src/share/vm/gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 529
0834225a7916
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // ConcurrentMarkSweepGeneration is in support of a concurrent
duke@435 26 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
duke@435 27 // style. We assume, for now, that this generation is always the
duke@435 28 // seniormost generation (modulo the PermGeneration), and for simplicity
duke@435 29 // in the first implementation, that this generation is a single compactible
duke@435 30 // space. Neither of these restrictions appears essential, and will be
duke@435 31 // relaxed in the future when more time is available to implement the
duke@435 32 // greater generality (and there's a need for it).
duke@435 33 //
duke@435 34 // Concurrent mode failures are currently handled by
duke@435 35 // means of a sliding mark-compact.
duke@435 36
duke@435 37 class CMSAdaptiveSizePolicy;
duke@435 38 class CMSConcMarkingTask;
duke@435 39 class CMSGCAdaptivePolicyCounters;
duke@435 40 class ConcurrentMarkSweepGeneration;
duke@435 41 class ConcurrentMarkSweepPolicy;
duke@435 42 class ConcurrentMarkSweepThread;
duke@435 43 class CompactibleFreeListSpace;
duke@435 44 class FreeChunk;
duke@435 45 class PromotionInfo;
duke@435 46 class ScanMarkedObjectsAgainCarefullyClosure;
duke@435 47
duke@435 48 // A generic CMS bit map. It's the basis for both the CMS marking bit map
duke@435 49 // as well as for the mod union table (in each case only a subset of the
duke@435 50 // methods are used). This is essentially a wrapper around the BitMap class,
duke@435 51 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
duke@435 52 // we have _shifter == 0. and for the mod union table we have
duke@435 53 // shifter == CardTableModRefBS::card_shift - LogHeapWordSize.)
duke@435 54 // XXX 64-bit issues in BitMap?
duke@435 55 class CMSBitMap VALUE_OBJ_CLASS_SPEC {
duke@435 56 friend class VMStructs;
duke@435 57
duke@435 58 HeapWord* _bmStartWord; // base address of range covered by map
duke@435 59 size_t _bmWordSize; // map size (in #HeapWords covered)
duke@435 60 const int _shifter; // shifts to convert HeapWord to bit position
duke@435 61 VirtualSpace _virtual_space; // underlying the bit map
duke@435 62 BitMap _bm; // the bit map itself
duke@435 63 public:
duke@435 64 Mutex* const _lock; // mutex protecting _bm;
duke@435 65
duke@435 66 public:
duke@435 67 // constructor
duke@435 68 CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
duke@435 69
duke@435 70 // allocates the actual storage for the map
duke@435 71 bool allocate(MemRegion mr);
duke@435 72 // field getter
duke@435 73 Mutex* lock() const { return _lock; }
duke@435 74 // locking verifier convenience function
duke@435 75 void assert_locked() const PRODUCT_RETURN;
duke@435 76
duke@435 77 // inquiries
duke@435 78 HeapWord* startWord() const { return _bmStartWord; }
duke@435 79 size_t sizeInWords() const { return _bmWordSize; }
duke@435 80 size_t sizeInBits() const { return _bm.size(); }
duke@435 81 // the following is one past the last word in space
duke@435 82 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
duke@435 83
duke@435 84 // reading marks
duke@435 85 bool isMarked(HeapWord* addr) const;
duke@435 86 bool par_isMarked(HeapWord* addr) const; // do not lock checks
duke@435 87 bool isUnmarked(HeapWord* addr) const;
duke@435 88 bool isAllClear() const;
duke@435 89
duke@435 90 // writing marks
duke@435 91 void mark(HeapWord* addr);
duke@435 92 // For marking by parallel GC threads;
duke@435 93 // returns true if we did, false if another thread did
duke@435 94 bool par_mark(HeapWord* addr);
duke@435 95
duke@435 96 void mark_range(MemRegion mr);
duke@435 97 void par_mark_range(MemRegion mr);
duke@435 98 void mark_large_range(MemRegion mr);
duke@435 99 void par_mark_large_range(MemRegion mr);
duke@435 100 void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
duke@435 101 void clear_range(MemRegion mr);
duke@435 102 void par_clear_range(MemRegion mr);
duke@435 103 void clear_large_range(MemRegion mr);
duke@435 104 void par_clear_large_range(MemRegion mr);
duke@435 105 void clear_all();
duke@435 106 void clear_all_incrementally(); // Not yet implemented!!
duke@435 107
duke@435 108 NOT_PRODUCT(
duke@435 109 // checks the memory region for validity
duke@435 110 void region_invariant(MemRegion mr);
duke@435 111 )
duke@435 112
duke@435 113 // iteration
duke@435 114 void iterate(BitMapClosure* cl) {
duke@435 115 _bm.iterate(cl);
duke@435 116 }
duke@435 117 void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
duke@435 118 void dirty_range_iterate_clear(MemRegionClosure* cl);
duke@435 119 void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
duke@435 120
duke@435 121 // auxiliary support for iteration
duke@435 122 HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
duke@435 123 HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
duke@435 124 HeapWord* end_addr) const;
duke@435 125 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
duke@435 126 HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
duke@435 127 HeapWord* end_addr) const;
duke@435 128 MemRegion getAndClearMarkedRegion(HeapWord* addr);
duke@435 129 MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
duke@435 130 HeapWord* end_addr);
duke@435 131
duke@435 132 // conversion utilities
duke@435 133 HeapWord* offsetToHeapWord(size_t offset) const;
duke@435 134 size_t heapWordToOffset(HeapWord* addr) const;
duke@435 135 size_t heapWordDiffToOffsetDiff(size_t diff) const;
duke@435 136
duke@435 137 // debugging
duke@435 138 // is this address range covered by the bit-map?
duke@435 139 NOT_PRODUCT(
duke@435 140 bool covers(MemRegion mr) const;
duke@435 141 bool covers(HeapWord* start, size_t size = 0) const;
duke@435 142 )
duke@435 143 void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
duke@435 144 };
duke@435 145
duke@435 146 // Represents a marking stack used by the CMS collector.
duke@435 147 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
duke@435 148 class CMSMarkStack: public CHeapObj {
duke@435 149 //
duke@435 150 friend class CMSCollector; // to get at expasion stats further below
duke@435 151 //
duke@435 152
duke@435 153 VirtualSpace _virtual_space; // space for the stack
duke@435 154 oop* _base; // bottom of stack
duke@435 155 size_t _index; // one more than last occupied index
duke@435 156 size_t _capacity; // max #elements
duke@435 157 Mutex _par_lock; // an advisory lock used in case of parallel access
duke@435 158 NOT_PRODUCT(size_t _max_depth;) // max depth plumbed during run
duke@435 159
duke@435 160 protected:
duke@435 161 size_t _hit_limit; // we hit max stack size limit
duke@435 162 size_t _failed_double; // we failed expansion before hitting limit
duke@435 163
duke@435 164 public:
duke@435 165 CMSMarkStack():
duke@435 166 _par_lock(Mutex::event, "CMSMarkStack._par_lock", true),
duke@435 167 _hit_limit(0),
duke@435 168 _failed_double(0) {}
duke@435 169
duke@435 170 bool allocate(size_t size);
duke@435 171
duke@435 172 size_t capacity() const { return _capacity; }
duke@435 173
duke@435 174 oop pop() {
duke@435 175 if (!isEmpty()) {
duke@435 176 return _base[--_index] ;
duke@435 177 }
duke@435 178 return NULL;
duke@435 179 }
duke@435 180
duke@435 181 bool push(oop ptr) {
duke@435 182 if (isFull()) {
duke@435 183 return false;
duke@435 184 } else {
duke@435 185 _base[_index++] = ptr;
duke@435 186 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
duke@435 187 return true;
duke@435 188 }
duke@435 189 }
duke@435 190
duke@435 191 bool isEmpty() const { return _index == 0; }
duke@435 192 bool isFull() const {
duke@435 193 assert(_index <= _capacity, "buffer overflow");
duke@435 194 return _index == _capacity;
duke@435 195 }
duke@435 196
duke@435 197 size_t length() { return _index; }
duke@435 198
duke@435 199 // "Parallel versions" of some of the above
duke@435 200 oop par_pop() {
duke@435 201 // lock and pop
duke@435 202 MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
duke@435 203 return pop();
duke@435 204 }
duke@435 205
duke@435 206 bool par_push(oop ptr) {
duke@435 207 // lock and push
duke@435 208 MutexLockerEx x(&_par_lock, Mutex::_no_safepoint_check_flag);
duke@435 209 return push(ptr);
duke@435 210 }
duke@435 211
duke@435 212 // Forcibly reset the stack, losing all of its contents.
duke@435 213 void reset() {
duke@435 214 _index = 0;
duke@435 215 }
duke@435 216
duke@435 217 // Expand the stack, typically in response to an overflow condition
duke@435 218 void expand();
duke@435 219
duke@435 220 // Compute the least valued stack element.
