src/share/vm/opto/escape.cpp

Mon, 28 Apr 2008 08:08:12 -0700

author
rasbold
date
Mon, 28 Apr 2008 08:08:12 -0700
changeset 563
a76240c8b133
parent 559
b130b98db9cf
child 598
885ed790ecf0
permissions
-rw-r--r--

Merge

duke@435 1 /*
duke@435 2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 uint PointsToNode::edge_target(uint e) const {
duke@435 29 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 30 return (_edges->at(e) >> EdgeShift);
duke@435 31 }
duke@435 32
duke@435 33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
duke@435 34 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 35 return (EdgeType) (_edges->at(e) & EdgeMask);
duke@435 36 }
duke@435 37
duke@435 38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 39 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 40 if (_edges == NULL) {
duke@435 41 Arena *a = Compile::current()->comp_arena();
duke@435 42 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 43 }
duke@435 44 _edges->append_if_missing(v);
duke@435 45 }
duke@435 46
duke@435 47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 48 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 49
duke@435 50 _edges->remove(v);
duke@435 51 }
duke@435 52
duke@435 53 #ifndef PRODUCT
kvn@512 54 static const char *node_type_names[] = {
duke@435 55 "UnknownType",
duke@435 56 "JavaObject",
duke@435 57 "LocalVar",
duke@435 58 "Field"
duke@435 59 };
duke@435 60
kvn@512 61 static const char *esc_names[] = {
duke@435 62 "UnknownEscape",
kvn@500 63 "NoEscape",
kvn@500 64 "ArgEscape",
kvn@500 65 "GlobalEscape"
duke@435 66 };
duke@435 67
kvn@512 68 static const char *edge_type_suffix[] = {
duke@435 69 "?", // UnknownEdge
duke@435 70 "P", // PointsToEdge
duke@435 71 "D", // DeferredEdge
duke@435 72 "F" // FieldEdge
duke@435 73 };
duke@435 74
duke@435 75 void PointsToNode::dump() const {
duke@435 76 NodeType nt = node_type();
duke@435 77 EscapeState es = escape_state();
kvn@500 78 tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
duke@435 79 for (uint i = 0; i < edge_count(); i++) {
duke@435 80 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 81 }
duke@435 82 tty->print("]] ");
duke@435 83 if (_node == NULL)
duke@435 84 tty->print_cr("<null>");
duke@435 85 else
duke@435 86 _node->dump();
duke@435 87 }
duke@435 88 #endif
duke@435 89
duke@435 90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
duke@435 91 _collecting = true;
duke@435 92 this->_compile = C;
duke@435 93 const PointsToNode &dummy = PointsToNode();
kvn@500 94 int sz = C->unique();
kvn@500 95 _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
duke@435 96 _phantom_object = C->top()->_idx;
duke@435 97 PointsToNode *phn = ptnode_adr(_phantom_object);
kvn@500 98 phn->_node = C->top();
duke@435 99 phn->set_node_type(PointsToNode::JavaObject);
duke@435 100 phn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 101 }
duke@435 102
duke@435 103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 104 PointsToNode *f = ptnode_adr(from_i);
duke@435 105 PointsToNode *t = ptnode_adr(to_i);
duke@435 106
duke@435 107 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 108 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 109 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 110 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 111 }
duke@435 112
duke@435 113 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 114 PointsToNode *f = ptnode_adr(from_i);
duke@435 115 PointsToNode *t = ptnode_adr(to_i);
duke@435 116
duke@435 117 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 118 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 119 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 120 // don't add a self-referential edge, this can occur during removal of
duke@435 121 // deferred edges
duke@435 122 if (from_i != to_i)
duke@435 123 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 124 }
duke@435 125
kvn@500 126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 127 const Type *adr_type = phase->type(adr);
kvn@500 128 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 129 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 130 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 131 // We are computing a raw address for a store captured by an Initialize
kvn@500 132 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 133 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 134 assert(offs != Type::OffsetBot ||
kvn@500 135 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 136 "offset must be a constant or it is initialization of array");
kvn@500 137 return offs;
kvn@500 138 }
kvn@500 139 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 140 assert(t_ptr != NULL, "must be a pointer type");
duke@435 141 return t_ptr->offset();
duke@435 142 }
duke@435 143
duke@435 144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 145 PointsToNode *f = ptnode_adr(from_i);
duke@435 146 PointsToNode *t = ptnode_adr(to_i);
duke@435 147
duke@435 148 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 149 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 150 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 151 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 152 t->set_offset(offset);
duke@435 153
duke@435 154 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 155 }
duke@435 156
duke@435 157 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 158 PointsToNode *npt = ptnode_adr(ni);
duke@435 159 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 160 if (es > old_es)
duke@435 161 npt->set_escape_state(es);
duke@435 162 }
duke@435 163
kvn@500 164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 165 PointsToNode::EscapeState es, bool done) {
kvn@500 166 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 167 ptadr->_node = n;
kvn@500 168 ptadr->set_node_type(nt);
kvn@500 169
kvn@500 170 // inline set_escape_state(idx, es);
kvn@500 171 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 172 if (es > old_es)
kvn@500 173 ptadr->set_escape_state(es);
kvn@500 174
kvn@500 175 if (done)
kvn@500 176 _processed.set(n->_idx);
kvn@500 177 }
kvn@500 178
duke@435 179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 180 uint idx = n->_idx;
duke@435 181 PointsToNode::EscapeState es;
duke@435 182
kvn@500 183 // If we are still collecting or there were no non-escaping allocations
kvn@500 184 // we don't know the answer yet
kvn@500 185 if (_collecting || !_has_allocations)
duke@435 186 return PointsToNode::UnknownEscape;
duke@435 187
duke@435 188 // if the node was created after the escape computation, return
duke@435 189 // UnknownEscape
duke@435 190 if (idx >= (uint)_nodes->length())
duke@435 191 return PointsToNode::UnknownEscape;
duke@435 192
duke@435 193 es = _nodes->at_grow(idx).escape_state();
duke@435 194
duke@435 195 // if we have already computed a value, return it
duke@435 196 if (es != PointsToNode::UnknownEscape)
duke@435 197 return es;
duke@435 198
duke@435 199 // compute max escape state of anything this node could point to
duke@435 200 VectorSet ptset(Thread::current()->resource_area());
duke@435 201 PointsTo(ptset, n, phase);
kvn@500 202 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 203 uint pt = i.elem;
kvn@500 204 PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
duke@435 205 if (pes > es)
duke@435 206 es = pes;
duke@435 207 }
duke@435 208 // cache the computed escape state
duke@435 209 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
duke@435 210 _nodes->adr_at(idx)->set_escape_state(es);
duke@435 211 return es;
duke@435 212 }
duke@435 213
duke@435 214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 215 VectorSet visited(Thread::current()->resource_area());
duke@435 216 GrowableArray<uint> worklist;
duke@435 217
kvn@559 218 #ifdef ASSERT
kvn@559 219 Node *orig_n = n;
kvn@559 220 #endif
kvn@559 221
kvn@500 222 n = n->uncast();
duke@435 223 PointsToNode npt = _nodes->at_grow(n->_idx);
duke@435 224
duke@435 225 // If we have a JavaObject, return just that object
duke@435 226 if (npt.node_type() == PointsToNode::JavaObject) {
duke@435 227 ptset.set(n->_idx);
duke@435 228 return;
duke@435 229 }
kvn@559 230 #ifdef ASSERT
kvn@559 231 if (npt._node == NULL) {
kvn@559 232 if (orig_n != n)
kvn@559 233 orig_n->dump();
kvn@559 234 n->dump();
kvn@559 235 assert(npt._node != NULL, "unregistered node");
kvn@559 236 }
kvn@559 237 #endif
duke@435 238 worklist.push(n->_idx);
duke@435 239 while(worklist.length() > 0) {
duke@435 240 int ni = worklist.pop();
duke@435 241 PointsToNode pn = _nodes->at_grow(ni);
kvn@500 242 if (!visited.test_set(ni)) {
duke@435 243 // ensure that all inputs of a Phi have been processed
kvn@500 244 assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
duke@435 245
duke@435 246 int edges_processed = 0;
duke@435 247 for (uint e = 0; e < pn.edge_count(); e++) {
kvn@500 248 uint etgt = pn.edge_target(e);
duke@435 249 PointsToNode::EdgeType et = pn.edge_type(e);
duke@435 250 if (et == PointsToNode::PointsToEdge) {
kvn@500 251 ptset.set(etgt);
duke@435 252 edges_processed++;
duke@435 253 } else if (et == PointsToNode::DeferredEdge) {
kvn@500 254 worklist.push(etgt);
duke@435 255 edges_processed++;
kvn@500 256 } else {
kvn@500 257 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 258 }
duke@435 259 }
duke@435 260 if (edges_processed == 0) {
kvn@500 261 // no deferred or pointsto edges found. Assume the value was set
kvn@500 262 // outside this method. Add the phantom object to the pointsto set.
duke@435 263 ptset.set(_phantom_object);
duke@435 264 }
duke@435 265 }
duke@435 266 }
duke@435 267 }
duke@435 268
kvn@536 269 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 270 // This method is most expensive during ConnectionGraph construction.
kvn@536 271 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 272 deferred_edges->clear();
kvn@536 273 visited->Clear();
duke@435 274
duke@435 275 uint i = 0;
duke@435 276 PointsToNode *ptn = ptnode_adr(ni);
duke@435 277
kvn@536 278 // Mark current edges as visited and move deferred edges to separate array.
kvn@559 279 while (i < ptn->edge_count()) {
kvn@500 280 uint t = ptn->edge_target(i);
kvn@536 281 #ifdef ASSERT
kvn@536 282 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 283 #else
kvn@536 284 visited->set(t);
kvn@536 285 #endif
kvn@536 286 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 287 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 288 deferred_edges->append(t);
kvn@559 289 } else {
kvn@559 290 i++;
kvn@536 291 }
kvn@536 292 }
kvn@536 293 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 294 uint t = deferred_edges->at(next);
kvn@500 295 PointsToNode *ptt = ptnode_adr(t);
kvn@536 296 for (uint j = 0; j < ptt->edge_count(); j++) {
kvn@536 297 uint n1 = ptt->edge_target(j);
kvn@536 298 if (visited->test_set(n1))
kvn@536 299 continue;
kvn@536 300 switch(ptt->edge_type(j)) {
kvn@536 301 case PointsToNode::PointsToEdge:
kvn@536 302 add_pointsto_edge(ni, n1);
kvn@536 303 if(n1 == _phantom_object) {
kvn@536 304 // Special case - field set outside (globally escaping).
