src/share/vm/code/compiledIC.cpp

Wed, 01 Feb 2012 07:59:01 -0800

author
never
date
Wed, 01 Feb 2012 07:59:01 -0800
changeset 3499
aa3d708d67c4
parent 2708
1d1603768966
child 4037
da91efe96a93
permissions
-rw-r--r--

7141200: log some interesting information in ring buffers for crashes
Reviewed-by: kvn, jrose, kevinw, brutisso, twisti, jmasa

duke@435 1 /*
never@3499 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "code/codeCache.hpp"
stefank@2314 28 #include "code/compiledIC.hpp"
stefank@2314 29 #include "code/icBuffer.hpp"
stefank@2314 30 #include "code/nmethod.hpp"
stefank@2314 31 #include "code/vtableStubs.hpp"
stefank@2314 32 #include "interpreter/interpreter.hpp"
stefank@2314 33 #include "interpreter/linkResolver.hpp"
stefank@2314 34 #include "memory/oopFactory.hpp"
stefank@2314 35 #include "oops/methodOop.hpp"
stefank@2314 36 #include "oops/oop.inline.hpp"
coleenp@2497 37 #include "oops/symbol.hpp"
stefank@2314 38 #include "runtime/icache.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
stefank@2314 40 #include "runtime/stubRoutines.hpp"
stefank@2314 41 #include "utilities/events.hpp"
duke@435 42
duke@435 43
duke@435 44 // Every time a compiled IC is changed or its type is being accessed,
duke@435 45 // either the CompiledIC_lock must be set or we must be at a safe point.
duke@435 46
duke@435 47 //-----------------------------------------------------------------------------
duke@435 48 // Low-level access to an inline cache. Private, since they might not be
duke@435 49 // MT-safe to use.
duke@435 50
duke@435 51 void CompiledIC::set_cached_oop(oop cache) {
duke@435 52 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 53 assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
duke@435 54 assert (cache == NULL || cache != badOop, "invalid oop");
duke@435 55
duke@435 56 if (TraceCompiledIC) {
duke@435 57 tty->print(" ");
duke@435 58 print_compiled_ic();
duke@435 59 tty->print_cr(" changing oop to " INTPTR_FORMAT, (address)cache);
duke@435 60 }
duke@435 61
duke@435 62 if (cache == NULL) cache = (oop)Universe::non_oop_word();
duke@435 63
duke@435 64 *_oop_addr = cache;
duke@435 65 // fix up the relocations
duke@435 66 RelocIterator iter = _oops;
duke@435 67 while (iter.next()) {
duke@435 68 if (iter.type() == relocInfo::oop_type) {
duke@435 69 oop_Relocation* r = iter.oop_reloc();
duke@435 70 if (r->oop_addr() == _oop_addr)
duke@435 71 r->fix_oop_relocation();
duke@435 72 }
duke@435 73 }
duke@435 74 return;
duke@435 75 }
duke@435 76
duke@435 77
duke@435 78 oop CompiledIC::cached_oop() const {
duke@435 79 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 80 assert (!is_optimized(), "an optimized virtual call does not have a cached oop");
duke@435 81
duke@435 82 if (!is_in_transition_state()) {
duke@435 83 oop data = *_oop_addr;
duke@435 84 // If we let the oop value here be initialized to zero...
duke@435 85 assert(data != NULL || Universe::non_oop_word() == NULL,
duke@435 86 "no raw nulls in CompiledIC oops, because of patching races");
duke@435 87 return (data == (oop)Universe::non_oop_word()) ? (oop)NULL : data;
duke@435 88 } else {
duke@435 89 return InlineCacheBuffer::cached_oop_for((CompiledIC *)this);
duke@435 90 }
duke@435 91 }
duke@435 92
duke@435 93
duke@435 94 void CompiledIC::set_ic_destination(address entry_point) {
duke@435 95 assert(entry_point != NULL, "must set legal entry point");
duke@435 96 assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 97 if (TraceCompiledIC) {
duke@435 98 tty->print(" ");
duke@435 99 print_compiled_ic();
duke@435 100 tty->print_cr(" changing destination to " INTPTR_FORMAT, entry_point);
duke@435 101 }
duke@435 102 MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 103 #ifdef ASSERT
duke@435 104 CodeBlob* cb = CodeCache::find_blob_unsafe(_ic_call);
duke@435 105 assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
duke@435 106 #endif
duke@435 107 _ic_call->set_destination_mt_safe(entry_point);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111 address CompiledIC::ic_destination() const {
duke@435 112 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 113 if (!is_in_transition_state()) {
duke@435 114 return _ic_call->destination();
duke@435 115 } else {
duke@435 116 return InlineCacheBuffer::ic_destination_for((CompiledIC *)this);
duke@435 117 }
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 bool CompiledIC::is_in_transition_state() const {
duke@435 122 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 123 return InlineCacheBuffer::contains(_ic_call->destination());
duke@435 124 }
duke@435 125
duke@435 126
duke@435 127 // Returns native address of 'call' instruction in inline-cache. Used by
duke@435 128 // the InlineCacheBuffer when it needs to find the stub.
