threads
aoqi@0 2760 uint active_workers = g1h->workers()->active_workers();
aoqi@0 2761 if (active_workers == 0) {
aoqi@0 2762 assert(active_workers > 0, "Should have been set earlier");
aoqi@0 2763 active_workers = (uint) ParallelGCThreads;
aoqi@0 2764 g1h->workers()->set_active_workers(active_workers);
aoqi@0 2765 }
aoqi@0 2766 set_concurrency_and_phase(active_workers, false /* concurrent */);
aoqi@0 2767 // Leave _parallel_marking_threads at it's
aoqi@0 2768 // value originally calculated in the ConcurrentMark
aoqi@0 2769 // constructor and pass values of the active workers
aoqi@0 2770 // through the gang in the task.
aoqi@0 2771
aoqi@0 2772 CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
aoqi@0 2773 // We will start all available threads, even if we decide that the
aoqi@0 2774 // active_workers will be fewer. The extra ones will just bail out
aoqi@0 2775 // immediately.
aoqi@0 2776 g1h->set_par_threads(active_workers);
aoqi@0 2777 g1h->workers()->run_task(&remarkTask);
aoqi@0 2778 g1h->set_par_threads(0);
aoqi@0 2779 } else {
aoqi@0 2780 G1CollectedHeap::StrongRootsScope srs(g1h);
aoqi@0 2781 uint active_workers = 1;
aoqi@0 2782 set_concurrency_and_phase(active_workers, false /* concurrent */);
aoqi@0 2783
aoqi@0 2784 // Note - if there's no work gang then the VMThread will be
aoqi@0 2785 // the thread to execute the remark - serially. We have
aoqi@0 2786 // to pass true for the is_serial parameter so that
aoqi@0 2787 // CMTask::do_marking_step() doesn't enter the sync
aoqi@0 2788 // barriers in the event of an overflow. Doing so will
aoqi@0 2789 // cause an assert that the current thread is not a
aoqi@0 2790 // concurrent GC thread.
aoqi@0 2791 CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
aoqi@0 2792 remarkTask.work(0);
aoqi@0 2793 }
aoqi@0 2794 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
aoqi@0 2795 guarantee(has_overflown() ||
aoqi@0 2796 satb_mq_set.completed_buffers_num() == 0,
aoqi@0 2797 err_msg("Invariant: has_overflown = %s, num buffers = %d",
aoqi@0 2798 BOOL_TO_STR(has_overflown()),
aoqi@0 2799 satb_mq_set.completed_buffers_num()));
aoqi@0 2800
aoqi@0 2801 print_stats();
aoqi@0 2802 }
aoqi@0 2803
aoqi@0 2804 #ifndef PRODUCT
aoqi@0 2805
aoqi@0 2806 class PrintReachableOopClosure: public OopClosure {
aoqi@0 2807 private:
aoqi@0 2808 G1CollectedHeap* _g1h;
aoqi@0 2809 outputStream* _out;
aoqi@0 2810 VerifyOption _vo;
aoqi@0 2811 bool _all;
aoqi@0 2812
aoqi@0 2813 public:
aoqi@0 2814 PrintReachableOopClosure(outputStream* out,
aoqi@0 2815 VerifyOption vo,
aoqi@0 2816 bool all) :
aoqi@0 2817 _g1h(G1CollectedHeap::heap()),
aoqi@0 2818 _out(out), _vo(vo), _all(all) { }
aoqi@0 2819
aoqi@0 2820 void do_oop(narrowOop* p) { do_oop_work(p); }
aoqi@0 2821 void do_oop( oop* p) { do_oop_work(p); }
aoqi@0 2822
aoqi@0 2823 template <class T> void do_oop_work(T* p) {
aoqi@0 2824 oop obj = oopDesc::load_decode_heap_oop(p);
aoqi@0 2825 const char* str = NULL;
aoqi@0 2826 const char* str2 = "";
aoqi@0 2827
aoqi@0 2828 if (obj == NULL) {
aoqi@0 2829 str = "";
aoqi@0 2830 } else if (!_g1h->is_in_g1_reserved(obj)) {
aoqi@0 2831 str = " O";
aoqi@0 2832 } else {
aoqi@0 2833 HeapRegion* hr = _g1h->heap_region_containing(obj);
aoqi@0 2834 bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
aoqi@0 2835 bool marked = _g1h->is_marked(obj, _vo);
aoqi@0 2836
aoqi@0 2837 if (over_tams) {
aoqi@0 2838 str = " >";
aoqi@0 2839 if (marked) {
aoqi@0 2840 str2 = " AND MARKED";
aoqi@0 2841 }
aoqi@0 2842 } else if (marked) {
aoqi@0 2843 str = " M";
aoqi@0 2844 } else {
aoqi@0 2845 str = " NOT";
aoqi@0 2846 }
aoqi@0 2847 }
aoqi@0 2848
aoqi@0 2849 _out->print_cr(" "PTR_FORMAT": "PTR_FORMAT"%s%s",
aoqi@0 2850 p2i(p), p2i((void*) obj), str, str2);
aoqi@0 2851 }
aoqi@0 2852 };
aoqi@0 2853
aoqi@0 2854 class PrintReachableObjectClosure : public ObjectClosure {
aoqi@0 2855 private:
aoqi@0 2856 G1CollectedHeap* _g1h;
aoqi@0 2857 outputStream* _out;
aoqi@0 2858 VerifyOption _vo;
aoqi@0 2859 bool _all;
aoqi@0 2860 HeapRegion* _hr;
aoqi@0 2861
aoqi@0 2862 public:
aoqi@0 2863 PrintReachableObjectClosure(outputStream* out,
aoqi@0 2864 VerifyOption vo,
aoqi@0 2865 bool all,
aoqi@0 2866 HeapRegion* hr) :
aoqi@0 2867 _g1h(G1CollectedHeap::heap()),
aoqi@0 2868 _out(out), _vo(vo), _all(all), _hr(hr) { }
aoqi@0 2869
aoqi@0 2870 void do_object(oop o) {
aoqi@0 2871 bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
aoqi@0 2872 bool marked = _g1h->is_marked(o, _vo);
aoqi@0 2873 bool print_it = _all || over_tams || marked;
aoqi@0 2874
aoqi@0 2875 if (print_it) {
aoqi@0 2876 _out->print_cr(" "PTR_FORMAT"%s",
aoqi@0 2877 p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
aoqi@0 2878 PrintReachableOopClosure oopCl(_out, _vo, _all);
aoqi@0 2879 o->oop_iterate_no_header(&oopCl);
aoqi@0 2880 }
aoqi@0 2881 }
aoqi@0 2882 };
aoqi@0 2883
aoqi@0 2884 class PrintReachableRegionClosure : public HeapRegionClosure {
aoqi@0 2885 private:
aoqi@0 2886 G1CollectedHeap* _g1h;
aoqi@0 2887 outputStream* _out;
aoqi@0 2888 VerifyOption _vo;
aoqi@0 2889 bool _all;
aoqi@0 2890
aoqi@0 2891 public:
aoqi@0 2892 bool doHeapRegion(HeapRegion* hr) {
aoqi@0 2893 HeapWord* b = hr->bottom();
aoqi@0 2894 HeapWord* e = hr->end();
aoqi@0 2895 HeapWord* t = hr->top();
aoqi@0 2896 HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
aoqi@0 2897 _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
aoqi@0 2898 "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
aoqi@0 2899 _out->cr();
aoqi@0 2900
aoqi@0 2901 HeapWord* from = b;
aoqi@0 2902 HeapWord* to = t;
aoqi@0 2903
aoqi@0 2904 if (to > from) {
aoqi@0 2905 _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
aoqi@0 2906 _out->cr();
aoqi@0 2907 PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
aoqi@0 2908 hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
aoqi@0 2909 _out->cr();
aoqi@0 2910 }
aoqi@0 2911
aoqi@0 2912 return false;
aoqi@0 2913 }
aoqi@0 2914
aoqi@0 2915 PrintReachableRegionClosure(outputStream* out,
aoqi@0 2916 VerifyOption vo,
aoqi@0 2917 bool all) :
aoqi@0 2918 _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
aoqi@0 2919 };
aoqi@0 2920
aoqi@0 2921 void ConcurrentMark::print_reachable(const char* str,
aoqi@0 2922 VerifyOption vo,
aoqi@0 2923 bool all) {
aoqi@0 2924 gclog_or_tty->cr();
aoqi@0 2925 gclog_or_tty->print_cr("== Doing heap dump... ");
aoqi@0 2926
aoqi@0 2927 if (G1PrintReachableBaseFile == NULL) {
aoqi@0 2928 gclog_or_tty->print_cr(" #### error: no base file defined");
aoqi@0 2929 return;
aoqi@0 2930 }
aoqi@0 2931
aoqi@0 2932 if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
aoqi@0 2933 (JVM_MAXPATHLEN - 1)) {
aoqi@0 2934 gclog_or_tty->print_cr(" #### error: file name too long");
aoqi@0 2935 return;
aoqi@0 2936 }
aoqi@0 2937
aoqi@0 2938 char file_name[JVM_MAXPATHLEN];
aoqi@0 2939 sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
aoqi@0 2940 gclog_or_tty->print_cr(" dumping to file %s", file_name);
aoqi@0 2941
aoqi@0 2942 fileStream fout(file_name);
aoqi@0 2943 if (!fout.is_open()) {
aoqi@0 2944 gclog_or_tty->print_cr(" #### error: could not open file");
aoqi@0 2945 return;
aoqi@0 2946 }
aoqi@0 2947
aoqi@0 2948 outputStream* out = &fout;
aoqi@0 2949 out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
aoqi@0 2950 out->cr();
aoqi@0 2951
aoqi@0 2952 out->print_cr("--- ITERATING OVER REGIONS");
aoqi@0 2953 out->cr();
aoqi@0 2954 PrintReachableRegionClosure rcl(out, vo, all);
aoqi@0 2955 _g1h->heap_region_iterate(&rcl);
aoqi@0 2956 out->cr();
aoqi@0 2957
aoqi@0 2958 gclog_or_tty->print_cr(" done");
aoqi@0 2959 gclog_or_tty->flush();
aoqi@0 2960 }
aoqi@0 2961
aoqi@0 2962 #endif // PRODUCT
aoqi@0 2963
aoqi@0 2964 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
aoqi@0 2965 // Note we are overriding the read-only view of the prev map here, via
aoqi@0 2966 // the cast.
aoqi@0 2967 ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
aoqi@0 2968 }
aoqi@0 2969
aoqi@0 2970 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
aoqi@0 2971 _nextMarkBitMap->clearRange(mr);
aoqi@0 2972 }
aoqi@0 2973
aoqi@0 2974 HeapRegion*
aoqi@0 2975 ConcurrentMark::claim_region(uint worker_id) {
aoqi@0 2976 // "checkpoint" the finger
aoqi@0 2977 HeapWord* finger = _finger;
aoqi@0 2978
aoqi@0 2979 // _heap_end will not change underneath our feet; it only changes at
aoqi@0 2980 // yield points.
aoqi@0 2981 while (finger < _heap_end) {
aoqi@0 2982 assert(_g1h->is_in_g1_reserved(finger), "invariant");
aoqi@0 2983
aoqi@0 2984 // Note on how this code handles humongous regions. In the
aoqi@0 2985 // normal case the finger will reach the start of a "starts
aoqi@0 2986 // humongous" (SH) region. Its end will either be the end of the
aoqi@0 2987 // last "continues humongous" (CH) region in the sequence, or the
aoqi@0 2988 // standard end of the SH region (if the SH is the only region in
aoqi@0 2989 // the sequence). That way claim_region() will skip over the CH
aoqi@0 2990 // regions. However, there is a subtle race between a CM thread
aoqi@0 2991 // executing this method and a mutator thread doing a humongous
aoqi@0 2992 // object allocation. The two are not mutually exclusive as the CM
aoqi@0 2993 // thread does not need to hold the Heap_lock when it gets
aoqi@0 2994 // here. So there is a chance that claim_region() will come across
aoqi@0 2995 // a free region that's in the progress of becoming a SH or a CH
aoqi@0 2996 // region. In the former case, it will either
aoqi@0 2997 // a) Miss the update to the region's end, in which case it will
aoqi@0 2998 // visit every subsequent CH region, will find their bitmaps
aoqi@0 2999 // empty, and do nothing, or
aoqi@0 3000 // b) Will observe the update of the region's end (in which case
aoqi@0 3001 // it will skip the subsequent CH regions).
aoqi@0 3002 // If it comes across a region that suddenly becomes CH, the
aoqi@0 3003 // scenario will be similar to b). So, the race between
aoqi@0 3004 // claim_region() and a humongous object allocation might force us
aoqi@0 3005 // to do a bit of unnecessary work (due to some unnecessary bitmap
aoqi@0 3006 // iterations) but it should not introduce and correctness issues.
tschatzl@7051 3007 HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
tschatzl@7051 3008
tschatzl@7051 3009 // Above heap_region_containing_raw may return NULL as we always scan claim
tschatzl@7051 3010 // until the end of the heap. In this case, just jump to the next region.
tschatzl@7051 3011 HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
aoqi@0 3012
aoqi@0 3013 // Is the gap between reading the finger and doing the CAS too long?