duke@435 221 oop least_value(HeapWord* low) {
duke@435 222 oop least = (oop)low;
duke@435 223 for (size_t i = 0; i < _index; i++) {
duke@435 224 least = MIN2(least, _base[i]);
duke@435 225 }
duke@435 226 return least;
duke@435 227 }
duke@435 228
duke@435 229 // Exposed here to allow stack expansion in || case
duke@435 230 Mutex* par_lock() { return &_par_lock; }
duke@435 231 };
duke@435 232
duke@435 233 class CardTableRS;
duke@435 234 class CMSParGCThreadState;
duke@435 235
duke@435 236 class ModUnionClosure: public MemRegionClosure {
duke@435 237 protected:
duke@435 238 CMSBitMap* _t;
duke@435 239 public:
duke@435 240 ModUnionClosure(CMSBitMap* t): _t(t) { }
duke@435 241 void do_MemRegion(MemRegion mr);
duke@435 242 };
duke@435 243
duke@435 244 class ModUnionClosurePar: public ModUnionClosure {
duke@435 245 public:
duke@435 246 ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
duke@435 247 void do_MemRegion(MemRegion mr);
duke@435 248 };
duke@435 249
duke@435 250 // Survivor Chunk Array in support of parallelization of
duke@435 251 // Survivor Space rescan.
duke@435 252 class ChunkArray: public CHeapObj {
duke@435 253 size_t _index;
duke@435 254 size_t _capacity;
duke@435 255 HeapWord** _array; // storage for array
duke@435 256
duke@435 257 public:
duke@435 258 ChunkArray() : _index(0), _capacity(0), _array(NULL) {}
duke@435 259 ChunkArray(HeapWord** a, size_t c):
duke@435 260 _index(0), _capacity(c), _array(a) {}
duke@435 261
duke@435 262 HeapWord** array() { return _array; }
duke@435 263 void set_array(HeapWord** a) { _array = a; }
duke@435 264
duke@435 265 size_t capacity() { return _capacity; }
duke@435 266 void set_capacity(size_t c) { _capacity = c; }
duke@435 267
duke@435 268 size_t end() {
duke@435 269 assert(_index < capacity(), "_index out of bounds");
duke@435 270 return _index;
duke@435 271 } // exclusive
duke@435 272
duke@435 273 HeapWord* nth(size_t n) {
duke@435 274 assert(n < end(), "Out of bounds access");
duke@435 275 return _array[n];
duke@435 276 }
duke@435 277
duke@435 278 void reset() {
duke@435 279 _index = 0;
duke@435 280 }
duke@435 281
duke@435 282 void record_sample(HeapWord* p, size_t sz) {
duke@435 283 // For now we do not do anything with the size
duke@435 284 if (_index < _capacity) {
duke@435 285 _array[_index++] = p;
duke@435 286 }
duke@435 287 }
duke@435 288 };
duke@435 289
duke@435 290 //
duke@435 291 // Timing, allocation and promotion statistics for gc scheduling and incremental
duke@435 292 // mode pacing. Most statistics are exponential averages.
duke@435 293 //
duke@435 294 class CMSStats VALUE_OBJ_CLASS_SPEC {
duke@435 295 private:
duke@435 296 ConcurrentMarkSweepGeneration* const _cms_gen; // The cms (old) gen.
duke@435 297
duke@435 298 // The following are exponential averages with factor alpha:
duke@435 299 // avg = (100 - alpha) * avg + alpha * cur_sample
duke@435 300 //
duke@435 301 // The durations measure: end_time[n] - start_time[n]
duke@435 302 // The periods measure: start_time[n] - start_time[n-1]
duke@435 303 //
duke@435 304 // The cms period and duration include only concurrent collections; time spent
duke@435 305 // in foreground cms collections due to System.gc() or because of a failure to
duke@435 306 // keep up are not included.
duke@435 307 //
duke@435 308 // There are 3 alphas to "bootstrap" the statistics. The _saved_alpha is the
duke@435 309 // real value, but is used only after the first period. A value of 100 is
duke@435 310 // used for the first sample so it gets the entire weight.
duke@435 311 unsigned int _saved_alpha; // 0-100
duke@435 312 unsigned int _gc0_alpha;
duke@435 313 unsigned int _cms_alpha;
duke@435 314
duke@435 315 double _gc0_duration;
duke@435 316 double _gc0_period;
duke@435 317 size_t _gc0_promoted; // bytes promoted per gc0
duke@435 318 double _cms_duration;
duke@435 319 double _cms_duration_pre_sweep; // time from initiation to start of sweep
duke@435 320 double _cms_duration_per_mb;
duke@435 321 double _cms_period;
duke@435 322 size_t _cms_allocated; // bytes of direct allocation per gc0 period
duke@435 323
duke@435 324 // Timers.
duke@435 325 elapsedTimer _cms_timer;
duke@435 326 TimeStamp _gc0_begin_time;
duke@435 327 TimeStamp _cms_begin_time;
duke@435 328 TimeStamp _cms_end_time;
duke@435 329
duke@435 330 // Snapshots of the amount used in the CMS generation.
duke@435 331 size_t _cms_used_at_gc0_begin;
duke@435 332 size_t _cms_used_at_gc0_end;
duke@435 333 size_t _cms_used_at_cms_begin;
duke@435 334
duke@435 335 // Used to prevent the duty cycle from being reduced in the middle of a cms
duke@435 336 // cycle.
duke@435 337 bool _allow_duty_cycle_reduction;
duke@435 338
duke@435 339 enum {
duke@435 340 _GC0_VALID = 0x1,
duke@435 341 _CMS_VALID = 0x2,
duke@435 342 _ALL_VALID = _GC0_VALID | _CMS_VALID
duke@435 343 };
duke@435 344
duke@435 345 unsigned int _valid_bits;
duke@435 346
duke@435 347 unsigned int _icms_duty_cycle; // icms duty cycle (0-100).
duke@435 348
duke@435 349 protected:
duke@435 350
duke@435 351 // Return a duty cycle that avoids wild oscillations, by limiting the amount
duke@435 352 // of change between old_duty_cycle and new_duty_cycle (the latter is treated
duke@435 353 // as a recommended value).
duke@435 354 static unsigned int icms_damped_duty_cycle(unsigned int old_duty_cycle,
duke@435 355 unsigned int new_duty_cycle);
duke@435 356 unsigned int icms_update_duty_cycle_impl();
duke@435 357
duke@435 358 public:
duke@435 359 CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
duke@435 360 unsigned int alpha = CMSExpAvgFactor);
duke@435 361
duke@435 362 // Whether or not the statistics contain valid data; higher level statistics
duke@435 363 // cannot be called until this returns true (they require at least one young
duke@435 364 // gen and one cms cycle to have completed).
duke@435 365 bool valid() const;
duke@435 366
duke@435 367 // Record statistics.
duke@435 368 void record_gc0_begin();
duke@435 369 void record_gc0_end(size_t cms_gen_bytes_used);
duke@435 370 void record_cms_begin();
duke@435 371 void record_cms_end();
duke@435 372
duke@435 373 // Allow management of the cms timer, which must be stopped/started around
duke@435 374 // yield points.
duke@435 375 elapsedTimer& cms_timer() { return _cms_timer; }
duke@435 376 void start_cms_timer() { _cms_timer.start(); }
duke@435 377 void stop_cms_timer() { _cms_timer.stop(); }
duke@435 378
duke@435 379 // Basic statistics; units are seconds or bytes.
duke@435 380 double gc0_period() const { return _gc0_period; }
duke@435 381 double gc0_duration() const { return _gc0_duration; }
duke@435 382 size_t gc0_promoted() const { return _gc0_promoted; }
duke@435 383 double cms_period() const { return _cms_period; }
duke@435 384 double cms_duration() const { return _cms_duration; }
duke@435 385 double cms_duration_per_mb() const { return _cms_duration_per_mb; }
duke@435 386 size_t cms_allocated() const { return _cms_allocated; }
duke@435 387
duke@435 388 size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
duke@435 389
duke@435 390 // Seconds since the last background cms cycle began or ended.
duke@435 391 double cms_time_since_begin() const;
duke@435 392 double cms_time_since_end() const;
duke@435 393
duke@435 394 // Higher level statistics--caller must check that valid() returns true before
duke@435 395 // calling.
duke@435 396
duke@435 397 // Returns bytes promoted per second of wall clock time.
duke@435 398 double promotion_rate() const;
duke@435 399
duke@435 400 // Returns bytes directly allocated per second of wall clock time.
duke@435 401 double cms_allocation_rate() const;
duke@435 402
duke@435 403 // Rate at which space in the cms generation is being consumed (sum of the
duke@435 404 // above two).
duke@435 405 double cms_consumption_rate() const;
duke@435 406
duke@435 407 // Returns an estimate of the number of seconds until the cms generation will
duke@435 408 // fill up, assuming no collection work is done.
duke@435 409 double time_until_cms_gen_full() const;
duke@435 410
duke@435 411 // Returns an estimate of the number of seconds remaining until
duke@435 412 // the cms generation collection should start.
duke@435 413 double time_until_cms_start() const;
duke@435 414
duke@435 415 // End of higher level statistics.
duke@435 416
duke@435 417 // Returns the cms incremental mode duty cycle, as a percentage (0-100).
duke@435 418 unsigned int icms_duty_cycle() const { return _icms_duty_cycle; }
duke@435 419
duke@435 420 // Update the duty cycle and return the new value.
duke@435 421 unsigned int icms_update_duty_cycle();
duke@435 422
duke@435 423 // Debugging.
duke@435 424 void print_on(outputStream* st) const PRODUCT_RETURN;
duke@435 425 void print() const { print_on(gclog_or_tty); }
duke@435 426 };
duke@435 427
duke@435 428 // A closure related to weak references processing which
duke@435 429 // we embed in the CMSCollector, since we need to pass
duke@435 430 // it to the reference processor for secondary filtering
duke@435 431 // of references based on reachability of referent;
duke@435 432 // see role of _is_alive_non_header closure in the
duke@435 433 // ReferenceProcessor class.
