src/cpu/sparc/vm/assembler_sparc.hpp

Wed, 24 Apr 2013 20:55:28 -0400

author
dlong
date
Wed, 24 Apr 2013 20:55:28 -0400
changeset 5000
a6e09d6dd8e5
parent 4412
ffa87474d7a4
child 5283
46c544b8fbfc
permissions
-rw-r--r--

8003853: specify offset of IC load in java_to_interp stub
Summary: refactored code to allow platform-specific differences
Reviewed-by: dlong, twisti
Contributed-by: Goetz Lindenmaier <goetz.lindenmaier@sap.com>

duke@435 1 /*
never@3500 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 26 #define CPU_SPARC_VM_ASSEMBLER_SPARC_HPP
stefank@2314 27
twisti@4323 28 #include "asm/register.hpp"
duke@435 29
duke@435 30 // The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 31 // level; i.e., what you write
duke@435 32 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 33
duke@435 34 class Assembler : public AbstractAssembler {
duke@435 35 friend class AbstractAssembler;
twisti@1162 36 friend class AddressLiteral;
duke@435 37
duke@435 38 // code patchers need various routines like inv_wdisp()
duke@435 39 friend class NativeInstruction;
duke@435 40 friend class NativeGeneralJump;
duke@435 41 friend class Relocation;
duke@435 42 friend class Label;
duke@435 43
duke@435 44 public:
duke@435 45 // op carries format info; see page 62 & 267
duke@435 46
duke@435 47 enum ops {
duke@435 48 call_op = 1, // fmt 1
duke@435 49 branch_op = 0, // also sethi (fmt2)
duke@435 50 arith_op = 2, // fmt 3, arith & misc
duke@435 51 ldst_op = 3 // fmt 3, load/store
duke@435 52 };
duke@435 53
duke@435 54 enum op2s {
duke@435 55 bpr_op2 = 3,
duke@435 56 fb_op2 = 6,
duke@435 57 fbp_op2 = 5,
duke@435 58 br_op2 = 2,
duke@435 59 bp_op2 = 1,
duke@435 60 cb_op2 = 7, // V8
duke@435 61 sethi_op2 = 4
duke@435 62 };
duke@435 63
duke@435 64 enum op3s {
duke@435 65 // selected op3s
duke@435 66 add_op3 = 0x00,
duke@435 67 and_op3 = 0x01,
duke@435 68 or_op3 = 0x02,
duke@435 69 xor_op3 = 0x03,
duke@435 70 sub_op3 = 0x04,
duke@435 71 andn_op3 = 0x05,
duke@435 72 orn_op3 = 0x06,
duke@435 73 xnor_op3 = 0x07,
duke@435 74 addc_op3 = 0x08,
duke@435 75 mulx_op3 = 0x09,
duke@435 76 umul_op3 = 0x0a,
duke@435 77 smul_op3 = 0x0b,
duke@435 78 subc_op3 = 0x0c,
duke@435 79 udivx_op3 = 0x0d,
duke@435 80 udiv_op3 = 0x0e,
duke@435 81 sdiv_op3 = 0x0f,
duke@435 82
duke@435 83 addcc_op3 = 0x10,
duke@435 84 andcc_op3 = 0x11,
duke@435 85 orcc_op3 = 0x12,
duke@435 86 xorcc_op3 = 0x13,
duke@435 87 subcc_op3 = 0x14,
duke@435 88 andncc_op3 = 0x15,
duke@435 89 orncc_op3 = 0x16,
duke@435 90 xnorcc_op3 = 0x17,
duke@435 91 addccc_op3 = 0x18,
duke@435 92 umulcc_op3 = 0x1a,
duke@435 93 smulcc_op3 = 0x1b,
duke@435 94 subccc_op3 = 0x1c,
duke@435 95 udivcc_op3 = 0x1e,
duke@435 96 sdivcc_op3 = 0x1f,
duke@435 97
duke@435 98 taddcc_op3 = 0x20,
duke@435 99 tsubcc_op3 = 0x21,
duke@435 100 taddcctv_op3 = 0x22,
duke@435 101 tsubcctv_op3 = 0x23,
duke@435 102 mulscc_op3 = 0x24,
duke@435 103 sll_op3 = 0x25,
duke@435 104 sllx_op3 = 0x25,
duke@435 105 srl_op3 = 0x26,
duke@435 106 srlx_op3 = 0x26,
duke@435 107 sra_op3 = 0x27,
duke@435 108 srax_op3 = 0x27,
duke@435 109 rdreg_op3 = 0x28,
duke@435 110 membar_op3 = 0x28,
duke@435 111
duke@435 112 flushw_op3 = 0x2b,
duke@435 113 movcc_op3 = 0x2c,
duke@435 114 sdivx_op3 = 0x2d,
duke@435 115 popc_op3 = 0x2e,
duke@435 116 movr_op3 = 0x2f,
duke@435 117
duke@435 118 sir_op3 = 0x30,
duke@435 119 wrreg_op3 = 0x30,
duke@435 120 saved_op3 = 0x31,
duke@435 121
duke@435 122 fpop1_op3 = 0x34,
duke@435 123 fpop2_op3 = 0x35,
duke@435 124 impdep1_op3 = 0x36,
duke@435 125 impdep2_op3 = 0x37,
duke@435 126 jmpl_op3 = 0x38,
duke@435 127 rett_op3 = 0x39,
duke@435 128 trap_op3 = 0x3a,
duke@435 129 flush_op3 = 0x3b,
duke@435 130 save_op3 = 0x3c,
duke@435 131 restore_op3 = 0x3d,
duke@435 132 done_op3 = 0x3e,
duke@435 133 retry_op3 = 0x3e,
duke@435 134
duke@435 135 lduw_op3 = 0x00,
duke@435 136 ldub_op3 = 0x01,
duke@435 137 lduh_op3 = 0x02,
duke@435 138 ldd_op3 = 0x03,
duke@435 139 stw_op3 = 0x04,
duke@435 140 stb_op3 = 0x05,
duke@435 141 sth_op3 = 0x06,
duke@435 142 std_op3 = 0x07,
duke@435 143 ldsw_op3 = 0x08,
duke@435 144 ldsb_op3 = 0x09,
duke@435 145 ldsh_op3 = 0x0a,
duke@435 146 ldx_op3 = 0x0b,
duke@435 147
duke@435 148 ldstub_op3 = 0x0d,
duke@435 149 stx_op3 = 0x0e,
duke@435 150 swap_op3 = 0x0f,
duke@435 151
duke@435 152 stwa_op3 = 0x14,
duke@435 153 stxa_op3 = 0x1e,
duke@435 154
duke@435 155 ldf_op3 = 0x20,
duke@435 156 ldfsr_op3 = 0x21,
duke@435 157 ldqf_op3 = 0x22,
duke@435 158 lddf_op3 = 0x23,
duke@435 159 stf_op3 = 0x24,
duke@435 160 stfsr_op3 = 0x25,
duke@435 161 stqf_op3 = 0x26,
duke@435 162 stdf_op3 = 0x27,
duke@435 163
duke@435 164 prefetch_op3 = 0x2d,
duke@435 165
duke@435 166
duke@435 167 ldc_op3 = 0x30,
duke@435 168 ldcsr_op3 = 0x31,
duke@435 169 lddc_op3 = 0x33,
duke@435 170 stc_op3 = 0x34,