aoqi@0 3014 HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
tschatzl@7051 3015 if (res == finger && curr_region != NULL) {
aoqi@0 3016 // we succeeded
tschatzl@7051 3017 HeapWord* bottom = curr_region->bottom();
tschatzl@7051 3018 HeapWord* limit = curr_region->next_top_at_mark_start();
tschatzl@7051 3019
tschatzl@7051 3020 if (verbose_low()) {
tschatzl@7051 3021 gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
tschatzl@7051 3022 "["PTR_FORMAT", "PTR_FORMAT"), "
tschatzl@7051 3023 "limit = "PTR_FORMAT,
tschatzl@7051 3024 worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
tschatzl@7051 3025 }
aoqi@0 3026
aoqi@0 3027 // notice that _finger == end cannot be guaranteed here since,
aoqi@0 3028 // someone else might have moved the finger even further
aoqi@0 3029 assert(_finger >= end, "the finger should have moved forward");
aoqi@0 3030
aoqi@0 3031 if (verbose_low()) {
aoqi@0 3032 gclog_or_tty->print_cr("[%u] we were successful with region = "
aoqi@0 3033 PTR_FORMAT, worker_id, p2i(curr_region));
aoqi@0 3034 }
aoqi@0 3035
aoqi@0 3036 if (limit > bottom) {
aoqi@0 3037 if (verbose_low()) {
aoqi@0 3038 gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
aoqi@0 3039 "returning it ", worker_id, p2i(curr_region));
aoqi@0 3040 }
aoqi@0 3041 return curr_region;
aoqi@0 3042 } else {
aoqi@0 3043 assert(limit == bottom,
aoqi@0 3044 "the region limit should be at bottom");
aoqi@0 3045 if (verbose_low()) {
aoqi@0 3046 gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
aoqi@0 3047 "returning NULL", worker_id, p2i(curr_region));
aoqi@0 3048 }
aoqi@0 3049 // we return NULL and the caller should try calling
aoqi@0 3050 // claim_region() again.
aoqi@0 3051 return NULL;
aoqi@0 3052 }
aoqi@0 3053 } else {
aoqi@0 3054 assert(_finger > finger, "the finger should have moved forward");
aoqi@0 3055 if (verbose_low()) {
tschatzl@7051 3056 if (curr_region == NULL) {
tschatzl@7051 3057 gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
tschatzl@7051 3058 "global finger = "PTR_FORMAT", "
tschatzl@7051 3059 "our finger = "PTR_FORMAT,
tschatzl@7051 3060 worker_id, p2i(_finger), p2i(finger));
tschatzl@7051 3061 } else {
tschatzl@7051 3062 gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
tschatzl@7051 3063 "global finger = "PTR_FORMAT", "
tschatzl@7051 3064 "our finger = "PTR_FORMAT,
tschatzl@7051 3065 worker_id, p2i(_finger), p2i(finger));
tschatzl@7051 3066 }
aoqi@0 3067 }
aoqi@0 3068
aoqi@0 3069 // read it again
aoqi@0 3070 finger = _finger;
aoqi@0 3071 }
aoqi@0 3072 }
aoqi@0 3073
aoqi@0 3074 return NULL;
aoqi@0 3075 }
aoqi@0 3076
aoqi@0 3077 #ifndef PRODUCT
aoqi@0 3078 enum VerifyNoCSetOopsPhase {
aoqi@0 3079 VerifyNoCSetOopsStack,
kbarrett@7833 3080 VerifyNoCSetOopsQueues
aoqi@0 3081 };
aoqi@0 3082
aoqi@0 3083 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
aoqi@0 3084 private:
aoqi@0 3085 G1CollectedHeap* _g1h;
aoqi@0 3086 VerifyNoCSetOopsPhase _phase;
aoqi@0 3087 int _info;
aoqi@0 3088
aoqi@0 3089 const char* phase_str() {
aoqi@0 3090 switch (_phase) {
aoqi@0 3091 case VerifyNoCSetOopsStack: return "Stack";
aoqi@0 3092 case VerifyNoCSetOopsQueues: return "Queue";
aoqi@0 3093 default: ShouldNotReachHere();
aoqi@0 3094 }
aoqi@0 3095 return NULL;
aoqi@0 3096 }
aoqi@0 3097
aoqi@0 3098 void do_object_work(oop obj) {
aoqi@0 3099 guarantee(!_g1h->obj_in_cs(obj),
aoqi@0 3100 err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
aoqi@0 3101 p2i((void*) obj), phase_str(), _info));
aoqi@0 3102 }
aoqi@0 3103
aoqi@0 3104 public:
aoqi@0 3105 VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
aoqi@0 3106
aoqi@0 3107 void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
aoqi@0 3108 _phase = phase;
aoqi@0 3109 _info = info;
aoqi@0 3110 }
aoqi@0 3111
aoqi@0 3112 virtual void do_oop(oop* p) {
aoqi@0 3113 oop obj = oopDesc::load_decode_heap_oop(p);
aoqi@0 3114 do_object_work(obj);
aoqi@0 3115 }
aoqi@0 3116
aoqi@0 3117 virtual void do_oop(narrowOop* p) {
aoqi@0 3118 // We should not come across narrow oops while scanning marking
kbarrett@7833 3119 // stacks
aoqi@0 3120 ShouldNotReachHere();
aoqi@0 3121 }
aoqi@0 3122
aoqi@0 3123 virtual void do_object(oop obj) {
aoqi@0 3124 do_object_work(obj);
aoqi@0 3125 }
aoqi@0 3126 };
aoqi@0 3127
kbarrett@7833 3128 void ConcurrentMark::verify_no_cset_oops() {
aoqi@0 3129 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
aoqi@0 3130 if (!G1CollectedHeap::heap()->mark_in_progress()) {
aoqi@0 3131 return;
aoqi@0 3132 }
aoqi@0 3133
aoqi@0 3134 VerifyNoCSetOopsClosure cl;
aoqi@0 3135
kbarrett@7833 3136 // Verify entries on the global mark stack
kbarrett@7833 3137 cl.set_phase(VerifyNoCSetOopsStack);
kbarrett@7833 3138 _markStack.oops_do(&cl);
kbarrett@7833 3139
kbarrett@7833 3140 // Verify entries on the task queues
kbarrett@7833 3141 for (uint i = 0; i < _max_worker_id; i += 1) {
kbarrett@7833 3142 cl.set_phase(VerifyNoCSetOopsQueues, i);
kbarrett@7833 3143 CMTaskQueue* queue = _task_queues->queue(i);
kbarrett@7833 3144 queue->oops_do(&cl);
aoqi@0 3145 }
aoqi@0 3146
kbarrett@7833 3147 // Verify the global finger
kbarrett@7833 3148 HeapWord* global_finger = finger();
kbarrett@7833 3149 if (global_finger != NULL && global_finger < _heap_end) {
kbarrett@7833 3150 // The global finger always points to a heap region boundary. We
kbarrett@7833 3151 // use heap_region_containing_raw() to get the containing region
kbarrett@7833 3152 // given that the global finger could be pointing to a free region
kbarrett@7833 3153 // which subsequently becomes continues humongous. If that
kbarrett@7833 3154 // happens, heap_region_containing() will return the bottom of the
kbarrett@7833 3155 // corresponding starts humongous region and the check below will
kbarrett@7833 3156 // not hold any more.
kbarrett@7833 3157 // Since we always iterate over all regions, we might get a NULL HeapRegion
kbarrett@7833 3158 // here.
kbarrett@7833 3159 HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
kbarrett@7833 3160 guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
kbarrett@7833 3161 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
kbarrett@7833 3162 p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
aoqi@0 3163 }
aoqi@0 3164
kbarrett@7833 3165 // Verify the task fingers
kbarrett@7833 3166 assert(parallel_marking_threads() <= _max_worker_id, "sanity");
kbarrett@7833 3167 for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
kbarrett@7833 3168 CMTask* task = _tasks[i];
kbarrett@7833 3169 HeapWord* task_finger = task->finger();
kbarrett@7833 3170 if (task_finger != NULL && task_finger < _heap_end) {
kbarrett@7833 3171 // See above note on the global finger verification.
kbarrett@7833 3172 HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
kbarrett@7833 3173 guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
kbarrett@7833 3174 !task_hr->in_collection_set(),
kbarrett@7833 3175 err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
kbarrett@7833 3176 p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
aoqi@0 3177 }
aoqi@0 3178 }
aoqi@0 3179 }
aoqi@0 3180 #endif // PRODUCT
aoqi@0 3181
aoqi@0 3182 // Aggregate the counting data that was constructed concurrently
aoqi@0 3183 // with marking.
aoqi@0 3184 class AggregateCountDataHRClosure: public HeapRegionClosure {
aoqi@0 3185 G1CollectedHeap* _g1h;
aoqi@0 3186 ConcurrentMark* _cm;
aoqi@0 3187 CardTableModRefBS* _ct_bs;
aoqi@0 3188 BitMap* _cm_card_bm;
aoqi@0 3189 uint _max_worker_id;
aoqi@0 3190
aoqi@0 3191 public:
aoqi@0 3192 AggregateCountDataHRClosure(G1CollectedHeap* g1h,
aoqi@0 3193 BitMap* cm_card_bm,
aoqi@0 3194 uint max_worker_id) :
aoqi@0 3195 _g1h(g1h), _cm(g1h->concurrent_mark()),
aoqi@0 3196 _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
aoqi@0 3197 _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
aoqi@0 3198
aoqi@0 3199 bool doHeapRegion(HeapRegion* hr) {
aoqi@0 3200 if (hr->continuesHumongous()) {
aoqi@0 3201 // We will ignore these here and process them when their
aoqi@0 3202 // associated "starts humongous" region is processed.
aoqi@0 3203 // Note that we cannot rely on their associated
aoqi@0 3204 // "starts humongous" region to have their bit set to 1
aoqi@0 3205 // since, due to the region chunking in the parallel region
aoqi@0 3206 // iteration, a "continues humongous" region might be visited
aoqi@0 3207 // before its associated "starts humongous".
aoqi@0 3208 return false;
aoqi@0 3209 }
aoqi@0 3210
aoqi@0 3211 HeapWord* start = hr->bottom();
aoqi@0 3212 HeapWord* limit = hr->next_top_at_mark_start();
aoqi@0 3213 HeapWord* end = hr->end();
aoqi@0 3214
aoqi@0 3215 assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
aoqi@0 3216 err_msg("Preconditions not met - "
aoqi@0 3217 "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
aoqi@0 3218 "top: "PTR_FORMAT", end: "PTR_FORMAT,
aoqi@0 3219 p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
aoqi@0 3220
aoqi@0 3221 assert(hr->next_marked_bytes() == 0, "Precondition");
aoqi@0 3222
aoqi@0 3223 if (start == limit) {
aoqi@0 3224 // NTAMS of this region has not been set so nothing to do.
aoqi@0 3225 return false;
aoqi@0 3226 }
aoqi@0 3227
aoqi@0 3228 // 'start' should be in the heap.
aoqi@0 3229 assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
aoqi@0 3230 // 'end' *may* be just beyone the end of the heap (if hr is the last region)
aoqi@0 3231 assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
aoqi@0 3232
aoqi@0 3233 BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
aoqi@0 3234 BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
aoqi@0 3235 BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
aoqi@0 3236
aoqi@0 3237 // If ntams is not card aligned then we bump card bitmap index
aoqi@0 3238 // for limit so that we get the all the cards spanned by
aoqi@0 3239 // the object ending at ntams.
aoqi@0 3240 // Note: if this is the last region in the heap then ntams
aoqi@0 3241 // could be actually just beyond the end of the the heap;
aoqi@0 3242 // limit_idx will then correspond to a (non-existent) card
aoqi@0 3243 // that is also outside the heap.
aoqi@0 3244 if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
aoqi@0 3245 limit_idx += 1;
aoqi@0 3246 }
aoqi@0 3247
aoqi@0 3248 assert(limit_idx <= end_idx, "or else use atomics");
aoqi@0 3249
aoqi@0 3250 // Aggregate the "stripe" in the count data associated with hr.
tschatzl@7091 3251 uint hrm_index = hr->hrm_index();
aoqi@0 3252 size_t marked_bytes = 0;
aoqi@0 3253
aoqi@0 3254 for (uint i = 0; i < _max_worker_id; i += 1) {
aoqi@0 3255 size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
aoqi@0 3256 BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
aoqi@0 3257
aoqi@0 3258 // Fetch the marked_bytes in this region for task i and
aoqi@0 3259 // add it to the running total for this region.
tschatzl@7091 3260 marked_bytes += marked_bytes_array[hrm_index];
aoqi@0 3261
aoqi@0 3262 // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
aoqi@0 3263 // into the global card bitmap.
aoqi@0 3264 BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
aoqi@0 3265
aoqi@0 3266 while (scan_idx < limit_idx) {
aoqi@0 3267 assert(task_card_bm->at(scan_idx) == true, "should be");
aoqi@0 3268 _cm_card_bm->set_bit(scan_idx);
aoqi@0 3269 assert(_cm_card_bm->at(scan_idx) == true, "should be");
aoqi@0 3270
aoqi@0 3271 // BitMap::get_next_one_offset() can handle the case when
aoqi@0 3272 // its left_offset parameter is greater than its right_offset
aoqi@0 3273 // parameter. It does, however, have an early exit if
aoqi@0 3274 // left_offset == right_offset. So let's limit the value
aoqi@0 3275 // passed in for left offset here.
aoqi@0 3276 BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
aoqi@0 3277 scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
aoqi@0 3278 }
aoqi@0 3279 }
aoqi@0 3280
aoqi@0 3281 // Update the marked bytes for this region.
