src/share/vm/gc_implementation/shared/mutableNUMASpace.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 576
fcbfc50865ab
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 /*
duke@435 26 * The NUMA-aware allocator (MutableNUMASpace) is basically a modification
duke@435 27 * of MutableSpace which preserves interfaces but implements different
duke@435 28 * functionality. The space is split into chunks for each locality group
duke@435 29 * (resizing for adaptive size policy is also supported). For each thread
duke@435 30 * allocations are performed in the chunk corresponding to the home locality
duke@435 31 * group of the thread. Whenever any chunk fills-in the young generation
duke@435 32 * collection occurs.
duke@435 33 * The chunks can be also be adaptively resized. The idea behind the adaptive
duke@435 34 * sizing is to reduce the loss of the space in the eden due to fragmentation.
duke@435 35 * The main cause of fragmentation is uneven allocation rates of threads.
duke@435 36 * The allocation rate difference between locality groups may be caused either by
duke@435 37 * application specifics or by uneven LWP distribution by the OS. Besides,
duke@435 38 * application can have less threads then the number of locality groups.
duke@435 39 * In order to resize the chunk we measure the allocation rate of the
duke@435 40 * application between collections. After that we reshape the chunks to reflect
duke@435 41 * the allocation rate pattern. The AdaptiveWeightedAverage exponentially
duke@435 42 * decaying average is used to smooth the measurements. The NUMASpaceResizeRate
duke@435 43 * parameter is used to control the adaptation speed by restricting the number of
duke@435 44 * bytes that can be moved during the adaptation phase.
duke@435 45 * Chunks may contain pages from a wrong locality group. The page-scanner has
duke@435 46 * been introduced to address the problem. Remote pages typically appear due to
duke@435 47 * the memory shortage in the target locality group. Besides Solaris would
duke@435 48 * allocate a large page from the remote locality group even if there are small
duke@435 49 * local pages available. The page-scanner scans the pages right after the
duke@435 50 * collection and frees remote pages in hope that subsequent reallocation would
duke@435 51 * be more successful. This approach proved to be useful on systems with high
duke@435 52 * load where multiple processes are competing for the memory.
duke@435 53 */
duke@435 54
duke@435 55 class MutableNUMASpace : public MutableSpace {
duke@435 56 friend class VMStructs;
duke@435 57
duke@435 58 class LGRPSpace : public CHeapObj {
duke@435 59 int _lgrp_id;
duke@435 60 MutableSpace* _space;
duke@435 61 MemRegion _invalid_region;
duke@435 62 AdaptiveWeightedAverage *_alloc_rate;
duke@435 63
duke@435 64 struct SpaceStats {
duke@435 65 size_t _local_space, _remote_space, _unbiased_space, _uncommited_space;
duke@435 66 size_t _large_pages, _small_pages;
duke@435 67
duke@435 68 SpaceStats() {
duke@435 69 _local_space = 0;
duke@435 70 _remote_space = 0;
duke@435 71 _unbiased_space = 0;
duke@435 72 _uncommited_space = 0;
duke@435 73 _large_pages = 0;
duke@435 74 _small_pages = 0;
duke@435 75 }
duke@435 76 };
duke@435 77
duke@435 78 SpaceStats _space_stats;
duke@435 79
duke@435 80 char* _last_page_scanned;
duke@435 81 char* last_page_scanned() { return _last_page_scanned; }
duke@435 82 void set_last_page_scanned(char* p) { _last_page_scanned = p; }
duke@435 83 public:
duke@435 84 LGRPSpace(int l) : _lgrp_id(l), _last_page_scanned(NULL) {
duke@435 85 _space = new MutableSpace();
duke@435 86 _alloc_rate = new AdaptiveWeightedAverage(NUMAChunkResizeWeight);
duke@435 87 }
duke@435 88 ~LGRPSpace() {
duke@435 89 delete _space;
duke@435 90 delete _alloc_rate;
duke@435 91 }
duke@435 92
duke@435 93 void add_invalid_region(MemRegion r) {
duke@435 94 if (!_invalid_region.is_empty()) {
duke@435 95 _invalid_region.set_start(MIN2(_invalid_region.start(), r.start()));
duke@435 96 _invalid_region.set_end(MAX2(_invalid_region.end(), r.end()));
duke@435 97 } else {
duke@435 98 _invalid_region = r;
duke@435 99 }
duke@435 100 }
duke@435 101
duke@435 102 static bool equals(void* lgrp_id_value, LGRPSpace* p) {
duke@435 103 return *(int*)lgrp_id_value == p->lgrp_id();
duke@435 104 }
duke@435 105
duke@435 106 void sample() {
duke@435 107 alloc_rate()->sample(space()->used_in_bytes());
duke@435 108 }
duke@435 109
duke@435 110 MemRegion invalid_region() const { return _invalid_region; }
duke@435 111 void set_invalid_region(MemRegion r) { _invalid_region = r; }
duke@435 112 int lgrp_id() const { return _lgrp_id; }