kvn@536 305 ptn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 306 }
kvn@536 307 break;
kvn@536 308 case PointsToNode::DeferredEdge:
kvn@536 309 deferred_edges->append(n1);
kvn@536 310 break;
kvn@536 311 case PointsToNode::FieldEdge:
kvn@536 312 assert(false, "invalid connection graph");
kvn@536 313 break;
duke@435 314 }
duke@435 315 }
duke@435 316 }
duke@435 317 }
duke@435 318
duke@435 319
duke@435 320 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 321 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 322 // a pointsto edge is added if it is a JavaObject
duke@435 323
duke@435 324 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
duke@435 325 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 326 PointsToNode to = _nodes->at_grow(to_i);
duke@435 327 bool deferred = (to.node_type() == PointsToNode::LocalVar);
duke@435 328
duke@435 329 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 330 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 331 int fi = an.edge_target(fe);
duke@435 332 PointsToNode pf = _nodes->at_grow(fi);
duke@435 333 int po = pf.offset();
duke@435 334 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 335 if (deferred)
duke@435 336 add_deferred_edge(fi, to_i);
duke@435 337 else
duke@435 338 add_pointsto_edge(fi, to_i);
duke@435 339 }
duke@435 340 }
duke@435 341 }
duke@435 342
kvn@500 343 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 344 // whose offset matches "offset".
duke@435 345 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
duke@435 346 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 347 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 348 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 349 int fi = an.edge_target(fe);
duke@435 350 PointsToNode pf = _nodes->at_grow(fi);
duke@435 351 int po = pf.offset();
duke@435 352 if (pf.edge_count() == 0) {
duke@435 353 // we have not seen any stores to this field, assume it was set outside this method
duke@435 354 add_pointsto_edge(fi, _phantom_object);
duke@435 355 }
duke@435 356 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 357 add_deferred_edge(from_i, fi);
duke@435 358 }
duke@435 359 }
duke@435 360 }
duke@435 361
kvn@500 362 // Helper functions
kvn@500 363
kvn@500 364 static Node* get_addp_base(Node *addp) {
kvn@500 365 assert(addp->is_AddP(), "must be AddP");
kvn@500 366 //
kvn@500 367 // AddP cases for Base and Address inputs:
kvn@500 368 // case #1. Direct object's field reference:
kvn@500 369 // Allocate
kvn@500 370 // |
kvn@500 371 // Proj #5 ( oop result )
kvn@500 372 // |
kvn@500 373 // CheckCastPP (cast to instance type)
kvn@500 374 // | |
kvn@500 375 // AddP ( base == address )
kvn@500 376 //
kvn@500 377 // case #2. Indirect object's field reference:
kvn@500 378 // Phi
kvn@500 379 // |
kvn@500 380 // CastPP (cast to instance type)
kvn@500 381 // | |
kvn@500 382 // AddP ( base == address )
kvn@500 383 //
kvn@500 384 // case #3. Raw object's field reference for Initialize node:
kvn@500 385 // Allocate
kvn@500 386 // |
kvn@500 387 // Proj #5 ( oop result )
kvn@500 388 // top |
kvn@500 389 // \ |
kvn@500 390 // AddP ( base == top )
kvn@500 391 //
kvn@500 392 // case #4. Array's element reference:
kvn@500 393 // {CheckCastPP | CastPP}
kvn@500 394 // | | |
kvn@500 395 // | AddP ( array's element offset )
kvn@500 396 // | |
kvn@500 397 // AddP ( array's offset )
kvn@500 398 //
kvn@500 399 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 400 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 401 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 402 // Allocate
kvn@500 403 // |
kvn@500 404 // Proj #5 ( oop result )
kvn@500 405 // | |
kvn@500 406 // AddP ( base == address )
kvn@500 407 //
kvn@512 408 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 409 // Raw object's field reference:
kvn@512 410 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 411 // top |
kvn@500 412 // \ |
kvn@500 413 // AddP ( base == top )
kvn@500 414 //
kvn@512 415 // case #7. Klass's field reference.
kvn@512 416 // LoadKlass
kvn@512 417 // | |
kvn@512 418 // AddP ( base == address )
kvn@512 419 //
kvn@500 420 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 421 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 422 base = addp->in(AddPNode::Address)->uncast();
kvn@500 423 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@512 424 base->Opcode() == Op_CastX2P ||
kvn@512 425 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 426 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 427 }
kvn@500 428 return base;
kvn@500 429 }
kvn@500 430
kvn@500 431 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 432 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 433
kvn@500 434 Node* addp2 = addp->raw_out(0);
kvn@500 435 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 436 addp2->in(AddPNode::Base) == n &&
kvn@500 437 addp2->in(AddPNode::Address) == addp) {
kvn@500 438
kvn@500 439 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 440 //
kvn@500 441 // Find array's offset to push it on worklist first and
kvn@500 442 // as result process an array's element offset first (pushed second)
kvn@500 443 // to avoid CastPP for the array's offset.
kvn@500 444 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 445 // the AddP (Field) points to. Which would be wrong since
kvn@500 446 // the algorithm expects the CastPP has the same point as
kvn@500 447 // as AddP's base CheckCastPP (LocalVar).
kvn@500 448 //
kvn@500 449 // ArrayAllocation
kvn@500 450 // |
kvn@500 451 // CheckCastPP
kvn@500 452 // |
kvn@500 453 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 454 // | ||
kvn@500 455 // | || Int (element index)
kvn@500 456 // | || | ConI (log(element size))
kvn@500 457 // | || | /
kvn@500 458 // | || LShift
kvn@500 459 // | || /
kvn@500 460 // | AddP (array's element offset)
kvn@500 461 // | |
kvn@500 462 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 463 // | / /
kvn@500 464 // AddP (array's offset)
kvn@500 465 // |
kvn@500 466 // Load/Store (memory operation on array's element)
kvn@500 467 //
kvn@500 468 return addp2;
kvn@500 469 }
kvn@500 470 return NULL;
duke@435 471 }
duke@435 472
duke@435 473 //
duke@435 474 // Adjust the type and inputs of an AddP which computes the
duke@435 475 // address of a field of an instance
duke@435 476 //
duke@435 477 void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 478 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@500 479 assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
duke@435 480 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 481 if (t == NULL) {
kvn@500 482 // We are computing a raw address for a store captured by an Initialize
kvn@500 483 // compute an appropriate address type.
kvn@500 484 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 485 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@500 486 int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 487 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 488 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 489 }
duke@435 490 uint inst_id = base_t->instance_id();
duke@435 491 assert(!t->is_instance() || t->instance_id() == inst_id,
duke@435 492 "old type must be non-instance or match new type");
duke@435 493 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@500 494 // Do NOT remove the next call: ensure an new alias index is allocated
kvn@500 495 // for the instance type
duke@435 496 int alias_idx = _compile->get_alias_index(tinst);
duke@435 497 igvn->set_type(addp, tinst);
duke@435 498 // record the allocation in the node map
duke@435 499 set_map(addp->_idx, get_map(base->_idx));
kvn@500 500 // if the Address input is not the appropriate instance type
kvn@500 501 // (due to intervening casts,) insert a cast
duke@435 502 Node *adr = addp->in(AddPNode::Address);
duke@435 503 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@500 504 if (atype != NULL && atype->instance_id() != inst_id) {
duke@435 505 assert(!atype->is_instance(), "no conflicting instances");
duke@435 506 const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
duke@435 507 Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
duke@435 508 acast->set_req(0, adr->in(0));
duke@435 509 igvn->set_type(acast, new_atype);
duke@435 510 record_for_optimizer(acast);
duke@435 511 Node *bcast = acast;
duke@435 512 Node *abase = addp->in(AddPNode::Base);
duke@435 513 if (abase != adr) {
duke@435 514 bcast = new (_compile, 2) CastPPNode(abase, base_t);
duke@435 515 bcast->set_req(0, abase->in(0));
duke@435 516 igvn->set_type(bcast, base_t);
duke@435 517 record_for_optimizer(bcast);
duke@435 518 }
duke@435 519 igvn->hash_delete(addp);
duke@435 520 addp->set_req(AddPNode::Base, bcast);
duke@435 521 addp->set_req(AddPNode::Address, acast);
duke@435 522 igvn->hash_insert(addp);
duke@435 523 }
kvn@500 524 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 525 record_for_optimizer(addp);
duke@435 526 }
duke@435 527
duke@435 528 //
duke@435 529 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 530 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 531 // phi was created. Cache the last newly created phi in the node map.
duke@435 532 //
duke@435 533 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 534 Compile *C = _compile;
duke@435 535 new_created = false;
duke@435 536 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 537 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 538 if (phi_alias_idx == alias_idx) {
duke@435 539 return orig_phi;
duke@435 540 }
duke@435 541 // have we already created a Phi for this alias index?
duke@435 542 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 543 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 544 return result;
duke@435 545 }
kvn@473 546 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 547 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 548 // Retry compilation without escape analysis.
kvn@473 549 // If this is the first failure, the sentinel string will "stick"
kvn@473 550 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 551 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 552 }
kvn@473 553 return NULL;
kvn@473 554 }
duke@435 555 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 556 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 557 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
duke@435 558 set_map_phi(orig_phi->_idx, result);
duke@435 559 igvn->set_type(result, result->bottom_type());
duke@435 560 record_for_optimizer(result);
duke@435 561 new_created = true;
duke@435 562 return result;
duke@435 563 }
duke@435 564
duke@435 565 //
duke@435 566 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 567 // specified alias index.
duke@435 568 //
duke@435 569 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 570
duke@435 571 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 572 Compile *C = _compile;
duke@435 573 bool new_phi_created;
kvn@500 574 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 575 if (!new_phi_created) {
duke@435 576 return result;
duke@435 577 }
duke@435 578
duke@435 579 GrowableArray<PhiNode *> phi_list;
duke@435 580 GrowableArray<uint> cur_input;
duke@435 581
duke@435 582 PhiNode *phi = orig_phi;
duke@435 583 uint idx = 1;
duke@435 584 bool finished = false;
duke@435 585 while(!finished) {
duke@435 586 while (idx < phi->req()) {
kvn@500 587 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 588 if (mem != NULL && mem->is_Phi()) {
kvn@500 589 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 590 if (new_phi_created) {
duke@435 591 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 592 // processing new one
duke@435 593 phi_list.push(phi);
duke@435 594 cur_input.push(idx);
duke@435 595 phi = mem->as_Phi();
kvn@500 596 result = newphi;
duke@435 597 idx = 1;
duke@435 598 continue;
duke@435 599 } else {
kvn@500 600 mem = newphi;
duke@435 601 }
duke@435 602 }
kvn@473 603 if (C->failing()) {
kvn@473 604 return NULL;
kvn@473 605 }
duke@435 606 result->set_req(idx++, mem);
duke@435 607 }
duke@435 608 #ifdef ASSERT
duke@435 609 // verify that the new Phi has an input for each input of the original
duke@435 610 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 611 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 612 #endif
kvn@500 613 // Check if all new phi's inputs have specified alias index.