aoqi@0 3282 hr->add_to_marked_bytes(marked_bytes);
aoqi@0 3283
aoqi@0 3284 // Next heap region
aoqi@0 3285 return false;
aoqi@0 3286 }
aoqi@0 3287 };
aoqi@0 3288
aoqi@0 3289 class G1AggregateCountDataTask: public AbstractGangTask {
aoqi@0 3290 protected:
aoqi@0 3291 G1CollectedHeap* _g1h;
aoqi@0 3292 ConcurrentMark* _cm;
aoqi@0 3293 BitMap* _cm_card_bm;
aoqi@0 3294 uint _max_worker_id;
aoqi@0 3295 int _active_workers;
aoqi@0 3296
aoqi@0 3297 public:
aoqi@0 3298 G1AggregateCountDataTask(G1CollectedHeap* g1h,
aoqi@0 3299 ConcurrentMark* cm,
aoqi@0 3300 BitMap* cm_card_bm,
aoqi@0 3301 uint max_worker_id,
aoqi@0 3302 int n_workers) :
aoqi@0 3303 AbstractGangTask("Count Aggregation"),
aoqi@0 3304 _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
aoqi@0 3305 _max_worker_id(max_worker_id),
aoqi@0 3306 _active_workers(n_workers) { }
aoqi@0 3307
aoqi@0 3308 void work(uint worker_id) {
aoqi@0 3309 AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
aoqi@0 3310
aoqi@0 3311 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 3312 _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
aoqi@0 3313 _active_workers,
aoqi@0 3314 HeapRegion::AggregateCountClaimValue);
aoqi@0 3315 } else {
aoqi@0 3316 _g1h->heap_region_iterate(&cl);
aoqi@0 3317 }
aoqi@0 3318 }
aoqi@0 3319 };
aoqi@0 3320
aoqi@0 3321
aoqi@0 3322 void ConcurrentMark::aggregate_count_data() {
aoqi@0 3323 int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
aoqi@0 3324 _g1h->workers()->active_workers() :
aoqi@0 3325 1);
aoqi@0 3326
aoqi@0 3327 G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
aoqi@0 3328 _max_worker_id, n_workers);
aoqi@0 3329
aoqi@0 3330 if (G1CollectedHeap::use_parallel_gc_threads()) {
aoqi@0 3331 assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
aoqi@0 3332 "sanity check");
aoqi@0 3333 _g1h->set_par_threads(n_workers);
aoqi@0 3334 _g1h->workers()->run_task(&g1_par_agg_task);
aoqi@0 3335 _g1h->set_par_threads(0);
aoqi@0 3336
aoqi@0 3337 assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
aoqi@0 3338 "sanity check");
aoqi@0 3339 _g1h->reset_heap_region_claim_values();
aoqi@0 3340 } else {
aoqi@0 3341 g1_par_agg_task.work(0);
aoqi@0 3342 }
aoqi@0 3343 }
aoqi@0 3344
aoqi@0 3345 // Clear the per-worker arrays used to store the per-region counting data
aoqi@0 3346 void ConcurrentMark::clear_all_count_data() {
aoqi@0 3347 // Clear the global card bitmap - it will be filled during
aoqi@0 3348 // liveness count aggregation (during remark) and the
aoqi@0 3349 // final counting task.
aoqi@0 3350 _card_bm.clear();
aoqi@0 3351
aoqi@0 3352 // Clear the global region bitmap - it will be filled as part
aoqi@0 3353 // of the final counting task.
aoqi@0 3354 _region_bm.clear();
aoqi@0 3355
aoqi@0 3356 uint max_regions = _g1h->max_regions();
aoqi@0 3357 assert(_max_worker_id > 0, "uninitialized");
aoqi@0 3358
aoqi@0 3359 for (uint i = 0; i < _max_worker_id; i += 1) {
aoqi@0 3360 BitMap* task_card_bm = count_card_bitmap_for(i);
aoqi@0 3361 size_t* marked_bytes_array = count_marked_bytes_array_for(i);
aoqi@0 3362
aoqi@0 3363 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
aoqi@0 3364 assert(marked_bytes_array != NULL, "uninitialized");
aoqi@0 3365
aoqi@0 3366 memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
aoqi@0 3367 task_card_bm->clear();
aoqi@0 3368 }
aoqi@0 3369 }
aoqi@0 3370
aoqi@0 3371 void ConcurrentMark::print_stats() {
aoqi@0 3372 if (verbose_stats()) {
aoqi@0 3373 gclog_or_tty->print_cr("---------------------------------------------------------------------");
aoqi@0 3374 for (size_t i = 0; i < _active_tasks; ++i) {
aoqi@0 3375 _tasks[i]->print_stats();
aoqi@0 3376 gclog_or_tty->print_cr("---------------------------------------------------------------------");
aoqi@0 3377 }
aoqi@0 3378 }
aoqi@0 3379 }
aoqi@0 3380
aoqi@0 3381 // abandon current marking iteration due to a Full GC
aoqi@0 3382 void ConcurrentMark::abort() {
tschatzl@7016 3383 // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
tschatzl@7016 3384 // concurrent bitmap clearing.
aoqi@0 3385 _nextMarkBitMap->clearAll();
brutisso@7005 3386
brutisso@7005 3387 // Note we cannot clear the previous marking bitmap here
brutisso@7005 3388 // since VerifyDuringGC verifies the objects marked during
brutisso@7005 3389 // a full GC against the previous bitmap.
brutisso@7005 3390
aoqi@0 3391 // Clear the liveness counting data
aoqi@0 3392 clear_all_count_data();
aoqi@0 3393 // Empty mark stack
aoqi@0 3394 reset_marking_state();
aoqi@0 3395 for (uint i = 0; i < _max_worker_id; ++i) {
aoqi@0 3396 _tasks[i]->clear_region_fields();
aoqi@0 3397 }
aoqi@0 3398 _first_overflow_barrier_sync.abort();
aoqi@0 3399 _second_overflow_barrier_sync.abort();
brutisso@6904 3400 const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
brutisso@6904 3401 if (!gc_id.is_undefined()) {
brutisso@6904 3402 // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
brutisso@6904 3403 // to detect that it was aborted. Only keep track of the first GC id that we aborted.
brutisso@6904 3404 _aborted_gc_id = gc_id;
brutisso@6904 3405 }
aoqi@0 3406 _has_aborted = true;
aoqi@0 3407
aoqi@0 3408 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
aoqi@0 3409 satb_mq_set.abandon_partial_marking();
aoqi@0 3410 // This can be called either during or outside marking, we'll read
aoqi@0 3411 // the expected_active value from the SATB queue set.
aoqi@0 3412 satb_mq_set.set_active_all_threads(
aoqi@0 3413 false, /* new active value */
aoqi@0 3414 satb_mq_set.is_active() /* expected_active */);
aoqi@0 3415
aoqi@0 3416 _g1h->trace_heap_after_concurrent_cycle();
aoqi@0 3417 _g1h->register_concurrent_cycle_end();
aoqi@0 3418 }
aoqi@0 3419
brutisso@6904 3420 const GCId& ConcurrentMark::concurrent_gc_id() {
brutisso@6904 3421 if (has_aborted()) {
brutisso@6904 3422 return _aborted_gc_id;
brutisso@6904 3423 }
brutisso@6904 3424 return _g1h->gc_tracer_cm()->gc_id();
brutisso@6904 3425 }
brutisso@6904 3426
aoqi@0 3427 static void print_ms_time_info(const char* prefix, const char* name,
aoqi@0 3428 NumberSeq& ns) {
aoqi@0 3429 gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
aoqi@0 3430 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
aoqi@0 3431 if (ns.num() > 0) {
aoqi@0 3432 gclog_or_tty->print_cr("%s [std. dev = %8.2f ms, max = %8.2f ms]",
aoqi@0 3433 prefix, ns.sd(), ns.maximum());
aoqi@0 3434 }
aoqi@0 3435 }
aoqi@0 3436
aoqi@0 3437 void ConcurrentMark::print_summary_info() {
aoqi@0 3438 gclog_or_tty->print_cr(" Concurrent marking:");
aoqi@0 3439 print_ms_time_info(" ", "init marks", _init_times);
aoqi@0 3440 print_ms_time_info(" ", "remarks", _remark_times);
aoqi@0 3441 {
aoqi@0 3442 print_ms_time_info(" ", "final marks", _remark_mark_times);
aoqi@0 3443 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times);
aoqi@0 3444
aoqi@0 3445 }
aoqi@0 3446 print_ms_time_info(" ", "cleanups", _cleanup_times);
aoqi@0 3447 gclog_or_tty->print_cr(" Final counting total time = %8.2f s (avg = %8.2f ms).",
aoqi@0 3448 _total_counting_time,
aoqi@0 3449 (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
aoqi@0 3450 (double)_cleanup_times.num()
aoqi@0 3451 : 0.0));
aoqi@0 3452 if (G1ScrubRemSets) {
aoqi@0 3453 gclog_or_tty->print_cr(" RS scrub total time = %8.2f s (avg = %8.2f ms).",
aoqi@0 3454 _total_rs_scrub_time,
aoqi@0 3455 (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
aoqi@0 3456 (double)_cleanup_times.num()
aoqi@0 3457 : 0.0));
aoqi@0 3458 }
aoqi@0 3459 gclog_or_tty->print_cr(" Total stop_world time = %8.2f s.",
aoqi@0 3460 (_init_times.sum() + _remark_times.sum() +
aoqi@0 3461 _cleanup_times.sum())/1000.0);
aoqi@0 3462 gclog_or_tty->print_cr(" Total concurrent time = %8.2f s "
aoqi@0 3463 "(%8.2f s marking).",
aoqi@0 3464 cmThread()->vtime_accum(),
aoqi@0 3465 cmThread()->vtime_mark_accum());
aoqi@0 3466 }
aoqi@0 3467
aoqi@0 3468 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
aoqi@0 3469 if (use_parallel_marking_threads()) {
aoqi@0 3470 _parallel_workers->print_worker_threads_on(st);
aoqi@0 3471 }
aoqi@0 3472 }
aoqi@0 3473
aoqi@0 3474 void ConcurrentMark::print_on_error(outputStream* st) const {
aoqi@0 3475 st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
aoqi@0 3476 p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
aoqi@0 3477 _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
aoqi@0 3478 _nextMarkBitMap->print_on_error(st, " Next Bits: ");
aoqi@0 3479 }
aoqi@0 3480
aoqi@0 3481 // We take a break if someone is trying to stop the world.
aoqi@0 3482 bool ConcurrentMark::do_yield_check(uint worker_id) {
pliden@6906 3483 if (SuspendibleThreadSet::should_yield()) {
aoqi@0 3484 if (worker_id == 0) {
aoqi@0 3485 _g1h->g1_policy()->record_concurrent_pause();
aoqi@0 3486 }
pliden@6906 3487 SuspendibleThreadSet::yield();
aoqi@0 3488 return true;
aoqi@0 3489 } else {
aoqi@0 3490 return false;
aoqi@0 3491 }
aoqi@0 3492 }
aoqi@0 3493
aoqi@0 3494 #ifndef PRODUCT
aoqi@0 3495 // for debugging purposes
aoqi@0 3496 void ConcurrentMark::print_finger() {
aoqi@0 3497 gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
aoqi@0 3498 p2i(_heap_start), p2i(_heap_end), p2i(_finger));
aoqi@0 3499 for (uint i = 0; i < _max_worker_id; ++i) {
aoqi@0 3500 gclog_or_tty->print(" %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
aoqi@0 3501 }
aoqi@0 3502 gclog_or_tty->cr();
aoqi@0 3503 }
aoqi@0 3504 #endif
aoqi@0 3505
kbarrett@7830 3506 template<bool scan>
kbarrett@7830 3507 inline void CMTask::process_grey_object(oop obj) {
kbarrett@7830 3508 assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
aoqi@0 3509 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
aoqi@0 3510
aoqi@0 3511 if (_cm->verbose_high()) {
kbarrett@7830 3512 gclog_or_tty->print_cr("[%u] processing grey object " PTR_FORMAT,
aoqi@0 3513 _worker_id, p2i((void*) obj));
aoqi@0 3514 }
aoqi@0 3515
aoqi@0 3516 size_t obj_size = obj->size();
aoqi@0 3517 _words_scanned += obj_size;
aoqi@0 3518
kbarrett@7830 3519 if (scan) {
kbarrett@7830 3520 obj->oop_iterate(_cm_oop_closure);
kbarrett@7830 3521 }
aoqi@0 3522 statsOnly( ++_objs_scanned );
aoqi@0 3523 check_limits();
aoqi@0 3524 }
aoqi@0 3525
kbarrett@7830 3526 template void CMTask::process_grey_object<true>(oop);
kbarrett@7830 3527 template void CMTask::process_grey_object<false>(oop);
kbarrett@7830 3528
aoqi@0 3529 // Closure for iteration over bitmaps
aoqi@0 3530 class CMBitMapClosure : public BitMapClosure {
aoqi@0 3531 private:
aoqi@0 3532 // the bitmap that is being iterated over
aoqi@0 3533 CMBitMap* _nextMarkBitMap;
aoqi@0 3534 ConcurrentMark* _cm;
aoqi@0 3535 CMTask* _task;
aoqi@0 3536
aoqi@0 3537 public:
aoqi@0 3538 CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
aoqi@0 3539 _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
aoqi@0 3540
aoqi@0 3541 bool do_bit(size_t offset) {
aoqi@0 3542 HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
aoqi@0 3543 assert(_nextMarkBitMap->isMarked(addr), "invariant");
aoqi@0 3544 assert( addr < _cm->finger(), "invariant");
aoqi@0 3545
aoqi@0 3546 statsOnly( _task->increase_objs_found_on_bitmap() );
aoqi@0 3547 assert(addr >= _task->finger(), "invariant");
aoqi@0 3548
aoqi@0 3549 // We move that task's local finger along.