duke@435 129 address CompiledIC::stub_address() const {
duke@435 130 assert(is_in_transition_state(), "should only be called when we are in a transition state");
duke@435 131 return _ic_call->destination();
duke@435 132 }
duke@435 133
duke@435 134
duke@435 135 //-----------------------------------------------------------------------------
duke@435 136 // High-level access to an inline cache. Guaranteed to be MT-safe.
duke@435 137
duke@435 138
duke@435 139 void CompiledIC::set_to_megamorphic(CallInfo* call_info, Bytecodes::Code bytecode, TRAPS) {
duke@435 140 methodHandle method = call_info->selected_method();
duke@435 141 bool is_invoke_interface = (bytecode == Bytecodes::_invokeinterface && !call_info->has_vtable_index());
duke@435 142 assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 143 assert(method->is_oop(), "cannot be NULL and must be oop");
duke@435 144 assert(!is_optimized(), "cannot set an optimized virtual call to megamorphic");
duke@435 145 assert(is_call_to_compiled() || is_call_to_interpreted(), "going directly to megamorphic?");
duke@435 146
duke@435 147 address entry;
duke@435 148 if (is_invoke_interface) {
duke@435 149 int index = klassItable::compute_itable_index(call_info->resolved_method()());
duke@435 150 entry = VtableStubs::create_stub(false, index, method());
duke@435 151 assert(entry != NULL, "entry not computed");
duke@435 152 klassOop k = call_info->resolved_method()->method_holder();
duke@435 153 assert(Klass::cast(k)->is_interface(), "sanity check");
duke@435 154 InlineCacheBuffer::create_transition_stub(this, k, entry);
duke@435 155 } else {
duke@435 156 // Can be different than method->vtable_index(), due to package-private etc.
duke@435 157 int vtable_index = call_info->vtable_index();
duke@435 158 entry = VtableStubs::create_stub(true, vtable_index, method());
duke@435 159 InlineCacheBuffer::create_transition_stub(this, method(), entry);
duke@435 160 }
duke@435 161
duke@435 162 if (TraceICs) {
duke@435 163 ResourceMark rm;
duke@435 164 tty->print_cr ("IC@" INTPTR_FORMAT ": to megamorphic %s entry: " INTPTR_FORMAT,
duke@435 165 instruction_address(), method->print_value_string(), entry);
duke@435 166 }
duke@435 167
duke@435 168 // We can't check this anymore. With lazy deopt we could have already
duke@435 169 // cleaned this IC entry before we even return. This is possible if
duke@435 170 // we ran out of space in the inline cache buffer trying to do the
duke@435 171 // set_next and we safepointed to free up space. This is a benign
duke@435 172 // race because the IC entry was complete when we safepointed so
duke@435 173 // cleaning it immediately is harmless.
duke@435 174 // assert(is_megamorphic(), "sanity check");
duke@435 175 }
duke@435 176
duke@435 177
duke@435 178 // true if destination is megamorphic stub
duke@435 179 bool CompiledIC::is_megamorphic() const {
duke@435 180 assert(CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 181 assert(!is_optimized(), "an optimized call cannot be megamorphic");
duke@435 182
duke@435 183 // Cannot rely on cached_oop. It is either an interface or a method.