duke@435 171 stcsr_op3 = 0x35,
duke@435 172 stdcq_op3 = 0x36,
duke@435 173 stdc_op3 = 0x37,
duke@435 174
duke@435 175 casa_op3 = 0x3c,
duke@435 176 casxa_op3 = 0x3e,
duke@435 177
kvn@3001 178 mftoi_op3 = 0x36,
kvn@3001 179
duke@435 180 alt_bit_op3 = 0x10,
duke@435 181 cc_bit_op3 = 0x10
duke@435 182 };
duke@435 183
duke@435 184 enum opfs {
duke@435 185 // selected opfs
duke@435 186 fmovs_opf = 0x01,
duke@435 187 fmovd_opf = 0x02,
duke@435 188
duke@435 189 fnegs_opf = 0x05,
duke@435 190 fnegd_opf = 0x06,
duke@435 191
duke@435 192 fadds_opf = 0x41,
duke@435 193 faddd_opf = 0x42,
duke@435 194 fsubs_opf = 0x45,
duke@435 195 fsubd_opf = 0x46,
duke@435 196
duke@435 197 fmuls_opf = 0x49,
duke@435 198 fmuld_opf = 0x4a,
duke@435 199 fdivs_opf = 0x4d,
duke@435 200 fdivd_opf = 0x4e,
duke@435 201
duke@435 202 fcmps_opf = 0x51,
duke@435 203 fcmpd_opf = 0x52,
duke@435 204
duke@435 205 fstox_opf = 0x81,
duke@435 206 fdtox_opf = 0x82,
duke@435 207 fxtos_opf = 0x84,
duke@435 208 fxtod_opf = 0x88,
duke@435 209 fitos_opf = 0xc4,
duke@435 210 fdtos_opf = 0xc6,
duke@435 211 fitod_opf = 0xc8,
duke@435 212 fstod_opf = 0xc9,
duke@435 213 fstoi_opf = 0xd1,
kvn@3001 214 fdtoi_opf = 0xd2,
kvn@3001 215
kvn@3001 216 mdtox_opf = 0x110,
kvn@3001 217 mstouw_opf = 0x111,
kvn@3001 218 mstosw_opf = 0x113,
kvn@3001 219 mxtod_opf = 0x118,
kvn@3001 220 mwtos_opf = 0x119
duke@435 221 };
duke@435 222
kvn@3037 223 enum RCondition { rc_z = 1, rc_lez = 2, rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7, rc_last = rc_gez };
duke@435 224
duke@435 225 enum Condition {
duke@435 226 // for FBfcc & FBPfcc instruction
duke@435 227 f_never = 0,
duke@435 228 f_notEqual = 1,
duke@435 229 f_notZero = 1,
duke@435 230 f_lessOrGreater = 2,
duke@435 231 f_unorderedOrLess = 3,
duke@435 232 f_less = 4,
duke@435 233 f_unorderedOrGreater = 5,
duke@435 234 f_greater = 6,
duke@435 235 f_unordered = 7,
duke@435 236 f_always = 8,
duke@435 237 f_equal = 9,
duke@435 238 f_zero = 9,
duke@435 239 f_unorderedOrEqual = 10,
duke@435 240 f_greaterOrEqual = 11,
duke@435 241 f_unorderedOrGreaterOrEqual = 12,
duke@435 242 f_lessOrEqual = 13,
duke@435 243 f_unorderedOrLessOrEqual = 14,
duke@435 244 f_ordered = 15,
duke@435 245
duke@435 246 // V8 coproc, pp 123 v8 manual
duke@435 247
duke@435 248 cp_always = 8,
duke@435 249 cp_never = 0,
duke@435 250 cp_3 = 7,
duke@435 251 cp_2 = 6,
duke@435 252 cp_2or3 = 5,
duke@435 253 cp_1 = 4,
duke@435 254 cp_1or3 = 3,
duke@435 255 cp_1or2 = 2,
duke@435 256 cp_1or2or3 = 1,
duke@435 257 cp_0 = 9,
duke@435 258 cp_0or3 = 10,
duke@435 259 cp_0or2 = 11,
duke@435 260 cp_0or2or3 = 12,
duke@435 261 cp_0or1 = 13,
duke@435 262 cp_0or1or3 = 14,
duke@435 263 cp_0or1or2 = 15,
duke@435 264
duke@435 265
duke@435 266 // for integers
duke@435 267
duke@435 268 never = 0,
duke@435 269 equal = 1,
duke@435 270 zero = 1,
duke@435 271 lessEqual = 2,
duke@435 272 less = 3,
duke@435 273 lessEqualUnsigned = 4,
duke@435 274 lessUnsigned = 5,
duke@435 275 carrySet = 5,
duke@435 276 negative = 6,
duke@435 277 overflowSet = 7,
duke@435 278 always = 8,
duke@435 279 notEqual = 9,
duke@435 280 notZero = 9,
duke@435 281 greater = 10,
duke@435 282 greaterEqual = 11,
duke@435 283 greaterUnsigned = 12,
duke@435 284 greaterEqualUnsigned = 13,
duke@435 285 carryClear = 13,
duke@435 286 positive = 14,
duke@435 287 overflowClear = 15
duke@435 288 };
duke@435 289
duke@435 290 enum CC {
duke@435 291 icc = 0, xcc = 2,
duke@435 292 // ptr_cc is the correct condition code for a pointer or intptr_t:
duke@435 293 ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
duke@435 294 fcc0 = 0, fcc1 = 1, fcc2 = 2, fcc3 = 3
duke@435 295 };
duke@435 296
duke@435 297 enum PrefetchFcn {
duke@435 298 severalReads = 0, oneRead = 1, severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
duke@435 299 };
duke@435 300
duke@435 301 public:
duke@435 302 // Helper functions for groups of instructions
duke@435 303
duke@435 304 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
duke@435 305
duke@435 306 enum Membar_mask_bits { // page 184, v9
duke@435 307 StoreStore = 1 << 3,
duke@435 308 LoadStore = 1 << 2,
duke@435 309 StoreLoad = 1 << 1,
duke@435 310 LoadLoad = 1 << 0,
duke@435 311
duke@435 312 Sync = 1 << 6,
duke@435 313 MemIssue = 1 << 5,
duke@435 314 Lookaside = 1 << 4
duke@435 315 };
duke@435 316
iveresov@2441 317 static bool is_in_wdisp_range(address a, address b, int nbits) {
iveresov@2441 318 intptr_t d = intptr_t(b) - intptr_t(a);
iveresov@2441 319 return is_simm(d, nbits + 2);
iveresov@2441 320 }
duke@435 321
kvn@3037 322 address target_distance(Label& L) {
kvn@3037 323 // Assembler::target(L) should be called only when
kvn@3037 324 // a branch instruction is emitted since non-bound
kvn@3037 325 // labels record current pc() as a branch address.