kvn@500 614 // Otherwise use old phi.
duke@435 615 for (uint i = 1; i < phi->req(); i++) {
kvn@500 616 Node* in = result->in(i);
kvn@500 617 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 618 }
duke@435 619 // we have finished processing a Phi, see if there are any more to do
duke@435 620 finished = (phi_list.length() == 0 );
duke@435 621 if (!finished) {
duke@435 622 phi = phi_list.pop();
duke@435 623 idx = cur_input.pop();
kvn@500 624 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 625 prev_result->set_req(idx++, result);
kvn@500 626 result = prev_result;
duke@435 627 }
duke@435 628 }
duke@435 629 return result;
duke@435 630 }
duke@435 631
kvn@500 632
kvn@500 633 //
kvn@500 634 // The next methods are derived from methods in MemNode.
kvn@500 635 //
kvn@500 636 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 637 Node *mem = mmem;
kvn@500 638 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 639 // means an array I have not precisely typed yet. Do not do any
kvn@500 640 // alias stuff with it any time soon.
kvn@500 641 if( tinst->base() != Type::AnyPtr &&
kvn@500 642 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 643 tinst->offset() == Type::OffsetBot) ) {
kvn@500 644 mem = mmem->memory_at(alias_idx);
kvn@500 645 // Update input if it is progress over what we have now
kvn@500 646 }
kvn@500 647 return mem;
kvn@500 648 }
kvn@500 649
kvn@500 650 //
kvn@500 651 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 652 // is the specified alias index.
kvn@500 653 //
kvn@500 654 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 655 if (orig_mem == NULL)
kvn@500 656 return orig_mem;
kvn@500 657 Compile* C = phase->C;
kvn@500 658 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@500 659 bool is_instance = (tinst != NULL) && tinst->is_instance();
kvn@500 660 Node *prev = NULL;
kvn@500 661 Node *result = orig_mem;
kvn@500 662 while (prev != result) {
kvn@500 663 prev = result;
kvn@500 664 if (result->is_Mem()) {
kvn@500 665 MemNode *mem = result->as_Mem();
kvn@500 666 const Type *at = phase->type(mem->in(MemNode::Address));
kvn@500 667 if (at != Type::TOP) {
kvn@500 668 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 669 int idx = C->get_alias_index(at->is_ptr());
kvn@500 670 if (idx == alias_idx)
kvn@500 671 break;
kvn@500 672 }
kvn@500 673 result = mem->in(MemNode::Memory);
kvn@500 674 }
kvn@500 675 if (!is_instance)
kvn@500 676 continue; // don't search further for non-instance types
kvn@500 677 // skip over a call which does not affect this memory slice
kvn@500 678 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 679 Node *proj_in = result->in(0);
kvn@500 680 if (proj_in->is_Call()) {
kvn@500 681 CallNode *call = proj_in->as_Call();
kvn@500 682 if (!call->may_modify(tinst, phase)) {
kvn@500 683 result = call->in(TypeFunc::Memory);
kvn@500 684 }
kvn@500 685 } else if (proj_in->is_Initialize()) {
kvn@500 686 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 687 // Stop if this is the initialization for the object instance which
kvn@500 688 // which contains this memory slice, otherwise skip over it.
kvn@500 689 if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
kvn@500 690 result = proj_in->in(TypeFunc::Memory);
kvn@500 691 }
kvn@500 692 } else if (proj_in->is_MemBar()) {
kvn@500 693 result = proj_in->in(TypeFunc::Memory);
kvn@500 694 }
kvn@500 695 } else if (result->is_MergeMem()) {
kvn@500 696 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 697 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 698 if (result == mmem->base_memory()) {
kvn@500 699 // Didn't find instance memory, search through general slice recursively.
kvn@500 700 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 701 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 702 if (C->failing()) {
kvn@500 703 return NULL;
kvn@500 704 }
kvn@500 705 mmem->set_memory_at(alias_idx, result);
kvn@500 706 }
kvn@500 707 } else if (result->is_Phi() &&
kvn@500 708 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 709 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 710 if (un != NULL) {
kvn@500 711 result = un;
kvn@500 712 } else {
kvn@500 713 break;
kvn@500 714 }
kvn@500 715 }
kvn@500 716 }
kvn@500 717 if (is_instance && result->is_Phi()) {
kvn@500 718 PhiNode *mphi = result->as_Phi();
kvn@500 719 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 720 const TypePtr *t = mphi->adr_type();
kvn@500 721 if (C->get_alias_index(t) != alias_idx) {
kvn@500 722 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 723 }
kvn@500 724 }
kvn@500 725 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 726 return result;
kvn@500 727 }
kvn@500 728
kvn@500 729
duke@435 730 //
duke@435 731 // Convert the types of unescaped object to instance types where possible,
duke@435 732 // propagate the new type information through the graph, and update memory
duke@435 733 // edges and MergeMem inputs to reflect the new type.
duke@435 734 //
duke@435 735 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 736 // The processing is done in 4 phases:
duke@435 737 //
duke@435 738 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 739 // types for the CheckCastPP for allocations where possible.
duke@435 740 // Propagate the the new types through users as follows:
duke@435 741 // casts and Phi: push users on alloc_worklist
duke@435 742 // AddP: cast Base and Address inputs to the instance type
duke@435 743 // push any AddP users on alloc_worklist and push any memnode
duke@435 744 // users onto memnode_worklist.
duke@435 745 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 746 // search the Memory chain for a store with the appropriate type
duke@435 747 // address type. If a Phi is found, create a new version with
duke@435 748 // the approriate memory slices from each of the Phi inputs.
duke@435 749 // For stores, process the users as follows:
duke@435 750 // MemNode: push on memnode_worklist
duke@435 751 // MergeMem: push on mergemem_worklist
duke@435 752 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 753 // moving the first node encountered of each instance type to the
duke@435 754 // the input corresponding to its alias index.
duke@435 755 // appropriate memory slice.
duke@435 756 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 757 //
duke@435 758 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 759 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 760 // instance type.
duke@435 761 //
duke@435 762 // We start with:
duke@435 763 //
duke@435 764 // 7 Parm #memory
duke@435 765 // 10 ConI "12"
duke@435 766 // 19 CheckCastPP "Foo"
duke@435 767 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 768 // 29 CheckCastPP "Foo"
duke@435 769 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 770 //
duke@435 771 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 772 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 773 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 774 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 775 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 776 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 777 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 778 //
duke@435 779 //
duke@435 780 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 781 // and creating a new alias index for node 30. This gives:
duke@435 782 //
duke@435 783 // 7 Parm #memory
duke@435 784 // 10 ConI "12"
duke@435 785 // 19 CheckCastPP "Foo"
duke@435 786 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 787 // 29 CheckCastPP "Foo" iid=24
duke@435 788 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 789 //
duke@435 790 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 791 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 792 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 793 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 794 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 795 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 796 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 797 //
duke@435 798 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 799 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 800 // node 80 are updated and then the memory nodes are updated with the
duke@435 801 // values computed in phase 2. This results in:
duke@435 802 //
duke@435 803 // 7 Parm #memory
duke@435 804 // 10 ConI "12"
duke@435 805 // 19 CheckCastPP "Foo"
duke@435 806 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 807 // 29 CheckCastPP "Foo" iid=24
duke@435 808 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 809 //
duke@435 810 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 811 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 812 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 813 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 814 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 815 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 816 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 817 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 818 //
duke@435 819 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 820 GrowableArray<Node *> memnode_worklist;
duke@435 821 GrowableArray<Node *> mergemem_worklist;
duke@435 822 GrowableArray<PhiNode *> orig_phis;
duke@435 823 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 824 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 825 VectorSet visited(Thread::current()->resource_area());
duke@435 826 VectorSet ptset(Thread::current()->resource_area());
duke@435 827
kvn@500 828
kvn@500 829 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 830 // Create instance types for the CheckCastPP for allocations where possible.
duke@435 831 while (alloc_worklist.length() != 0) {
duke@435 832 Node *n = alloc_worklist.pop();
duke@435 833 uint ni = n->_idx;
kvn@500 834 const TypeOopPtr* tinst = NULL;
duke@435 835 if (n->is_Call()) {
duke@435 836 CallNode *alloc = n->as_Call();
duke@435 837 // copy escape information to call node
kvn@500 838 PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
duke@435 839 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 840 // We have an allocation or call which returns a Java object,
kvn@500 841 // see if it is unescaped.
kvn@500 842 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 843 continue;
kvn@474 844 if (alloc->is_Allocate()) {
kvn@474 845 // Set the scalar_replaceable flag before the next check.
kvn@474 846 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@474 847 }
kvn@500 848 // find CheckCastPP of call return value
kvn@500 849 n = alloc->result_cast();
kvn@500 850 if (n == NULL || // No uses accept Initialize or
kvn@500 851 !n->is_CheckCastPP()) // not unique CheckCastPP.
kvn@500 852 continue;
kvn@500 853 // The inline code for Object.clone() casts the allocation result to
kvn@500 854 // java.lang.Object and then to the the actual type of the allocated
kvn@500 855 // object. Detect this case and use the second cast.
kvn@500 856 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@500 857 && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
kvn@500 858 Node *cast2 = NULL;
kvn@500 859 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 860 Node *use = n->fast_out(i);
kvn@500 861 if (use->is_CheckCastPP()) {
kvn@500 862 cast2 = use;
kvn@500 863 break;
kvn@500 864 }
kvn@500 865 }
kvn@500 866 if (cast2 != NULL) {
kvn@500 867 n = cast2;
kvn@500 868 } else {
kvn@500 869 continue;
kvn@500 870 }
kvn@500 871 }
kvn@500 872 set_escape_state(n->_idx, es);
kvn@500 873 // in order for an object to be stackallocatable, it must be:
kvn@500 874 // - a direct allocation (not a call returning an object)
kvn@500 875 // - non-escaping
kvn@500 876 // - eligible to be a unique type
kvn@500 877 // - not determined to be ineligible by escape analysis
duke@435 878 set_map(alloc->_idx, n);
duke@435 879 set_map(n->_idx, alloc);
kvn@500 880 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 881 if (t == NULL)
duke@435 882 continue; // not a TypeInstPtr
kvn@500 883 tinst = t->cast_to_instance(ni);
duke@435 884 igvn->hash_delete(n);
duke@435 885 igvn->set_type(n, tinst);
duke@435 886 n->raise_bottom_type(tinst);
duke@435 887 igvn->hash_insert(n);
kvn@500 888 record_for_optimizer(n);
kvn@500 889 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 890 (t->isa_instptr() || t->isa_aryptr())) {
kvn@500 891 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 892 // the users of the raw allocation result and push AddP users
kvn@500 893 // on alloc_worklist.