aoqi@0 3550 _task->move_finger_to(addr);
aoqi@0 3551
aoqi@0 3552 _task->scan_object(oop(addr));
aoqi@0 3553 // we only partially drain the local queue and global stack
aoqi@0 3554 _task->drain_local_queue(true);
aoqi@0 3555 _task->drain_global_stack(true);
aoqi@0 3556
aoqi@0 3557 // if the has_aborted flag has been raised, we need to bail out of
aoqi@0 3558 // the iteration
aoqi@0 3559 return !_task->has_aborted();
aoqi@0 3560 }
aoqi@0 3561 };
aoqi@0 3562
aoqi@0 3563 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
aoqi@0 3564 ConcurrentMark* cm,
aoqi@0 3565 CMTask* task)
aoqi@0 3566 : _g1h(g1h), _cm(cm), _task(task) {
aoqi@0 3567 assert(_ref_processor == NULL, "should be initialized to NULL");
aoqi@0 3568
aoqi@0 3569 if (G1UseConcMarkReferenceProcessing) {
aoqi@0 3570 _ref_processor = g1h->ref_processor_cm();
aoqi@0 3571 assert(_ref_processor != NULL, "should not be NULL");
aoqi@0 3572 }
aoqi@0 3573 }
aoqi@0 3574
aoqi@0 3575 void CMTask::setup_for_region(HeapRegion* hr) {
aoqi@0 3576 assert(hr != NULL,
brutisso@7049 3577 "claim_region() should have filtered out NULL regions");
aoqi@0 3578 assert(!hr->continuesHumongous(),
aoqi@0 3579 "claim_region() should have filtered out continues humongous regions");
aoqi@0 3580
aoqi@0 3581 if (_cm->verbose_low()) {
aoqi@0 3582 gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
aoqi@0 3583 _worker_id, p2i(hr));
aoqi@0 3584 }
aoqi@0 3585
aoqi@0 3586 _curr_region = hr;
aoqi@0 3587 _finger = hr->bottom();
aoqi@0 3588 update_region_limit();
aoqi@0 3589 }
aoqi@0 3590
aoqi@0 3591 void CMTask::update_region_limit() {
aoqi@0 3592 HeapRegion* hr = _curr_region;
aoqi@0 3593 HeapWord* bottom = hr->bottom();
aoqi@0 3594 HeapWord* limit = hr->next_top_at_mark_start();
aoqi@0 3595
aoqi@0 3596 if (limit == bottom) {
aoqi@0 3597 if (_cm->verbose_low()) {
aoqi@0 3598 gclog_or_tty->print_cr("[%u] found an empty region "
aoqi@0 3599 "["PTR_FORMAT", "PTR_FORMAT")",
aoqi@0 3600 _worker_id, p2i(bottom), p2i(limit));
aoqi@0 3601 }
aoqi@0 3602 // The region was collected underneath our feet.
aoqi@0 3603 // We set the finger to bottom to ensure that the bitmap
aoqi@0 3604 // iteration that will follow this will not do anything.
aoqi@0 3605 // (this is not a condition that holds when we set the region up,
aoqi@0 3606 // as the region is not supposed to be empty in the first place)
aoqi@0 3607 _finger = bottom;
aoqi@0 3608 } else if (limit >= _region_limit) {
aoqi@0 3609 assert(limit >= _finger, "peace of mind");
aoqi@0 3610 } else {
aoqi@0 3611 assert(limit < _region_limit, "only way to get here");
aoqi@0 3612 // This can happen under some pretty unusual circumstances. An
aoqi@0 3613 // evacuation pause empties the region underneath our feet (NTAMS
aoqi@0 3614 // at bottom). We then do some allocation in the region (NTAMS
aoqi@0 3615 // stays at bottom), followed by the region being used as a GC
aoqi@0 3616 // alloc region (NTAMS will move to top() and the objects
aoqi@0 3617 // originally below it will be grayed). All objects now marked in
aoqi@0 3618 // the region are explicitly grayed, if below the global finger,
aoqi@0 3619 // and we do not need in fact to scan anything else. So, we simply
aoqi@0 3620 // set _finger to be limit to ensure that the bitmap iteration
aoqi@0 3621 // doesn't do anything.
aoqi@0 3622 _finger = limit;
aoqi@0 3623 }
aoqi@0 3624
aoqi@0 3625 _region_limit = limit;
aoqi@0 3626 }
aoqi@0 3627
aoqi@0 3628 void CMTask::giveup_current_region() {
aoqi@0 3629 assert(_curr_region != NULL, "invariant");
aoqi@0 3630 if (_cm->verbose_low()) {
aoqi@0 3631 gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
aoqi@0 3632 _worker_id, p2i(_curr_region));
aoqi@0 3633 }
aoqi@0 3634 clear_region_fields();
aoqi@0 3635 }
aoqi@0 3636
aoqi@0 3637 void CMTask::clear_region_fields() {
aoqi@0 3638 // Values for these three fields that indicate that we're not
aoqi@0 3639 // holding on to a region.
aoqi@0 3640 _curr_region = NULL;
aoqi@0 3641 _finger = NULL;
aoqi@0 3642 _region_limit = NULL;
aoqi@0 3643 }
aoqi@0 3644
aoqi@0 3645 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
aoqi@0 3646 if (cm_oop_closure == NULL) {
aoqi@0 3647 assert(_cm_oop_closure != NULL, "invariant");
aoqi@0 3648 } else {
aoqi@0 3649 assert(_cm_oop_closure == NULL, "invariant");
aoqi@0 3650 }
aoqi@0 3651 _cm_oop_closure = cm_oop_closure;
aoqi@0 3652 }
aoqi@0 3653
aoqi@0 3654 void CMTask::reset(CMBitMap* nextMarkBitMap) {
aoqi@0 3655 guarantee(nextMarkBitMap != NULL, "invariant");
aoqi@0 3656
aoqi@0 3657 if (_cm->verbose_low()) {
aoqi@0 3658 gclog_or_tty->print_cr("[%u] resetting", _worker_id);
aoqi@0 3659 }
aoqi@0 3660
aoqi@0 3661 _nextMarkBitMap = nextMarkBitMap;
aoqi@0 3662 clear_region_fields();
aoqi@0 3663
aoqi@0 3664 _calls = 0;
aoqi@0 3665 _elapsed_time_ms = 0.0;
aoqi@0 3666 _termination_time_ms = 0.0;
aoqi@0 3667 _termination_start_time_ms = 0.0;
aoqi@0 3668
aoqi@0 3669 #if _MARKING_STATS_
aoqi@0 3670 _local_pushes = 0;
aoqi@0 3671 _local_pops = 0;
aoqi@0 3672 _local_max_size = 0;
aoqi@0 3673 _objs_scanned = 0;
aoqi@0 3674 _global_pushes = 0;
aoqi@0 3675 _global_pops = 0;
aoqi@0 3676 _global_max_size = 0;
aoqi@0 3677 _global_transfers_to = 0;
aoqi@0 3678 _global_transfers_from = 0;
aoqi@0 3679 _regions_claimed = 0;
aoqi@0 3680 _objs_found_on_bitmap = 0;
aoqi@0 3681 _satb_buffers_processed = 0;
aoqi@0 3682 _steal_attempts = 0;
aoqi@0 3683 _steals = 0;
aoqi@0 3684 _aborted = 0;
aoqi@0 3685 _aborted_overflow = 0;
aoqi@0 3686 _aborted_cm_aborted = 0;
aoqi@0 3687 _aborted_yield = 0;
aoqi@0 3688 _aborted_timed_out = 0;
aoqi@0 3689 _aborted_satb = 0;
aoqi@0 3690 _aborted_termination = 0;
aoqi@0 3691 #endif // _MARKING_STATS_
aoqi@0 3692 }
aoqi@0 3693
aoqi@0 3694 bool CMTask::should_exit_termination() {
aoqi@0 3695 regular_clock_call();
aoqi@0 3696 // This is called when we are in the termination protocol. We should
aoqi@0 3697 // quit if, for some reason, this task wants to abort or the global
aoqi@0 3698 // stack is not empty (this means that we can get work from it).
aoqi@0 3699 return !_cm->mark_stack_empty() || has_aborted();
aoqi@0 3700 }
aoqi@0 3701
aoqi@0 3702 void CMTask::reached_limit() {
aoqi@0 3703 assert(_words_scanned >= _words_scanned_limit ||
aoqi@0 3704 _refs_reached >= _refs_reached_limit ,
aoqi@0 3705 "shouldn't have been called otherwise");
aoqi@0 3706 regular_clock_call();
aoqi@0 3707 }
aoqi@0 3708
aoqi@0 3709 void CMTask::regular_clock_call() {
aoqi@0 3710 if (has_aborted()) return;
aoqi@0 3711
aoqi@0 3712 // First, we need to recalculate the words scanned and refs reached
aoqi@0 3713 // limits for the next clock call.
aoqi@0 3714 recalculate_limits();
aoqi@0 3715
aoqi@0 3716 // During the regular clock call we do the following
aoqi@0 3717
aoqi@0 3718 // (1) If an overflow has been flagged, then we abort.
aoqi@0 3719 if (_cm->has_overflown()) {
aoqi@0 3720 set_has_aborted();
aoqi@0 3721 return;
aoqi@0 3722 }
aoqi@0 3723
aoqi@0 3724 // If we are not concurrent (i.e. we're doing remark) we don't need
aoqi@0 3725 // to check anything else. The other steps are only needed during
aoqi@0 3726 // the concurrent marking phase.
aoqi@0 3727 if (!concurrent()) return;
aoqi@0 3728
aoqi@0 3729 // (2) If marking has been aborted for Full GC, then we also abort.
aoqi@0 3730 if (_cm->has_aborted()) {
aoqi@0 3731 set_has_aborted();
aoqi@0 3732 statsOnly( ++_aborted_cm_aborted );
aoqi@0 3733 return;
aoqi@0 3734 }
aoqi@0 3735
aoqi@0 3736 double curr_time_ms = os::elapsedVTime() * 1000.0;
aoqi@0 3737
aoqi@0 3738 // (3) If marking stats are enabled, then we update the step history.
aoqi@0 3739 #if _MARKING_STATS_
aoqi@0 3740 if (_words_scanned >= _words_scanned_limit) {
aoqi@0 3741 ++_clock_due_to_scanning;
aoqi@0 3742 }
aoqi@0 3743 if (_refs_reached >= _refs_reached_limit) {
aoqi@0 3744 ++_clock_due_to_marking;
aoqi@0 3745 }
aoqi@0 3746
aoqi@0 3747 double last_interval_ms = curr_time_ms - _interval_start_time_ms;
aoqi@0 3748 _interval_start_time_ms = curr_time_ms;
aoqi@0 3749 _all_clock_intervals_ms.add(last_interval_ms);
aoqi@0 3750
aoqi@0 3751 if (_cm->verbose_medium()) {
aoqi@0 3752 gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
tschatzl@7094 3753 "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
aoqi@0 3754 _worker_id, last_interval_ms,
aoqi@0 3755 _words_scanned,
aoqi@0 3756 (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
aoqi@0 3757 _refs_reached,
aoqi@0 3758 (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
aoqi@0 3759 }
aoqi@0 3760 #endif // _MARKING_STATS_
aoqi@0 3761
aoqi@0 3762 // (4) We check whether we should yield. If we have to, then we abort.
pliden@6906 3763 if (SuspendibleThreadSet::should_yield()) {
aoqi@0 3764 // We should yield. To do this we abort the task. The caller is
aoqi@0 3765 // responsible for yielding.
aoqi@0 3766 set_has_aborted();
aoqi@0 3767 statsOnly( ++_aborted_yield );
aoqi@0 3768 return;
aoqi@0 3769 }
aoqi@0 3770
aoqi@0 3771 // (5) We check whether we've reached our time quota. If we have,
aoqi@0 3772 // then we abort.
aoqi@0 3773 double elapsed_time_ms = curr_time_ms - _start_time_ms;
aoqi@0 3774 if (elapsed_time_ms > _time_target_ms) {
aoqi@0 3775 set_has_aborted();
aoqi@0 3776 _has_timed_out = true;
aoqi@0 3777 statsOnly( ++_aborted_timed_out );
aoqi@0 3778 return;
aoqi@0 3779 }
aoqi@0 3780
aoqi@0 3781 // (6) Finally, we check whether there are enough completed STAB
aoqi@0 3782 // buffers available for processing. If there are, we abort.
aoqi@0 3783 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
aoqi@0 3784 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
aoqi@0 3785 if (_cm->verbose_low()) {
aoqi@0 3786 gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
aoqi@0 3787 _worker_id);
aoqi@0 3788 }
aoqi@0 3789 // we do need to process SATB buffers, we'll abort and restart
aoqi@0 3790 // the marking task to do so
aoqi@0 3791 set_has_aborted();
aoqi@0 3792 statsOnly( ++_aborted_satb );
aoqi@0 3793 return;
aoqi@0 3794 }
aoqi@0 3795 }
aoqi@0 3796
aoqi@0 3797 void CMTask::recalculate_limits() {
aoqi@0 3798 _real_words_scanned_limit = _words_scanned + words_scanned_period;
aoqi@0 3799 _words_scanned_limit = _real_words_scanned_limit;
aoqi@0 3800
aoqi@0 3801 _real_refs_reached_limit = _refs_reached + refs_reached_period;
aoqi@0 3802 _refs_reached_limit = _real_refs_reached_limit;
aoqi@0 3803 }
aoqi@0 3804
aoqi@0 3805 void CMTask::decrease_limits() {
aoqi@0 3806 // This is called when we believe that we're going to do an infrequent
aoqi@0 3807 // operation which will increase the per byte scanned cost (i.e. move
aoqi@0 3808 // entries to/from the global stack). It basically tries to decrease the
aoqi@0 3809 // scanning limit so that the clock is called earlier.