kvn@3037 326 if (L.is_bound()) return target(L);
kvn@3037 327 // Return current address for non-bound labels.
kvn@3037 328 return pc();
kvn@3037 329 }
kvn@3037 330
iveresov@2203 331 // test if label is in simm16 range in words (wdisp16).
iveresov@2203 332 bool is_in_wdisp16_range(Label& L) {
kvn@3037 333 return is_in_wdisp_range(target_distance(L), pc(), 16);
iveresov@2441 334 }
iveresov@2441 335 // test if the distance between two addresses fits in simm30 range in words
iveresov@2441 336 static bool is_in_wdisp30_range(address a, address b) {
iveresov@2441 337 return is_in_wdisp_range(a, b, 30);
iveresov@2203 338 }
iveresov@2203 339
duke@435 340 enum ASIs { // page 72, v9
kvn@3092 341 ASI_PRIMARY = 0x80,
kvn@3092 342 ASI_PRIMARY_NOFAULT = 0x82,
kvn@3092 343 ASI_PRIMARY_LITTLE = 0x88,
kvn@3052 344 // Block initializing store
kvn@3052 345 ASI_ST_BLKINIT_PRIMARY = 0xE2,
kvn@3052 346 // Most-Recently-Used (MRU) BIS variant
kvn@3052 347 ASI_ST_BLKINIT_MRU_PRIMARY = 0xF2
duke@435 348 // add more from book as needed
duke@435 349 };
duke@435 350
duke@435 351 protected:
duke@435 352 // helpers
duke@435 353
duke@435 354 // x is supposed to fit in a field "nbits" wide
duke@435 355 // and be sign-extended. Check the range.
duke@435 356
duke@435 357 static void assert_signed_range(intptr_t x, int nbits) {
never@2950 358 assert(nbits == 32 || (-(1 << nbits-1) <= x && x < ( 1 << nbits-1)),
never@2950 359 err_msg("value out of range: x=" INTPTR_FORMAT ", nbits=%d", x, nbits));
duke@435 360 }
duke@435 361
duke@435 362 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
duke@435 363 assert( (x & 3) == 0, "not word aligned");
duke@435 364 assert_signed_range(x, nbits + 2);
duke@435 365 }
duke@435 366
duke@435 367 static void assert_unsigned_const(int x, int nbits) {
duke@435 368 assert( juint(x) < juint(1 << nbits), "unsigned constant out of range");
duke@435 369 }
duke@435 370
duke@435 371 // fields: note bits numbered from LSB = 0,
duke@435 372 // fields known by inclusive bit range
duke@435 373
duke@435 374 static int fmask(juint hi_bit, juint lo_bit) {
duke@435 375 assert( hi_bit >= lo_bit && 0 <= lo_bit && hi_bit < 32, "bad bits");
duke@435 376 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
duke@435 377 }
duke@435 378
duke@435 379 // inverse of u_field
duke@435 380
duke@435 381 static int inv_u_field(int x, int hi_bit, int lo_bit) {
duke@435 382 juint r = juint(x) >> lo_bit;
duke@435 383 r &= fmask( hi_bit, lo_bit);
duke@435 384 return int(r);
duke@435 385 }
duke@435 386
duke@435 387
duke@435 388 // signed version: extract from field and sign-extend
duke@435 389
duke@435 390 static int inv_s_field(int x, int hi_bit, int lo_bit) {
duke@435 391 int sign_shift = 31 - hi_bit;
duke@435 392 return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
duke@435 393 }
duke@435 394
duke@435 395 // given a field that ranges from hi_bit to lo_bit (inclusive,
duke@435 396 // LSB = 0), and an unsigned value for the field,
duke@435 397 // shift it into the field
duke@435 398
duke@435 399 #ifdef ASSERT
duke@435 400 static int u_field(int x, int hi_bit, int lo_bit) {
duke@435 401 assert( ( x & ~fmask(hi_bit, lo_bit)) == 0,
duke@435 402 "value out of range");
duke@435 403 int r = x << lo_bit;
duke@435 404 assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
duke@435 405 return r;
duke@435 406 }
duke@435 407 #else
duke@435 408 // make sure this is inlined as it will reduce code size significantly
duke@435 409 #define u_field(x, hi_bit, lo_bit) ((x) << (lo_bit))
duke@435 410 #endif
duke@435 411
duke@435 412 static int inv_op( int x ) { return inv_u_field(x, 31, 30); }
duke@435 413 static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
duke@435 414 static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
duke@435 415 static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
duke@435 416
duke@435 417 static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
duke@435 418
duke@435 419 static Register inv_rd( int x ) { return as_Register(inv_u_field(x, 29, 25)); }
duke@435 420 static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
duke@435 421 static Register inv_rs2( int x ) { return as_Register(inv_u_field(x, 4, 0)); }
duke@435 422
duke@435 423 static int op( int x) { return u_field(x, 31, 30); }
duke@435 424 static int rd( Register r) { return u_field(r->encoding(), 29, 25); }
duke@435 425 static int fcn( int x) { return u_field(x, 29, 25); }
duke@435 426 static int op3( int x) { return u_field(x, 24, 19); }
duke@435 427 static int rs1( Register r) { return u_field(r->encoding(), 18, 14); }
duke@435 428 static int rs2( Register r) { return u_field(r->encoding(), 4, 0); }
duke@435 429 static int annul( bool a) { return u_field(a ? 1 : 0, 29, 29); }
duke@435 430 static int cond( int x) { return u_field(x, 28, 25); }
duke@435 431 static int cond_mov( int x) { return u_field(x, 17, 14); }
duke@435 432 static int rcond( RCondition x) { return u_field(x, 12, 10); }
duke@435 433 static int op2( int x) { return u_field(x, 24, 22); }
duke@435 434 static int predict( bool p) { return u_field(p ? 1 : 0, 19, 19); }
duke@435 435 static int branchcc( CC fcca) { return u_field(fcca, 21, 20); }
duke@435 436 static int cmpcc( CC fcca) { return u_field(fcca, 26, 25); }
duke@435 437 static int imm_asi( int x) { return u_field(x, 12, 5); }
duke@435 438 static int immed( bool i) { return u_field(i ? 1 : 0, 13, 13); }
duke@435 439 static int opf_low6( int w) { return u_field(w, 10, 5); }
duke@435 440 static int opf_low5( int w) { return u_field(w, 9, 5); }
duke@435 441 static int trapcc( CC cc) { return u_field(cc, 12, 11); }
duke@435 442 static int sx( int i) { return u_field(i, 12, 12); } // shift x=1 means 64-bit
duke@435 443 static int opf( int x) { return u_field(x, 13, 5); }
duke@435 444
kvn@3037 445 static bool is_cbcond( int x ) {
kvn@3037 446 return (VM_Version::has_cbcond() && (inv_cond(x) > rc_last) &&
kvn@3037 447 inv_op(x) == branch_op && inv_op2(x) == bpr_op2);
kvn@3037 448 }
kvn@3037 449 static bool is_cxb( int x ) {
kvn@3037 450 assert(is_cbcond(x), "wrong instruction");
kvn@3037 451 return (x & (1<<21)) != 0;
kvn@3037 452 }
kvn@3037 453 static int cond_cbcond( int x) { return u_field((((x & 8)<<1) + 8 + (x & 7)), 29, 25); }
