src/share/vm/services/memoryPool.cpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 1907
c18cbe5936b8
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2003-2005 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_memoryPool.cpp.incl"
duke@435 27
duke@435 28 MemoryPool::MemoryPool(const char* name,
duke@435 29 PoolType type,
duke@435 30 size_t init_size,
duke@435 31 size_t max_size,
duke@435 32 bool support_usage_threshold,
duke@435 33 bool support_gc_threshold) {
duke@435 34 _name = name;
duke@435 35 _initial_size = init_size;
duke@435 36 _max_size = max_size;
duke@435 37 _memory_pool_obj = NULL;
duke@435 38 _available_for_allocation = true;
duke@435 39 _num_managers = 0;
duke@435 40 _type = type;
duke@435 41
duke@435 42 // initialize the max and init size of collection usage
duke@435 43 _after_gc_usage = MemoryUsage(_initial_size, 0, 0, _max_size);
duke@435 44
duke@435 45 _usage_sensor = NULL;
duke@435 46 _gc_usage_sensor = NULL;
duke@435 47 // usage threshold supports both high and low threshold
duke@435 48 _usage_threshold = new ThresholdSupport(support_usage_threshold, support_usage_threshold);
duke@435 49 // gc usage threshold supports only high threshold
duke@435 50 _gc_usage_threshold = new ThresholdSupport(support_gc_threshold, support_gc_threshold);
duke@435 51 }
duke@435 52
duke@435 53 void MemoryPool::add_manager(MemoryManager* mgr) {
duke@435 54 assert(_num_managers < MemoryPool::max_num_managers, "_num_managers exceeds the max");
duke@435 55 if (_num_managers < MemoryPool::max_num_managers) {
duke@435 56 _managers[_num_managers] = mgr;
duke@435 57 _num_managers++;
duke@435 58 }
duke@435 59 }
duke@435 60
duke@435 61
duke@435 62 // Returns an instanceHandle of a MemoryPool object.
duke@435 63 // It creates a MemoryPool instance when the first time
duke@435 64 // this function is called.
duke@435 65 instanceOop MemoryPool::get_memory_pool_instance(TRAPS) {
duke@435 66 // Must do an acquire so as to force ordering of subsequent
duke@435 67 // loads from anything _memory_pool_obj points to or implies.
duke@435 68 instanceOop pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
duke@435 69 if (pool_obj == NULL) {
duke@435 70 // It's ok for more than one thread to execute the code up to the locked region.
duke@435 71 // Extra pool instances will just be gc'ed.
duke@435 72 klassOop k = Management::sun_management_ManagementFactory_klass(CHECK_NULL);
duke@435 73 instanceKlassHandle ik(THREAD, k);
duke@435 74
duke@435 75 Handle pool_name = java_lang_String::create_from_str(_name, CHECK_NULL);
duke@435 76 jlong usage_threshold_value = (_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
duke@435 77 jlong gc_usage_threshold_value = (_gc_usage_threshold->is_high_threshold_supported() ? 0 : -1L);
duke@435 78
duke@435 79 JavaValue result(T_OBJECT);
duke@435 80 JavaCallArguments args;
duke@435 81 args.push_oop(pool_name); // Argument 1
duke@435 82 args.push_int((int) is_heap()); // Argument 2
duke@435 83
duke@435 84 symbolHandle method_name = vmSymbolHandles::createMemoryPool_name();
duke@435 85 symbolHandle signature = vmSymbolHandles::createMemoryPool_signature();
duke@435 86
duke@435 87 args.push_long(usage_threshold_value); // Argument 3
duke@435 88 args.push_long(gc_usage_threshold_value); // Argument 4
duke@435 89
duke@435 90 JavaCalls::call_static(&result,
duke@435 91 ik,
duke@435 92 method_name,
duke@435 93 signature,
duke@435 94 &args,
duke@435 95 CHECK_NULL);
duke@435 96
duke@435 97 instanceOop p = (instanceOop) result.get_jobject();
duke@435 98 instanceHandle pool(THREAD, p);
duke@435 99
duke@435 100 {
duke@435 101 // Get lock since another thread may have create the instance
duke@435 102 MutexLocker ml(Management_lock);
duke@435 103
duke@435 104 // Check if another thread has created the pool. We reload
duke@435 105 // _memory_pool_obj here because some other thread may have
duke@435 106 // initialized it while we were executing the code before the lock.