duke@435 184 return VtableStubs::is_entry_point(ic_destination());
duke@435 185 }
duke@435 186
duke@435 187 bool CompiledIC::is_call_to_compiled() const {
duke@435 188 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 189
duke@435 190 // Use unsafe, since an inline cache might point to a zombie method. However, the zombie
duke@435 191 // method is guaranteed to still exist, since we only remove methods after all inline caches
duke@435 192 // has been cleaned up
duke@435 193 CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
duke@435 194 bool is_monomorphic = (cb != NULL && cb->is_nmethod());
duke@435 195 // Check that the cached_oop is a klass for non-optimized monomorphic calls
duke@435 196 // This assertion is invalid for compiler1: a call that does not look optimized (no static stub) can be used
duke@435 197 // for calling directly to vep without using the inline cache (i.e., cached_oop == NULL)
duke@435 198 #ifdef ASSERT
duke@435 199 #ifdef TIERED
duke@435 200 CodeBlob* caller = CodeCache::find_blob_unsafe(instruction_address());
duke@435 201 bool is_c1_method = caller->is_compiled_by_c1();
duke@435 202 #else
duke@435 203 #ifdef COMPILER1
duke@435 204 bool is_c1_method = true;
duke@435 205 #else
duke@435 206 bool is_c1_method = false;
duke@435 207 #endif // COMPILER1
duke@435 208 #endif // TIERED
duke@435 209 assert( is_c1_method ||
duke@435 210 !is_monomorphic ||
duke@435 211 is_optimized() ||
duke@435 212 (cached_oop() != NULL && cached_oop()->is_klass()), "sanity check");
duke@435 213 #endif // ASSERT
duke@435 214 return is_monomorphic;
duke@435 215 }
duke@435 216
duke@435 217
duke@435 218 bool CompiledIC::is_call_to_interpreted() const {
duke@435 219 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 220 // Call to interpreter if destination is either calling to a stub (if it
duke@435 221 // is optimized), or calling to an I2C blob
duke@435 222 bool is_call_to_interpreted = false;
duke@435 223 if (!is_optimized()) {
duke@435 224 // must use unsafe because the destination can be a zombie (and we're cleaning)
duke@435 225 // and the print_compiled_ic code wants to know if site (in the non-zombie)
duke@435 226 // is to the interpreter.
duke@435 227 CodeBlob* cb = CodeCache::find_blob_unsafe(ic_destination());
duke@435 228 is_call_to_interpreted = (cb != NULL && cb->is_adapter_blob());
duke@435 229 assert(!is_call_to_interpreted || (cached_oop() != NULL && cached_oop()->is_compiledICHolder()), "sanity check");
duke@435 230 } else {
duke@435 231 // Check if we are calling into our own codeblob (i.e., to a stub)
duke@435 232 CodeBlob* cb = CodeCache::find_blob(_ic_call->instruction_address());
duke@435 233 address dest = ic_destination();
duke@435 234 #ifdef ASSERT
duke@435 235 {
duke@435 236 CodeBlob* db = CodeCache::find_blob_unsafe(dest);
duke@435 237 assert(!db->is_adapter_blob(), "must use stub!");
duke@435 238 }
duke@435 239 #endif /* ASSERT */
duke@435 240 is_call_to_interpreted = cb->contains(dest);
duke@435 241 }
duke@435 242 return is_call_to_interpreted;
duke@435 243 }
duke@435 244
duke@435 245
duke@435 246 void CompiledIC::set_to_clean() {
duke@435 247 assert(SafepointSynchronize::is_at_safepoint() || CompiledIC_lock->is_locked() , "MT-unsafe call");
duke@435 248 if (TraceInlineCacheClearing || TraceICs) {
duke@435 249 tty->print_cr("IC@" INTPTR_FORMAT ": set to clean", instruction_address());
duke@435 250 print();
duke@435 251 }
duke@435 252
duke@435 253 address entry;
duke@435 254 if (is_optimized()) {
duke@435 255 entry = SharedRuntime::get_resolve_opt_virtual_call_stub();
duke@435 256 } else {
duke@435 257 entry = SharedRuntime::get_resolve_virtual_call_stub();
duke@435 258 }
duke@435 259
duke@435 260 // A zombie transition will always be safe, since the oop has already been set to NULL, so
duke@435 261 // we only need to patch the destination
duke@435 262 bool safe_transition = is_optimized() || SafepointSynchronize::is_at_safepoint();
duke@435 263
duke@435 264 if (safe_transition) {
duke@435 265 if (!is_optimized()) set_cached_oop(NULL);
duke@435 266 // Kill any leftover stub we might have too
duke@435 267 if (is_in_transition_state()) {
duke@435 268 ICStub* old_stub = ICStub_from_destination_address(stub_address());
duke@435 269 old_stub->clear();
duke@435 270 }
duke@435 271 set_ic_destination(entry);
duke@435 272 } else {
duke@435 273 // Unsafe transition - create stub.