duke@435 434 // For objects in the CMS generation, this closure checks
duke@435 435 // if the object is "live" (reachable). Used in weak
duke@435 436 // reference processing.
duke@435 437 class CMSIsAliveClosure: public BoolObjectClosure {
duke@435 438 MemRegion _span;
duke@435 439 const CMSBitMap* _bit_map;
duke@435 440
duke@435 441 friend class CMSCollector;
duke@435 442 protected:
duke@435 443 void set_span(MemRegion span) { _span = span; }
duke@435 444 public:
duke@435 445 CMSIsAliveClosure(CMSBitMap* bit_map):
duke@435 446 _bit_map(bit_map) { }
duke@435 447
duke@435 448 CMSIsAliveClosure(MemRegion span,
duke@435 449 CMSBitMap* bit_map):
duke@435 450 _span(span),
duke@435 451 _bit_map(bit_map) { }
duke@435 452 void do_object(oop obj) {
duke@435 453 assert(false, "not to be invoked");
duke@435 454 }
duke@435 455 bool do_object_b(oop obj);
duke@435 456 };
duke@435 457
duke@435 458
duke@435 459 // Implements AbstractRefProcTaskExecutor for CMS.
duke@435 460 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
duke@435 461 public:
duke@435 462
duke@435 463 CMSRefProcTaskExecutor(CMSCollector& collector)
duke@435 464 : _collector(collector)
duke@435 465 { }
duke@435 466
duke@435 467 // Executes a task using worker threads.
duke@435 468 virtual void execute(ProcessTask& task);
duke@435 469 virtual void execute(EnqueueTask& task);
duke@435 470 private:
duke@435 471 CMSCollector& _collector;
duke@435 472 };
duke@435 473
duke@435 474
duke@435 475 class CMSCollector: public CHeapObj {
duke@435 476 friend class VMStructs;
duke@435 477 friend class ConcurrentMarkSweepThread;
duke@435 478 friend class ConcurrentMarkSweepGeneration;
duke@435 479 friend class CompactibleFreeListSpace;
duke@435 480 friend class CMSParRemarkTask;
duke@435 481 friend class CMSConcMarkingTask;
duke@435 482 friend class CMSRefProcTaskProxy;
duke@435 483 friend class CMSRefProcTaskExecutor;
duke@435 484 friend class ScanMarkedObjectsAgainCarefullyClosure; // for sampling eden
duke@435 485 friend class SurvivorSpacePrecleanClosure; // --- ditto -------
duke@435 486 friend class PushOrMarkClosure; // to access _restart_addr
duke@435 487 friend class Par_PushOrMarkClosure; // to access _restart_addr
duke@435 488 friend class MarkFromRootsClosure; // -- ditto --
duke@435 489 // ... and for clearing cards
duke@435 490 friend class Par_MarkFromRootsClosure; // to access _restart_addr
duke@435 491 // ... and for clearing cards
duke@435 492 friend class Par_ConcMarkingClosure; // to access _restart_addr etc.
duke@435 493 friend class MarkFromRootsVerifyClosure; // to access _restart_addr
duke@435 494 friend class PushAndMarkVerifyClosure; // -- ditto --
duke@435 495 friend class MarkRefsIntoAndScanClosure; // to access _overflow_list
duke@435 496 friend class PushAndMarkClosure; // -- ditto --
duke@435 497 friend class Par_PushAndMarkClosure; // -- ditto --
duke@435 498 friend class CMSKeepAliveClosure; // -- ditto --
duke@435 499 friend class CMSDrainMarkingStackClosure; // -- ditto --
duke@435 500 friend class CMSInnerParMarkAndPushClosure; // -- ditto --
duke@435 501 NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) // assertion on _overflow_list
duke@435 502 friend class ReleaseForegroundGC; // to access _foregroundGCShouldWait
duke@435 503 friend class VM_CMS_Operation;
duke@435 504 friend class VM_CMS_Initial_Mark;
duke@435 505 friend class VM_CMS_Final_Remark;
duke@435 506
duke@435 507 private:
duke@435 508 jlong _time_of_last_gc;
duke@435 509 void update_time_of_last_gc(jlong now) {
duke@435 510 _time_of_last_gc = now;
duke@435 511 }
duke@435 512
duke@435 513 OopTaskQueueSet* _task_queues;
duke@435 514
duke@435 515 // Overflow list of grey objects, threaded through mark-word
duke@435 516 // Manipulated with CAS in the parallel/multi-threaded case.
duke@435 517 oop _overflow_list;
duke@435 518 // The following array-pair keeps track of mark words
duke@435 519 // displaced for accomodating overflow list above.
duke@435 520 // This code will likely be revisited under RFE#4922830.
duke@435 521 GrowableArray<oop>* _preserved_oop_stack;
duke@435 522 GrowableArray<markOop>* _preserved_mark_stack;
duke@435 523
duke@435 524 int* _hash_seed;
duke@435 525
duke@435 526 // In support of multi-threaded concurrent phases
duke@435 527 YieldingFlexibleWorkGang* _conc_workers;
duke@435 528
duke@435 529 // Performance Counters
duke@435 530 CollectorCounters* _gc_counters;
duke@435 531
duke@435 532 // Initialization Errors
duke@435 533 bool _completed_initialization;
duke@435 534
duke@435 535 // In support of ExplicitGCInvokesConcurrent
duke@435 536 static bool _full_gc_requested;
duke@435 537 unsigned int _collection_count_start;
duke@435 538 // Should we unload classes this concurrent cycle?
duke@435 539 // Set in response to a concurrent full gc request.
duke@435 540 bool _unload_classes;
duke@435 541 bool _unloaded_classes_last_cycle;
duke@435 542 // Did we (allow) unload classes in the previous concurrent cycle?
duke@435 543 bool cms_unloaded_classes_last_cycle() const {
duke@435 544 return _unloaded_classes_last_cycle || CMSClassUnloadingEnabled;
duke@435 545 }
duke@435 546
duke@435 547 // Verification support
duke@435 548 CMSBitMap _verification_mark_bm;
duke@435 549 void verify_after_remark_work_1();
duke@435 550 void verify_after_remark_work_2();
duke@435 551
duke@435 552 // true if any verification flag is on.
duke@435 553 bool _verifying;
duke@435 554 bool verifying() const { return _verifying; }
duke@435 555 void set_verifying(bool v) { _verifying = v; }
duke@435 556
duke@435 557 // Collector policy
duke@435 558 ConcurrentMarkSweepPolicy* _collector_policy;
duke@435 559 ConcurrentMarkSweepPolicy* collector_policy() { return _collector_policy; }
duke@435 560
duke@435 561 // Check whether the gc time limit has been
duke@435 562 // exceeded and set the size policy flag
duke@435 563 // appropriately.
duke@435 564 void check_gc_time_limit();
duke@435 565 // XXX Move these to CMSStats ??? FIX ME !!!
duke@435 566 elapsedTimer _sweep_timer;
duke@435 567 AdaptivePaddedAverage _sweep_estimate;
duke@435 568
duke@435 569 protected:
duke@435 570 ConcurrentMarkSweepGeneration* _cmsGen; // old gen (CMS)
duke@435 571 ConcurrentMarkSweepGeneration* _permGen; // perm gen
duke@435 572 MemRegion _span; // span covering above two
duke@435 573 CardTableRS* _ct; // card table
duke@435 574
duke@435 575 // CMS marking support structures
duke@435 576 CMSBitMap _markBitMap;
duke@435 577 CMSBitMap _modUnionTable;
duke@435 578 CMSMarkStack _markStack;
duke@435 579 CMSMarkStack _revisitStack; // used to keep track of klassKlass objects
duke@435 580 // to revisit
duke@435 581 CMSBitMap _perm_gen_verify_bit_map; // Mark bit map for perm gen verification support.
duke@435 582
duke@435 583 HeapWord* _restart_addr; // in support of marking stack overflow
duke@435 584 void lower_restart_addr(HeapWord* low);
duke@435 585
duke@435 586 // Counters in support of marking stack / work queue overflow handling:
duke@435 587 // a non-zero value indicates certain types of overflow events during
duke@435 588 // the current CMS cycle and could lead to stack resizing efforts at
duke@435 589 // an opportune future time.