kvn@500 894 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 895 assert (raw_result != NULL, "must have an allocation result");
kvn@500 896 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 897 Node *use = raw_result->fast_out(i);
kvn@500 898 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 899 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 900 if (addp2 != NULL) {
kvn@500 901 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 902 alloc_worklist.append_if_missing(addp2);
kvn@500 903 }
kvn@500 904 alloc_worklist.append_if_missing(use);
kvn@500 905 } else if (use->is_Initialize()) {
kvn@500 906 memnode_worklist.append_if_missing(use);
kvn@500 907 }
kvn@500 908 }
kvn@500 909 }
duke@435 910 } else if (n->is_AddP()) {
duke@435 911 ptset.Clear();
kvn@500 912 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 913 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 914 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 915 if (elem == _phantom_object)
kvn@500 916 continue; // Assume the value was set outside this method.
kvn@500 917 Node *base = get_map(elem); // CheckCastPP node
duke@435 918 split_AddP(n, base, igvn);
kvn@500 919 tinst = igvn->type(base)->isa_oopptr();
kvn@500 920 } else if (n->is_Phi() ||
kvn@500 921 n->is_CheckCastPP() ||
kvn@500 922 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 923 if (visited.test_set(n->_idx)) {
duke@435 924 assert(n->is_Phi(), "loops only through Phi's");
duke@435 925 continue; // already processed
duke@435 926 }
duke@435 927 ptset.Clear();
duke@435 928 PointsTo(ptset, n, igvn);
duke@435 929 if (ptset.Size() == 1) {
kvn@500 930 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 931 if (elem == _phantom_object)
kvn@500 932 continue; // Assume the value was set outside this method.
kvn@500 933 Node *val = get_map(elem); // CheckCastPP node
duke@435 934 TypeNode *tn = n->as_Type();
kvn@500 935 tinst = igvn->type(val)->isa_oopptr();
kvn@500 936 assert(tinst != NULL && tinst->is_instance() &&
kvn@500 937 tinst->instance_id() == elem , "instance type expected.");
kvn@500 938 const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
duke@435 939
kvn@500 940 if (tn_t != NULL &&
kvn@500 941 tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
duke@435 942 igvn->hash_delete(tn);
kvn@500 943 igvn->set_type(tn, tinst);
kvn@500 944 tn->set_type(tinst);
duke@435 945 igvn->hash_insert(tn);
kvn@500 946 record_for_optimizer(n);
duke@435 947 }
duke@435 948 }
duke@435 949 } else {
duke@435 950 continue;
duke@435 951 }
duke@435 952 // push users on appropriate worklist
duke@435 953 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 954 Node *use = n->fast_out(i);
duke@435 955 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@500 956 memnode_worklist.append_if_missing(use);
kvn@500 957 } else if (use->is_Initialize()) {
kvn@500 958 memnode_worklist.append_if_missing(use);
kvn@500 959 } else if (use->is_MergeMem()) {
kvn@500 960 mergemem_worklist.append_if_missing(use);
kvn@500 961 } else if (use->is_Call() && tinst != NULL) {
kvn@500 962 // Look for MergeMem nodes for calls which reference unique allocation
kvn@500 963 // (through CheckCastPP nodes) even for debug info.
kvn@500 964 Node* m = use->in(TypeFunc::Memory);
kvn@500 965 uint iid = tinst->instance_id();
kvn@500 966 while (m->is_Proj() && m->in(0)->is_Call() &&
kvn@500 967 m->in(0) != use && !m->in(0)->_idx != iid) {
kvn@500 968 m = m->in(0)->in(TypeFunc::Memory);
kvn@500 969 }
kvn@500 970 if (m->is_MergeMem()) {
kvn@500 971 mergemem_worklist.append_if_missing(m);
kvn@500 972 }
kvn@500 973 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 974 Node* addp2 = find_second_addp(use, n);
kvn@500 975 if (addp2 != NULL) {
kvn@500 976 alloc_worklist.append_if_missing(addp2);
kvn@500 977 }
kvn@500 978 alloc_worklist.append_if_missing(use);
kvn@500 979 } else if (use->is_Phi() ||
kvn@500 980 use->is_CheckCastPP() ||
kvn@500 981 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 982 alloc_worklist.append_if_missing(use);
duke@435 983 }
duke@435 984 }
duke@435 985
duke@435 986 }
kvn@500 987 // New alias types were created in split_AddP().
duke@435 988 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 989
duke@435 990 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 991 // compute new values for Memory inputs (the Memory inputs are not
duke@435 992 // actually updated until phase 4.)
duke@435 993 if (memnode_worklist.length() == 0)
duke@435 994 return; // nothing to do
duke@435 995
duke@435 996 while (memnode_worklist.length() != 0) {
duke@435 997 Node *n = memnode_worklist.pop();
kvn@500 998 if (visited.test_set(n->_idx))
kvn@500 999 continue;
duke@435 1000 if (n->is_Phi()) {
duke@435 1001 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 1002 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 1003 // this Phi before
kvn@500 1004 } else if (n->is_Initialize()) {
kvn@500 1005 // we don't need to do anything, but the users of the memory projection must be pushed
kvn@500 1006 n = n->as_Initialize()->proj_out(TypeFunc::Memory);
kvn@500 1007 if (n == NULL)
duke@435 1008 continue;
duke@435 1009 } else {
duke@435 1010 assert(n->is_Mem(), "memory node required.");
duke@435 1011 Node *addr = n->in(MemNode::Address);
kvn@500 1012 assert(addr->is_AddP(), "AddP required");
duke@435 1013 const Type *addr_t = igvn->type(addr);
duke@435 1014 if (addr_t == Type::TOP)
duke@435 1015 continue;
duke@435 1016 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1017 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1018 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1019 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1020 if (_compile->failing()) {
kvn@473 1021 return;
kvn@473 1022 }
kvn@500 1023 if (mem != n->in(MemNode::Memory)) {
duke@435 1024 set_map(n->_idx, mem);
kvn@500 1025 _nodes->adr_at(n->_idx)->_node = n;
kvn@500 1026 }
duke@435 1027 if (n->is_Load()) {
duke@435 1028 continue; // don't push users
duke@435 1029 } else if (n->is_LoadStore()) {
duke@435 1030 // get the memory projection
duke@435 1031 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1032 Node *use = n->fast_out(i);
duke@435 1033 if (use->Opcode() == Op_SCMemProj) {
duke@435 1034 n = use;
duke@435 1035 break;
duke@435 1036 }
duke@435 1037 }
duke@435 1038 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1039 }
duke@435 1040 }
duke@435 1041 // push user on appropriate worklist
duke@435 1042 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1043 Node *use = n->fast_out(i);
duke@435 1044 if (use->is_Phi()) {
kvn@500 1045 memnode_worklist.append_if_missing(use);
duke@435 1046 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@500 1047 memnode_worklist.append_if_missing(use);
kvn@500 1048 } else if (use->is_Initialize()) {
kvn@500 1049 memnode_worklist.append_if_missing(use);
duke@435 1050 } else if (use->is_MergeMem()) {
kvn@500 1051 mergemem_worklist.append_if_missing(use);
duke@435 1052 }
duke@435 1053 }
duke@435 1054 }
duke@435 1055
kvn@500 1056 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@500 1057 // Walk each memory moving the first node encountered of each
kvn@500 1058 // instance type to the the input corresponding to its alias index.
duke@435 1059 while (mergemem_worklist.length() != 0) {
duke@435 1060 Node *n = mergemem_worklist.pop();
duke@435 1061 assert(n->is_MergeMem(), "MergeMem node required.");
kvn@500 1062 if (visited.test_set(n->_idx))
kvn@500 1063 continue;
duke@435 1064 MergeMemNode *nmm = n->as_MergeMem();
duke@435 1065 // Note: we don't want to use MergeMemStream here because we only want to
kvn@500 1066 // scan inputs which exist at the start, not ones we add during processing.
duke@435 1067 uint nslices = nmm->req();
duke@435 1068 igvn->hash_delete(nmm);
duke@435 1069 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1070 Node* mem = nmm->in(i);
kvn@500 1071 Node* cur = NULL;
duke@435 1072 if (mem == NULL || mem->is_top())
duke@435 1073 continue;
duke@435 1074 while (mem->is_Mem()) {
duke@435 1075 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1076 if (at != Type::TOP) {
duke@435 1077 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1078 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1079 if (idx == i) {
duke@435 1080 if (cur == NULL)
duke@435 1081 cur = mem;
duke@435 1082 } else {
duke@435 1083 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1084 nmm->set_memory_at(idx, mem);
duke@435 1085 }
duke@435 1086 }
duke@435 1087 }
duke@435 1088 mem = mem->in(MemNode::Memory);
duke@435 1089 }
duke@435 1090 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1091 // Find any instance of the current type if we haven't encountered
kvn@500 1092 // a value of the instance along the chain.
kvn@500 1093 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1094 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1095 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1096 if (nmm->is_empty_memory(m)) {
kvn@500 1097 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1098 if (_compile->failing()) {
kvn@500 1099 return;
kvn@500 1100 }
kvn@500 1101 nmm->set_memory_at(ni, result);
kvn@500 1102 }
kvn@500 1103 }
kvn@500 1104 }
kvn@500 1105 }
kvn@500 1106 // Find the rest of instances values
kvn@500 1107 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1108 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1109 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1110 if (result == nmm->base_memory()) {
kvn@500 1111 // Didn't find instance memory, search through general slice recursively.
kvn@500 1112 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1113 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1114 if (_compile->failing()) {
kvn@500 1115 return;
kvn@500 1116 }
kvn@500 1117 nmm->set_memory_at(ni, result);
kvn@500 1118 }
kvn@500 1119 }
kvn@500 1120 igvn->hash_insert(nmm);
kvn@500 1121 record_for_optimizer(nmm);
kvn@500 1122
kvn@500 1123 // Propagate new memory slices to following MergeMem nodes.