duke@435 274 InlineCacheBuffer::create_transition_stub(this, NULL, entry);
duke@435 275 }
duke@435 276 // We can't check this anymore. With lazy deopt we could have already
duke@435 277 // cleaned this IC entry before we even return. This is possible if
duke@435 278 // we ran out of space in the inline cache buffer trying to do the
duke@435 279 // set_next and we safepointed to free up space. This is a benign
duke@435 280 // race because the IC entry was complete when we safepointed so
duke@435 281 // cleaning it immediately is harmless.
duke@435 282 // assert(is_clean(), "sanity check");
duke@435 283 }
duke@435 284
duke@435 285
duke@435 286 bool CompiledIC::is_clean() const {
duke@435 287 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 288 bool is_clean = false;
duke@435 289 address dest = ic_destination();
duke@435 290 is_clean = dest == SharedRuntime::get_resolve_opt_virtual_call_stub() ||
duke@435 291 dest == SharedRuntime::get_resolve_virtual_call_stub();
duke@435 292 assert(!is_clean || is_optimized() || cached_oop() == NULL, "sanity check");
duke@435 293 return is_clean;
duke@435 294 }
duke@435 295
duke@435 296
duke@435 297 void CompiledIC::set_to_monomorphic(const CompiledICInfo& info) {
duke@435 298 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "");
duke@435 299 // Updating a cache to the wrong entry can cause bugs that are very hard
duke@435 300 // to track down - if cache entry gets invalid - we just clean it. In
duke@435 301 // this way it is always the same code path that is responsible for
duke@435 302 // updating and resolving an inline cache
duke@435 303 //
duke@435 304 // The above is no longer true. SharedRuntime::fixup_callers_callsite will change optimized
duke@435 305 // callsites. In addition ic_miss code will update a site to monomorphic if it determines
duke@435 306 // that an monomorphic call to the interpreter can now be monomorphic to compiled code.
duke@435 307 //
duke@435 308 // In both of these cases the only thing being modifed is the jump/call target and these
duke@435 309 // transitions are mt_safe
duke@435 310
duke@435 311 Thread *thread = Thread::current();
duke@435 312 if (info._to_interpreter) {
duke@435 313 // Call to interpreter
duke@435 314 if (info.is_optimized() && is_optimized()) {
duke@435 315 assert(is_clean(), "unsafe IC path");
duke@435 316 MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 317 // the call analysis (callee structure) specifies that the call is optimized
duke@435 318 // (either because of CHA or the static target is final)
duke@435 319 // At code generation time, this call has been emitted as static call
duke@435 320 // Call via stub
duke@435 321 assert(info.cached_oop().not_null() && info.cached_oop()->is_method(), "sanity check");
duke@435 322 CompiledStaticCall* csc = compiledStaticCall_at(instruction_address());
duke@435 323 methodHandle method (thread, (methodOop)info.cached_oop()());
duke@435 324 csc->set_to_interpreted(method, info.entry());
duke@435 325 if (TraceICs) {
duke@435 326 ResourceMark rm(thread);
duke@435 327 tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter: %s",
duke@435 328 instruction_address(),
duke@435 329 method->print_value_string());
duke@435 330 }
duke@435 331 } else {
duke@435 332 // Call via method-klass-holder
duke@435 333 assert(info.cached_oop().not_null(), "must be set");
duke@435 334 InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
duke@435 335
duke@435 336 if (TraceICs) {
duke@435 337 ResourceMark rm(thread);
duke@435 338 tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to interpreter via mkh", instruction_address());
duke@435 339 }
duke@435 340 }
duke@435 341 } else {
duke@435 342 // Call to compiled code
duke@435 343 bool static_bound = info.is_optimized() || (info.cached_oop().is_null());
duke@435 344 #ifdef ASSERT
duke@435 345 CodeBlob* cb = CodeCache::find_blob_unsafe(info.entry());