duke@435 590 size_t _ser_pmc_preclean_ovflw;
duke@435 591 size_t _ser_pmc_remark_ovflw;
duke@435 592 size_t _par_pmc_remark_ovflw;
duke@435 593 size_t _ser_kac_ovflw;
duke@435 594 size_t _par_kac_ovflw;
duke@435 595 NOT_PRODUCT(size_t _num_par_pushes;)
duke@435 596
duke@435 597 // ("Weak") Reference processing support
duke@435 598 ReferenceProcessor* _ref_processor;
duke@435 599 CMSIsAliveClosure _is_alive_closure;
duke@435 600 // keep this textually after _markBitMap; c'tor dependency
duke@435 601
duke@435 602 ConcurrentMarkSweepThread* _cmsThread; // the thread doing the work
duke@435 603 ModUnionClosure _modUnionClosure;
duke@435 604 ModUnionClosurePar _modUnionClosurePar;
duke@435 605
duke@435 606 // CMS abstract state machine
duke@435 607 // initial_state: Idling
duke@435 608 // next_state(Idling) = {Marking}
duke@435 609 // next_state(Marking) = {Precleaning, Sweeping}
duke@435 610 // next_state(Precleaning) = {AbortablePreclean, FinalMarking}
duke@435 611 // next_state(AbortablePreclean) = {FinalMarking}
duke@435 612 // next_state(FinalMarking) = {Sweeping}
duke@435 613 // next_state(Sweeping) = {Resizing}
duke@435 614 // next_state(Resizing) = {Resetting}
duke@435 615 // next_state(Resetting) = {Idling}
duke@435 616 // The numeric values below are chosen so that:
duke@435 617 // . _collectorState <= Idling == post-sweep && pre-mark
duke@435 618 // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
duke@435 619 // precleaning || abortablePrecleanb
duke@435 620 enum CollectorState {
duke@435 621 Resizing = 0,
duke@435 622 Resetting = 1,
duke@435 623 Idling = 2,
duke@435 624 InitialMarking = 3,
duke@435 625 Marking = 4,
duke@435 626 Precleaning = 5,
duke@435 627 AbortablePreclean = 6,
duke@435 628 FinalMarking = 7,
duke@435 629 Sweeping = 8
duke@435 630 };
duke@435 631 static CollectorState _collectorState;
duke@435 632
duke@435 633 // State related to prologue/epilogue invocation for my generations
duke@435 634 bool _between_prologue_and_epilogue;
duke@435 635
duke@435 636 // Signalling/State related to coordination between fore- and backgroud GC
duke@435 637 // Note: When the baton has been passed from background GC to foreground GC,
duke@435 638 // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
duke@435 639 static bool _foregroundGCIsActive; // true iff foreground collector is active or
duke@435 640 // wants to go active
duke@435 641 static bool _foregroundGCShouldWait; // true iff background GC is active and has not
duke@435 642 // yet passed the baton to the foreground GC
duke@435 643
duke@435 644 // Support for CMSScheduleRemark (abortable preclean)
duke@435 645 bool _abort_preclean;
duke@435 646 bool _start_sampling;
duke@435 647
duke@435 648 int _numYields;
duke@435 649 size_t _numDirtyCards;
duke@435 650 uint _sweepCount;
duke@435 651 // number of full gc's since the last concurrent gc.
duke@435 652 uint _full_gcs_since_conc_gc;
duke@435 653
duke@435 654 // if occupancy exceeds this, start a new gc cycle
duke@435 655 double _initiatingOccupancy;
duke@435 656 // occupancy used for bootstrapping stats
duke@435 657 double _bootstrap_occupancy;
duke@435 658
duke@435 659 // timer
duke@435 660 elapsedTimer _timer;
duke@435 661
duke@435 662 // Timing, allocation and promotion statistics, used for scheduling.
duke@435 663 CMSStats _stats;
duke@435 664
duke@435 665 // Allocation limits installed in the young gen, used only in
duke@435 666 // CMSIncrementalMode. When an allocation in the young gen would cross one of
duke@435 667 // these limits, the cms generation is notified and the cms thread is started
duke@435 668 // or stopped, respectively.
duke@435 669 HeapWord* _icms_start_limit;
duke@435 670 HeapWord* _icms_stop_limit;
duke@435 671
duke@435 672 enum CMS_op_type {
duke@435 673 CMS_op_checkpointRootsInitial,
duke@435 674 CMS_op_checkpointRootsFinal
duke@435 675 };
duke@435 676
duke@435 677 void do_CMS_operation(CMS_op_type op);
duke@435 678 bool stop_world_and_do(CMS_op_type op);
duke@435 679
duke@435 680 OopTaskQueueSet* task_queues() { return _task_queues; }
duke@435 681 int* hash_seed(int i) { return &_hash_seed[i]; }
duke@435 682 YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
duke@435 683
duke@435 684 // Support for parallelizing Eden rescan in CMS remark phase
duke@435 685 void sample_eden(); // ... sample Eden space top
duke@435 686
duke@435 687 private:
duke@435 688 // Support for parallelizing young gen rescan in CMS remark phase
duke@435 689 Generation* _young_gen; // the younger gen
duke@435 690 HeapWord** _top_addr; // ... Top of Eden
duke@435 691 HeapWord** _end_addr; // ... End of Eden
duke@435 692 HeapWord** _eden_chunk_array; // ... Eden partitioning array
duke@435 693 size_t _eden_chunk_index; // ... top (exclusive) of array
duke@435 694 size_t _eden_chunk_capacity; // ... max entries in array
duke@435 695
duke@435 696 // Support for parallelizing survivor space rescan
duke@435 697 HeapWord** _survivor_chunk_array;
duke@435 698 size_t _survivor_chunk_index;
duke@435 699 size_t _survivor_chunk_capacity;
duke@435 700 size_t* _cursor;
duke@435 701 ChunkArray* _survivor_plab_array;
duke@435 702
duke@435 703 // Support for marking stack overflow handling
duke@435 704 bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
duke@435 705 bool par_take_from_overflow_list(size_t num, OopTaskQueue* to_work_q);
duke@435 706 void push_on_overflow_list(oop p);
duke@435 707 void par_push_on_overflow_list(oop p);
duke@435 708 // the following is, obviously, not, in general, "MT-stable"
duke@435 709 bool overflow_list_is_empty() const;
duke@435 710
duke@435 711 void preserve_mark_if_necessary(oop p);
duke@435 712 void par_preserve_mark_if_necessary(oop p);
duke@435 713 void preserve_mark_work(oop p, markOop m);
duke@435 714 void restore_preserved_marks_if_any();
duke@435 715 NOT_PRODUCT(bool no_preserved_marks() const;)
duke@435 716 // in support of testing overflow code
duke@435 717 NOT_PRODUCT(int _overflow_counter;)
duke@435 718 NOT_PRODUCT(bool simulate_overflow();) // sequential
duke@435 719 NOT_PRODUCT(bool par_simulate_overflow();) // MT version
duke@435 720
duke@435 721 int _roots_scanning_options;
duke@435 722 int roots_scanning_options() const { return _roots_scanning_options; }
duke@435 723 void add_root_scanning_option(int o) { _roots_scanning_options |= o; }
duke@435 724 void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o; }
duke@435 725
duke@435 726 // CMS work methods
duke@435 727 void checkpointRootsInitialWork(bool asynch); // initial checkpoint work
duke@435 728
duke@435 729 // a return value of false indicates failure due to stack overflow
duke@435 730 bool markFromRootsWork(bool asynch); // concurrent marking work
duke@435 731
duke@435 732 public: // FIX ME!!! only for testing
duke@435 733 bool do_marking_st(bool asynch); // single-threaded marking
duke@435 734 bool do_marking_mt(bool asynch); // multi-threaded marking
duke@435 735
duke@435 736 private:
duke@435 737
duke@435 738 // concurrent precleaning work
duke@435 739 size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* gen,
duke@435 740 ScanMarkedObjectsAgainCarefullyClosure* cl);
duke@435 741 size_t preclean_card_table(ConcurrentMarkSweepGeneration* gen,
duke@435 742 ScanMarkedObjectsAgainCarefullyClosure* cl);
duke@435 743 // Does precleaning work, returning a quantity indicative of
duke@435 744 // the amount of "useful work" done.
duke@435 745 size_t preclean_work(bool clean_refs, bool clean_survivors);
duke@435 746 void abortable_preclean(); // Preclean while looking for possible abort
duke@435 747 void initialize_sequential_subtasks_for_young_gen_rescan(int i);
duke@435 748 // Helper function for above; merge-sorts the per-thread plab samples
duke@435 749 void merge_survivor_plab_arrays(ContiguousSpace* surv);
duke@435 750 // Resets (i.e. clears) the per-thread plab sample vectors
duke@435 751 void reset_survivor_plab_arrays();
duke@435 752
duke@435 753 // final (second) checkpoint work
duke@435 754 void checkpointRootsFinalWork(bool asynch, bool clear_all_soft_refs,
duke@435 755 bool init_mark_was_synchronous);
duke@435 756 // work routine for parallel version of remark
duke@435 757 void do_remark_parallel();
duke@435 758 // work routine for non-parallel version of remark
duke@435 759 void do_remark_non_parallel();
duke@435 760 // reference processing work routine (during second checkpoint)
duke@435 761 void refProcessingWork(bool asynch, bool clear_all_soft_refs);
duke@435 762
duke@435 763 // concurrent sweeping work
duke@435 764 void sweepWork(ConcurrentMarkSweepGeneration* gen, bool asynch);
duke@435 765
duke@435 766 // (concurrent) resetting of support data structures
duke@435 767 void reset(bool asynch);
duke@435 768
duke@435 769 // Clear _expansion_cause fields of constituent generations
duke@435 770 void clear_expansion_cause();
duke@435 771
duke@435 772 // An auxilliary method used to record the ends of
duke@435 773 // used regions of each generation to limit the extent of sweep
duke@435 774 void save_sweep_limits();
duke@435 775
duke@435 776 // Resize the generations included in the collector.
duke@435 777 void compute_new_size();
duke@435 778
duke@435 779 // A work method used by foreground collection to determine
duke@435 780 // what type of collection (compacting or not, continuing or fresh)
duke@435 781 // it should do.
duke@435 782 void decide_foreground_collection_type(bool clear_all_soft_refs,
duke@435 783 bool* should_compact, bool* should_start_over);
duke@435 784
duke@435 785 // A work method used by the foreground collector to do
duke@435 786 // a mark-sweep-compact.
duke@435 787 void do_compaction_work(bool clear_all_soft_refs);
duke@435 788
duke@435 789 // A work method used by the foreground collector to do
duke@435 790 // a mark-sweep, after taking over from a possibly on-going
duke@435 791 // concurrent mark-sweep collection.