kvn@3037 454 static int inv_cond_cbcond(int x) {
kvn@3037 455 assert(is_cbcond(x), "wrong instruction");
kvn@3037 456 return inv_u_field(x, 27, 25) | (inv_u_field(x, 29, 29)<<3);
kvn@3037 457 }
kvn@3037 458
duke@435 459 static int opf_cc( CC c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
duke@435 460 static int mov_cc( CC c, bool useFloat ) { return u_field(useFloat ? 0 : 1, 18, 18) | u_field(c, 12, 11); }
duke@435 461
duke@435 462 static int fd( FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
duke@435 463 static int fs1(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
duke@435 464 static int fs2(FloatRegister r, FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 4, 0); };
duke@435 465
duke@435 466 // some float instructions use this encoding on the op3 field
duke@435 467 static int alt_op3(int op, FloatRegisterImpl::Width w) {
duke@435 468 int r;
duke@435 469 switch(w) {
duke@435 470 case FloatRegisterImpl::S: r = op + 0; break;
duke@435 471 case FloatRegisterImpl::D: r = op + 3; break;
duke@435 472 case FloatRegisterImpl::Q: r = op + 2; break;
duke@435 473 default: ShouldNotReachHere(); break;
duke@435 474 }
duke@435 475 return op3(r);
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 // compute inverse of simm
duke@435 480 static int inv_simm(int x, int nbits) {
duke@435 481 return (int)(x << (32 - nbits)) >> (32 - nbits);
duke@435 482 }
duke@435 483
duke@435 484 static int inv_simm13( int x ) { return inv_simm(x, 13); }
duke@435 485
duke@435 486 // signed immediate, in low bits, nbits long
duke@435 487 static int simm(int x, int nbits) {
duke@435 488 assert_signed_range(x, nbits);
duke@435 489 return x & (( 1 << nbits ) - 1);
duke@435 490 }
duke@435 491
duke@435 492 // compute inverse of wdisp16
duke@435 493 static intptr_t inv_wdisp16(int x, intptr_t pos) {
duke@435 494 int lo = x & (( 1 << 14 ) - 1);
duke@435 495 int hi = (x >> 20) & 3;
duke@435 496 if (hi >= 2) hi |= ~1;
duke@435 497 return (((hi << 14) | lo) << 2) + pos;
duke@435 498 }
duke@435 499
duke@435 500 // word offset, 14 bits at LSend, 2 bits at B21, B20
duke@435 501 static int wdisp16(intptr_t x, intptr_t off) {
duke@435 502 intptr_t xx = x - off;
duke@435 503 assert_signed_word_disp_range(xx, 16);
duke@435 504 int r = (xx >> 2) & ((1 << 14) - 1)
duke@435 505 | ( ( (xx>>(2+14)) & 3 ) << 20 );
duke@435 506 assert( inv_wdisp16(r, off) == x, "inverse is not inverse");
duke@435 507 return r;
duke@435 508 }
duke@435 509
kvn@3037 510 // compute inverse of wdisp10
kvn@3037 511 static intptr_t inv_wdisp10(int x, intptr_t pos) {
kvn@3037 512 assert(is_cbcond(x), "wrong instruction");
kvn@3037 513 int lo = inv_u_field(x, 12, 5);
kvn@3037 514 int hi = (x >> 19) & 3;
kvn@3037 515 if (hi >= 2) hi |= ~1;
kvn@3037 516 return (((hi << 8) | lo) << 2) + pos;
kvn@3037 517 }
kvn@3037 518
kvn@3037 519 // word offset for cbcond, 8 bits at [B12,B5], 2 bits at [B20,B19]
kvn@3037 520 static int wdisp10(intptr_t x, intptr_t off) {
kvn@3037 521 assert(VM_Version::has_cbcond(), "This CPU does not have CBCOND instruction");
kvn@3037 522 intptr_t xx = x - off;
kvn@3037 523 assert_signed_word_disp_range(xx, 10);
kvn@3037 524 int r = ( ( (xx >> 2 ) & ((1 << 8) - 1) ) << 5 )
kvn@3037 525 | ( ( (xx >> (2+8)) & 3 ) << 19 );
kvn@3037 526 // Have to fake cbcond instruction to pass assert in inv_wdisp10()
kvn@3037 527 assert(inv_wdisp10((r | op(branch_op) | cond_cbcond(rc_last+1) | op2(bpr_op2)), off) == x, "inverse is not inverse");
kvn@3037 528 return r;
kvn@3037 529 }
duke@435 530
duke@435 531 // word displacement in low-order nbits bits
duke@435 532
duke@435 533 static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
duke@435 534 int pre_sign_extend = x & (( 1 << nbits ) - 1);
duke@435 535 int r = pre_sign_extend >= ( 1 << (nbits-1) )
duke@435 536 ? pre_sign_extend | ~(( 1 << nbits ) - 1)
duke@435 537 : pre_sign_extend;
duke@435 538 return (r << 2) + pos;
duke@435 539 }
duke@435 540
duke@435 541 static int wdisp( intptr_t x, intptr_t off, int nbits ) {
duke@435 542 intptr_t xx = x - off;
duke@435 543 assert_signed_word_disp_range(xx, nbits);
duke@435 544 int r = (xx >> 2) & (( 1 << nbits ) - 1);
duke@435 545 assert( inv_wdisp( r, off, nbits ) == x, "inverse not inverse");
duke@435 546 return r;
duke@435 547 }
duke@435 548
duke@435 549
duke@435 550 // Extract the top 32 bits in a 64 bit word
duke@435 551 static int32_t hi32( int64_t x ) {
duke@435 552 int32_t r = int32_t( (uint64_t)x >> 32 );
duke@435 553 return r;
duke@435 554 }
duke@435 555
duke@435 556 // given a sethi instruction, extract the constant, left-justified
duke@435 557 static int inv_hi22( int x ) {
duke@435 558 return x << 10;
duke@435 559 }
duke@435 560
duke@435 561 // create an imm22 field, given a 32-bit left-justified constant
duke@435 562 static int hi22( int x ) {
duke@435 563 int r = int( juint(x) >> 10 );
duke@435 564 assert( (r & ~((1 << 22) - 1)) == 0, "just checkin'");
duke@435 565 return r;
duke@435 566 }
duke@435 567
duke@435 568 // create a low10 __value__ (not a field) for a given a 32-bit constant
duke@435 569 static int low10( int x ) {
duke@435 570 return x & ((1 << 10) - 1);
duke@435 571 }
duke@435 572
kvn@3001 573 // instruction only in VIS3
kvn@3001 574 static void vis3_only() { assert( VM_Version::has_vis3(), "This instruction only works on SPARC with VIS3"); }
kvn@3001 575
duke@435 576 // instruction only in v9
duke@435 577 static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
duke@435 578
duke@435 579 // instruction only in v8
duke@435 580 static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
duke@435 581
duke@435 582 // instruction deprecated in v9
duke@435 583 static void v9_dep() { } // do nothing for now
duke@435 584
duke@435 585 // some float instructions only exist for single prec. on v8
duke@435 586 static void v8_s_only(FloatRegisterImpl::Width w) { if (w != FloatRegisterImpl::S) v9_only(); }
duke@435 587
duke@435 588 // v8 has no CC field
duke@435 589 static void v8_no_cc(CC cc) { if (cc) v9_only(); }
duke@435 590
duke@435 591 protected:
duke@435 592 // Simple delay-slot scheme:
duke@435 593 // In order to check the programmer, the assembler keeps track of deley slots.