aoqi@0 3810
aoqi@0 3811 if (_cm->verbose_medium()) {
aoqi@0 3812 gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
aoqi@0 3813 }
aoqi@0 3814
aoqi@0 3815 _words_scanned_limit = _real_words_scanned_limit -
aoqi@0 3816 3 * words_scanned_period / 4;
aoqi@0 3817 _refs_reached_limit = _real_refs_reached_limit -
aoqi@0 3818 3 * refs_reached_period / 4;
aoqi@0 3819 }
aoqi@0 3820
aoqi@0 3821 void CMTask::move_entries_to_global_stack() {
aoqi@0 3822 // local array where we'll store the entries that will be popped
aoqi@0 3823 // from the local queue
aoqi@0 3824 oop buffer[global_stack_transfer_size];
aoqi@0 3825
aoqi@0 3826 int n = 0;
aoqi@0 3827 oop obj;
aoqi@0 3828 while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
aoqi@0 3829 buffer[n] = obj;
aoqi@0 3830 ++n;
aoqi@0 3831 }
aoqi@0 3832
aoqi@0 3833 if (n > 0) {
aoqi@0 3834 // we popped at least one entry from the local queue
aoqi@0 3835
aoqi@0 3836 statsOnly( ++_global_transfers_to; _local_pops += n );
aoqi@0 3837
aoqi@0 3838 if (!_cm->mark_stack_push(buffer, n)) {
aoqi@0 3839 if (_cm->verbose_low()) {
aoqi@0 3840 gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
aoqi@0 3841 _worker_id);
aoqi@0 3842 }
aoqi@0 3843 set_has_aborted();
aoqi@0 3844 } else {
aoqi@0 3845 // the transfer was successful
aoqi@0 3846
aoqi@0 3847 if (_cm->verbose_medium()) {
aoqi@0 3848 gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
aoqi@0 3849 _worker_id, n);
aoqi@0 3850 }
aoqi@0 3851 statsOnly( int tmp_size = _cm->mark_stack_size();
aoqi@0 3852 if (tmp_size > _global_max_size) {
aoqi@0 3853 _global_max_size = tmp_size;
aoqi@0 3854 }
aoqi@0 3855 _global_pushes += n );
aoqi@0 3856 }
aoqi@0 3857 }
aoqi@0 3858
aoqi@0 3859 // this operation was quite expensive, so decrease the limits
aoqi@0 3860 decrease_limits();
aoqi@0 3861 }
aoqi@0 3862
aoqi@0 3863 void CMTask::get_entries_from_global_stack() {
aoqi@0 3864 // local array where we'll store the entries that will be popped
aoqi@0 3865 // from the global stack.
aoqi@0 3866 oop buffer[global_stack_transfer_size];
aoqi@0 3867 int n;
aoqi@0 3868 _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
aoqi@0 3869 assert(n <= global_stack_transfer_size,
aoqi@0 3870 "we should not pop more than the given limit");
aoqi@0 3871 if (n > 0) {
aoqi@0 3872 // yes, we did actually pop at least one entry
aoqi@0 3873
aoqi@0 3874 statsOnly( ++_global_transfers_from; _global_pops += n );
aoqi@0 3875 if (_cm->verbose_medium()) {
aoqi@0 3876 gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
aoqi@0 3877 _worker_id, n);
aoqi@0 3878 }
aoqi@0 3879 for (int i = 0; i < n; ++i) {
aoqi@0 3880 bool success = _task_queue->push(buffer[i]);
aoqi@0 3881 // We only call this when the local queue is empty or under a
aoqi@0 3882 // given target limit. So, we do not expect this push to fail.
aoqi@0 3883 assert(success, "invariant");
aoqi@0 3884 }
aoqi@0 3885
aoqi@0 3886 statsOnly( int tmp_size = _task_queue->size();
aoqi@0 3887 if (tmp_size > _local_max_size) {
aoqi@0 3888 _local_max_size = tmp_size;
aoqi@0 3889 }
aoqi@0 3890 _local_pushes += n );
aoqi@0 3891 }
aoqi@0 3892
aoqi@0 3893 // this operation was quite expensive, so decrease the limits
aoqi@0 3894 decrease_limits();
aoqi@0 3895 }
aoqi@0 3896
aoqi@0 3897 void CMTask::drain_local_queue(bool partially) {
aoqi@0 3898 if (has_aborted()) return;
aoqi@0 3899
aoqi@0 3900 // Decide what the target size is, depending whether we're going to
aoqi@0 3901 // drain it partially (so that other tasks can steal if they run out
aoqi@0 3902 // of things to do) or totally (at the very end).
aoqi@0 3903 size_t target_size;
aoqi@0 3904 if (partially) {
aoqi@0 3905 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
aoqi@0 3906 } else {
aoqi@0 3907 target_size = 0;
aoqi@0 3908 }
aoqi@0 3909
aoqi@0 3910 if (_task_queue->size() > target_size) {
aoqi@0 3911 if (_cm->verbose_high()) {
aoqi@0 3912 gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
aoqi@0 3913 _worker_id, target_size);
aoqi@0 3914 }
aoqi@0 3915
aoqi@0 3916 oop obj;
aoqi@0 3917 bool ret = _task_queue->pop_local(obj);
aoqi@0 3918 while (ret) {
aoqi@0 3919 statsOnly( ++_local_pops );
aoqi@0 3920
aoqi@0 3921 if (_cm->verbose_high()) {
aoqi@0 3922 gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
aoqi@0 3923 p2i((void*) obj));
aoqi@0 3924 }
aoqi@0 3925
aoqi@0 3926 assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
aoqi@0 3927 assert(!_g1h->is_on_master_free_list(
aoqi@0 3928 _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
aoqi@0 3929
aoqi@0 3930 scan_object(obj);
aoqi@0 3931
aoqi@0 3932 if (_task_queue->size() <= target_size || has_aborted()) {
aoqi@0 3933 ret = false;
aoqi@0 3934 } else {
aoqi@0 3935 ret = _task_queue->pop_local(obj);
aoqi@0 3936 }
aoqi@0 3937 }
aoqi@0 3938
aoqi@0 3939 if (_cm->verbose_high()) {
aoqi@0 3940 gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
aoqi@0 3941 _worker_id, _task_queue->size());
aoqi@0 3942 }
aoqi@0 3943 }
aoqi@0 3944 }
aoqi@0 3945
aoqi@0 3946 void CMTask::drain_global_stack(bool partially) {
aoqi@0 3947 if (has_aborted()) return;
aoqi@0 3948
aoqi@0 3949 // We have a policy to drain the local queue before we attempt to
aoqi@0 3950 // drain the global stack.
aoqi@0 3951 assert(partially || _task_queue->size() == 0, "invariant");
aoqi@0 3952
aoqi@0 3953 // Decide what the target size is, depending whether we're going to
aoqi@0 3954 // drain it partially (so that other tasks can steal if they run out
aoqi@0 3955 // of things to do) or totally (at the very end). Notice that,
aoqi@0 3956 // because we move entries from the global stack in chunks or
aoqi@0 3957 // because another task might be doing the same, we might in fact
aoqi@0 3958 // drop below the target. But, this is not a problem.
aoqi@0 3959 size_t target_size;
aoqi@0 3960 if (partially) {
aoqi@0 3961 target_size = _cm->partial_mark_stack_size_target();
aoqi@0 3962 } else {
aoqi@0 3963 target_size = 0;
aoqi@0 3964 }
aoqi@0 3965
aoqi@0 3966 if (_cm->mark_stack_size() > target_size) {
aoqi@0 3967 if (_cm->verbose_low()) {
aoqi@0 3968 gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
aoqi@0 3969 _worker_id, target_size);
aoqi@0 3970 }
aoqi@0 3971
aoqi@0 3972 while (!has_aborted() && _cm->mark_stack_size() > target_size) {
aoqi@0 3973 get_entries_from_global_stack();
aoqi@0 3974 drain_local_queue(partially);
aoqi@0 3975 }
aoqi@0 3976
aoqi@0 3977 if (_cm->verbose_low()) {
aoqi@0 3978 gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
aoqi@0 3979 _worker_id, _cm->mark_stack_size());
aoqi@0 3980 }
aoqi@0 3981 }
aoqi@0 3982 }
aoqi@0 3983
aoqi@0 3984 // SATB Queue has several assumptions on whether to call the par or
aoqi@0 3985 // non-par versions of the methods. this is why some of the code is
aoqi@0 3986 // replicated. We should really get rid of the single-threaded version
aoqi@0 3987 // of the code to simplify things.
aoqi@0 3988 void CMTask::drain_satb_buffers() {
aoqi@0 3989 if (has_aborted()) return;
aoqi@0 3990
aoqi@0 3991 // We set this so that the regular clock knows that we're in the
aoqi@0 3992 // middle of draining buffers and doesn't set the abort flag when it
aoqi@0 3993 // notices that SATB buffers are available for draining. It'd be
aoqi@0 3994 // very counter productive if it did that. :-)
aoqi@0 3995 _draining_satb_buffers = true;
aoqi@0 3996
kbarrett@7834 3997 CMSATBBufferClosure satb_cl(this, _g1h);
aoqi@0 3998 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
aoqi@0 3999
aoqi@0 4000 // This keeps claiming and applying the closure to completed buffers
aoqi@0 4001 // until we run out of buffers or we need to abort.
kbarrett@7832 4002 while (!has_aborted() &&
kbarrett@7834 4003 satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
kbarrett@7832 4004 if (_cm->verbose_medium()) {
kbarrett@7832 4005 gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
aoqi@0 4006 }
kbarrett@7832 4007 statsOnly( ++_satb_buffers_processed );
kbarrett@7832 4008 regular_clock_call();
aoqi@0 4009 }
aoqi@0 4010
aoqi@0 4011 _draining_satb_buffers = false;
aoqi@0 4012
aoqi@0 4013 assert(has_aborted() ||
aoqi@0 4014 concurrent() ||
aoqi@0 4015 satb_mq_set.completed_buffers_num() == 0, "invariant");
aoqi@0 4016
aoqi@0 4017 // again, this was a potentially expensive operation, decrease the
aoqi@0 4018 // limits to get the regular clock call early
aoqi@0 4019 decrease_limits();
aoqi@0 4020 }
aoqi@0 4021
aoqi@0 4022 void CMTask::print_stats() {
aoqi@0 4023 gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
aoqi@0 4024 _worker_id, _calls);
aoqi@0 4025 gclog_or_tty->print_cr(" Elapsed time = %1.2lfms, Termination time = %1.2lfms",
aoqi@0 4026 _elapsed_time_ms, _termination_time_ms);
aoqi@0 4027 gclog_or_tty->print_cr(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
aoqi@0 4028 _step_times_ms.num(), _step_times_ms.avg(),
aoqi@0 4029 _step_times_ms.sd());
aoqi@0 4030 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
aoqi@0 4031 _step_times_ms.maximum(), _step_times_ms.sum());
aoqi@0 4032
aoqi@0 4033 #if _MARKING_STATS_
aoqi@0 4034 gclog_or_tty->print_cr(" Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
aoqi@0 4035 _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
aoqi@0 4036 _all_clock_intervals_ms.sd());
aoqi@0 4037 gclog_or_tty->print_cr(" max = %1.2lfms, total = %1.2lfms",
aoqi@0 4038 _all_clock_intervals_ms.maximum(),
aoqi@0 4039 _all_clock_intervals_ms.sum());
aoqi@0 4040 gclog_or_tty->print_cr(" Clock Causes (cum): scanning = %d, marking = %d",
aoqi@0 4041 _clock_due_to_scanning, _clock_due_to_marking);
aoqi@0 4042 gclog_or_tty->print_cr(" Objects: scanned = %d, found on the bitmap = %d",
aoqi@0 4043 _objs_scanned, _objs_found_on_bitmap);
aoqi@0 4044 gclog_or_tty->print_cr(" Local Queue: pushes = %d, pops = %d, max size = %d",
aoqi@0 4045 _local_pushes, _local_pops, _local_max_size);
aoqi@0 4046 gclog_or_tty->print_cr(" Global Stack: pushes = %d, pops = %d, max size = %d",
aoqi@0 4047 _global_pushes, _global_pops, _global_max_size);
aoqi@0 4048 gclog_or_tty->print_cr(" transfers to = %d, transfers from = %d",
aoqi@0 4049 _global_transfers_to,_global_transfers_from);
aoqi@0 4050 gclog_or_tty->print_cr(" Regions: claimed = %d", _regions_claimed);
aoqi@0 4051 gclog_or_tty->print_cr(" SATB buffers: processed = %d", _satb_buffers_processed);
aoqi@0 4052 gclog_or_tty->print_cr(" Steals: attempts = %d, successes = %d",
aoqi@0 4053 _steal_attempts, _steals);
aoqi@0 4054 gclog_or_tty->print_cr(" Aborted: %d, due to", _aborted);
aoqi@0 4055 gclog_or_tty->print_cr(" overflow: %d, global abort: %d, yield: %d",
aoqi@0 4056 _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
aoqi@0 4057 gclog_or_tty->print_cr(" time out: %d, SATB: %d, termination: %d",
aoqi@0 4058 _aborted_timed_out, _aborted_satb, _aborted_termination);
aoqi@0 4059 #endif // _MARKING_STATS_
aoqi@0 4060 }
aoqi@0 4061
aoqi@0 4062 /*****************************************************************************
aoqi@0 4063
aoqi@0 4064 The do_marking_step(time_target_ms, ...) method is the building
aoqi@0 4065 block of the parallel marking framework. It can be called in parallel
aoqi@0 4066 with other invocations of do_marking_step() on different tasks
aoqi@0 4067 (but only one per task, obviously) and concurrently with the
aoqi@0 4068 mutator threads, or during remark, hence it eliminates the need
aoqi@0 4069 for two versions of the code. When called during remark, it will
aoqi@0 4070 pick up from where the task left off during the concurrent marking
aoqi@0 4071 phase. Interestingly, tasks are also claimable during evacuation
aoqi@0 4072 pauses too, since do_marking_step() ensures that it aborts before
aoqi@0 4073 it needs to yield.
aoqi@0 4074
aoqi@0 4075 The data structures that it uses to do marking work are the
aoqi@0 4076 following:
aoqi@0 4077
aoqi@0 4078 (1) Marking Bitmap. If there are gray objects that appear only
aoqi@0 4079 on the bitmap (this happens either when dealing with an overflow
aoqi@0 4080 or when the initial marking phase has simply marked the roots
aoqi@0 4081 and didn't push them on the stack), then tasks claim heap
aoqi@0 4082 regions whose bitmap they then scan to find gray objects. A
aoqi@0 4083 global finger indicates where the end of the last claimed region
aoqi@0 4084 is. A local finger indicates how far into the region a task has
aoqi@0 4085 scanned. The two fingers are used to determine how to gray an
aoqi@0 4086 object (i.e. whether simply marking it is OK, as it will be
aoqi@0 4087 visited by a task in the future, or whether it needs to be also
aoqi@0 4088 pushed on a stack).