kvn@500 1124 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1125 Node *use = n->fast_out(i);
kvn@500 1126 if (use->is_Call()) {
kvn@500 1127 CallNode* in = use->as_Call();
kvn@500 1128 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1129 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1130 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1131 Node* mm = m->fast_out(j);
kvn@500 1132 if (mm->is_MergeMem()) {
kvn@500 1133 mergemem_worklist.append_if_missing(mm);
kvn@500 1134 }
kvn@500 1135 }
kvn@500 1136 }
kvn@500 1137 if (use->is_Allocate()) {
kvn@500 1138 use = use->as_Allocate()->initialization();
kvn@500 1139 if (use == NULL) {
kvn@500 1140 continue;
kvn@500 1141 }
kvn@500 1142 }
kvn@500 1143 }
kvn@500 1144 if (use->is_Initialize()) {
kvn@500 1145 InitializeNode* in = use->as_Initialize();
kvn@500 1146 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1147 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1148 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1149 Node* mm = m->fast_out(j);
kvn@500 1150 if (mm->is_MergeMem()) {
kvn@500 1151 mergemem_worklist.append_if_missing(mm);
duke@435 1152 }
duke@435 1153 }
duke@435 1154 }
duke@435 1155 }
duke@435 1156 }
duke@435 1157 }
duke@435 1158
kvn@500 1159 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1160 // the Memory input of memnodes
duke@435 1161 // First update the inputs of any non-instance Phi's from
duke@435 1162 // which we split out an instance Phi. Note we don't have
duke@435 1163 // to recursively process Phi's encounted on the input memory
duke@435 1164 // chains as is done in split_memory_phi() since they will
duke@435 1165 // also be processed here.
duke@435 1166 while (orig_phis.length() != 0) {
duke@435 1167 PhiNode *phi = orig_phis.pop();
duke@435 1168 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1169 igvn->hash_delete(phi);
duke@435 1170 for (uint i = 1; i < phi->req(); i++) {
duke@435 1171 Node *mem = phi->in(i);
kvn@500 1172 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1173 if (_compile->failing()) {
kvn@500 1174 return;
kvn@500 1175 }
duke@435 1176 if (mem != new_mem) {
duke@435 1177 phi->set_req(i, new_mem);
duke@435 1178 }
duke@435 1179 }
duke@435 1180 igvn->hash_insert(phi);
duke@435 1181 record_for_optimizer(phi);
duke@435 1182 }
duke@435 1183
duke@435 1184 // Update the memory inputs of MemNodes with the value we computed
duke@435 1185 // in Phase 2.
duke@435 1186 for (int i = 0; i < _nodes->length(); i++) {
duke@435 1187 Node *nmem = get_map(i);
duke@435 1188 if (nmem != NULL) {
kvn@500 1189 Node *n = _nodes->adr_at(i)->_node;
duke@435 1190 if (n != NULL && n->is_Mem()) {
duke@435 1191 igvn->hash_delete(n);
duke@435 1192 n->set_req(MemNode::Memory, nmem);
duke@435 1193 igvn->hash_insert(n);
duke@435 1194 record_for_optimizer(n);
duke@435 1195 }
duke@435 1196 }
duke@435 1197 }
duke@435 1198 }
duke@435 1199
duke@435 1200 void ConnectionGraph::compute_escape() {
duke@435 1201
kvn@500 1202 // 1. Populate Connection Graph with Ideal nodes.
duke@435 1203
kvn@500 1204 Unique_Node_List worklist_init;
kvn@500 1205 worklist_init.map(_compile->unique(), NULL); // preallocate space
kvn@500 1206
kvn@500 1207 // Initialize worklist
kvn@500 1208 if (_compile->root() != NULL) {
kvn@500 1209 worklist_init.push(_compile->root());
kvn@500 1210 }
kvn@500 1211
kvn@500 1212 GrowableArray<int> cg_worklist;
kvn@500 1213 PhaseGVN* igvn = _compile->initial_gvn();
kvn@500 1214 bool has_allocations = false;
kvn@500 1215
kvn@500 1216 // Push all useful nodes onto CG list and set their type.
kvn@500 1217 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1218 Node* n = worklist_init.at(next);
kvn@500 1219 record_for_escape_analysis(n, igvn);
kvn@500 1220 if (n->is_Call() &&
kvn@500 1221 _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1222 has_allocations = true;
kvn@500 1223 }
kvn@500 1224 if(n->is_AddP())
kvn@500 1225 cg_worklist.append(n->_idx);
kvn@500 1226 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1227 Node* m = n->fast_out(i); // Get user
kvn@500 1228 worklist_init.push(m);
kvn@500 1229 }
kvn@500 1230 }
kvn@500 1231
kvn@500 1232 if (has_allocations) {
kvn@500 1233 _has_allocations = true;
kvn@500 1234 } else {
kvn@500 1235 _has_allocations = false;
kvn@500 1236 _collecting = false;
kvn@500 1237 return; // Nothing to do.
kvn@500 1238 }
kvn@500 1239
kvn@500 1240 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@500 1241 for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
kvn@500 1242 Node* n = _delayed_worklist.at(next);
kvn@500 1243 build_connection_graph(n, igvn);
kvn@500 1244 }
kvn@500 1245
kvn@500 1246 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@500 1247 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1248 int ni = cg_worklist.at(next);
kvn@500 1249 build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
kvn@500 1250 }
kvn@500 1251
kvn@500 1252 cg_worklist.clear();
kvn@500 1253 cg_worklist.append(_phantom_object);
kvn@500 1254
kvn@500 1255 // 4. Build Connection Graph which need
kvn@500 1256 // to walk the connection graph.
kvn@500 1257 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
kvn@500 1258 PointsToNode* ptn = _nodes->adr_at(ni);
kvn@500 1259 Node *n = ptn->_node;
kvn@500 1260 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1261 build_connection_graph(n, igvn);
kvn@500 1262 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1263 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1264 }
duke@435 1265 }
duke@435 1266
duke@435 1267 VectorSet ptset(Thread::current()->resource_area());
kvn@536 1268 GrowableArray<Node*> alloc_worklist;
kvn@536 1269 GrowableArray<int> worklist;
kvn@536 1270 GrowableArray<uint> deferred_edges;
kvn@536 1271 VectorSet visited(Thread::current()->resource_area());
duke@435 1272
duke@435 1273 // remove deferred edges from the graph and collect
duke@435 1274 // information we will need for type splitting
kvn@500 1275 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1276 int ni = cg_worklist.at(next);
kvn@500 1277 PointsToNode* ptn = _nodes->adr_at(ni);
duke@435 1278 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1279 Node *n = ptn->_node;
duke@435 1280 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1281 remove_deferred(ni, &deferred_edges, &visited);
duke@435 1282 if (n->is_AddP()) {
kvn@500 1283 // If this AddP computes an address which may point to more that one
kvn@500 1284 // object, nothing the address points to can be scalar replaceable.
kvn@500 1285 Node *base = get_addp_base(n);
duke@435 1286 ptset.Clear();
duke@435 1287 PointsTo(ptset, base, igvn);
duke@435 1288 if (ptset.Size() > 1) {
duke@435 1289 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1290 uint pt = j.elem;
kvn@500 1291 ptnode_adr(pt)->_scalar_replaceable = false;
duke@435 1292 }
duke@435 1293 }
duke@435 1294 }
kvn@500 1295 } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
kvn@500 1296 // Push call on alloc_worlist (alocations are calls)
kvn@500 1297 // for processing by split_unique_types().
kvn@500 1298 alloc_worklist.append(n);
duke@435 1299 }
duke@435 1300 }
kvn@500 1301
duke@435 1302 // push all GlobalEscape nodes on the worklist
kvn@500 1303 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1304 int nk = cg_worklist.at(next);
kvn@500 1305 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@500 1306 worklist.append(nk);
duke@435 1307 }
duke@435 1308 // mark all node reachable from GlobalEscape nodes
duke@435 1309 while(worklist.length() > 0) {
duke@435 1310 PointsToNode n = _nodes->at(worklist.pop());
duke@435 1311 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 1312 uint npi = n.edge_target(ei);
duke@435 1313 PointsToNode *np = ptnode_adr(npi);
kvn@500 1314 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1315 np->set_escape_state(PointsToNode::GlobalEscape);
duke@435 1316 worklist.append_if_missing(npi);
duke@435 1317 }
duke@435 1318 }
duke@435 1319 }
duke@435 1320
duke@435 1321 // push all ArgEscape nodes on the worklist
kvn@500 1322 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1323 int nk = cg_worklist.at(next);
kvn@500 1324 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1325 worklist.push(nk);
duke@435 1326 }
duke@435 1327 // mark all node reachable from ArgEscape nodes
duke@435 1328 while(worklist.length() > 0) {
duke@435 1329 PointsToNode n = _nodes->at(worklist.pop());
duke@435 1330 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 1331 uint npi = n.edge_target(ei);
duke@435 1332 PointsToNode *np = ptnode_adr(npi);
kvn@500 1333 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1334 np->set_escape_state(PointsToNode::ArgEscape);
duke@435 1335 worklist.append_if_missing(npi);
duke@435 1336 }
duke@435 1337 }
duke@435 1338 }
kvn@500 1339
kvn@500 1340 // push all NoEscape nodes on the worklist
kvn@500 1341 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1342 int nk = cg_worklist.at(next);
kvn@500 1343 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1344 worklist.push(nk);
kvn@500 1345 }
kvn@500 1346 // mark all node reachable from NoEscape nodes
kvn@500 1347 while(worklist.length() > 0) {
kvn@500 1348 PointsToNode n = _nodes->at(worklist.pop());
kvn@500 1349 for (uint ei = 0; ei < n.edge_count(); ei++) {
kvn@500 1350 uint npi = n.edge_target(ei);
kvn@500 1351 PointsToNode *np = ptnode_adr(npi);
kvn@500 1352 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1353 np->set_escape_state(PointsToNode::NoEscape);
kvn@500 1354 worklist.append_if_missing(npi);
kvn@500 1355 }
kvn@500 1356 }
kvn@500 1357 }
kvn@500 1358
duke@435 1359 _collecting = false;
duke@435 1360
kvn@500 1361 has_allocations = false; // Are there scalar replaceable allocations?
kvn@473 1362
kvn@500 1363 for( int next = 0; next < alloc_worklist.length(); ++next ) {
kvn@500 1364 Node* n = alloc_worklist.at(next);
kvn@500 1365 uint ni = n->_idx;
kvn@500 1366 PointsToNode* ptn = _nodes->adr_at(ni);
kvn@500 1367 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 1368 if (ptn->escape_state() == PointsToNode::NoEscape &&
kvn@500 1369 ptn->_scalar_replaceable) {
kvn@500 1370 has_allocations = true;
kvn@500 1371 break;
kvn@500 1372 }
kvn@500 1373 }
kvn@500 1374 if (!has_allocations) {
kvn@500 1375 return; // Nothing to do.