duke@435 346 assert (cb->is_nmethod(), "must be compiled!");
duke@435 347 #endif /* ASSERT */
duke@435 348
duke@435 349 // This is MT safe if we come from a clean-cache and go through a
duke@435 350 // non-verified entry point
duke@435 351 bool safe = SafepointSynchronize::is_at_safepoint() ||
duke@435 352 (!is_in_transition_state() && (info.is_optimized() || static_bound || is_clean()));
duke@435 353
duke@435 354 if (!safe) {
duke@435 355 InlineCacheBuffer::create_transition_stub(this, info.cached_oop()(), info.entry());
duke@435 356 } else {
duke@435 357 set_ic_destination(info.entry());
duke@435 358 if (!is_optimized()) set_cached_oop(info.cached_oop()());
duke@435 359 }
duke@435 360
duke@435 361 if (TraceICs) {
duke@435 362 ResourceMark rm(thread);
duke@435 363 assert(info.cached_oop() == NULL || info.cached_oop()()->is_klass(), "must be");
duke@435 364 tty->print_cr ("IC@" INTPTR_FORMAT ": monomorphic to compiled (rcvr klass) %s: %s",
duke@435 365 instruction_address(),
duke@435 366 ((klassOop)info.cached_oop()())->print_value_string(),
duke@435 367 (safe) ? "" : "via stub");
duke@435 368 }
duke@435 369 }
duke@435 370 // We can't check this anymore. With lazy deopt we could have already
duke@435 371 // cleaned this IC entry before we even return. This is possible if
duke@435 372 // we ran out of space in the inline cache buffer trying to do the
duke@435 373 // set_next and we safepointed to free up space. This is a benign
duke@435 374 // race because the IC entry was complete when we safepointed so
duke@435 375 // cleaning it immediately is harmless.
duke@435 376 // assert(is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
duke@435 377 }
duke@435 378
duke@435 379
duke@435 380 // is_optimized: Compiler has generated an optimized call (i.e., no inline
duke@435 381 // cache) static_bound: The call can be static bound (i.e, no need to use
duke@435 382 // inline cache)
duke@435 383 void CompiledIC::compute_monomorphic_entry(methodHandle method,
duke@435 384 KlassHandle receiver_klass,
duke@435 385 bool is_optimized,
duke@435 386 bool static_bound,
duke@435 387 CompiledICInfo& info,
duke@435 388 TRAPS) {
duke@435 389 info._is_optimized = is_optimized;
duke@435 390
duke@435 391 nmethod* method_code = method->code();
duke@435 392 address entry = NULL;
duke@435 393 if (method_code != NULL) {
duke@435 394 // Call to compiled code
duke@435 395 if (static_bound || is_optimized) {
duke@435 396 entry = method_code->verified_entry_point();
duke@435 397 } else {
duke@435 398 entry = method_code->entry_point();
duke@435 399 }
duke@435 400 }
duke@435 401 if (entry != NULL) {
duke@435 402 // Call to compiled code
duke@435 403 info._entry = entry;
duke@435 404 if (static_bound || is_optimized) {
duke@435 405 info._cached_oop = Handle(THREAD, (oop)NULL);
duke@435 406 } else {
duke@435 407 info._cached_oop = receiver_klass;
duke@435 408 }
duke@435 409 info._to_interpreter = false;
duke@435 410 } else {
duke@435 411 // Note: the following problem exists with Compiler1:
duke@435 412 // - at compile time we may or may not know if the destination is final
duke@435 413 // - if we know that the destination is final, we will emit an optimized
duke@435 414 // virtual call (no inline cache), and need a methodOop to make a call
duke@435 415 // to the interpreter
duke@435 416 // - if we do not know if the destination is final, we emit a standard
duke@435 417 // virtual call, and use CompiledICHolder to call interpreted code
duke@435 418 // (no static call stub has been generated)
duke@435 419 // However in that case we will now notice it is static_bound
duke@435 420 // and convert the call into what looks to be an optimized
duke@435 421 // virtual call. This causes problems in verifying the IC because
duke@435 422 // it look vanilla but is optimized. Code in is_call_to_interpreted
duke@435 423 // is aware of this and weakens its asserts.