aoqi@0 4089
aoqi@0 4090 (2) Local Queue. The local queue of the task which is accessed
aoqi@0 4091 reasonably efficiently by the task. Other tasks can steal from
aoqi@0 4092 it when they run out of work. Throughout the marking phase, a
aoqi@0 4093 task attempts to keep its local queue short but not totally
aoqi@0 4094 empty, so that entries are available for stealing by other
aoqi@0 4095 tasks. Only when there is no more work, a task will totally
aoqi@0 4096 drain its local queue.
aoqi@0 4097
aoqi@0 4098 (3) Global Mark Stack. This handles local queue overflow. During
aoqi@0 4099 marking only sets of entries are moved between it and the local
aoqi@0 4100 queues, as access to it requires a mutex and more fine-grain
aoqi@0 4101 interaction with it which might cause contention. If it
aoqi@0 4102 overflows, then the marking phase should restart and iterate
aoqi@0 4103 over the bitmap to identify gray objects. Throughout the marking
aoqi@0 4104 phase, tasks attempt to keep the global mark stack at a small
aoqi@0 4105 length but not totally empty, so that entries are available for
aoqi@0 4106 popping by other tasks. Only when there is no more work, tasks
aoqi@0 4107 will totally drain the global mark stack.
aoqi@0 4108
aoqi@0 4109 (4) SATB Buffer Queue. This is where completed SATB buffers are
aoqi@0 4110 made available. Buffers are regularly removed from this queue
aoqi@0 4111 and scanned for roots, so that the queue doesn't get too
aoqi@0 4112 long. During remark, all completed buffers are processed, as
aoqi@0 4113 well as the filled in parts of any uncompleted buffers.
aoqi@0 4114
aoqi@0 4115 The do_marking_step() method tries to abort when the time target
aoqi@0 4116 has been reached. There are a few other cases when the
aoqi@0 4117 do_marking_step() method also aborts:
aoqi@0 4118
aoqi@0 4119 (1) When the marking phase has been aborted (after a Full GC).
aoqi@0 4120
aoqi@0 4121 (2) When a global overflow (on the global stack) has been
aoqi@0 4122 triggered. Before the task aborts, it will actually sync up with
aoqi@0 4123 the other tasks to ensure that all the marking data structures
aoqi@0 4124 (local queues, stacks, fingers etc.) are re-initialized so that
aoqi@0 4125 when do_marking_step() completes, the marking phase can
aoqi@0 4126 immediately restart.
aoqi@0 4127
aoqi@0 4128 (3) When enough completed SATB buffers are available. The
aoqi@0 4129 do_marking_step() method only tries to drain SATB buffers right
aoqi@0 4130 at the beginning. So, if enough buffers are available, the
aoqi@0 4131 marking step aborts and the SATB buffers are processed at
aoqi@0 4132 the beginning of the next invocation.
aoqi@0 4133
aoqi@0 4134 (4) To yield. when we have to yield then we abort and yield
aoqi@0 4135 right at the end of do_marking_step(). This saves us from a lot
aoqi@0 4136 of hassle as, by yielding we might allow a Full GC. If this
aoqi@0 4137 happens then objects will be compacted underneath our feet, the
aoqi@0 4138 heap might shrink, etc. We save checking for this by just
aoqi@0 4139 aborting and doing the yield right at the end.
aoqi@0 4140
aoqi@0 4141 From the above it follows that the do_marking_step() method should
aoqi@0 4142 be called in a loop (or, otherwise, regularly) until it completes.
aoqi@0 4143
aoqi@0 4144 If a marking step completes without its has_aborted() flag being
aoqi@0 4145 true, it means it has completed the current marking phase (and
aoqi@0 4146 also all other marking tasks have done so and have all synced up).
aoqi@0 4147
aoqi@0 4148 A method called regular_clock_call() is invoked "regularly" (in
aoqi@0 4149 sub ms intervals) throughout marking. It is this clock method that
aoqi@0 4150 checks all the abort conditions which were mentioned above and
aoqi@0 4151 decides when the task should abort. A work-based scheme is used to
aoqi@0 4152 trigger this clock method: when the number of object words the
aoqi@0 4153 marking phase has scanned or the number of references the marking
aoqi@0 4154 phase has visited reach a given limit. Additional invocations to
aoqi@0 4155 the method clock have been planted in a few other strategic places
aoqi@0 4156 too. The initial reason for the clock method was to avoid calling
aoqi@0 4157 vtime too regularly, as it is quite expensive. So, once it was in
aoqi@0 4158 place, it was natural to piggy-back all the other conditions on it
aoqi@0 4159 too and not constantly check them throughout the code.
aoqi@0 4160
aoqi@0 4161 If do_termination is true then do_marking_step will enter its
aoqi@0 4162 termination protocol.
aoqi@0 4163
aoqi@0 4164 The value of is_serial must be true when do_marking_step is being
aoqi@0 4165 called serially (i.e. by the VMThread) and do_marking_step should
aoqi@0 4166 skip any synchronization in the termination and overflow code.
aoqi@0 4167 Examples include the serial remark code and the serial reference
aoqi@0 4168 processing closures.
aoqi@0 4169
aoqi@0 4170 The value of is_serial must be false when do_marking_step is
aoqi@0 4171 being called by any of the worker threads in a work gang.
aoqi@0 4172 Examples include the concurrent marking code (CMMarkingTask),
aoqi@0 4173 the MT remark code, and the MT reference processing closures.
aoqi@0 4174
aoqi@0 4175 *****************************************************************************/
aoqi@0 4176
aoqi@0 4177 void CMTask::do_marking_step(double time_target_ms,
aoqi@0 4178 bool do_termination,
aoqi@0 4179 bool is_serial) {
aoqi@0 4180 assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
aoqi@0 4181 assert(concurrent() == _cm->concurrent(), "they should be the same");
aoqi@0 4182
aoqi@0 4183 G1CollectorPolicy* g1_policy = _g1h->g1_policy();
aoqi@0 4184 assert(_task_queues != NULL, "invariant");
aoqi@0 4185 assert(_task_queue != NULL, "invariant");
aoqi@0 4186 assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
aoqi@0 4187
aoqi@0 4188 assert(!_claimed,
aoqi@0 4189 "only one thread should claim this task at any one time");
aoqi@0 4190
aoqi@0 4191 // OK, this doesn't safeguard again all possible scenarios, as it is
aoqi@0 4192 // possible for two threads to set the _claimed flag at the same
aoqi@0 4193 // time. But it is only for debugging purposes anyway and it will
aoqi@0 4194 // catch most problems.
aoqi@0 4195 _claimed = true;
aoqi@0 4196
aoqi@0 4197 _start_time_ms = os::elapsedVTime() * 1000.0;
aoqi@0 4198 statsOnly( _interval_start_time_ms = _start_time_ms );
aoqi@0 4199
aoqi@0 4200 // If do_stealing is true then do_marking_step will attempt to
aoqi@0 4201 // steal work from the other CMTasks. It only makes sense to
aoqi@0 4202 // enable stealing when the termination protocol is enabled
aoqi@0 4203 // and do_marking_step() is not being called serially.
aoqi@0 4204 bool do_stealing = do_termination && !is_serial;
aoqi@0 4205
aoqi@0 4206 double diff_prediction_ms =
aoqi@0 4207 g1_policy->get_new_prediction(&_marking_step_diffs_ms);
aoqi@0 4208 _time_target_ms = time_target_ms - diff_prediction_ms;
aoqi@0 4209
aoqi@0 4210 // set up the variables that are used in the work-based scheme to
aoqi@0 4211 // call the regular clock method
aoqi@0 4212 _words_scanned = 0;
aoqi@0 4213 _refs_reached = 0;
aoqi@0 4214 recalculate_limits();
aoqi@0 4215
aoqi@0 4216 // clear all flags
aoqi@0 4217 clear_has_aborted();
aoqi@0 4218 _has_timed_out = false;
aoqi@0 4219 _draining_satb_buffers = false;
aoqi@0 4220
aoqi@0 4221 ++_calls;
aoqi@0 4222
aoqi@0 4223 if (_cm->verbose_low()) {
aoqi@0 4224 gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
aoqi@0 4225 "target = %1.2lfms >>>>>>>>>>",
aoqi@0 4226 _worker_id, _calls, _time_target_ms);
aoqi@0 4227 }
aoqi@0 4228
aoqi@0 4229 // Set up the bitmap and oop closures. Anything that uses them is
aoqi@0 4230 // eventually called from this method, so it is OK to allocate these
aoqi@0 4231 // statically.
aoqi@0 4232 CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
aoqi@0 4233 G1CMOopClosure cm_oop_closure(_g1h, _cm, this);
aoqi@0 4234 set_cm_oop_closure(&cm_oop_closure);
aoqi@0 4235
aoqi@0 4236 if (_cm->has_overflown()) {
aoqi@0 4237 // This can happen if the mark stack overflows during a GC pause
aoqi@0 4238 // and this task, after a yield point, restarts. We have to abort
aoqi@0 4239 // as we need to get into the overflow protocol which happens
aoqi@0 4240 // right at the end of this task.
aoqi@0 4241 set_has_aborted();
aoqi@0 4242 }
aoqi@0 4243
aoqi@0 4244 // First drain any available SATB buffers. After this, we will not
aoqi@0 4245 // look at SATB buffers before the next invocation of this method.
aoqi@0 4246 // If enough completed SATB buffers are queued up, the regular clock
aoqi@0 4247 // will abort this task so that it restarts.
aoqi@0 4248 drain_satb_buffers();
aoqi@0 4249 // ...then partially drain the local queue and the global stack
aoqi@0 4250 drain_local_queue(true);
aoqi@0 4251 drain_global_stack(true);
aoqi@0 4252
aoqi@0 4253 do {
aoqi@0 4254 if (!has_aborted() && _curr_region != NULL) {
aoqi@0 4255 // This means that we're already holding on to a region.
aoqi@0 4256 assert(_finger != NULL, "if region is not NULL, then the finger "
aoqi@0 4257 "should not be NULL either");
aoqi@0 4258
aoqi@0 4259 // We might have restarted this task after an evacuation pause
aoqi@0 4260 // which might have evacuated the region we're holding on to
aoqi@0 4261 // underneath our feet. Let's read its limit again to make sure
aoqi@0 4262 // that we do not iterate over a region of the heap that
aoqi@0 4263 // contains garbage (update_region_limit() will also move
aoqi@0 4264 // _finger to the start of the region if it is found empty).
aoqi@0 4265 update_region_limit();
aoqi@0 4266 // We will start from _finger not from the start of the region,
aoqi@0 4267 // as we might be restarting this task after aborting half-way
aoqi@0 4268 // through scanning this region. In this case, _finger points to
aoqi@0 4269 // the address where we last found a marked object. If this is a
aoqi@0 4270 // fresh region, _finger points to start().
aoqi@0 4271 MemRegion mr = MemRegion(_finger, _region_limit);
aoqi@0 4272
aoqi@0 4273 if (_cm->verbose_low()) {
aoqi@0 4274 gclog_or_tty->print_cr("[%u] we're scanning part "
aoqi@0 4275 "["PTR_FORMAT", "PTR_FORMAT") "
aoqi@0 4276 "of region "HR_FORMAT,
aoqi@0 4277 _worker_id, p2i(_finger), p2i(_region_limit),
aoqi@0 4278 HR_FORMAT_PARAMS(_curr_region));
aoqi@0 4279 }
aoqi@0 4280
aoqi@0 4281 assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
aoqi@0 4282 "humongous regions should go around loop once only");
aoqi@0 4283
aoqi@0 4284 // Some special cases:
aoqi@0 4285 // If the memory region is empty, we can just give up the region.
aoqi@0 4286 // If the current region is humongous then we only need to check
aoqi@0 4287 // the bitmap for the bit associated with the start of the object,
aoqi@0 4288 // scan the object if it's live, and give up the region.
aoqi@0 4289 // Otherwise, let's iterate over the bitmap of the part of the region
aoqi@0 4290 // that is left.
aoqi@0 4291 // If the iteration is successful, give up the region.
aoqi@0 4292 if (mr.is_empty()) {
aoqi@0 4293 giveup_current_region();
aoqi@0 4294 regular_clock_call();
aoqi@0 4295 } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
aoqi@0 4296 if (_nextMarkBitMap->isMarked(mr.start())) {
aoqi@0 4297 // The object is marked - apply the closure
aoqi@0 4298 BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
aoqi@0 4299 bitmap_closure.do_bit(offset);
aoqi@0 4300 }
aoqi@0 4301 // Even if this task aborted while scanning the humongous object
aoqi@0 4302 // we can (and should) give up the current region.
aoqi@0 4303 giveup_current_region();
aoqi@0 4304 regular_clock_call();
aoqi@0 4305 } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
aoqi@0 4306 giveup_current_region();
aoqi@0 4307 regular_clock_call();
aoqi@0 4308 } else {
aoqi@0 4309 assert(has_aborted(), "currently the only way to do so");
aoqi@0 4310 // The only way to abort the bitmap iteration is to return
aoqi@0 4311 // false from the do_bit() method. However, inside the
aoqi@0 4312 // do_bit() method we move the _finger to point to the
aoqi@0 4313 // object currently being looked at. So, if we bail out, we
aoqi@0 4314 // have definitely set _finger to something non-null.
aoqi@0 4315 assert(_finger != NULL, "invariant");
aoqi@0 4316
aoqi@0 4317 // Region iteration was actually aborted. So now _finger
aoqi@0 4318 // points to the address of the object we last scanned. If we
aoqi@0 4319 // leave it there, when we restart this task, we will rescan
aoqi@0 4320 // the object. It is easy to avoid this. We move the finger by
aoqi@0 4321 // enough to point to the next possible object header (the
aoqi@0 4322 // bitmap knows by how much we need to move it as it knows its
aoqi@0 4323 // granularity).