kvn@500 1376 }
duke@435 1377
kvn@500 1378 if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
kvn@500 1379 // Now use the escape information to create unique types for
kvn@500 1380 // unescaped objects
kvn@500 1381 split_unique_types(alloc_worklist);
kvn@500 1382 if (_compile->failing()) return;
duke@435 1383
kvn@500 1384 // Clean up after split unique types.
kvn@500 1385 ResourceMark rm;
kvn@500 1386 PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
duke@435 1387
kvn@500 1388 #ifdef ASSERT
kvn@500 1389 } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
kvn@500 1390 tty->print("=== No allocations eliminated for ");
kvn@500 1391 C()->method()->print_short_name();
kvn@500 1392 if(!EliminateAllocations) {
kvn@500 1393 tty->print(" since EliminateAllocations is off ===");
kvn@500 1394 } else if(_compile->AliasLevel() < 3) {
kvn@500 1395 tty->print(" since AliasLevel < 3 ===");
duke@435 1396 }
kvn@500 1397 tty->cr();
kvn@500 1398 #endif
duke@435 1399 }
duke@435 1400 }
duke@435 1401
duke@435 1402 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1403
duke@435 1404 switch (call->Opcode()) {
kvn@500 1405 #ifdef ASSERT
duke@435 1406 case Op_Allocate:
duke@435 1407 case Op_AllocateArray:
duke@435 1408 case Op_Lock:
duke@435 1409 case Op_Unlock:
kvn@500 1410 assert(false, "should be done already");
duke@435 1411 break;
kvn@500 1412 #endif
kvn@500 1413 case Op_CallLeafNoFP:
kvn@500 1414 {
kvn@500 1415 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1416 // Adjust escape state for outgoing arguments.
kvn@500 1417 const TypeTuple * d = call->tf()->domain();
kvn@500 1418 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1419 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1420 const Type* at = d->field_at(i);
kvn@500 1421 Node *arg = call->in(i)->uncast();
kvn@500 1422 const Type *aat = phase->type(arg);
kvn@500 1423 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
kvn@500 1424 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1425 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@500 1426 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1427 if (arg->is_AddP()) {
kvn@500 1428 //
kvn@500 1429 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1430 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1431 //
kvn@500 1432 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1433 // pointer to the base (with offset) is passed as argument.
kvn@500 1434 //
kvn@500 1435 arg = get_addp_base(arg);
kvn@500 1436 }
kvn@500 1437 ptset.Clear();
kvn@500 1438 PointsTo(ptset, arg, phase);
kvn@500 1439 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1440 uint pt = j.elem;
kvn@500 1441 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1442 }
kvn@500 1443 }
kvn@500 1444 }
kvn@500 1445 break;
kvn@500 1446 }
duke@435 1447
duke@435 1448 case Op_CallStaticJava:
duke@435 1449 // For a static call, we know exactly what method is being called.
duke@435 1450 // Use bytecode estimator to record the call's escape affects
duke@435 1451 {
duke@435 1452 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1453 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1454 // fall-through if not a Java method or no analyzer information
kvn@500 1455 if (call_analyzer != NULL) {
duke@435 1456 const TypeTuple * d = call->tf()->domain();
duke@435 1457 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1458 bool copy_dependencies = false;
duke@435 1459 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1460 const Type* at = d->field_at(i);
duke@435 1461 int k = i - TypeFunc::Parms;
duke@435 1462
duke@435 1463 if (at->isa_oopptr() != NULL) {
kvn@500 1464 Node *arg = call->in(i)->uncast();
duke@435 1465
kvn@500 1466 bool global_escapes = false;
kvn@500 1467 bool fields_escapes = false;
kvn@500 1468 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1469 // The argument global escapes, mark everything it could point to
kvn@500 1470 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1471 global_escapes = true;
kvn@500 1472 } else {
kvn@500 1473 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1474 // The argument itself doesn't escape, but any fields might
kvn@500 1475 fields_escapes = true;
kvn@500 1476 }
kvn@500 1477 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1478 copy_dependencies = true;
kvn@500 1479 }
duke@435 1480
kvn@500 1481 ptset.Clear();
kvn@500 1482 PointsTo(ptset, arg, phase);
kvn@500 1483 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1484 uint pt = j.elem;
kvn@500 1485 if (global_escapes) {
kvn@500 1486 //The argument global escapes, mark everything it could point to
duke@435 1487 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1488 } else {
kvn@500 1489 if (fields_escapes) {
kvn@500 1490 // The argument itself doesn't escape, but any fields might
kvn@500 1491 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1492 }
kvn@500 1493 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1494 }
duke@435 1495 }
duke@435 1496 }
duke@435 1497 }
kvn@500 1498 if (copy_dependencies)
kvn@500 1499 call_analyzer->copy_dependencies(C()->dependencies());
duke@435 1500 break;
duke@435 1501 }
duke@435 1502 }
duke@435 1503
duke@435 1504 default:
kvn@500 1505 // Fall-through here if not a Java method or no analyzer information
kvn@500 1506 // or some other type of call, assume the worst case: all arguments
duke@435 1507 // globally escape.
duke@435 1508 {
duke@435 1509 // adjust escape state for outgoing arguments
duke@435 1510 const TypeTuple * d = call->tf()->domain();
duke@435 1511 VectorSet ptset(Thread::current()->resource_area());
duke@435 1512 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1513 const Type* at = d->field_at(i);
duke@435 1514 if (at->isa_oopptr() != NULL) {
kvn@500 1515 Node *arg = call->in(i)->uncast();
kvn@500 1516 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1517 ptset.Clear();
duke@435 1518 PointsTo(ptset, arg, phase);
duke@435 1519 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1520 uint pt = j.elem;
duke@435 1521 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1522 PointsToNode *ptadr = ptnode_adr(pt);
duke@435 1523 }
duke@435 1524 }
duke@435 1525 }
duke@435 1526 }
duke@435 1527 }
duke@435 1528 }
duke@435 1529 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
duke@435 1530 PointsToNode *ptadr = ptnode_adr(resproj->_idx);
duke@435 1531
kvn@500 1532 CallNode *call = resproj->in(0)->as_Call();
duke@435 1533 switch (call->Opcode()) {
duke@435 1534 case Op_Allocate:
duke@435 1535 {
duke@435 1536 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1537 const TypeKlassPtr *kt;
duke@435 1538 if (k->Opcode() == Op_LoadKlass) {
duke@435 1539 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1540 } else {
duke@435 1541 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1542 }
duke@435 1543 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1544 ciKlass* cik = kt->klass();
duke@435 1545 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1546
duke@435 1547 PointsToNode *ptadr = ptnode_adr(call->_idx);
kvn@500 1548 PointsToNode::EscapeState es;
kvn@500 1549 uint edge_to;
duke@435 1550 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1551 es = PointsToNode::GlobalEscape;
kvn@500 1552 edge_to = _phantom_object; // Could not be worse
duke@435 1553 } else {
kvn@500 1554 es = PointsToNode::NoEscape;
kvn@500 1555 edge_to = call->_idx;
duke@435 1556 }
kvn@500 1557 set_escape_state(call->_idx, es);
kvn@500 1558 add_pointsto_edge(resproj->_idx, edge_to);
kvn@500 1559 _processed.set(resproj->_idx);
duke@435 1560 break;
duke@435 1561 }
duke@435 1562
duke@435 1563 case Op_AllocateArray:
duke@435 1564 {
duke@435 1565 PointsToNode *ptadr = ptnode_adr(call->_idx);
kvn@500 1566 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1567 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1568 // Not scalar replaceable if the length is not constant or too big.
kvn@500 1569 ptadr->_scalar_replaceable = false;
kvn@500 1570 }
duke@435 1571 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1572 add_pointsto_edge(resproj->_idx, call->_idx);
kvn@500 1573 _processed.set(resproj->_idx);
duke@435 1574 break;
duke@435 1575 }
duke@435 1576
duke@435 1577 case Op_CallStaticJava:
duke@435 1578 // For a static call, we know exactly what method is being called.
duke@435 1579 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1580 {
kvn@500 1581 bool done = true;
duke@435 1582 const TypeTuple *r = call->tf()->range();
duke@435 1583 const Type* ret_type = NULL;
duke@435 1584
duke@435 1585 if (r->cnt() > TypeFunc::Parms)
duke@435 1586 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1587
duke@435 1588 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1589 // _multianewarray functions return a TypeRawPtr.
kvn@500 1590 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@500 1591 _processed.set(resproj->_idx);
duke@435 1592 break; // doesn't return a pointer type
kvn@500 1593 }
duke@435 1594 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1595 const TypeTuple * d = call->tf()->domain();
duke@435 1596 if (meth == NULL) {
duke@435 1597 // not a Java method, assume global escape
duke@435 1598 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1599 if (resproj != NULL)
duke@435 1600 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1601 } else {
kvn@500 1602 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
duke@435 1603 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1604 bool copy_dependencies = false;
duke@435 1605
kvn@500 1606 if (call_analyzer->is_return_allocated()) {
kvn@500 1607 // Returns a newly allocated unescaped object, simply
kvn@500 1608 // update dependency information.
kvn@500 1609 // Mark it as NoEscape so that objects referenced by
kvn@500 1610 // it's fields will be marked as NoEscape at least.
kvn@500 1611 set_escape_state(call->_idx, PointsToNode::NoEscape);
kvn@500 1612 if (resproj != NULL)
kvn@500 1613 add_pointsto_edge(resproj->_idx, call->_idx);
kvn@500 1614 copy_dependencies = true;
kvn@500 1615 } else if (call_analyzer->is_return_local() && resproj != NULL) {
duke@435 1616 // determine whether any arguments are returned
duke@435 1617 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1618 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1619 const Type* at = d->field_at(i);
duke@435 1620
duke@435 1621 if (at->isa_oopptr() != NULL) {
kvn@500 1622 Node *arg = call->in(i)->uncast();
duke@435 1623
kvn@500 1624 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
duke@435 1625 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
kvn@500 1626 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1627 done = false;
kvn@500 1628 else if (arg_esp->node_type() == PointsToNode::JavaObject)
duke@435 1629 add_pointsto_edge(resproj->_idx, arg->_idx);
duke@435 1630 else
duke@435 1631 add_deferred_edge(resproj->_idx, arg->_idx);
duke@435 1632 arg_esp->_hidden_alias = true;
duke@435 1633 }
duke@435 1634 }
duke@435 1635 }
kvn@500 1636 copy_dependencies = true;
duke@435 1637 } else {
duke@435 1638 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1639 if (resproj != NULL)
duke@435 1640 add_pointsto_edge(resproj->_idx, _phantom_object);
kvn@500 1641 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1642 const Type* at = d->field_at(i);
kvn@500 1643 if (at->isa_oopptr() != NULL) {
kvn@500 1644 Node *arg = call->in(i)->uncast();
kvn@500 1645 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
kvn@500 1646 arg_esp->_hidden_alias = true;
kvn@500 1647 }
kvn@500 1648 }
duke@435 1649 }
kvn@500 1650 if (copy_dependencies)
kvn@500 1651 call_analyzer->copy_dependencies(C()->dependencies());
duke@435 1652 }
kvn@500 1653 if (done)
kvn@500 1654 _processed.set(resproj->_idx);
duke@435 1655 break;
duke@435 1656 }
duke@435 1657
duke@435 1658 default:
duke@435 1659 // Some other type of call, assume the worst case that the
duke@435 1660 // returned value, if any, globally escapes.