duke@435 424
duke@435 425 info._to_interpreter = true;
duke@435 426 // static_bound should imply is_optimized -- otherwise we have a
duke@435 427 // performance bug (statically-bindable method is called via
duke@435 428 // dynamically-dispatched call note: the reverse implication isn't
duke@435 429 // necessarily true -- the call may have been optimized based on compiler
duke@435 430 // analysis (static_bound is only based on "final" etc.)
duke@435 431 #ifdef COMPILER2
duke@435 432 #ifdef TIERED
duke@435 433 #if defined(ASSERT)
duke@435 434 // can't check the assert because we don't have the CompiledIC with which to
duke@435 435 // find the address if the call instruction.
duke@435 436 //
duke@435 437 // CodeBlob* cb = find_blob_unsafe(instruction_address());
duke@435 438 // assert(cb->is_compiled_by_c1() || !static_bound || is_optimized, "static_bound should imply is_optimized");
duke@435 439 #endif // ASSERT
duke@435 440 #else
duke@435 441 assert(!static_bound || is_optimized, "static_bound should imply is_optimized");
duke@435 442 #endif // TIERED
duke@435 443 #endif // COMPILER2
duke@435 444 if (is_optimized) {
duke@435 445 // Use stub entry
duke@435 446 info._entry = method()->get_c2i_entry();
duke@435 447 info._cached_oop = method;
duke@435 448 } else {
duke@435 449 // Use mkh entry
duke@435 450 oop holder = oopFactory::new_compiledICHolder(method, receiver_klass, CHECK);
duke@435 451 info._cached_oop = Handle(THREAD, holder);
duke@435 452 info._entry = method()->get_c2i_unverified_entry();
duke@435 453 }
duke@435 454 }
duke@435 455 }
duke@435 456
duke@435 457
twisti@1918 458 inline static RelocIterator parse_ic(nmethod* nm, address ic_call, oop* &_oop_addr, bool *is_optimized) {
duke@435 459 address first_oop = NULL;
duke@435 460 // Mergers please note: Sun SC5.x CC insists on an lvalue for a reference parameter.
twisti@1918 461 nmethod* tmp_nm = nm;
twisti@1918 462 return virtual_call_Relocation::parse_ic(tmp_nm, ic_call, first_oop, _oop_addr, is_optimized);
duke@435 463 }
duke@435 464
duke@435 465 CompiledIC::CompiledIC(NativeCall* ic_call)
duke@435 466 : _ic_call(ic_call),
duke@435 467 _oops(parse_ic(NULL, ic_call->instruction_address(), _oop_addr, &_is_optimized))
duke@435 468 {
duke@435 469 }
duke@435 470
duke@435 471
duke@435 472 CompiledIC::CompiledIC(Relocation* ic_reloc)
duke@435 473 : _ic_call(nativeCall_at(ic_reloc->addr())),
duke@435 474 _oops(parse_ic(ic_reloc->code(), ic_reloc->addr(), _oop_addr, &_is_optimized))
duke@435 475 {
duke@435 476 assert(ic_reloc->type() == relocInfo::virtual_call_type ||
duke@435 477 ic_reloc->type() == relocInfo::opt_virtual_call_type, "wrong reloc. info");
duke@435 478 }
duke@435 479
duke@435 480
duke@435 481 // ----------------------------------------------------------------------------
duke@435 482
duke@435 483 void CompiledStaticCall::set_to_clean() {
duke@435 484 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
duke@435 485 // Reset call site
duke@435 486 MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 487 #ifdef ASSERT
duke@435 488 CodeBlob* cb = CodeCache::find_blob_unsafe(this);
duke@435 489 assert(cb != NULL && cb->is_nmethod(), "must be nmethod");
duke@435 490 #endif
duke@435 491 set_destination_mt_safe(SharedRuntime::get_resolve_static_call_stub());
duke@435 492
duke@435 493 // Do not reset stub here: It is too expensive to call find_stub.
duke@435 494 // Instead, rely on caller (nmethod::clear_inline_caches) to clear
duke@435 495 // both the call and its stub.