duke@435 792 void do_mark_sweep_work(bool clear_all_soft_refs,
duke@435 793 CollectorState first_state, bool should_start_over);
duke@435 794
duke@435 795 // If the backgrould GC is active, acquire control from the background
duke@435 796 // GC and do the collection.
duke@435 797 void acquire_control_and_collect(bool full, bool clear_all_soft_refs);
duke@435 798
duke@435 799 // For synchronizing passing of control from background to foreground
duke@435 800 // GC. waitForForegroundGC() is called by the background
duke@435 801 // collector. It if had to wait for a foreground collection,
duke@435 802 // it returns true and the background collection should assume
duke@435 803 // that the collection was finished by the foreground
duke@435 804 // collector.
duke@435 805 bool waitForForegroundGC();
duke@435 806
duke@435 807 // Incremental mode triggering: recompute the icms duty cycle and set the
duke@435 808 // allocation limits in the young gen.
duke@435 809 void icms_update_allocation_limits();
duke@435 810
duke@435 811 size_t block_size_using_printezis_bits(HeapWord* addr) const;
duke@435 812 size_t block_size_if_printezis_bits(HeapWord* addr) const;
duke@435 813 HeapWord* next_card_start_after_block(HeapWord* addr) const;
duke@435 814
duke@435 815 void setup_cms_unloading_and_verification_state();
duke@435 816 public:
duke@435 817 CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
duke@435 818 ConcurrentMarkSweepGeneration* permGen,
duke@435 819 CardTableRS* ct,
duke@435 820 ConcurrentMarkSweepPolicy* cp);
duke@435 821 ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
duke@435 822
duke@435 823 ReferenceProcessor* ref_processor() { return _ref_processor; }
duke@435 824 void ref_processor_init();
duke@435 825
duke@435 826 Mutex* bitMapLock() const { return _markBitMap.lock(); }
duke@435 827 static CollectorState abstract_state() { return _collectorState; }
duke@435 828 double initiatingOccupancy() const { return _initiatingOccupancy; }
duke@435 829
duke@435 830 bool should_abort_preclean() const; // Whether preclean should be aborted.
duke@435 831 size_t get_eden_used() const;
duke@435 832 size_t get_eden_capacity() const;
duke@435 833
duke@435 834 ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
duke@435 835
duke@435 836 // locking checks
duke@435 837 NOT_PRODUCT(static bool have_cms_token();)
duke@435 838
duke@435 839 // XXXPERM bool should_collect(bool full, size_t size, bool tlab);
duke@435 840 bool shouldConcurrentCollect();
duke@435 841
duke@435 842 void collect(bool full,
duke@435 843 bool clear_all_soft_refs,
duke@435 844 size_t size,
duke@435 845 bool tlab);
duke@435 846 void collect_in_background(bool clear_all_soft_refs);
duke@435 847 void collect_in_foreground(bool clear_all_soft_refs);
duke@435 848
duke@435 849 // In support of ExplicitGCInvokesConcurrent
duke@435 850 static void request_full_gc(unsigned int full_gc_count);
duke@435 851 // Should we unload classes in a particular concurrent cycle?
duke@435 852 bool cms_should_unload_classes() const {
duke@435 853 assert(!_unload_classes || ExplicitGCInvokesConcurrentAndUnloadsClasses,
duke@435 854 "Inconsistency; see CR 6541037");
duke@435 855 return _unload_classes || CMSClassUnloadingEnabled;
duke@435 856 }
duke@435 857
duke@435 858 void direct_allocated(HeapWord* start, size_t size);
duke@435 859
duke@435 860 // Object is dead if not marked and current phase is sweeping.
duke@435 861 bool is_dead_obj(oop obj) const;
duke@435 862
duke@435 863 // After a promotion (of "start"), do any necessary marking.
duke@435 864 // If "par", then it's being done by a parallel GC thread.
duke@435 865 // The last two args indicate if we need precise marking
duke@435 866 // and if so the size of the object so it can be dirtied
duke@435 867 // in its entirety.
duke@435 868 void promoted(bool par, HeapWord* start,
duke@435 869 bool is_obj_array, size_t obj_size);
duke@435 870
duke@435 871 HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
duke@435 872 size_t word_size);
duke@435 873
duke@435 874 void getFreelistLocks() const;
duke@435 875 void releaseFreelistLocks() const;
duke@435 876 bool haveFreelistLocks() const;
duke@435 877
duke@435 878 // GC prologue and epilogue
duke@435 879 void gc_prologue(bool full);
duke@435 880 void gc_epilogue(bool full);
duke@435 881
duke@435 882 jlong time_of_last_gc(jlong now) {
duke@435 883 if (_collectorState <= Idling) {
duke@435 884 // gc not in progress
duke@435 885 return _time_of_last_gc;
duke@435 886 } else {
duke@435 887 // collection in progress
duke@435 888 return now;
duke@435 889 }
duke@435 890 }
duke@435 891
duke@435 892 // Support for parallel remark of survivor space
duke@435 893 void* get_data_recorder(int thr_num);
duke@435 894
duke@435 895 CMSBitMap* markBitMap() { return &_markBitMap; }
duke@435 896 void directAllocated(HeapWord* start, size_t size);
duke@435 897
duke@435 898 // main CMS steps and related support
duke@435 899 void checkpointRootsInitial(bool asynch);
duke@435 900 bool markFromRoots(bool asynch); // a return value of false indicates failure
duke@435 901 // due to stack overflow
duke@435 902 void preclean();
duke@435 903 void checkpointRootsFinal(bool asynch, bool clear_all_soft_refs,
duke@435 904 bool init_mark_was_synchronous);
duke@435 905 void sweep(bool asynch);
duke@435 906
duke@435 907 // Check that the currently executing thread is the expected
duke@435 908 // one (foreground collector or background collector).
duke@435 909 void check_correct_thread_executing() PRODUCT_RETURN;
duke@435 910 // XXXPERM void print_statistics() PRODUCT_RETURN;
duke@435 911
duke@435 912 bool is_cms_reachable(HeapWord* addr);
duke@435 913
duke@435 914 // Performance Counter Support
duke@435 915 CollectorCounters* counters() { return _gc_counters; }
duke@435 916
duke@435 917 // timer stuff
duke@435 918 void startTimer() { assert(!_timer.is_active(), "Error"); _timer.start(); }
duke@435 919 void stopTimer() { assert( _timer.is_active(), "Error"); _timer.stop(); }
duke@435 920 void resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset(); }
duke@435 921 double timerValue() { assert(!_timer.is_active(), "Error"); return _timer.seconds(); }
duke@435 922
duke@435 923 int yields() { return _numYields; }
duke@435 924 void resetYields() { _numYields = 0; }
duke@435 925 void incrementYields() { _numYields++; }
duke@435 926 void resetNumDirtyCards() { _numDirtyCards = 0; }
duke@435 927 void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
duke@435 928 size_t numDirtyCards() { return _numDirtyCards; }
duke@435 929
duke@435 930 static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
duke@435 931 static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
duke@435 932 static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
duke@435 933 static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
duke@435 934 uint sweepCount() const { return _sweepCount; }
duke@435 935 void incrementSweepCount() { _sweepCount++; }
duke@435 936
duke@435 937 // Timers/stats for gc scheduling and incremental mode pacing.
duke@435 938 CMSStats& stats() { return _stats; }
duke@435 939
duke@435 940 // Convenience methods that check whether CMSIncrementalMode is enabled and
duke@435 941 // forward to the corresponding methods in ConcurrentMarkSweepThread.
duke@435 942 static void start_icms();
duke@435 943 static void stop_icms(); // Called at the end of the cms cycle.
duke@435 944 static void disable_icms(); // Called before a foreground collection.
duke@435 945 static void enable_icms(); // Called after a foreground collection.
duke@435 946 void icms_wait(); // Called at yield points.
duke@435 947
duke@435 948 // Adaptive size policy
duke@435 949 CMSAdaptiveSizePolicy* size_policy();
duke@435 950 CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
duke@435 951
duke@435 952 // debugging
duke@435 953 void verify(bool);
duke@435 954 bool verify_after_remark();
duke@435 955 void verify_ok_to_terminate() const PRODUCT_RETURN;
duke@435 956 void verify_work_stacks_empty() const PRODUCT_RETURN;
duke@435 957 void verify_overflow_empty() const PRODUCT_RETURN;
duke@435 958
duke@435 959 // convenience methods in support of debugging
duke@435 960 static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
duke@435 961 HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
duke@435 962
duke@435 963 // accessors
duke@435 964 CMSMarkStack* verification_mark_stack() { return &_markStack; }
duke@435 965 CMSBitMap* verification_mark_bm() { return &_verification_mark_bm; }
duke@435 966
duke@435 967 // Get the bit map with a perm gen "deadness" information.
duke@435 968 CMSBitMap* perm_gen_verify_bit_map() { return &_perm_gen_verify_bit_map; }
duke@435 969
duke@435 970 // Initialization errors
duke@435 971 bool completed_initialization() { return _completed_initialization; }
duke@435 972 };
duke@435 973
duke@435 974 class CMSExpansionCause : public AllStatic {
duke@435 975 public:
duke@435 976 enum Cause {
duke@435 977 _no_expansion,
duke@435 978 _satisfy_free_ratio,
duke@435 979 _satisfy_promotion,
duke@435 980 _satisfy_allocation,
duke@435 981 _allocate_par_lab,
duke@435 982 _allocate_par_spooling_space,
duke@435 983 _adaptive_size_policy
duke@435 984 };
duke@435 985 // Return a string describing the cause of the expansion.