duke@435 1661 {
duke@435 1662 const TypeTuple *r = call->tf()->range();
duke@435 1663 if (r->cnt() > TypeFunc::Parms) {
duke@435 1664 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1665
duke@435 1666 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1667 // _multianewarray functions return a TypeRawPtr.
duke@435 1668 if (ret_type->isa_ptr() != NULL) {
duke@435 1669 PointsToNode *ptadr = ptnode_adr(call->_idx);
duke@435 1670 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1671 if (resproj != NULL)
duke@435 1672 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1673 }
duke@435 1674 }
kvn@500 1675 _processed.set(resproj->_idx);
duke@435 1676 }
duke@435 1677 }
duke@435 1678 }
duke@435 1679
kvn@500 1680 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 1681 // connection graph edges (do not need to check the node_type of inputs
kvn@500 1682 // or to call PointsTo() to walk the connection graph).
kvn@500 1683 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 1684 if (_processed.test(n->_idx))
kvn@500 1685 return; // No need to redefine node's state.
kvn@500 1686
kvn@500 1687 if (n->is_Call()) {
kvn@500 1688 // Arguments to allocation and locking don't escape.
kvn@500 1689 if (n->is_Allocate()) {
kvn@500 1690 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 1691 record_for_optimizer(n);
kvn@500 1692 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 1693 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 1694 // the first IGVN optimization when escape information is still available.
kvn@500 1695 record_for_optimizer(n);
kvn@500 1696 _processed.set(n->_idx);
kvn@500 1697 } else {
kvn@500 1698 // Have to process call's arguments first.
kvn@500 1699 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@500 1700
kvn@500 1701 // Check if a call returns an object.
kvn@500 1702 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@500 1703 if (r->cnt() > TypeFunc::Parms &&
kvn@500 1704 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@500 1705 // Note: use isa_ptr() instead of isa_oopptr() here because
kvn@500 1706 // the _multianewarray functions return a TypeRawPtr.
kvn@500 1707 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@500 1708 nt = PointsToNode::JavaObject;
kvn@500 1709 }
duke@435 1710 }
kvn@500 1711 add_node(n, nt, PointsToNode::UnknownEscape, false);
duke@435 1712 }
kvn@500 1713 return;
duke@435 1714 }
kvn@500 1715
kvn@500 1716 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 1717 // ThreadLocal has RawPrt type.
kvn@500 1718 switch (n->Opcode()) {
kvn@500 1719 case Op_AddP:
kvn@500 1720 {
kvn@500 1721 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 1722 break;
kvn@500 1723 }
kvn@500 1724 case Op_CastX2P:
kvn@500 1725 { // "Unsafe" memory access.
kvn@500 1726 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1727 break;
kvn@500 1728 }
kvn@500 1729 case Op_CastPP:
kvn@500 1730 case Op_CheckCastPP:
kvn@559 1731 case Op_EncodeP:
kvn@559 1732 case Op_DecodeN:
kvn@500 1733 {
kvn@500 1734 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1735 int ti = n->in(1)->_idx;
kvn@500 1736 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1737 if (nt == PointsToNode::UnknownType) {
kvn@500 1738 _delayed_worklist.push(n); // Process it later.
kvn@500 1739 break;
kvn@500 1740 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1741 add_pointsto_edge(n->_idx, ti);
kvn@500 1742 } else {
kvn@500 1743 add_deferred_edge(n->_idx, ti);
kvn@500 1744 }
kvn@500 1745 _processed.set(n->_idx);
kvn@500 1746 break;
kvn@500 1747 }
kvn@500 1748 case Op_ConP:
kvn@500 1749 {
kvn@500 1750 // assume all pointer constants globally escape except for null
kvn@500 1751 PointsToNode::EscapeState es;
kvn@500 1752 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 1753 es = PointsToNode::NoEscape;
kvn@500 1754 else
kvn@500 1755 es = PointsToNode::GlobalEscape;
kvn@500 1756
kvn@500 1757 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 1758 break;
kvn@500 1759 }
coleenp@548 1760 case Op_ConN:
coleenp@548 1761 {
coleenp@548 1762 // assume all narrow oop constants globally escape except for null
coleenp@548 1763 PointsToNode::EscapeState es;
coleenp@548 1764 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 1765 es = PointsToNode::NoEscape;
coleenp@548 1766 else
coleenp@548 1767 es = PointsToNode::GlobalEscape;
coleenp@548 1768
coleenp@548 1769 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 1770 break;
coleenp@548 1771 }
kvn@559 1772 case Op_CreateEx:
kvn@559 1773 {
kvn@559 1774 // assume that all exception objects globally escape
kvn@559 1775 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 1776 break;
kvn@559 1777 }
kvn@500 1778 case Op_LoadKlass:
kvn@500 1779 {
kvn@500 1780 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1781 break;
kvn@500 1782 }
kvn@500 1783 case Op_LoadP:
coleenp@548 1784 case Op_LoadN:
kvn@500 1785 {
kvn@500 1786 const Type *t = phase->type(n);
coleenp@548 1787 if (!t->isa_narrowoop() && t->isa_ptr() == NULL) {
kvn@500 1788 _processed.set(n->_idx);
kvn@500 1789 return;
kvn@500 1790 }
kvn@500 1791 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1792 break;
kvn@500 1793 }
kvn@500 1794 case Op_Parm:
kvn@500 1795 {
kvn@500 1796 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 1797 uint con = n->as_Proj()->_con;
kvn@500 1798 if (con < TypeFunc::Parms)
kvn@500 1799 return;
kvn@500 1800 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 1801 if (t->isa_ptr() == NULL)
kvn@500 1802 return;
kvn@500 1803 // We have to assume all input parameters globally escape
kvn@500 1804 // (Note: passing 'false' since _processed is already set).
kvn@500 1805 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 1806 break;
kvn@500 1807 }
kvn@500 1808 case Op_Phi:
kvn@500 1809 {
kvn@500 1810 if (n->as_Phi()->type()->isa_ptr() == NULL) {
kvn@500 1811 // nothing to do if not an oop
kvn@500 1812 _processed.set(n->_idx);
kvn@500 1813 return;
kvn@500 1814 }
kvn@500 1815 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1816 uint i;
kvn@500 1817 for (i = 1; i < n->req() ; i++) {
kvn@500 1818 Node* in = n->in(i);
kvn@500 1819 if (in == NULL)
kvn@500 1820 continue; // ignore NULL
kvn@500 1821 in = in->uncast();
kvn@500 1822 if (in->is_top() || in == n)
kvn@500 1823 continue; // ignore top or inputs which go back this node
kvn@500 1824 int ti = in->_idx;
kvn@500 1825 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1826 if (nt == PointsToNode::UnknownType) {
kvn@500 1827 break;
kvn@500 1828 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1829 add_pointsto_edge(n->_idx, ti);
kvn@500 1830 } else {
kvn@500 1831 add_deferred_edge(n->_idx, ti);
kvn@500 1832 }
kvn@500 1833 }
kvn@500 1834 if (i >= n->req())
kvn@500 1835 _processed.set(n->_idx);
kvn@500 1836 else
kvn@500 1837 _delayed_worklist.push(n);
kvn@500 1838 break;
kvn@500 1839 }
kvn@500 1840 case Op_Proj:
kvn@500 1841 {
kvn@500 1842 // we are only interested in the result projection from a call
kvn@500 1843 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 1844 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1845 process_call_result(n->as_Proj(), phase);
kvn@500 1846 if (!_processed.test(n->_idx)) {
kvn@500 1847 // The call's result may need to be processed later if the call
kvn@500 1848 // returns it's argument and the argument is not processed yet.
kvn@500 1849 _delayed_worklist.push(n);
kvn@500 1850 }
kvn@500 1851 } else {
kvn@500 1852 _processed.set(n->_idx);
kvn@500 1853 }
kvn@500 1854 break;
kvn@500 1855 }
kvn@500 1856 case Op_Return:
kvn@500 1857 {
kvn@500 1858 if( n->req() > TypeFunc::Parms &&
kvn@500 1859 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 1860 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 1861 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 1862 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@500 1863 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1864 if (nt == PointsToNode::UnknownType) {
kvn@500 1865 _delayed_worklist.push(n); // Process it later.
kvn@500 1866 break;
kvn@500 1867 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1868 add_pointsto_edge(n->_idx, ti);
kvn@500 1869 } else {
kvn@500 1870 add_deferred_edge(n->_idx, ti);
kvn@500 1871 }
kvn@500 1872 }
kvn@500 1873 _processed.set(n->_idx);
kvn@500 1874 break;
kvn@500 1875 }
kvn@500 1876 case Op_StoreP:
coleenp@548 1877 case Op_StoreN:
kvn@500 1878 {
kvn@500 1879 const Type *adr_type = phase->type(n->in(MemNode::Address));
coleenp@548 1880 if (adr_type->isa_narrowoop()) {
coleenp@548 1881 adr_type = adr_type->is_narrowoop()->make_oopptr();
coleenp@548 1882 }
kvn@500 1883 if (adr_type->isa_oopptr()) {
kvn@500 1884 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1885 } else {
kvn@500 1886 Node* adr = n->in(MemNode::Address);
kvn@500 1887 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 1888 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 1889 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 1890 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1891 // We are computing a raw address for a store captured
kvn@500 1892 // by an Initialize compute an appropriate address type.