duke@435 496 }
duke@435 497
duke@435 498
duke@435 499 bool CompiledStaticCall::is_clean() const {
duke@435 500 return destination() == SharedRuntime::get_resolve_static_call_stub();
duke@435 501 }
duke@435 502
duke@435 503 bool CompiledStaticCall::is_call_to_compiled() const {
duke@435 504 return CodeCache::contains(destination());
duke@435 505 }
duke@435 506
duke@435 507
duke@435 508 bool CompiledStaticCall::is_call_to_interpreted() const {
duke@435 509 // It is a call to interpreted, if it calls to a stub. Hence, the destination
duke@435 510 // must be in the stub part of the nmethod that contains the call
duke@435 511 nmethod* nm = CodeCache::find_nmethod(instruction_address());
duke@435 512 return nm->stub_contains(destination());
duke@435 513 }
duke@435 514
duke@435 515
duke@435 516 void CompiledStaticCall::set_to_interpreted(methodHandle callee, address entry) {
duke@435 517 address stub=find_stub();
duke@435 518 assert(stub!=NULL, "stub not found");
duke@435 519
duke@435 520 if (TraceICs) {
duke@435 521 ResourceMark rm;
duke@435 522 tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_interpreted %s",
duke@435 523 instruction_address(),
duke@435 524 callee->name_and_sig_as_C_string());
duke@435 525 }
duke@435 526
duke@435 527 NativeMovConstReg* method_holder = nativeMovConstReg_at(stub); // creation also verifies the object
duke@435 528 NativeJump* jump = nativeJump_at(method_holder->next_instruction_address());
duke@435 529
duke@435 530 assert(method_holder->data() == 0 || method_holder->data() == (intptr_t)callee(), "a) MT-unsafe modification of inline cache");
duke@435 531 assert(jump->jump_destination() == (address)-1 || jump->jump_destination() == entry, "b) MT-unsafe modification of inline cache");
duke@435 532
duke@435 533 // Update stub
duke@435 534 method_holder->set_data((intptr_t)callee());
duke@435 535 jump->set_jump_destination(entry);
duke@435 536
duke@435 537 // Update jump to call
duke@435 538 set_destination_mt_safe(stub);
duke@435 539 }
duke@435 540
duke@435 541
duke@435 542 void CompiledStaticCall::set(const StaticCallInfo& info) {
duke@435 543 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
duke@435 544 MutexLockerEx pl(Patching_lock, Mutex::_no_safepoint_check_flag);
duke@435 545 // Updating a cache to the wrong entry can cause bugs that are very hard
duke@435 546 // to track down - if cache entry gets invalid - we just clean it. In
duke@435 547 // this way it is always the same code path that is responsible for
duke@435 548 // updating and resolving an inline cache
duke@435 549 assert(is_clean(), "do not update a call entry - use clean");
duke@435 550
duke@435 551 if (info._to_interpreter) {
duke@435 552 // Call to interpreted code
duke@435 553 set_to_interpreted(info.callee(), info.entry());
duke@435 554 } else {
duke@435 555 if (TraceICs) {
duke@435 556 ResourceMark rm;
duke@435 557 tty->print_cr("CompiledStaticCall@" INTPTR_FORMAT ": set_to_compiled " INTPTR_FORMAT,
duke@435 558 instruction_address(),
duke@435 559 info.entry());
duke@435 560 }
duke@435 561 // Call to compiled code
duke@435 562 assert (CodeCache::contains(info.entry()), "wrong entry point");
duke@435 563 set_destination_mt_safe(info.entry());
duke@435 564 }
duke@435 565 }
duke@435 566
duke@435 567
duke@435 568 // Compute settings for a CompiledStaticCall. Since we might have to set
duke@435 569 // the stub when calling to the interpreter, we need to return arguments.
duke@435 570 void CompiledStaticCall::compute_entry(methodHandle m, StaticCallInfo& info) {
duke@435 571 nmethod* m_code = m->code();
duke@435 572 info._callee = m;
duke@435 573 if (m_code != NULL) {
duke@435 574 info._to_interpreter = false;
duke@435 575 info._entry = m_code->verified_entry_point();
duke@435 576 } else {
duke@435 577 // Callee is interpreted code. In any case entering the interpreter
duke@435 578 // puts a converter-frame on the stack to save arguments.