duke@435 107 //
duke@435 108 // The lock has done an acquire, so the load can't float above it,
duke@435 109 // but we need to do a load_acquire as above.
duke@435 110 pool_obj = (instanceOop)OrderAccess::load_ptr_acquire(&_memory_pool_obj);
duke@435 111 if (pool_obj != NULL) {
duke@435 112 return pool_obj;
duke@435 113 }
duke@435 114
duke@435 115 // Get the address of the object we created via call_special.
duke@435 116 pool_obj = pool();
duke@435 117
duke@435 118 // Use store barrier to make sure the memory accesses associated
duke@435 119 // with creating the pool are visible before publishing its address.
duke@435 120 // The unlock will publish the store to _memory_pool_obj because
duke@435 121 // it does a release first.
duke@435 122 OrderAccess::release_store_ptr(&_memory_pool_obj, pool_obj);
duke@435 123 }
duke@435 124 }
duke@435 125
duke@435 126 return pool_obj;
duke@435 127 }
duke@435 128
duke@435 129 inline static size_t get_max_value(size_t val1, size_t val2) {
duke@435 130 return (val1 > val2 ? val1 : val2);
duke@435 131 }
duke@435 132
duke@435 133 void MemoryPool::record_peak_memory_usage() {
duke@435 134 // Caller in JDK is responsible for synchronization -
duke@435 135 // acquire the lock for this memory pool before calling VM
duke@435 136 MemoryUsage usage = get_memory_usage();
duke@435 137 size_t peak_used = get_max_value(usage.used(), _peak_usage.used());
duke@435 138 size_t peak_committed = get_max_value(usage.committed(), _peak_usage.committed());
duke@435 139 size_t peak_max_size = get_max_value(usage.max_size(), _peak_usage.max_size());
duke@435 140
duke@435 141 _peak_usage = MemoryUsage(initial_size(), peak_used, peak_committed, peak_max_size);
duke@435 142 }
duke@435 143
duke@435 144 static void set_sensor_obj_at(SensorInfo** sensor_ptr, instanceHandle sh) {
duke@435 145 assert(*sensor_ptr == NULL, "Should be called only once");
duke@435 146 SensorInfo* sensor = new SensorInfo();
duke@435 147 sensor->set_sensor(sh());
duke@435 148 *sensor_ptr = sensor;
duke@435 149 }
duke@435 150
duke@435 151 void MemoryPool::set_usage_sensor_obj(instanceHandle sh) {
duke@435 152 set_sensor_obj_at(&_usage_sensor, sh);
duke@435 153 }
duke@435 154
duke@435 155 void MemoryPool::set_gc_usage_sensor_obj(instanceHandle sh) {
duke@435 156 set_sensor_obj_at(&_gc_usage_sensor, sh);
duke@435 157 }
duke@435 158
duke@435 159 void MemoryPool::oops_do(OopClosure* f) {
duke@435 160 f->do_oop((oop*) &_memory_pool_obj);
duke@435 161 if (_usage_sensor != NULL) {
duke@435 162 _usage_sensor->oops_do(f);
duke@435 163 }
duke@435 164 if (_gc_usage_sensor != NULL) {
duke@435 165 _gc_usage_sensor->oops_do(f);
duke@435 166 }
duke@435 167 }
duke@435 168
duke@435 169 ContiguousSpacePool::ContiguousSpacePool(ContiguousSpace* space,
duke@435 170 const char* name,
duke@435 171 PoolType type,
duke@435 172 size_t max_size,
duke@435 173 bool support_usage_threshold) :
duke@435 174 CollectedMemoryPool(name, type, space->capacity(), max_size,
duke@435 175 support_usage_threshold), _space(space) {
duke@435 176 }
duke@435 177
duke@435 178 MemoryUsage ContiguousSpacePool::get_memory_usage() {