duke@435 986 static const char* to_string(CMSExpansionCause::Cause cause);
duke@435 987 };
duke@435 988
duke@435 989 class ConcurrentMarkSweepGeneration: public CardGeneration {
duke@435 990 friend class VMStructs;
duke@435 991 friend class ConcurrentMarkSweepThread;
duke@435 992 friend class ConcurrentMarkSweep;
duke@435 993 friend class CMSCollector;
duke@435 994 protected:
duke@435 995 static CMSCollector* _collector; // the collector that collects us
duke@435 996 CompactibleFreeListSpace* _cmsSpace; // underlying space (only one for now)
duke@435 997
duke@435 998 // Performance Counters
duke@435 999 GenerationCounters* _gen_counters;
duke@435 1000 GSpaceCounters* _space_counters;
duke@435 1001
duke@435 1002 // Words directly allocated, used by CMSStats.
duke@435 1003 size_t _direct_allocated_words;
duke@435 1004
duke@435 1005 // Non-product stat counters
duke@435 1006 NOT_PRODUCT(
duke@435 1007 int _numObjectsPromoted;
duke@435 1008 int _numWordsPromoted;
duke@435 1009 int _numObjectsAllocated;
duke@435 1010 int _numWordsAllocated;
duke@435 1011 )
duke@435 1012
duke@435 1013 // Used for sizing decisions
duke@435 1014 bool _incremental_collection_failed;
duke@435 1015 bool incremental_collection_failed() {
duke@435 1016 return _incremental_collection_failed;
duke@435 1017 }
duke@435 1018 void set_incremental_collection_failed() {
duke@435 1019 _incremental_collection_failed = true;
duke@435 1020 }
duke@435 1021 void clear_incremental_collection_failed() {
duke@435 1022 _incremental_collection_failed = false;
duke@435 1023 }
duke@435 1024
duke@435 1025 private:
duke@435 1026 // For parallel young-gen GC support.
duke@435 1027 CMSParGCThreadState** _par_gc_thread_states;
duke@435 1028
duke@435 1029 // Reason generation was expanded
duke@435 1030 CMSExpansionCause::Cause _expansion_cause;
duke@435 1031
duke@435 1032 // accessors
duke@435 1033 void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
duke@435 1034 CMSExpansionCause::Cause expansion_cause() { return _expansion_cause; }
duke@435 1035
duke@435 1036 // In support of MinChunkSize being larger than min object size
duke@435 1037 const double _dilatation_factor;
duke@435 1038
duke@435 1039 enum CollectionTypes {
duke@435 1040 Concurrent_collection_type = 0,
duke@435 1041 MS_foreground_collection_type = 1,
duke@435 1042 MSC_foreground_collection_type = 2,
duke@435 1043 Unknown_collection_type = 3
duke@435 1044 };
duke@435 1045
duke@435 1046 CollectionTypes _debug_collection_type;
duke@435 1047
duke@435 1048 protected:
duke@435 1049 // Grow generation by specified size (returns false if unable to grow)
duke@435 1050 bool grow_by(size_t bytes);
duke@435 1051 // Grow generation to reserved size.
duke@435 1052 bool grow_to_reserved();
duke@435 1053 // Shrink generation by specified size (returns false if unable to shrink)
duke@435 1054 virtual void shrink_by(size_t bytes);
duke@435 1055
duke@435 1056 // Update statistics for GC
duke@435 1057 virtual void update_gc_stats(int level, bool full);
duke@435 1058
duke@435 1059 // Maximum available space in the generation (including uncommitted)
duke@435 1060 // space.
duke@435 1061 size_t max_available() const;
duke@435 1062
duke@435 1063 public:
duke@435 1064 ConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
duke@435 1065 int level, CardTableRS* ct,
duke@435 1066 bool use_adaptive_freelists,
duke@435 1067 FreeBlockDictionary::DictionaryChoice);
duke@435 1068
duke@435 1069 // Accessors
duke@435 1070 CMSCollector* collector() const { return _collector; }
duke@435 1071 static void set_collector(CMSCollector* collector) {
duke@435 1072 assert(_collector == NULL, "already set");
duke@435 1073 _collector = collector;
duke@435 1074 }
duke@435 1075 CompactibleFreeListSpace* cmsSpace() const { return _cmsSpace; }
duke@435 1076
duke@435 1077 Mutex* freelistLock() const;
duke@435 1078
duke@435 1079 virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
duke@435 1080
duke@435 1081 // Adaptive size policy
duke@435 1082 CMSAdaptiveSizePolicy* size_policy();
duke@435 1083
duke@435 1084 bool refs_discovery_is_atomic() const { return false; }
duke@435 1085 bool refs_discovery_is_mt() const {
duke@435 1086 // Note: CMS does MT-discovery during the parallel-remark
duke@435 1087 // phases. Use ReferenceProcessorMTMutator to make refs
duke@435 1088 // discovery MT-safe during such phases or other parallel
duke@435 1089 // discovery phases in the future. This may all go away
duke@435 1090 // if/when we decide that refs discovery is sufficiently
duke@435 1091 // rare that the cost of the CAS's involved is in the
duke@435 1092 // noise. That's a measurement that should be done, and
duke@435 1093 // the code simplified if that turns out to be the case.
duke@435 1094 return false;
duke@435 1095 }
duke@435 1096
duke@435 1097 // Override
duke@435 1098 virtual void ref_processor_init();
duke@435 1099
duke@435 1100 void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
duke@435 1101
duke@435 1102 // Space enquiries
duke@435 1103 size_t capacity() const;
duke@435 1104 size_t used() const;
duke@435 1105 size_t free() const;
duke@435 1106 double occupancy() { return ((double)used())/((double)capacity()); }
duke@435 1107 size_t contiguous_available() const;
duke@435 1108 size_t unsafe_max_alloc_nogc() const;
duke@435 1109
duke@435 1110 // over-rides
duke@435 1111 MemRegion used_region() const;
duke@435 1112 MemRegion used_region_at_save_marks() const;
duke@435 1113
duke@435 1114 // Does a "full" (forced) collection invoked on this generation collect
duke@435 1115 // all younger generations as well? Note that the second conjunct is a
duke@435 1116 // hack to allow the collection of the younger gen first if the flag is
duke@435 1117 // set. This is better than using th policy's should_collect_gen0_first()
duke@435 1118 // since that causes us to do an extra unnecessary pair of restart-&-stop-world.
duke@435 1119 virtual bool full_collects_younger_generations() const {
duke@435 1120 return UseCMSCompactAtFullCollection && !CollectGen0First;
duke@435 1121 }
duke@435 1122
duke@435 1123 void space_iterate(SpaceClosure* blk, bool usedOnly = false);
duke@435 1124
duke@435 1125 // Support for compaction
duke@435 1126 CompactibleSpace* first_compaction_space() const;
duke@435 1127 // Adjust quantites in the generation affected by
duke@435 1128 // the compaction.
duke@435 1129 void reset_after_compaction();
duke@435 1130
duke@435 1131 // Allocation support
duke@435 1132 HeapWord* allocate(size_t size, bool tlab);
duke@435 1133 HeapWord* have_lock_and_allocate(size_t size, bool tlab);
duke@435 1134 oop promote(oop obj, size_t obj_size, oop* ref);
duke@435 1135 HeapWord* par_allocate(size_t size, bool tlab) {
duke@435 1136 return allocate(size, tlab);
duke@435 1137 }
duke@435 1138
duke@435 1139 // Incremental mode triggering.
duke@435 1140 HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
duke@435 1141 size_t word_size);
duke@435 1142
duke@435 1143 // Used by CMSStats to track direct allocation. The value is sampled and
duke@435 1144 // reset after each young gen collection.
duke@435 1145 size_t direct_allocated_words() const { return _direct_allocated_words; }
duke@435 1146 void reset_direct_allocated_words() { _direct_allocated_words = 0; }
duke@435 1147
duke@435 1148 // Overrides for parallel promotion.
duke@435 1149 virtual oop par_promote(int thread_num,
duke@435 1150 oop obj, markOop m, size_t word_sz);
duke@435 1151 // This one should not be called for CMS.