duke@435 579 info._to_interpreter = true;
duke@435 580 info._entry = m()->get_c2i_entry();
duke@435 581 }
duke@435 582 }
duke@435 583
duke@435 584
duke@435 585 void CompiledStaticCall::set_stub_to_clean(static_stub_Relocation* static_stub) {
duke@435 586 assert (CompiledIC_lock->is_locked() || SafepointSynchronize::is_at_safepoint(), "mt unsafe call");
duke@435 587 // Reset stub
duke@435 588 address stub = static_stub->addr();
duke@435 589 assert(stub!=NULL, "stub not found");
duke@435 590 NativeMovConstReg* method_holder = nativeMovConstReg_at(stub); // creation also verifies the object
duke@435 591 NativeJump* jump = nativeJump_at(method_holder->next_instruction_address());
duke@435 592 method_holder->set_data(0);
duke@435 593 jump->set_jump_destination((address)-1);
duke@435 594 }
duke@435 595
duke@435 596
duke@435 597 address CompiledStaticCall::find_stub() {
duke@435 598 // Find reloc. information containing this call-site
duke@435 599 RelocIterator iter((nmethod*)NULL, instruction_address());
duke@435 600 while (iter.next()) {
duke@435 601 if (iter.addr() == instruction_address()) {
duke@435 602 switch(iter.type()) {
duke@435 603 case relocInfo::static_call_type:
duke@435 604 return iter.static_call_reloc()->static_stub();
duke@435 605 // We check here for opt_virtual_call_type, since we reuse the code
duke@435 606 // from the CompiledIC implementation
duke@435 607 case relocInfo::opt_virtual_call_type:
duke@435 608 return iter.opt_virtual_call_reloc()->static_stub();
duke@435 609 case relocInfo::poll_type:
duke@435 610 case relocInfo::poll_return_type: // A safepoint can't overlap a call.
duke@435 611 default:
duke@435 612 ShouldNotReachHere();
duke@435 613 }
duke@435 614 }
duke@435 615 }
duke@435 616 return NULL;
duke@435 617 }
duke@435 618
duke@435 619
duke@435 620 //-----------------------------------------------------------------------------
duke@435 621 // Non-product mode code
duke@435 622 #ifndef PRODUCT
duke@435 623
duke@435 624 void CompiledIC::verify() {
duke@435 625 // make sure code pattern is actually a call imm32 instruction
duke@435 626 _ic_call->verify();
duke@435 627 if (os::is_MP()) {
duke@435 628 _ic_call->verify_alignment();
duke@435 629 }
duke@435 630 assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted()
duke@435 631 || is_optimized() || is_megamorphic(), "sanity check");
duke@435 632 }
duke@435 633
duke@435 634
duke@435 635 void CompiledIC::print() {
duke@435 636 print_compiled_ic();
duke@435 637 tty->cr();
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 void CompiledIC::print_compiled_ic() {
duke@435 642 tty->print("Inline cache at " INTPTR_FORMAT ", calling %s " INTPTR_FORMAT,
duke@435 643 instruction_address(), is_call_to_interpreted() ? "interpreted " : "", ic_destination());
duke@435 644 }
duke@435 645
duke@435 646
duke@435 647 void CompiledStaticCall::print() {
duke@435 648 tty->print("static call at " INTPTR_FORMAT " -> ", instruction_address());
duke@435 649 if (is_clean()) {
duke@435 650 tty->print("clean");
duke@435 651 } else if (is_call_to_compiled()) {
duke@435 652 tty->print("compiled");
duke@435 653 } else if (is_call_to_interpreted()) {
duke@435 654 tty->print("interpreted");
duke@435 655 }
duke@435 656 tty->cr();
duke@435 657 }
duke@435 658
duke@435 659 void CompiledStaticCall::verify() {
duke@435 660 // Verify call
duke@435 661 NativeCall::verify();
duke@435 662 if (os::is_MP()) {
duke@435 663 verify_alignment();
duke@435 664 }
duke@435 665
duke@435 666 // Verify stub
duke@435 667 address stub = find_stub();
duke@435 668 assert(stub != NULL, "no stub found for static call");
duke@435 669 NativeMovConstReg* method_holder = nativeMovConstReg_at(stub); // creation also verifies the object
duke@435 670 NativeJump* jump = nativeJump_at(method_holder->next_instruction_address());
duke@435 671
duke@435 672 // Verify state
duke@435 673 assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
duke@435 674 }
duke@435 675
duke@435 676 #endif

mercurial