aoqi@0 4324 assert(_finger < _region_limit, "invariant");
aoqi@0 4325 HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
aoqi@0 4326 // Check if bitmap iteration was aborted while scanning the last object
aoqi@0 4327 if (new_finger >= _region_limit) {
aoqi@0 4328 giveup_current_region();
aoqi@0 4329 } else {
aoqi@0 4330 move_finger_to(new_finger);
aoqi@0 4331 }
aoqi@0 4332 }
aoqi@0 4333 }
aoqi@0 4334 // At this point we have either completed iterating over the
aoqi@0 4335 // region we were holding on to, or we have aborted.
aoqi@0 4336
aoqi@0 4337 // We then partially drain the local queue and the global stack.
aoqi@0 4338 // (Do we really need this?)
aoqi@0 4339 drain_local_queue(true);
aoqi@0 4340 drain_global_stack(true);
aoqi@0 4341
aoqi@0 4342 // Read the note on the claim_region() method on why it might
aoqi@0 4343 // return NULL with potentially more regions available for
aoqi@0 4344 // claiming and why we have to check out_of_regions() to determine
aoqi@0 4345 // whether we're done or not.
aoqi@0 4346 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
aoqi@0 4347 // We are going to try to claim a new region. We should have
aoqi@0 4348 // given up on the previous one.
aoqi@0 4349 // Separated the asserts so that we know which one fires.
aoqi@0 4350 assert(_curr_region == NULL, "invariant");
aoqi@0 4351 assert(_finger == NULL, "invariant");
aoqi@0 4352 assert(_region_limit == NULL, "invariant");
aoqi@0 4353 if (_cm->verbose_low()) {
aoqi@0 4354 gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
aoqi@0 4355 }
aoqi@0 4356 HeapRegion* claimed_region = _cm->claim_region(_worker_id);
aoqi@0 4357 if (claimed_region != NULL) {
aoqi@0 4358 // Yes, we managed to claim one
aoqi@0 4359 statsOnly( ++_regions_claimed );
aoqi@0 4360
aoqi@0 4361 if (_cm->verbose_low()) {
aoqi@0 4362 gclog_or_tty->print_cr("[%u] we successfully claimed "
aoqi@0 4363 "region "PTR_FORMAT,
aoqi@0 4364 _worker_id, p2i(claimed_region));
aoqi@0 4365 }
aoqi@0 4366
aoqi@0 4367 setup_for_region(claimed_region);
aoqi@0 4368 assert(_curr_region == claimed_region, "invariant");
aoqi@0 4369 }
aoqi@0 4370 // It is important to call the regular clock here. It might take
aoqi@0 4371 // a while to claim a region if, for example, we hit a large
aoqi@0 4372 // block of empty regions. So we need to call the regular clock
aoqi@0 4373 // method once round the loop to make sure it's called
aoqi@0 4374 // frequently enough.
aoqi@0 4375 regular_clock_call();
aoqi@0 4376 }
aoqi@0 4377
aoqi@0 4378 if (!has_aborted() && _curr_region == NULL) {
aoqi@0 4379 assert(_cm->out_of_regions(),
aoqi@0 4380 "at this point we should be out of regions");
aoqi@0 4381 }
aoqi@0 4382 } while ( _curr_region != NULL && !has_aborted());
aoqi@0 4383
aoqi@0 4384 if (!has_aborted()) {
aoqi@0 4385 // We cannot check whether the global stack is empty, since other
aoqi@0 4386 // tasks might be pushing objects to it concurrently.
aoqi@0 4387 assert(_cm->out_of_regions(),
aoqi@0 4388 "at this point we should be out of regions");
aoqi@0 4389
aoqi@0 4390 if (_cm->verbose_low()) {
aoqi@0 4391 gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
aoqi@0 4392 }
aoqi@0 4393
aoqi@0 4394 // Try to reduce the number of available SATB buffers so that
aoqi@0 4395 // remark has less work to do.
aoqi@0 4396 drain_satb_buffers();
aoqi@0 4397 }
aoqi@0 4398
aoqi@0 4399 // Since we've done everything else, we can now totally drain the
aoqi@0 4400 // local queue and global stack.
aoqi@0 4401 drain_local_queue(false);
aoqi@0 4402 drain_global_stack(false);
aoqi@0 4403
aoqi@0 4404 // Attempt at work stealing from other task's queues.
aoqi@0 4405 if (do_stealing && !has_aborted()) {
aoqi@0 4406 // We have not aborted. This means that we have finished all that
aoqi@0 4407 // we could. Let's try to do some stealing...
aoqi@0 4408
aoqi@0 4409 // We cannot check whether the global stack is empty, since other
aoqi@0 4410 // tasks might be pushing objects to it concurrently.
aoqi@0 4411 assert(_cm->out_of_regions() && _task_queue->size() == 0,
aoqi@0 4412 "only way to reach here");
aoqi@0 4413
aoqi@0 4414 if (_cm->verbose_low()) {
aoqi@0 4415 gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
aoqi@0 4416 }
aoqi@0 4417
aoqi@0 4418 while (!has_aborted()) {
aoqi@0 4419 oop obj;
aoqi@0 4420 statsOnly( ++_steal_attempts );
aoqi@0 4421
aoqi@0 4422 if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
aoqi@0 4423 if (_cm->verbose_medium()) {
aoqi@0 4424 gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
aoqi@0 4425 _worker_id, p2i((void*) obj));
aoqi@0 4426 }
aoqi@0 4427
aoqi@0 4428 statsOnly( ++_steals );
aoqi@0 4429
aoqi@0 4430 assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
aoqi@0 4431 "any stolen object should be marked");
aoqi@0 4432 scan_object(obj);
aoqi@0 4433
aoqi@0 4434 // And since we're towards the end, let's totally drain the
aoqi@0 4435 // local queue and global stack.
aoqi@0 4436 drain_local_queue(false);
aoqi@0 4437 drain_global_stack(false);
aoqi@0 4438 } else {
aoqi@0 4439 break;
aoqi@0 4440 }
aoqi@0 4441 }
aoqi@0 4442 }
aoqi@0 4443
aoqi@0 4444 // If we are about to wrap up and go into termination, check if we
aoqi@0 4445 // should raise the overflow flag.
aoqi@0 4446 if (do_termination && !has_aborted()) {
aoqi@0 4447 if (_cm->force_overflow()->should_force()) {
aoqi@0 4448 _cm->set_has_overflown();
aoqi@0 4449 regular_clock_call();
aoqi@0 4450 }
aoqi@0 4451 }
aoqi@0 4452
aoqi@0 4453 // We still haven't aborted. Now, let's try to get into the
aoqi@0 4454 // termination protocol.
aoqi@0 4455 if (do_termination && !has_aborted()) {
aoqi@0 4456 // We cannot check whether the global stack is empty, since other
aoqi@0 4457 // tasks might be concurrently pushing objects on it.
aoqi@0 4458 // Separated the asserts so that we know which one fires.
aoqi@0 4459 assert(_cm->out_of_regions(), "only way to reach here");
aoqi@0 4460 assert(_task_queue->size() == 0, "only way to reach here");
aoqi@0 4461
aoqi@0 4462 if (_cm->verbose_low()) {
aoqi@0 4463 gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
aoqi@0 4464 }
aoqi@0 4465
aoqi@0 4466 _termination_start_time_ms = os::elapsedVTime() * 1000.0;
aoqi@0 4467
aoqi@0 4468 // The CMTask class also extends the TerminatorTerminator class,
aoqi@0 4469 // hence its should_exit_termination() method will also decide
aoqi@0 4470 // whether to exit the termination protocol or not.
aoqi@0 4471 bool finished = (is_serial ||
aoqi@0 4472 _cm->terminator()->offer_termination(this));
aoqi@0 4473 double termination_end_time_ms = os::elapsedVTime() * 1000.0;
aoqi@0 4474 _termination_time_ms +=
aoqi@0 4475 termination_end_time_ms - _termination_start_time_ms;
aoqi@0 4476
aoqi@0 4477 if (finished) {
aoqi@0 4478 // We're all done.
aoqi@0 4479
aoqi@0 4480 if (_worker_id == 0) {
aoqi@0 4481 // let's allow task 0 to do this
aoqi@0 4482 if (concurrent()) {
aoqi@0 4483 assert(_cm->concurrent_marking_in_progress(), "invariant");
aoqi@0 4484 // we need to set this to false before the next
aoqi@0 4485 // safepoint. This way we ensure that the marking phase
aoqi@0 4486 // doesn't observe any more heap expansions.
aoqi@0 4487 _cm->clear_concurrent_marking_in_progress();
aoqi@0 4488 }
aoqi@0 4489 }
aoqi@0 4490
aoqi@0 4491 // We can now guarantee that the global stack is empty, since
aoqi@0 4492 // all other tasks have finished. We separated the guarantees so
aoqi@0 4493 // that, if a condition is false, we can immediately find out
aoqi@0 4494 // which one.
aoqi@0 4495 guarantee(_cm->out_of_regions(), "only way to reach here");
aoqi@0 4496 guarantee(_cm->mark_stack_empty(), "only way to reach here");
aoqi@0 4497 guarantee(_task_queue->size() == 0, "only way to reach here");
aoqi@0 4498 guarantee(!_cm->has_overflown(), "only way to reach here");
aoqi@0 4499 guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
aoqi@0 4500
aoqi@0 4501 if (_cm->verbose_low()) {
aoqi@0 4502 gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
aoqi@0 4503 }
aoqi@0 4504 } else {
aoqi@0 4505 // Apparently there's more work to do. Let's abort this task. It
aoqi@0 4506 // will restart it and we can hopefully find more things to do.
aoqi@0 4507
aoqi@0 4508 if (_cm->verbose_low()) {
aoqi@0 4509 gclog_or_tty->print_cr("[%u] apparently there is more work to do",
aoqi@0 4510 _worker_id);
aoqi@0 4511 }
aoqi@0 4512
aoqi@0 4513 set_has_aborted();
aoqi@0 4514 statsOnly( ++_aborted_termination );
aoqi@0 4515 }
aoqi@0 4516 }
aoqi@0 4517
aoqi@0 4518 // Mainly for debugging purposes to make sure that a pointer to the
aoqi@0 4519 // closure which was statically allocated in this frame doesn't
aoqi@0 4520 // escape it by accident.
aoqi@0 4521 set_cm_oop_closure(NULL);
aoqi@0 4522 double end_time_ms = os::elapsedVTime() * 1000.0;
aoqi@0 4523 double elapsed_time_ms = end_time_ms - _start_time_ms;
aoqi@0 4524 // Update the step history.
aoqi@0 4525 _step_times_ms.add(elapsed_time_ms);
aoqi@0 4526
aoqi@0 4527 if (has_aborted()) {
aoqi@0 4528 // The task was aborted for some reason.
aoqi@0 4529
aoqi@0 4530 statsOnly( ++_aborted );
aoqi@0 4531
aoqi@0 4532 if (_has_timed_out) {
aoqi@0 4533 double diff_ms = elapsed_time_ms - _time_target_ms;
aoqi@0 4534 // Keep statistics of how well we did with respect to hitting
aoqi@0 4535 // our target only if we actually timed out (if we aborted for
aoqi@0 4536 // other reasons, then the results might get skewed).
aoqi@0 4537 _marking_step_diffs_ms.add(diff_ms);
aoqi@0 4538 }
aoqi@0 4539
aoqi@0 4540 if (_cm->has_overflown()) {
aoqi@0 4541 // This is the interesting one. We aborted because a global
aoqi@0 4542 // overflow was raised. This means we have to restart the
aoqi@0 4543 // marking phase and start iterating over regions. However, in
aoqi@0 4544 // order to do this we have to make sure that all tasks stop
aoqi@0 4545 // what they are doing and re-initialise in a safe manner. We
aoqi@0 4546 // will achieve this with the use of two barrier sync points.
aoqi@0 4547
aoqi@0 4548 if (_cm->verbose_low()) {
aoqi@0 4549 gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
aoqi@0 4550 }
aoqi@0 4551
aoqi@0 4552 if (!is_serial) {
aoqi@0 4553 // We only need to enter the sync barrier if being called
aoqi@0 4554 // from a parallel context
aoqi@0 4555 _cm->enter_first_sync_barrier(_worker_id);
aoqi@0 4556
aoqi@0 4557 // When we exit this sync barrier we know that all tasks have
aoqi@0 4558 // stopped doing marking work. So, it's now safe to
aoqi@0 4559 // re-initialise our data structures. At the end of this method,
aoqi@0 4560 // task 0 will clear the global data structures.
aoqi@0 4561 }
aoqi@0 4562
aoqi@0 4563 statsOnly( ++_aborted_overflow );
aoqi@0 4564
aoqi@0 4565 // We clear the local state of this task...
aoqi@0 4566 clear_region_fields();
aoqi@0 4567
aoqi@0 4568 if (!is_serial) {
aoqi@0 4569 // ...and enter the second barrier.
aoqi@0 4570 _cm->enter_second_sync_barrier(_worker_id);
aoqi@0 4571 }
aoqi@0 4572 // At this point, if we're during the concurrent phase of
aoqi@0 4573 // marking, everything has been re-initialized and we're
aoqi@0 4574 // ready to restart.