kvn@500 1893 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 1894 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 1895 } else {
kvn@500 1896 _processed.set(n->_idx);
kvn@500 1897 return;
kvn@500 1898 }
kvn@500 1899 }
kvn@500 1900 break;
kvn@500 1901 }
kvn@500 1902 case Op_StorePConditional:
kvn@500 1903 case Op_CompareAndSwapP:
coleenp@548 1904 case Op_CompareAndSwapN:
kvn@500 1905 {
kvn@500 1906 const Type *adr_type = phase->type(n->in(MemNode::Address));
coleenp@548 1907 if (adr_type->isa_narrowoop()) {
coleenp@548 1908 adr_type = adr_type->is_narrowoop()->make_oopptr();
coleenp@548 1909 }
kvn@500 1910 if (adr_type->isa_oopptr()) {
kvn@500 1911 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1912 } else {
kvn@500 1913 _processed.set(n->_idx);
kvn@500 1914 return;
kvn@500 1915 }
kvn@500 1916 break;
kvn@500 1917 }
kvn@500 1918 case Op_ThreadLocal:
kvn@500 1919 {
kvn@500 1920 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 1921 break;
kvn@500 1922 }
kvn@500 1923 default:
kvn@500 1924 ;
kvn@500 1925 // nothing to do
kvn@500 1926 }
kvn@500 1927 return;
duke@435 1928 }
duke@435 1929
kvn@500 1930 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@500 1931 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 1932 // they may need more then one pass to process.
kvn@500 1933 if (_processed.test(n->_idx))
kvn@500 1934 return; // No need to redefine node's state.
duke@435 1935
duke@435 1936 PointsToNode *ptadr = ptnode_adr(n->_idx);
duke@435 1937
duke@435 1938 if (n->is_Call()) {
duke@435 1939 CallNode *call = n->as_Call();
duke@435 1940 process_call_arguments(call, phase);
kvn@500 1941 _processed.set(n->_idx);
duke@435 1942 return;
duke@435 1943 }
duke@435 1944
kvn@500 1945 switch (n->Opcode()) {
duke@435 1946 case Op_AddP:
duke@435 1947 {
kvn@500 1948 Node *base = get_addp_base(n);
kvn@500 1949 // Create a field edge to this node from everything base could point to.
duke@435 1950 VectorSet ptset(Thread::current()->resource_area());
duke@435 1951 PointsTo(ptset, base, phase);
duke@435 1952 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 1953 uint pt = i.elem;
kvn@500 1954 add_field_edge(pt, n->_idx, address_offset(n, phase));
kvn@500 1955 }
kvn@500 1956 break;
kvn@500 1957 }
kvn@500 1958 case Op_CastX2P:
kvn@500 1959 {
kvn@500 1960 assert(false, "Op_CastX2P");
kvn@500 1961 break;
kvn@500 1962 }
kvn@500 1963 case Op_CastPP:
kvn@500 1964 case Op_CheckCastPP:
coleenp@548 1965 case Op_EncodeP:
coleenp@548 1966 case Op_DecodeN:
kvn@500 1967 {
kvn@500 1968 int ti = n->in(1)->_idx;
kvn@500 1969 if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
kvn@500 1970 add_pointsto_edge(n->_idx, ti);
kvn@500 1971 } else {
kvn@500 1972 add_deferred_edge(n->_idx, ti);
kvn@500 1973 }
kvn@500 1974 _processed.set(n->_idx);
kvn@500 1975 break;
kvn@500 1976 }
kvn@500 1977 case Op_ConP:
kvn@500 1978 {
kvn@500 1979 assert(false, "Op_ConP");
kvn@500 1980 break;
kvn@500 1981 }
kvn@500 1982 case Op_CreateEx:
kvn@500 1983 {
kvn@500 1984 assert(false, "Op_CreateEx");
kvn@500 1985 break;
kvn@500 1986 }
kvn@500 1987 case Op_LoadKlass:
kvn@500 1988 {
kvn@500 1989 assert(false, "Op_LoadKlass");
kvn@500 1990 break;
kvn@500 1991 }
kvn@500 1992 case Op_LoadP:
kvn@559 1993 case Op_LoadN:
kvn@500 1994 {
kvn@500 1995 const Type *t = phase->type(n);
kvn@500 1996 #ifdef ASSERT
kvn@559 1997 if (!t->isa_narrowoop() && t->isa_ptr() == NULL)
kvn@500 1998 assert(false, "Op_LoadP");
kvn@500 1999 #endif
kvn@500 2000
kvn@500 2001 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2002 const Type *adr_type = phase->type(adr);
kvn@500 2003 Node* adr_base;
kvn@500 2004 if (adr->is_AddP()) {
kvn@500 2005 adr_base = get_addp_base(adr);
kvn@500 2006 } else {
kvn@500 2007 adr_base = adr;
kvn@500 2008 }
kvn@500 2009
kvn@500 2010 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2011 // this node to each field with the same offset.
kvn@500 2012 VectorSet ptset(Thread::current()->resource_area());
kvn@500 2013 PointsTo(ptset, adr_base, phase);
kvn@500 2014 int offset = address_offset(adr, phase);
kvn@500 2015 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2016 uint pt = i.elem;
kvn@500 2017 add_deferred_edge_to_fields(n->_idx, pt, offset);
duke@435 2018 }
duke@435 2019 break;
duke@435 2020 }
duke@435 2021 case Op_Parm:
duke@435 2022 {
kvn@500 2023 assert(false, "Op_Parm");
kvn@500 2024 break;
kvn@500 2025 }
kvn@500 2026 case Op_Phi:
kvn@500 2027 {
kvn@500 2028 #ifdef ASSERT
kvn@500 2029 if (n->as_Phi()->type()->isa_ptr() == NULL)
kvn@500 2030 assert(false, "Op_Phi");
kvn@500 2031 #endif
kvn@500 2032 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2033 Node* in = n->in(i);
kvn@500 2034 if (in == NULL)
kvn@500 2035 continue; // ignore NULL
kvn@500 2036 in = in->uncast();
kvn@500 2037 if (in->is_top() || in == n)
kvn@500 2038 continue; // ignore top or inputs which go back this node
kvn@500 2039 int ti = in->_idx;
kvn@500 2040 if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 2041 add_pointsto_edge(n->_idx, ti);
kvn@500 2042 } else {
kvn@500 2043 add_deferred_edge(n->_idx, ti);
kvn@500 2044 }
duke@435 2045 }
duke@435 2046 _processed.set(n->_idx);
duke@435 2047 break;
duke@435 2048 }
kvn@500 2049 case Op_Proj:
duke@435 2050 {
kvn@500 2051 // we are only interested in the result projection from a call
kvn@500 2052 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2053 process_call_result(n->as_Proj(), phase);
kvn@500 2054 assert(_processed.test(n->_idx), "all call results should be processed");
kvn@500 2055 } else {
kvn@500 2056 assert(false, "Op_Proj");
kvn@500 2057 }
duke@435 2058 break;
duke@435 2059 }
kvn@500 2060 case Op_Return:
duke@435 2061 {
kvn@500 2062 #ifdef ASSERT
kvn@500 2063 if( n->req() <= TypeFunc::Parms ||
kvn@500 2064 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2065 assert(false, "Op_Return");
kvn@500 2066 }
kvn@500 2067 #endif
kvn@500 2068 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@500 2069 if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
kvn@500 2070 add_pointsto_edge(n->_idx, ti);
kvn@500 2071 } else {
kvn@500 2072 add_deferred_edge(n->_idx, ti);
kvn@500 2073 }
duke@435 2074 _processed.set(n->_idx);
duke@435 2075 break;
duke@435 2076 }
duke@435 2077 case Op_StoreP:
kvn@559 2078 case Op_StoreN:
duke@435 2079 case Op_StorePConditional:
duke@435 2080 case Op_CompareAndSwapP:
kvn@559 2081 case Op_CompareAndSwapN:
duke@435 2082 {
duke@435 2083 Node *adr = n->in(MemNode::Address);
duke@435 2084 const Type *adr_type = phase->type(adr);
kvn@559 2085 if (adr_type->isa_narrowoop()) {
kvn@559 2086 adr_type = adr_type->is_narrowoop()->make_oopptr();
kvn@559 2087 }
kvn@500 2088 #ifdef ASSERT
duke@435 2089 if (!adr_type->isa_oopptr())
kvn@500 2090 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2091 #endif
duke@435 2092
kvn@500 2093 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2094 Node *adr_base = get_addp_base(adr);
kvn@500 2095 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2096 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2097 // to "val" from each field with the same offset.
duke@435 2098 VectorSet ptset(Thread::current()->resource_area());
duke@435 2099 PointsTo(ptset, adr_base, phase);
duke@435 2100 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2101 uint pt = i.elem;
kvn@500 2102 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2103 }
duke@435 2104 break;
duke@435 2105 }
kvn@500 2106 case Op_ThreadLocal:
duke@435 2107 {
kvn@500 2108 assert(false, "Op_ThreadLocal");
duke@435 2109 break;
duke@435 2110 }
duke@435 2111 default:
duke@435 2112 ;
duke@435 2113 // nothing to do
duke@435 2114 }
duke@435 2115 }
duke@435 2116
duke@435 2117 #ifndef PRODUCT
duke@435 2118 void ConnectionGraph::dump() {
duke@435 2119 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2120 bool first = true;
duke@435 2121
kvn@500 2122 uint size = (uint)_nodes->length();
kvn@500 2123 for (uint ni = 0; ni < size; ni++) {
kvn@500 2124 PointsToNode *ptn = _nodes->adr_at(ni);
kvn@500 2125 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2126
kvn@500 2127 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2128 continue;
kvn@500 2129 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2130 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2131 if (first) {
kvn@500 2132 tty->cr();
kvn@500 2133 tty->print("======== Connection graph for ");
kvn@500 2134 C()->method()->print_short_name();
kvn@500 2135 tty->cr();
kvn@500 2136 first = false;
kvn@500 2137 }
kvn@500 2138 tty->print("%6d ", ni);
kvn@500 2139 ptn->dump();
kvn@500 2140 // Print all locals which reference this allocation
kvn@500 2141 for (uint li = ni; li < size; li++) {
kvn@500 2142 PointsToNode *ptn_loc = _nodes->adr_at(li);
kvn@500 2143 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2144 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2145 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@500 2146 tty->print("%6d LocalVar [[%d]]", li, ni);
kvn@500 2147 _nodes->adr_at(li)->_node->dump();
duke@435 2148 }
duke@435 2149 }
kvn@500 2150 if (Verbose) {
kvn@500 2151 // Print all fields which reference this allocation
kvn@500 2152 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2153 uint ei = ptn->edge_target(i);
kvn@500 2154 tty->print("%6d Field [[%d]]", ei, ni);
kvn@500 2155 _nodes->adr_at(ei)->_node->dump();
kvn@500 2156 }
kvn@500 2157 }
kvn@500 2158 tty->cr();
duke@435 2159 }
duke@435 2160 }
duke@435 2161 }
duke@435 2162 #endif

mercurial