duke@435 113 MutableSpace* space() const { return _space; }
duke@435 114 AdaptiveWeightedAverage* alloc_rate() const { return _alloc_rate; }
duke@435 115 SpaceStats* space_stats() { return &_space_stats; }
duke@435 116 void clear_space_stats() { _space_stats = SpaceStats(); }
duke@435 117
duke@435 118 void accumulate_statistics(size_t page_size);
duke@435 119 void scan_pages(size_t page_size, size_t page_count);
duke@435 120 };
duke@435 121
duke@435 122 GrowableArray<LGRPSpace*>* _lgrp_spaces;
duke@435 123 size_t _page_size;
duke@435 124 unsigned _adaptation_cycles, _samples_count;
duke@435 125
duke@435 126 void set_page_size(size_t psz) { _page_size = psz; }
duke@435 127 size_t page_size() const { return _page_size; }
duke@435 128
duke@435 129 unsigned adaptation_cycles() { return _adaptation_cycles; }
duke@435 130 void set_adaptation_cycles(int v) { _adaptation_cycles = v; }
duke@435 131
duke@435 132 unsigned samples_count() { return _samples_count; }
duke@435 133 void increment_samples_count() { ++_samples_count; }
duke@435 134
duke@435 135 size_t _base_space_size;
duke@435 136 void set_base_space_size(size_t v) { _base_space_size = v; }
duke@435 137 size_t base_space_size() const { return _base_space_size; }
duke@435 138
duke@435 139 // Check if the NUMA topology has changed. Add and remove spaces if needed.
duke@435 140 // The update can be forced by setting the force parameter equal to true.
duke@435 141 bool update_layout(bool force);
duke@435 142 // Bias region towards the first-touching lgrp.
duke@435 143 void bias_region(MemRegion mr);
duke@435 144 // Free pages in a given region.
duke@435 145 void free_region(MemRegion mr);
duke@435 146 // Get current chunk size.
duke@435 147 size_t current_chunk_size(int i);
duke@435 148 // Get default chunk size (equally divide the space).
duke@435 149 size_t default_chunk_size();
duke@435 150 // Adapt the chunk size to follow the allocation rate.
duke@435 151 size_t adaptive_chunk_size(int i, size_t limit);
duke@435 152 // Scan and free invalid pages.
duke@435 153 void scan_pages(size_t page_count);
duke@435 154 // Return the bottom_region and the top_region. Align them to page_size() boundary.
duke@435 155 // |------------------new_region---------------------------------|
duke@435 156 // |----bottom_region--|---intersection---|------top_region------|
duke@435 157 void select_tails(MemRegion new_region, MemRegion intersection,
duke@435 158 MemRegion* bottom_region, MemRegion *top_region);
duke@435 159 // Try to merge the invalid region with the bottom or top region by decreasing
duke@435 160 // the intersection area. Return the invalid_region aligned to the page_size()
duke@435 161 // boundary if it's inside the intersection. Return non-empty invalid_region
duke@435 162 // if it lies inside the intersection (also page-aligned).
duke@435 163 // |------------------new_region---------------------------------|
duke@435 164 // |----------------|-------invalid---|--------------------------|
duke@435 165 // |----bottom_region--|---intersection---|------top_region------|
duke@435 166 void merge_regions(MemRegion new_region, MemRegion* intersection,
duke@435 167 MemRegion *invalid_region);
duke@435 168
duke@435 169 public:
duke@435 170 GrowableArray<LGRPSpace*>* lgrp_spaces() const { return _lgrp_spaces; }
duke@435 171 MutableNUMASpace();
duke@435 172 virtual ~MutableNUMASpace();
duke@435 173 // Space initialization.
duke@435 174 virtual void initialize(MemRegion mr, bool clear_space);
duke@435 175 // Update space layout if necessary. Do all adaptive resizing job.
duke@435 176 virtual void update();
duke@435 177 // Update allocation rate averages.
duke@435 178 virtual void accumulate_statistics();
duke@435 179
duke@435 180 virtual void clear();
duke@435 181 virtual void mangle_unused_area();
duke@435 182 virtual void ensure_parsability();
duke@435 183 virtual size_t used_in_words() const;
duke@435 184 virtual size_t free_in_words() const;
duke@435 185 virtual size_t tlab_capacity(Thread* thr) const;
duke@435 186 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
duke@435 187
duke@435 188 // Allocation (return NULL if full)
duke@435 189 virtual HeapWord* allocate(size_t word_size);
duke@435 190 virtual HeapWord* cas_allocate(size_t word_size);
duke@435 191
duke@435 192 // Debugging
duke@435 193 virtual void print_on(outputStream* st) const;
duke@435 194 virtual void print_short_on(outputStream* st) const;
duke@435 195 virtual void verify(bool allow_dirty) const;
duke@435 196
duke@435 197 virtual void set_top(HeapWord* value);
duke@435 198 };

mercurial