duke@435 594 // It forbids CTIs in delay slots (conservative, but should be OK).
duke@435 595 // Also, when putting an instruction into a delay slot, you must say
duke@435 596 // asm->delayed()->add(...), in order to check that you don't omit
duke@435 597 // delay-slot instructions.
duke@435 598 // To implement this, we use a simple FSA
duke@435 599
duke@435 600 #ifdef ASSERT
duke@435 601 #define CHECK_DELAY
duke@435 602 #endif
duke@435 603 #ifdef CHECK_DELAY
duke@435 604 enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
duke@435 605 #endif
duke@435 606
duke@435 607 public:
duke@435 608 // Tells assembler next instruction must NOT be in delay slot.
duke@435 609 // Use at start of multinstruction macros.
duke@435 610 void assert_not_delayed() {
duke@435 611 // This is a separate overloading to avoid creation of string constants
duke@435 612 // in non-asserted code--with some compilers this pollutes the object code.
duke@435 613 #ifdef CHECK_DELAY
duke@435 614 assert_not_delayed("next instruction should not be a delay slot");
duke@435 615 #endif
duke@435 616 }
duke@435 617 void assert_not_delayed(const char* msg) {
duke@435 618 #ifdef CHECK_DELAY
jcoomes@1845 619 assert(delay_state == no_delay, msg);
duke@435 620 #endif
duke@435 621 }
duke@435 622
duke@435 623 protected:
duke@435 624 // Delay slot helpers
duke@435 625 // cti is called when emitting control-transfer instruction,
duke@435 626 // BEFORE doing the emitting.
duke@435 627 // Only effective when assertion-checking is enabled.
duke@435 628 void cti() {
duke@435 629 #ifdef CHECK_DELAY
duke@435 630 assert_not_delayed("cti should not be in delay slot");
duke@435 631 #endif
duke@435 632 }
duke@435 633
duke@435 634 // called when emitting cti with a delay slot, AFTER emitting
duke@435 635 void has_delay_slot() {
duke@435 636 #ifdef CHECK_DELAY
duke@435 637 assert_not_delayed("just checking");
duke@435 638 delay_state = at_delay_slot;
duke@435 639 #endif
duke@435 640 }
duke@435 641
kvn@3037 642 // cbcond instruction should not be generated one after an other
kvn@3037 643 bool cbcond_before() {
kvn@3037 644 if (offset() == 0) return false; // it is first instruction
kvn@3037 645 int x = *(int*)(intptr_t(pc()) - 4); // previous instruction
kvn@3037 646 return is_cbcond(x);
kvn@3037 647 }
kvn@3037 648
kvn@3037 649 void no_cbcond_before() {
kvn@3037 650 assert(offset() == 0 || !cbcond_before(), "cbcond should not follow an other cbcond");
kvn@3037 651 }
kvn@3037 652
kvn@3049 653 public:
kvn@3049 654
kvn@3037 655 bool use_cbcond(Label& L) {
kvn@3037 656 if (!UseCBCond || cbcond_before()) return false;
kvn@3037 657 intptr_t x = intptr_t(target_distance(L)) - intptr_t(pc());
kvn@3037 658 assert( (x & 3) == 0, "not word aligned");
twisti@3310 659 return is_simm12(x);
kvn@3037 660 }
kvn@3037 661
duke@435 662 // Tells assembler you know that next instruction is delayed
duke@435 663 Assembler* delayed() {
duke@435 664 #ifdef CHECK_DELAY
duke@435 665 assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
duke@435 666 delay_state = filling_delay_slot;
duke@435 667 #endif
duke@435 668 return this;
duke@435 669 }
duke@435 670
duke@435 671 void flush() {
duke@435 672 #ifdef CHECK_DELAY
duke@435 673 assert ( delay_state == no_delay, "ending code with a delay slot");
duke@435 674 #endif
duke@435 675 AbstractAssembler::flush();
duke@435 676 }
duke@435 677
twisti@4412 678 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
twisti@4412 679 inline void emit_data(int x) { emit_int32(x); }
duke@435 680 inline void emit_data(int, RelocationHolder const&);
duke@435 681 inline void emit_data(int, relocInfo::relocType rtype);
duke@435 682 // helper for above fcns
duke@435 683 inline void check_delay();
duke@435 684
duke@435 685
duke@435 686 public:
duke@435 687 // instructions, refer to page numbers in the SPARC Architecture Manual, V9
duke@435 688
duke@435 689 // pp 135 (addc was addx in v8)
duke@435 690
twisti@1162 691 inline void add(Register s1, Register s2, Register d );
twisti@4323 692 inline void add(Register s1, int simm13a, Register d );
duke@435 693
twisti@4412 694 void addcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 695 void addcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(add_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 696 void addc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 697 void addc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 698 void addccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 699 void addccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 700
kvn@3037 701
duke@435 702 // pp 136
duke@435 703
kvn@3037 704 inline void bpr(RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none);
kvn@3037 705 inline void bpr(RCondition c, bool a, Predict p, Register s1, Label& L);
duke@435 706
kvn@3037 707 // compare and branch
kvn@3037 708 inline void cbcond(Condition c, CC cc, Register s1, Register s2, Label& L);
kvn@3037 709 inline void cbcond(Condition c, CC cc, Register s1, int simm5, Label& L);
kvn@3037 710
kvn@3049 711 protected: // use MacroAssembler::br instead
kvn@3049 712
kvn@3049 713 // pp 138
kvn@3049 714
kvn@3049 715 inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 716 inline void fb( Condition c, bool a, Label& L );
kvn@3049 717
kvn@3049 718 // pp 141
kvn@3049 719
kvn@3049 720 inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 721 inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 722
kvn@3049 723 // pp 144
kvn@3049 724
kvn@3049 725 inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 726 inline void br( Condition c, bool a, Label& L );
kvn@3049 727
kvn@3049 728 // pp 146
kvn@3049 729
kvn@3049 730 inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 731 inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
kvn@3049 732
kvn@3049 733 // pp 121 (V8)
kvn@3049 734
kvn@3049 735 inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
kvn@3049 736 inline void cb( Condition c, bool a, Label& L );
kvn@3049 737
duke@435 738 // pp 149
duke@435 739
duke@435 740 inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 741 inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
duke@435 742
kvn@3037 743 public:
kvn@3037 744
duke@435 745 // pp 150
duke@435 746
duke@435 747 // These instructions compare the contents of s2 with the contents of
duke@435 748 // memory at address in s1. If the values are equal, the contents of memory
duke@435 749 // at address s1 is swapped with the data in d. If the values are not equal,
duke@435 750 // the the contents of memory at s1 is loaded into d, without the swap.