aoqi@0 4575 }
aoqi@0 4576
aoqi@0 4577 if (_cm->verbose_low()) {
aoqi@0 4578 gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
aoqi@0 4579 "elapsed = %1.2lfms <<<<<<<<<<",
aoqi@0 4580 _worker_id, _time_target_ms, elapsed_time_ms);
aoqi@0 4581 if (_cm->has_aborted()) {
aoqi@0 4582 gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
aoqi@0 4583 _worker_id);
aoqi@0 4584 }
aoqi@0 4585 }
aoqi@0 4586 } else {
aoqi@0 4587 if (_cm->verbose_low()) {
aoqi@0 4588 gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
aoqi@0 4589 "elapsed = %1.2lfms <<<<<<<<<<",
aoqi@0 4590 _worker_id, _time_target_ms, elapsed_time_ms);
aoqi@0 4591 }
aoqi@0 4592 }
aoqi@0 4593
aoqi@0 4594 _claimed = false;
aoqi@0 4595 }
aoqi@0 4596
aoqi@0 4597 CMTask::CMTask(uint worker_id,
aoqi@0 4598 ConcurrentMark* cm,
aoqi@0 4599 size_t* marked_bytes,
aoqi@0 4600 BitMap* card_bm,
aoqi@0 4601 CMTaskQueue* task_queue,
aoqi@0 4602 CMTaskQueueSet* task_queues)
aoqi@0 4603 : _g1h(G1CollectedHeap::heap()),
aoqi@0 4604 _worker_id(worker_id), _cm(cm),
aoqi@0 4605 _claimed(false),
aoqi@0 4606 _nextMarkBitMap(NULL), _hash_seed(17),
aoqi@0 4607 _task_queue(task_queue),
aoqi@0 4608 _task_queues(task_queues),
aoqi@0 4609 _cm_oop_closure(NULL),
aoqi@0 4610 _marked_bytes_array(marked_bytes),
aoqi@0 4611 _card_bm(card_bm) {
aoqi@0 4612 guarantee(task_queue != NULL, "invariant");
aoqi@0 4613 guarantee(task_queues != NULL, "invariant");
aoqi@0 4614
aoqi@0 4615 statsOnly( _clock_due_to_scanning = 0;
aoqi@0 4616 _clock_due_to_marking = 0 );
aoqi@0 4617
aoqi@0 4618 _marking_step_diffs_ms.add(0.5);
aoqi@0 4619 }
aoqi@0 4620
aoqi@0 4621 // These are formatting macros that are used below to ensure
aoqi@0 4622 // consistent formatting. The *_H_* versions are used to format the
aoqi@0 4623 // header for a particular value and they should be kept consistent
aoqi@0 4624 // with the corresponding macro. Also note that most of the macros add
aoqi@0 4625 // the necessary white space (as a prefix) which makes them a bit
aoqi@0 4626 // easier to compose.
aoqi@0 4627
aoqi@0 4628 // All the output lines are prefixed with this string to be able to
aoqi@0 4629 // identify them easily in a large log file.
aoqi@0 4630 #define G1PPRL_LINE_PREFIX "###"
aoqi@0 4631
aoqi@0 4632 #define G1PPRL_ADDR_BASE_FORMAT " "PTR_FORMAT"-"PTR_FORMAT
aoqi@0 4633 #ifdef _LP64
aoqi@0 4634 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s"
aoqi@0 4635 #else // _LP64
aoqi@0 4636 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s"
aoqi@0 4637 #endif // _LP64
aoqi@0 4638
aoqi@0 4639 // For per-region info
aoqi@0 4640 #define G1PPRL_TYPE_FORMAT " %-4s"
aoqi@0 4641 #define G1PPRL_TYPE_H_FORMAT " %4s"
aoqi@0 4642 #define G1PPRL_BYTE_FORMAT " "SIZE_FORMAT_W(9)
aoqi@0 4643 #define G1PPRL_BYTE_H_FORMAT " %9s"
aoqi@0 4644 #define G1PPRL_DOUBLE_FORMAT " %14.1f"
aoqi@0 4645 #define G1PPRL_DOUBLE_H_FORMAT " %14s"
aoqi@0 4646
aoqi@0 4647 // For summary info
aoqi@0 4648 #define G1PPRL_SUM_ADDR_FORMAT(tag) " "tag":"G1PPRL_ADDR_BASE_FORMAT
aoqi@0 4649 #define G1PPRL_SUM_BYTE_FORMAT(tag) " "tag": "SIZE_FORMAT
aoqi@0 4650 #define G1PPRL_SUM_MB_FORMAT(tag) " "tag": %1.2f MB"
aoqi@0 4651 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
aoqi@0 4652
aoqi@0 4653 G1PrintRegionLivenessInfoClosure::
aoqi@0 4654 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
aoqi@0 4655 : _out(out),
aoqi@0 4656 _total_used_bytes(0), _total_capacity_bytes(0),
aoqi@0 4657 _total_prev_live_bytes(0), _total_next_live_bytes(0),
aoqi@0 4658 _hum_used_bytes(0), _hum_capacity_bytes(0),
aoqi@0 4659 _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
aoqi@0 4660 _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
aoqi@0 4661 G1CollectedHeap* g1h = G1CollectedHeap::heap();
aoqi@0 4662 MemRegion g1_reserved = g1h->g1_reserved();
aoqi@0 4663 double now = os::elapsedTime();
aoqi@0 4664
aoqi@0 4665 // Print the header of the output.
aoqi@0 4666 _out->cr();
aoqi@0 4667 _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
aoqi@0 4668 _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
aoqi@0 4669 G1PPRL_SUM_ADDR_FORMAT("reserved")
aoqi@0 4670 G1PPRL_SUM_BYTE_FORMAT("region-size"),
aoqi@0 4671 p2i(g1_reserved.start()), p2i(g1_reserved.end()),
aoqi@0 4672 HeapRegion::GrainBytes);
aoqi@0 4673 _out->print_cr(G1PPRL_LINE_PREFIX);
aoqi@0 4674 _out->print_cr(G1PPRL_LINE_PREFIX
aoqi@0 4675 G1PPRL_TYPE_H_FORMAT
aoqi@0 4676 G1PPRL_ADDR_BASE_H_FORMAT
aoqi@0 4677 G1PPRL_BYTE_H_FORMAT
aoqi@0 4678 G1PPRL_BYTE_H_FORMAT
aoqi@0 4679 G1PPRL_BYTE_H_FORMAT
aoqi@0 4680 G1PPRL_DOUBLE_H_FORMAT
aoqi@0 4681 G1PPRL_BYTE_H_FORMAT
aoqi@0 4682 G1PPRL_BYTE_H_FORMAT,
aoqi@0 4683 "type", "address-range",
aoqi@0 4684 "used", "prev-live", "next-live", "gc-eff",
aoqi@0 4685 "remset", "code-roots");
aoqi@0 4686 _out->print_cr(G1PPRL_LINE_PREFIX
aoqi@0 4687 G1PPRL_TYPE_H_FORMAT
aoqi@0 4688 G1PPRL_ADDR_BASE_H_FORMAT
aoqi@0 4689 G1PPRL_BYTE_H_FORMAT
aoqi@0 4690 G1PPRL_BYTE_H_FORMAT
aoqi@0 4691 G1PPRL_BYTE_H_FORMAT
aoqi@0 4692 G1PPRL_DOUBLE_H_FORMAT
aoqi@0 4693 G1PPRL_BYTE_H_FORMAT
aoqi@0 4694 G1PPRL_BYTE_H_FORMAT,
aoqi@0 4695 "", "",
aoqi@0 4696 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
aoqi@0 4697 "(bytes)", "(bytes)");
aoqi@0 4698 }
aoqi@0 4699
aoqi@0 4700 // It takes as a parameter a reference to one of the _hum_* fields, it
aoqi@0 4701 // deduces the corresponding value for a region in a humongous region
aoqi@0 4702 // series (either the region size, or what's left if the _hum_* field
aoqi@0 4703 // is < the region size), and updates the _hum_* field accordingly.
aoqi@0 4704 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
aoqi@0 4705 size_t bytes = 0;
aoqi@0 4706 // The > 0 check is to deal with the prev and next live bytes which
aoqi@0 4707 // could be 0.
aoqi@0 4708 if (*hum_bytes > 0) {
aoqi@0 4709 bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
aoqi@0 4710 *hum_bytes -= bytes;
aoqi@0 4711 }
aoqi@0 4712 return bytes;
aoqi@0 4713 }
aoqi@0 4714
aoqi@0 4715 // It deduces the values for a region in a humongous region series
aoqi@0 4716 // from the _hum_* fields and updates those accordingly. It assumes
aoqi@0 4717 // that that _hum_* fields have already been set up from the "starts
aoqi@0 4718 // humongous" region and we visit the regions in address order.
aoqi@0 4719 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
aoqi@0 4720 size_t* capacity_bytes,
aoqi@0 4721 size_t* prev_live_bytes,
aoqi@0 4722 size_t* next_live_bytes) {
aoqi@0 4723 assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
aoqi@0 4724 *used_bytes = get_hum_bytes(&_hum_used_bytes);
aoqi@0 4725 *capacity_bytes = get_hum_bytes(&_hum_capacity_bytes);
aoqi@0 4726 *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
aoqi@0 4727 *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
aoqi@0 4728 }
aoqi@0 4729
aoqi@0 4730 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
brutisso@7195 4731 const char* type = r->get_type_str();
aoqi@0 4732 HeapWord* bottom = r->bottom();
aoqi@0 4733 HeapWord* end = r->end();
aoqi@0 4734 size_t capacity_bytes = r->capacity();
aoqi@0 4735 size_t used_bytes = r->used();
aoqi@0 4736 size_t prev_live_bytes = r->live_bytes();
aoqi@0 4737 size_t next_live_bytes = r->next_live_bytes();
aoqi@0 4738 double gc_eff = r->gc_efficiency();
aoqi@0 4739 size_t remset_bytes = r->rem_set()->mem_size();
aoqi@0 4740 size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
aoqi@0 4741
brutisso@7195 4742 if (r->startsHumongous()) {
aoqi@0 4743 assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
aoqi@0 4744 _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
aoqi@0 4745 "they should have been zeroed after the last time we used them");
aoqi@0 4746 // Set up the _hum_* fields.
aoqi@0 4747 _hum_capacity_bytes = capacity_bytes;
aoqi@0 4748 _hum_used_bytes = used_bytes;
aoqi@0 4749 _hum_prev_live_bytes = prev_live_bytes;
aoqi@0 4750 _hum_next_live_bytes = next_live_bytes;
aoqi@0 4751 get_hum_bytes(&used_bytes, &capacity_bytes,
aoqi@0 4752 &prev_live_bytes, &next_live_bytes);
aoqi@0 4753 end = bottom + HeapRegion::GrainWords;
aoqi@0 4754 } else if (r->continuesHumongous()) {
aoqi@0 4755 get_hum_bytes(&used_bytes, &capacity_bytes,
aoqi@0 4756 &prev_live_bytes, &next_live_bytes);
aoqi@0 4757 assert(end == bottom + HeapRegion::GrainWords, "invariant");
aoqi@0 4758 }
aoqi@0 4759
aoqi@0 4760 _total_used_bytes += used_bytes;
aoqi@0 4761 _total_capacity_bytes += capacity_bytes;
aoqi@0 4762 _total_prev_live_bytes += prev_live_bytes;
aoqi@0 4763 _total_next_live_bytes += next_live_bytes;
aoqi@0 4764 _total_remset_bytes += remset_bytes;
aoqi@0 4765 _total_strong_code_roots_bytes += strong_code_roots_bytes;
aoqi@0 4766
aoqi@0 4767 // Print a line for this particular region.
aoqi@0 4768 _out->print_cr(G1PPRL_LINE_PREFIX
aoqi@0 4769 G1PPRL_TYPE_FORMAT
aoqi@0 4770 G1PPRL_ADDR_BASE_FORMAT
aoqi@0 4771 G1PPRL_BYTE_FORMAT
aoqi@0 4772 G1PPRL_BYTE_FORMAT
aoqi@0 4773 G1PPRL_BYTE_FORMAT
aoqi@0 4774 G1PPRL_DOUBLE_FORMAT
aoqi@0 4775 G1PPRL_BYTE_FORMAT
aoqi@0 4776 G1PPRL_BYTE_FORMAT,
aoqi@0 4777 type, p2i(bottom), p2i(end),
aoqi@0 4778 used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
aoqi@0 4779 remset_bytes, strong_code_roots_bytes);
aoqi@0 4780
aoqi@0 4781 return false;
aoqi@0 4782 }
aoqi@0 4783
aoqi@0 4784 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
aoqi@0 4785 // add static memory usages to remembered set sizes
aoqi@0 4786 _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
aoqi@0 4787 // Print the footer of the output.
aoqi@0 4788 _out->print_cr(G1PPRL_LINE_PREFIX);
aoqi@0 4789 _out->print_cr(G1PPRL_LINE_PREFIX
aoqi@0 4790 " SUMMARY"
aoqi@0 4791 G1PPRL_SUM_MB_FORMAT("capacity")
aoqi@0 4792 G1PPRL_SUM_MB_PERC_FORMAT("used")
aoqi@0 4793 G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
aoqi@0 4794 G1PPRL_SUM_MB_PERC_FORMAT("next-live")
aoqi@0 4795 G1PPRL_SUM_MB_FORMAT("remset")
aoqi@0 4796 G1PPRL_SUM_MB_FORMAT("code-roots"),
aoqi@0 4797 bytes_to_mb(_total_capacity_bytes),
aoqi@0 4798 bytes_to_mb(_total_used_bytes),
aoqi@0 4799 perc(_total_used_bytes, _total_capacity_bytes),
aoqi@0 4800 bytes_to_mb(_total_prev_live_bytes),
aoqi@0 4801 perc(_total_prev_live_bytes, _total_capacity_bytes),
aoqi@0 4802 bytes_to_mb(_total_next_live_bytes),
aoqi@0 4803 perc(_total_next_live_bytes, _total_capacity_bytes),
aoqi@0 4804 bytes_to_mb(_total_remset_bytes),
aoqi@0 4805 bytes_to_mb(_total_strong_code_roots_bytes));
aoqi@0 4806 _out->cr();
aoqi@0 4807 }

mercurial