duke@435 1152 virtual void par_promote_alloc_undo(int thread_num,
duke@435 1153 HeapWord* obj, size_t word_sz);
duke@435 1154 virtual void par_promote_alloc_done(int thread_num);
duke@435 1155 virtual void par_oop_since_save_marks_iterate_done(int thread_num);
duke@435 1156
duke@435 1157 virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
duke@435 1158 bool younger_handles_promotion_failure) const;
duke@435 1159
duke@435 1160 bool should_collect(bool full, size_t size, bool tlab);
duke@435 1161 // XXXPERM
duke@435 1162 bool shouldConcurrentCollect(double initiatingOccupancy); // XXXPERM
duke@435 1163 void collect(bool full,
duke@435 1164 bool clear_all_soft_refs,
duke@435 1165 size_t size,
duke@435 1166 bool tlab);
duke@435 1167
duke@435 1168 HeapWord* expand_and_allocate(size_t word_size,
duke@435 1169 bool tlab,
duke@435 1170 bool parallel = false);
duke@435 1171
duke@435 1172 // GC prologue and epilogue
duke@435 1173 void gc_prologue(bool full);
duke@435 1174 void gc_prologue_work(bool full, bool registerClosure,
duke@435 1175 ModUnionClosure* modUnionClosure);
duke@435 1176 void gc_epilogue(bool full);
duke@435 1177 void gc_epilogue_work(bool full);
duke@435 1178
duke@435 1179 // Time since last GC of this generation
duke@435 1180 jlong time_of_last_gc(jlong now) {
duke@435 1181 return collector()->time_of_last_gc(now);
duke@435 1182 }
duke@435 1183 void update_time_of_last_gc(jlong now) {
duke@435 1184 collector()-> update_time_of_last_gc(now);
duke@435 1185 }
duke@435 1186
duke@435 1187 // Allocation failure
duke@435 1188 void expand(size_t bytes, size_t expand_bytes,
duke@435 1189 CMSExpansionCause::Cause cause);
duke@435 1190 void shrink(size_t bytes);
duke@435 1191 HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
duke@435 1192 bool expand_and_ensure_spooling_space(PromotionInfo* promo);
duke@435 1193
duke@435 1194 // Iteration support and related enquiries
duke@435 1195 void save_marks();
duke@435 1196 bool no_allocs_since_save_marks();
duke@435 1197 void object_iterate_since_last_GC(ObjectClosure* cl);
duke@435 1198 void younger_refs_iterate(OopsInGenClosure* cl);
duke@435 1199
duke@435 1200 // Iteration support specific to CMS generations
duke@435 1201 void save_sweep_limit();
duke@435 1202
duke@435 1203 // More iteration support
duke@435 1204 virtual void oop_iterate(MemRegion mr, OopClosure* cl);
duke@435 1205 virtual void oop_iterate(OopClosure* cl);
duke@435 1206 virtual void object_iterate(ObjectClosure* cl);
duke@435 1207
duke@435 1208 // Need to declare the full complement of closures, whether we'll
duke@435 1209 // override them or not, or get message from the compiler:
duke@435 1210 // oop_since_save_marks_iterate_nv hides virtual function...
duke@435 1211 #define CMS_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
duke@435 1212 void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
duke@435 1213 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DECL)
duke@435 1214
duke@435 1215 // Smart allocation XXX -- move to CFLSpace?
duke@435 1216 void setNearLargestChunk();
duke@435 1217 bool isNearLargestChunk(HeapWord* addr);
duke@435 1218
duke@435 1219 // Get the chunk at the end of the space. Delagates to
duke@435 1220 // the space.
duke@435 1221 FreeChunk* find_chunk_at_end();
duke@435 1222
duke@435 1223 // Overriding of unused functionality (sharing not yet supported with CMS)
duke@435 1224 void pre_adjust_pointers();
duke@435 1225 void post_compact();
duke@435 1226
duke@435 1227 // Debugging
duke@435 1228 void prepare_for_verify();
duke@435 1229 void verify(bool allow_dirty);
duke@435 1230 void print_statistics() PRODUCT_RETURN;
duke@435 1231
duke@435 1232 // Performance Counters support
duke@435 1233 virtual void update_counters();
duke@435 1234 virtual void update_counters(size_t used);
duke@435 1235 void initialize_performance_counters();
duke@435 1236 CollectorCounters* counters() { return collector()->counters(); }
duke@435 1237
duke@435 1238 // Support for parallel remark of survivor space
duke@435 1239 void* get_data_recorder(int thr_num) {
duke@435 1240 //Delegate to collector
duke@435 1241 return collector()->get_data_recorder(thr_num);
duke@435 1242 }
duke@435 1243
duke@435 1244 // Printing
duke@435 1245 const char* name() const;
duke@435 1246 virtual const char* short_name() const { return "CMS"; }
duke@435 1247 void print() const;
duke@435 1248 void printOccupancy(const char* s);
duke@435 1249 bool must_be_youngest() const { return false; }
duke@435 1250 bool must_be_oldest() const { return true; }
duke@435 1251
duke@435 1252 void compute_new_size();
duke@435 1253
duke@435 1254 CollectionTypes debug_collection_type() { return _debug_collection_type; }
duke@435 1255 void rotate_debug_collection_type();
duke@435 1256 };
duke@435 1257
duke@435 1258 class ASConcurrentMarkSweepGeneration : public ConcurrentMarkSweepGeneration {
duke@435 1259
duke@435 1260 // Return the size policy from the heap's collector
duke@435 1261 // policy casted to CMSAdaptiveSizePolicy*.
duke@435 1262 CMSAdaptiveSizePolicy* cms_size_policy() const;
duke@435 1263
duke@435 1264 // Resize the generation based on the adaptive size
duke@435 1265 // policy.
duke@435 1266 void resize(size_t cur_promo, size_t desired_promo);
duke@435 1267
duke@435 1268 // Return the GC counters from the collector policy
duke@435 1269 CMSGCAdaptivePolicyCounters* gc_adaptive_policy_counters();
duke@435 1270
duke@435 1271 virtual void shrink_by(size_t bytes);
duke@435 1272
duke@435 1273 public:
duke@435 1274 virtual void compute_new_size();
duke@435 1275 ASConcurrentMarkSweepGeneration(ReservedSpace rs, size_t initial_byte_size,
duke@435 1276 int level, CardTableRS* ct,
duke@435 1277 bool use_adaptive_freelists,
duke@435 1278 FreeBlockDictionary::DictionaryChoice
duke@435 1279 dictionaryChoice) :
duke@435 1280 ConcurrentMarkSweepGeneration(rs, initial_byte_size, level, ct,
duke@435 1281 use_adaptive_freelists, dictionaryChoice) {}
duke@435 1282
duke@435 1283 virtual const char* short_name() const { return "ASCMS"; }
duke@435 1284 virtual Generation::Name kind() { return Generation::ASConcurrentMarkSweep; }
duke@435 1285
duke@435 1286 virtual void update_counters();
duke@435 1287 virtual void update_counters(size_t used);
duke@435 1288 };
duke@435 1289
duke@435 1290 //
duke@435 1291 // Closures of various sorts used by CMS to accomplish its work
duke@435 1292 //
duke@435 1293
duke@435 1294 // This closure is used to check that a certain set of oops is empty.
duke@435 1295 class FalseClosure: public OopClosure {
duke@435 1296 public:
duke@435 1297 void do_oop(oop* p) {
duke@435 1298 guarantee(false, "Should be an empty set");
duke@435 1299 }
duke@435 1300 };
duke@435 1301
duke@435 1302 // This closure is used to do concurrent marking from the roots
duke@435 1303 // following the first checkpoint.
duke@435 1304 class MarkFromRootsClosure: public BitMapClosure {
duke@435 1305 CMSCollector* _collector;
duke@435 1306 MemRegion _span;
duke@435 1307 CMSBitMap* _bitMap;
duke@435 1308 CMSBitMap* _mut;
duke@435 1309 CMSMarkStack* _markStack;
duke@435 1310 CMSMarkStack* _revisitStack;
duke@435 1311 bool _yield;
duke@435 1312 int _skipBits;
duke@435 1313 HeapWord* _finger;
duke@435 1314 HeapWord* _threshold;
duke@435 1315 DEBUG_ONLY(bool _verifying;)
duke@435 1316
duke@435 1317 public:
duke@435 1318 MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
duke@435 1319 CMSBitMap* bitMap,
duke@435 1320 CMSMarkStack* markStack,
duke@435 1321 CMSMarkStack* revisitStack,
duke@435 1322 bool should_yield, bool verifying = false);
duke@435 1323 void do_bit(size_t offset);
duke@435 1324 void reset(HeapWord* addr);
duke@435 1325 inline void do_yield_check();
duke@435 1326
duke@435 1327 private:
duke@435 1328 void scanOopsInOop(HeapWord* ptr);
duke@435 1329 void do_yield_work();
duke@435 1330 };
duke@435 1331
duke@435 1332 // This closure is used to do concurrent multi-threaded
duke@435 1333 // marking from the roots following the first checkpoint.
duke@435 1334 // XXX This should really be a subclass of The serial version
duke@435 1335 // above, but i have not had the time to refactor things cleanly.
duke@435 1336 // That willbe done for Dolphin.
duke@435 1337 class Par_MarkFromRootsClosure: public BitMapClosure {
duke@435 1338 CMSCollector* _collector;
duke@435 1339 MemRegion _whole_span;
duke@435 1340 MemRegion _span;
duke@435 1341 CMSBitMap* _bit_map;
duke@435 1342 CMSBitMap* _mut;
duke@435 1343 OopTaskQueue* _work_queue;
duke@435 1344 CMSMarkStack* _overflow_stack;
duke@435 1345 CMSMarkStack* _revisit_stack;
duke@435 1346 bool _yield;
duke@435 1347 int _skip_bits;
duke@435 1348 HeapWord* _finger;
duke@435 1349 HeapWord* _threshold;
duke@435 1350 CMSConcMarkingTask* _task;
duke@435 1351 public:
duke@435 1352 Par_MarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
duke@435 1353 MemRegion span,
duke@435 1354 CMSBitMap* bit_map,
duke@435 1355 OopTaskQueue* work_queue,
duke@435 1356 CMSMarkStack* overflow_stack,
duke@435 1357 CMSMarkStack* revisit_stack,
duke@435 1358 bool should_yield);
duke@435 1359 void do_bit(size_t offset);
duke@435 1360 inline void do_yield_check();
duke@435 1361
duke@435 1362 private:
duke@435 1363 void scan_oops_in_oop(HeapWord* ptr);
duke@435 1364 void do_yield_work();
duke@435 1365 bool get_work_from_overflow_stack();
duke@435 1366 };
duke@435 1367
duke@435 1368 // The following closures are used to do certain kinds of verification of
duke@435 1369 // CMS marking.