duke@435 751
twisti@4412 752 void casa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
twisti@4412 753 void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1 ? immed(true) : imm_asi(ia)) | rs2(s2)); }
duke@435 754
duke@435 755 // pp 152
duke@435 756
twisti@4412 757 void udiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | rs2(s2)); }
twisti@4412 758 void udiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 759 void sdiv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | rs2(s2)); }
twisti@4412 760 void sdiv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 761 void udivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
twisti@4412 762 void udivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 763 void sdivcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
twisti@4412 764 void sdivcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 765
duke@435 766 // pp 155
duke@435 767
twisti@4412 768 void done() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(0) | op3(done_op3) ); }
twisti@4412 769 void retry() { v9_only(); cti(); emit_int32( op(arith_op) | fcn(1) | op3(retry_op3) ); }
duke@435 770
duke@435 771 // pp 156
duke@435 772
twisti@4412 773 void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
twisti@4412 774 void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
duke@435 775
duke@435 776 // pp 157
duke@435 777
twisti@4412 778 void fcmp( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
twisti@4412 779 void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc); emit_int32( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
duke@435 780
duke@435 781 // pp 159
duke@435 782
twisti@4412 783 void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
twisti@4412 784 void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
duke@435 785
duke@435 786 // pp 160
duke@435 787
twisti@4412 788 void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
duke@435 789
duke@435 790 // pp 161
duke@435 791
twisti@4412 792 void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, FloatRegisterImpl::D)); }
twisti@4412 793 void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, FloatRegisterImpl::S)); }
duke@435 794
duke@435 795 // pp 162
duke@435 796
twisti@4412 797 void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
duke@435 798
twisti@4412 799 void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
duke@435 800
duke@435 801 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
duke@435 802 // on v8 to do negation of single, double and quad precision floats.
duke@435 803
twisti@4412 804 void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x05) | fs2(sd, w)); }
duke@435 805
twisti@4412 806 void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w); emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
duke@435 807
duke@435 808 // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
duke@435 809 // on v8 to do abs operation on single/double/quad precision floats.
duke@435 810
twisti@4412 811 void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_int32( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
duke@435 812
duke@435 813 // pp 163
duke@435 814
twisti@4412 815 void fmul( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x48 + w) | fs2(s2, w)); }
twisti@4412 816 void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
twisti@4412 817 void fdiv( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x4c + w) | fs2(s2, w)); }
duke@435 818
duke@435 819 // pp 164
duke@435 820
twisti@4412 821 void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_int32( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
duke@435 822
duke@435 823 // pp 165
duke@435 824
duke@435 825 inline void flush( Register s1, Register s2 );
duke@435 826 inline void flush( Register s1, int simm13a);
duke@435 827
duke@435 828 // pp 167
duke@435 829
twisti@4412 830 void flushw() { v9_only(); emit_int32( op(arith_op) | op3(flushw_op3) ); }
duke@435 831
duke@435 832 // pp 168
duke@435 833
twisti@4412 834 void illtrap( int const22a) { if (const22a != 0) v9_only(); emit_int32( op(branch_op) | u_field(const22a, 21, 0) ); }
duke@435 835 // v8 unimp == illtrap(0)
duke@435 836
duke@435 837 // pp 169
duke@435 838
twisti@4412 839 void impdep1( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
twisti@4412 840 void impdep2( int id1, int const19a ) { v9_only(); emit_int32( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
duke@435 841
duke@435 842 // pp 149 (v8)
duke@435 843
twisti@4412 844 void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_int32( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
twisti@4412 845 void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only(); emit_int32( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
duke@435 846
duke@435 847 // pp 170
duke@435 848
duke@435 849 void jmpl( Register s1, Register s2, Register d );
duke@435 850 void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 851
duke@435 852 // 171
duke@435 853
twisti@1162 854 inline void ldf(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
twisti@1162 855 inline void ldf(FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d, RelocationHolder const& rspec = RelocationHolder());
twisti@1162 856
duke@435 857
duke@435 858 inline void ldfsr( Register s1, Register s2 );
duke@435 859 inline void ldfsr( Register s1, int simm13a);
duke@435 860 inline void ldxfsr( Register s1, Register s2 );
duke@435 861 inline void ldxfsr( Register s1, int simm13a);
duke@435 862
duke@435 863 // pp 94 (v8)
duke@435 864
duke@435 865 inline void ldc( Register s1, Register s2, int crd );
duke@435 866 inline void ldc( Register s1, int simm13a, int crd);
duke@435 867 inline void lddc( Register s1, Register s2, int crd );
duke@435 868 inline void lddc( Register s1, int simm13a, int crd);
duke@435 869 inline void ldcsr( Register s1, Register s2, int crd );
duke@435 870 inline void ldcsr( Register s1, int simm13a, int crd);
duke@435 871
duke@435 872
duke@435 873 // 173
duke@435 874
twisti@4412 875 void ldfa( FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 876 void ldfa( FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 877
duke@435 878 // pp 175, lduw is ld on v8
duke@435 879
duke@435 880 inline void ldsb( Register s1, Register s2, Register d );
duke@435 881 inline void ldsb( Register s1, int simm13a, Register d);
duke@435 882 inline void ldsh( Register s1, Register s2, Register d );
duke@435 883 inline void ldsh( Register s1, int simm13a, Register d);
duke@435 884 inline void ldsw( Register s1, Register s2, Register d );
duke@435 885 inline void ldsw( Register s1, int simm13a, Register d);
duke@435 886 inline void ldub( Register s1, Register s2, Register d );
duke@435 887 inline void ldub( Register s1, int simm13a, Register d);
duke@435 888 inline void lduh( Register s1, Register s2, Register d );
duke@435 889 inline void lduh( Register s1, int simm13a, Register d);
duke@435 890 inline void lduw( Register s1, Register s2, Register d );
duke@435 891 inline void lduw( Register s1, int simm13a, Register d);
duke@435 892 inline void ldx( Register s1, Register s2, Register d );
duke@435 893 inline void ldx( Register s1, int simm13a, Register d);
duke@435 894 inline void ldd( Register s1, Register s2, Register d );
duke@435 895 inline void ldd( Register s1, int simm13a, Register d);
duke@435 896
duke@435 897 // pp 177
duke@435 898
twisti@4412 899 void ldsba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 900 void ldsba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 901 void ldsha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 902 void ldsha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 903 void ldswa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 904 void ldswa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 905 void lduba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 906 void lduba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 907 void lduha( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 908 void lduha( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 909 void lduwa( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 910 void lduwa( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 911 void ldxa( Register s1, Register s2, int ia, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 912 void ldxa( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(ldx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 913 void ldda( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 914 void ldda( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(ldd_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 915