duke@435 179 size_t maxSize = (available_for_allocation() ? max_size() : 0);
duke@435 180 size_t used = used_in_bytes();
duke@435 181 size_t committed = _space->capacity();
duke@435 182
duke@435 183 return MemoryUsage(initial_size(), used, committed, maxSize);
duke@435 184 }
duke@435 185
duke@435 186 SurvivorContiguousSpacePool::SurvivorContiguousSpacePool(DefNewGeneration* gen,
duke@435 187 const char* name,
duke@435 188 PoolType type,
duke@435 189 size_t max_size,
duke@435 190 bool support_usage_threshold) :
duke@435 191 CollectedMemoryPool(name, type, gen->from()->capacity(), max_size,
duke@435 192 support_usage_threshold), _gen(gen) {
duke@435 193 }
duke@435 194
duke@435 195 MemoryUsage SurvivorContiguousSpacePool::get_memory_usage() {
duke@435 196 size_t maxSize = (available_for_allocation() ? max_size() : 0);
duke@435 197 size_t used = used_in_bytes();
duke@435 198 size_t committed = committed_in_bytes();
duke@435 199
duke@435 200 return MemoryUsage(initial_size(), used, committed, maxSize);
duke@435 201 }
duke@435 202
duke@435 203 #ifndef SERIALGC
duke@435 204 CompactibleFreeListSpacePool::CompactibleFreeListSpacePool(CompactibleFreeListSpace* space,
duke@435 205 const char* name,
duke@435 206 PoolType type,
duke@435 207 size_t max_size,
duke@435 208 bool support_usage_threshold) :
duke@435 209 CollectedMemoryPool(name, type, space->capacity(), max_size,
duke@435 210 support_usage_threshold), _space(space) {
duke@435 211 }
duke@435 212
duke@435 213 MemoryUsage CompactibleFreeListSpacePool::get_memory_usage() {
duke@435 214 size_t maxSize = (available_for_allocation() ? max_size() : 0);
duke@435 215 size_t used = used_in_bytes();
duke@435 216 size_t committed = _space->capacity();
duke@435 217
duke@435 218 return MemoryUsage(initial_size(), used, committed, maxSize);
duke@435 219 }
duke@435 220 #endif // SERIALGC
duke@435 221
duke@435 222 GenerationPool::GenerationPool(Generation* gen,
duke@435 223 const char* name,
duke@435 224 PoolType type,
duke@435 225 bool support_usage_threshold) :
duke@435 226 CollectedMemoryPool(name, type, gen->capacity(), gen->max_capacity(),
duke@435 227 support_usage_threshold), _gen(gen) {
duke@435 228 }
duke@435 229
duke@435 230 MemoryUsage GenerationPool::get_memory_usage() {
duke@435 231 size_t used = used_in_bytes();
duke@435 232 size_t committed = _gen->capacity();
duke@435 233 size_t maxSize = (available_for_allocation() ? max_size() : 0);
duke@435 234
duke@435 235 return MemoryUsage(initial_size(), used, committed, maxSize);
duke@435 236 }
duke@435 237
duke@435 238 CodeHeapPool::CodeHeapPool(CodeHeap* codeHeap, const char* name, bool support_usage_threshold) :
duke@435 239 MemoryPool(name, NonHeap, codeHeap->capacity(), codeHeap->max_capacity(),
duke@435 240 support_usage_threshold, false), _codeHeap(codeHeap) {
duke@435 241 }
duke@435 242
duke@435 243 MemoryUsage CodeHeapPool::get_memory_usage() {
duke@435 244 size_t used = used_in_bytes();
duke@435 245 size_t committed = _codeHeap->capacity();
duke@435 246 size_t maxSize = (available_for_allocation() ? max_size() : 0);
duke@435 247
duke@435 248 return MemoryUsage(initial_size(), used, committed, maxSize);
duke@435 249 }

mercurial