duke@435 916 // pp 179
duke@435 917
duke@435 918 inline void ldstub( Register s1, Register s2, Register d );
duke@435 919 inline void ldstub( Register s1, int simm13a, Register d);
duke@435 920
duke@435 921 // pp 180
duke@435 922
twisti@4412 923 void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 924 void ldstuba( Register s1, int simm13a, Register d ) { emit_int32( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 925
duke@435 926 // pp 181
duke@435 927
twisti@4412 928 void and3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 929 void and3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 930 void andcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 931 void andcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(and_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 932 void andn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 933 void andn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 934 void andncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 935 void andncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 936 void or3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 937 void or3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 938 void orcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 939 void orcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(or_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 940 void orn( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 941 void orn( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 942 void orncc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 943 void orncc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(orn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 944 void xor3( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 945 void xor3( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 946 void xorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 947 void xorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 948 void xnor( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 949 void xnor( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 950 void xnorcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 951 void xnorcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 952
duke@435 953 // pp 183
duke@435 954
twisti@4412 955 void membar( Membar_mask_bits const7a ) { v9_only(); emit_int32( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
duke@435 956
duke@435 957 // pp 185
duke@435 958
twisti@4412 959 void fmov( FloatRegisterImpl::Width w, Condition c, bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
duke@435 960
duke@435 961 // pp 189
duke@435 962
twisti@4412 963 void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1, FloatRegister s2, FloatRegister d ) { v9_only(); emit_int32( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
duke@435 964
duke@435 965 // pp 191
duke@435 966
twisti@4412 967 void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
twisti@4412 968 void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
duke@435 969
duke@435 970 // pp 195
duke@435 971
twisti@4412 972 void movr( RCondition c, Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
twisti@4412 973 void movr( RCondition c, Register s1, int simm10a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
duke@435 974
duke@435 975 // pp 196
duke@435 976
twisti@4412 977 void mulx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 978 void mulx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 979 void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 980 void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 981 void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 982 void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 983
duke@435 984 // pp 197
duke@435 985
twisti@4412 986 void umul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 987 void umul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 988 void smul( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 989 void smul( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 990 void umulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 991 void umulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 992 void smulcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 993 void smulcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 994
duke@435 995 // pp 199
duke@435 996
twisti@4412 997 void mulscc( Register s1, Register s2, Register d ) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 998 void mulscc( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 999
duke@435 1000 // pp 201
duke@435 1001
twisti@4412 1002 void nop() { emit_int32( op(branch_op) | op2(sethi_op2) ); }
duke@435 1003
duke@435 1004
duke@435 1005 // pp 202
duke@435 1006
twisti@4412 1007 void popc( Register s, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
twisti@4412 1008 void popc( int simm13a, Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1009
duke@435 1010 // pp 203
duke@435 1011
twisti@4412 1012 void prefetch( Register s1, Register s2, PrefetchFcn f) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | rs2(s2) ); }
twisti@4323 1013 void prefetch( Register s1, int simm13a, PrefetchFcn f) { v9_only(); emit_data( op(ldst_op) | fcn(f) | op3(prefetch_op3) | rs1(s1) | immed(true) | simm(simm13a, 13)); }
twisti@4323 1014
twisti@4412 1015 void prefetcha( Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1016 void prefetcha( Register s1, int simm13a, PrefetchFcn f ) { v9_only(); emit_int32( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1017
duke@435 1018 // pp 208
duke@435 1019
duke@435 1020 // not implementing read privileged register
duke@435 1021
twisti@4412 1022 inline void rdy( Register d) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
twisti@4412 1023 inline void rdccr( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
twisti@4412 1024 inline void rdasi( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
twisti@4412 1025 inline void rdtick( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
twisti@4412 1026 inline void rdpc( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
twisti@4412 1027 inline void rdfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
duke@435 1028
duke@435 1029 // pp 213
duke@435 1030
duke@435 1031 inline void rett( Register s1, Register s2);
duke@435 1032 inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
duke@435 1033
duke@435 1034 // pp 214
duke@435 1035
twisti@4412 1036 void save( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
ysr@777 1037 void save( Register s1, int simm13a, Register d ) {
ysr@777 1038 // make sure frame is at least large enough for the register save area
ysr@777 1039 assert(-simm13a >= 16 * wordSize, "frame too small");
twisti@4412 1040 emit_int32( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) );
ysr@777 1041 }
duke@435 1042
twisti@4412 1043 void restore( Register s1 = G0, Register s2 = G0, Register d = G0 ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1044 void restore( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1045
duke@435 1046 // pp 216
duke@435 1047
twisti@4412 1048 void saved() { v9_only(); emit_int32( op(arith_op) | fcn(0) | op3(saved_op3)); }
twisti@4412 1049 void restored() { v9_only(); emit_int32( op(arith_op) | fcn(1) | op3(saved_op3)); }
duke@435 1050
duke@435 1051 // pp 217
duke@435 1052
duke@435 1053 inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
duke@435 1054 // pp 218
duke@435 1055
twisti@4412 1056 void sll( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1057 void sll( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
twisti@4412 1058 void srl( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1059 void srl( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
twisti@4412 1060 void sra( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
twisti@4412 1061 void sra( Register s1, int imm5a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
duke@435 1062
twisti@4412 1063 void sllx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1064 void sllx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
twisti@4412 1065 void srlx( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1066 void srlx( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
twisti@4412 1067 void srax( Register s1, Register s2, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
twisti@4412 1068 void srax( Register s1, int imm6a, Register d ) { v9_only(); emit_int32( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
duke@435 1069
duke@435 1070 // pp 220
duke@435 1071
twisti@4412 1072 void sir( int simm13a ) { emit_int32( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
duke@435 1073
duke@435 1074 // pp 221
duke@435 1075
twisti@4412 1076 void stbar() { emit_int32( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
duke@435 1077
duke@435 1078 // pp 222
duke@435 1079
twisti@1441 1080 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2);
duke@435 1081 inline void stf( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
duke@435 1082
duke@435 1083 inline void stfsr( Register s1, Register s2 );
duke@435 1084 inline void stfsr( Register s1, int simm13a);
duke@435 1085 inline void stxfsr( Register s1, Register s2 );
duke@435 1086 inline void stxfsr( Register s1, int simm13a);
duke@435 1087
duke@435 1088 // pp 224
duke@435 1089
twisti@4412 1090 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1091 void stfa( FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1092
duke@435 1093 // p 226
duke@435 1094
duke@435 1095 inline void stb( Register d, Register s1, Register s2 );
duke@435 1096 inline void stb( Register d, Register s1, int simm13a);
duke@435 1097 inline void sth( Register d, Register s1, Register s2 );
duke@435 1098 inline void sth( Register d, Register s1, int simm13a);
duke@435 1099 inline void stw( Register d, Register s1, Register s2 );
duke@435 1100 inline void stw( Register d, Register s1, int simm13a);
duke@435 1101 inline void stx( Register d, Register s1, Register s2 );
duke@435 1102 inline void stx( Register d, Register s1, int simm13a);
duke@435 1103 inline void std( Register d, Register s1, Register s2 );
duke@435 1104 inline void std( Register d, Register s1, int simm13a);
duke@435 1105
duke@435 1106 // pp 177
duke@435 1107
twisti@4412 1108 void stba( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1109 void stba( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1110 void stha( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1111 void stha( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1112 void stwa( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1113 void stwa( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1114 void stxa( Register d, Register s1, Register s2, int ia ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1115 void stxa( Register d, Register s1, int simm13a ) { v9_only(); emit_int32( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1116 void stda( Register d, Register s1, Register s2, int ia ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1117 void stda( Register d, Register s1, int simm13a ) { emit_int32( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1118
duke@435 1119 // pp 97 (v8)
duke@435 1120
duke@435 1121 inline void stc( int crd, Register s1, Register s2 );
duke@435 1122 inline void stc( int crd, Register s1, int simm13a);
duke@435 1123 inline void stdc( int crd, Register s1, Register s2 );
duke@435 1124 inline void stdc( int crd, Register s1, int simm13a);
duke@435 1125 inline void stcsr( int crd, Register s1, Register s2 );
duke@435 1126 inline void stcsr( int crd, Register s1, int simm13a);
duke@435 1127 inline void stdcq( int crd, Register s1, Register s2 );
duke@435 1128 inline void stdcq( int crd, Register s1, int simm13a);
duke@435 1129
duke@435 1130 // pp 230
duke@435 1131
twisti@4412 1132 void sub( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1133 void sub( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@2350 1134
twisti@4412 1135 void subcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1136 void subcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1137 void subc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1138 void subc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1139 void subccc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1140 void subccc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1141
duke@435 1142 // pp 231
duke@435 1143
duke@435 1144 inline void swap( Register s1, Register s2, Register d );
duke@435 1145 inline void swap( Register s1, int simm13a, Register d);
duke@435 1146
duke@435 1147 // pp 232
duke@435 1148
twisti@4412 1149 void swapa( Register s1, Register s2, int ia, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
twisti@4412 1150 void swapa( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1151
duke@435 1152 // pp 234, note op in book is wrong, see pp 268
duke@435 1153
twisti@4412 1154 void taddcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1155 void taddcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(taddcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1156 void taddcctv( Register s1, Register s2, Register d ) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1157 void taddcctv( Register s1, int simm13a, Register d ) { v9_dep(); emit_int32( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1158
duke@435 1159 // pp 235
duke@435 1160
twisti@4412 1161 void tsubcc( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | rs2(s2) ); }
twisti@4412 1162 void tsubcc( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcc_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
twisti@4412 1163 void tsubcctv( Register s1, Register s2, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
twisti@4412 1164 void tsubcctv( Register s1, int simm13a, Register d ) { emit_int32( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
duke@435 1165
duke@435 1166 // pp 237
duke@435 1167
twisti@4412 1168 void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc); emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
twisti@4412 1169 void trap( Condition c, CC cc, Register s1, int trapa ) { v8_no_cc(cc); emit_int32( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
duke@435 1170 // simple uncond. trap
duke@435 1171 void trap( int trapa ) { trap( always, icc, G0, trapa ); }
duke@435 1172
duke@435 1173 // pp 239 omit write priv register for now
duke@435 1174
twisti@4412 1175 inline void wry( Register d) { v9_dep(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
twisti@4412 1176 inline void wrccr(Register s) { v9_only(); emit_int32( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
twisti@4412 1177 inline void wrccr(Register s, int simm13a) { v9_only(); emit_int32( op(arith_op) |
duke@435 1178 rs1(s) |
duke@435 1179 op3(wrreg_op3) |
duke@435 1180 u_field(2, 29, 25) |
kvn@3092 1181 immed(true) |
duke@435 1182 simm(simm13a, 13)); }
twisti@4412 1183 inline void wrasi(Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
kvn@3092 1184 // wrasi(d, imm) stores (d xor imm) to asi
twisti@4412 1185 inline void wrasi(Register d, int simm13a) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) |
kvn@3092 1186 u_field(3, 29, 25) | immed(true) | simm(simm13a, 13)); }
twisti@4412 1187 inline void wrfprs( Register d) { v9_only(); emit_int32( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
duke@435 1188
kvn@3001 1189
kvn@3001 1190 // VIS3 instructions
kvn@3001 1191
twisti@4412 1192 void movstosw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstosw_opf) | fs2(s, FloatRegisterImpl::S)); }
twisti@4412 1193 void movstouw( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mstouw_opf) | fs2(s, FloatRegisterImpl::S)); }
twisti@4412 1194 void movdtox( FloatRegister s, Register d ) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(mftoi_op3) | opf(mdtox_opf) | fs2(s, FloatRegisterImpl::D)); }
kvn@3001 1195
twisti@4412 1196 void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
twisti@4412 1197 void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
kvn@3001 1198
duke@435 1199 // Creation
duke@435 1200 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
duke@435 1201 #ifdef CHECK_DELAY
duke@435 1202 delay_state = no_delay;
duke@435 1203 #endif
duke@435 1204 }
duke@435 1205 };
duke@435 1206
stefank@2314 1207 #endif // CPU_SPARC_VM_ASSEMBLER_SPARC_HPP

mercurial