duke@435 1370 class PushAndMarkVerifyClosure: public OopClosure {
duke@435 1371 CMSCollector* _collector;
duke@435 1372 MemRegion _span;
duke@435 1373 CMSBitMap* _verification_bm;
duke@435 1374 CMSBitMap* _cms_bm;
duke@435 1375 CMSMarkStack* _mark_stack;
duke@435 1376 public:
duke@435 1377 PushAndMarkVerifyClosure(CMSCollector* cms_collector,
duke@435 1378 MemRegion span,
duke@435 1379 CMSBitMap* verification_bm,
duke@435 1380 CMSBitMap* cms_bm,
duke@435 1381 CMSMarkStack* mark_stack);
duke@435 1382 void do_oop(oop* p);
duke@435 1383 // Deal with a stack overflow condition
duke@435 1384 void handle_stack_overflow(HeapWord* lost);
duke@435 1385 };
duke@435 1386
duke@435 1387 class MarkFromRootsVerifyClosure: public BitMapClosure {
duke@435 1388 CMSCollector* _collector;
duke@435 1389 MemRegion _span;
duke@435 1390 CMSBitMap* _verification_bm;
duke@435 1391 CMSBitMap* _cms_bm;
duke@435 1392 CMSMarkStack* _mark_stack;
duke@435 1393 HeapWord* _finger;
duke@435 1394 PushAndMarkVerifyClosure _pam_verify_closure;
duke@435 1395 public:
duke@435 1396 MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
duke@435 1397 CMSBitMap* verification_bm,
duke@435 1398 CMSBitMap* cms_bm,
duke@435 1399 CMSMarkStack* mark_stack);
duke@435 1400 void do_bit(size_t offset);
duke@435 1401 void reset(HeapWord* addr);
duke@435 1402 };
duke@435 1403
duke@435 1404
duke@435 1405 // This closure is used to check that a certain set of bits is
duke@435 1406 // "empty" (i.e. the bit vector doesn't have any 1-bits).
duke@435 1407 class FalseBitMapClosure: public BitMapClosure {
duke@435 1408 public:
duke@435 1409 void do_bit(size_t offset) {
duke@435 1410 guarantee(false, "Should not have a 1 bit");
duke@435 1411 }
duke@435 1412 };
duke@435 1413
duke@435 1414 // This closure is used during the second checkpointing phase
duke@435 1415 // to rescan the marked objects on the dirty cards in the mod
duke@435 1416 // union table and the card table proper. It's invoked via
duke@435 1417 // MarkFromDirtyCardsClosure below. It uses either
duke@435 1418 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
duke@435 1419 // declared in genOopClosures.hpp to accomplish some of its work.
duke@435 1420 // In the parallel case the bitMap is shared, so access to
duke@435 1421 // it needs to be suitably synchronized for updates by embedded
duke@435 1422 // closures that update it; however, this closure itself only
duke@435 1423 // reads the bit_map and because it is idempotent, is immune to
duke@435 1424 // reading stale values.
duke@435 1425 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
duke@435 1426 #ifdef ASSERT
duke@435 1427 CMSCollector* _collector;
duke@435 1428 MemRegion _span;
duke@435 1429 union {
duke@435 1430 CMSMarkStack* _mark_stack;
duke@435 1431 OopTaskQueue* _work_queue;
duke@435 1432 };
duke@435 1433 #endif // ASSERT
duke@435 1434 bool _parallel;
duke@435 1435 CMSBitMap* _bit_map;
duke@435 1436 union {
duke@435 1437 MarkRefsIntoAndScanClosure* _scan_closure;
duke@435 1438 Par_MarkRefsIntoAndScanClosure* _par_scan_closure;
duke@435 1439 };
duke@435 1440
duke@435 1441 public:
duke@435 1442 ScanMarkedObjectsAgainClosure(CMSCollector* collector,
duke@435 1443 MemRegion span,
duke@435 1444 ReferenceProcessor* rp,
duke@435 1445 CMSBitMap* bit_map,
duke@435 1446 CMSMarkStack* mark_stack,
duke@435 1447 CMSMarkStack* revisit_stack,
duke@435 1448 MarkRefsIntoAndScanClosure* cl):
duke@435 1449 #ifdef ASSERT
duke@435 1450 _collector(collector),
duke@435 1451 _span(span),
duke@435 1452 _mark_stack(mark_stack),
duke@435 1453 #endif // ASSERT
duke@435 1454 _parallel(false),
duke@435 1455 _bit_map(bit_map),
duke@435 1456 _scan_closure(cl) { }
duke@435 1457
duke@435 1458 ScanMarkedObjectsAgainClosure(CMSCollector* collector,
duke@435 1459 MemRegion span,
duke@435 1460 ReferenceProcessor* rp,
duke@435 1461 CMSBitMap* bit_map,
duke@435 1462 OopTaskQueue* work_queue,
duke@435 1463 CMSMarkStack* revisit_stack,
duke@435 1464 Par_MarkRefsIntoAndScanClosure* cl):
duke@435 1465 #ifdef ASSERT
duke@435 1466 _collector(collector),
duke@435 1467 _span(span),
duke@435 1468 _work_queue(work_queue),
duke@435 1469 #endif // ASSERT
duke@435 1470 _parallel(true),
duke@435 1471 _bit_map(bit_map),
duke@435 1472 _par_scan_closure(cl) { }
duke@435 1473
duke@435 1474 void do_object(oop obj) {
duke@435 1475 guarantee(false, "Call do_object_b(oop, MemRegion) instead");
duke@435 1476 }
duke@435 1477 bool do_object_b(oop obj) {
duke@435 1478 guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
duke@435 1479 return false;
duke@435 1480 }
duke@435 1481 bool do_object_bm(oop p, MemRegion mr);
duke@435 1482 };
duke@435 1483
duke@435 1484 // This closure is used during the second checkpointing phase
duke@435 1485 // to rescan the marked objects on the dirty cards in the mod
duke@435 1486 // union table and the card table proper. It invokes
duke@435 1487 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
duke@435 1488 // In the parallel case, the bit map is shared and requires
duke@435 1489 // synchronized access.
duke@435 1490 class MarkFromDirtyCardsClosure: public MemRegionClosure {
duke@435 1491 CompactibleFreeListSpace* _space;
duke@435 1492 ScanMarkedObjectsAgainClosure _scan_cl;
duke@435 1493 size_t _num_dirty_cards;
duke@435 1494
duke@435 1495 public:
duke@435 1496 MarkFromDirtyCardsClosure(CMSCollector* collector,
duke@435 1497 MemRegion span,
duke@435 1498 CompactibleFreeListSpace* space,
duke@435 1499 CMSBitMap* bit_map,
duke@435 1500 CMSMarkStack* mark_stack,
duke@435 1501 CMSMarkStack* revisit_stack,
duke@435 1502 MarkRefsIntoAndScanClosure* cl):
duke@435 1503 _space(space),
duke@435 1504 _num_dirty_cards(0),
duke@435 1505 _scan_cl(collector, span, collector->ref_processor(), bit_map,
duke@435 1506 mark_stack, revisit_stack, cl) { }
duke@435 1507
duke@435 1508 MarkFromDirtyCardsClosure(CMSCollector* collector,
duke@435 1509 MemRegion span,
duke@435 1510 CompactibleFreeListSpace* space,
duke@435 1511 CMSBitMap* bit_map,
duke@435 1512 OopTaskQueue* work_queue,
duke@435 1513 CMSMarkStack* revisit_stack,
duke@435 1514 Par_MarkRefsIntoAndScanClosure* cl):
duke@435 1515 _space(space),
duke@435 1516 _num_dirty_cards(0),
duke@435 1517 _scan_cl(collector, span, collector->ref_processor(), bit_map,
duke@435 1518 work_queue, revisit_stack, cl) { }
duke@435 1519
duke@435 1520 void do_MemRegion(MemRegion mr);
duke@435 1521 void set_space(CompactibleFreeListSpace* space) { _space = space; }
duke@435 1522 size_t num_dirty_cards() { return _num_dirty_cards; }
duke@435 1523 };
duke@435 1524
duke@435 1525 // This closure is used in the non-product build to check
duke@435 1526 // that there are no MemRegions with a certain property.
duke@435 1527 class FalseMemRegionClosure: public MemRegionClosure {
duke@435 1528 void do_MemRegion(MemRegion mr) {
duke@435 1529 guarantee(!mr.is_empty(), "Shouldn't be empty");
duke@435 1530 guarantee(false, "Should never be here");
duke@435 1531 }
duke@435 1532 };
duke@435 1533
duke@435 1534 // This closure is used during the precleaning phase
duke@435 1535 // to "carefully" rescan marked objects on dirty cards.
duke@435 1536 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
duke@435 1537 // to accomplish some of its work.
duke@435 1538 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
duke@435 1539 CMSCollector* _collector;
duke@435 1540 MemRegion _span;
duke@435 1541 bool _yield;
duke@435 1542 Mutex* _freelistLock;
duke@435 1543 CMSBitMap* _bitMap;
duke@435 1544 CMSMarkStack* _markStack;
duke@435 1545 MarkRefsIntoAndScanClosure* _scanningClosure;
duke@435 1546
duke@435 1547 public:
duke@435 1548 ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
duke@435 1549 MemRegion span,
duke@435 1550 CMSBitMap* bitMap,
duke@435 1551 CMSMarkStack* markStack,
duke@435 1552 CMSMarkStack* revisitStack,
duke@435 1553 MarkRefsIntoAndScanClosure* cl,
duke@435 1554 bool should_yield):
duke@435 1555 _collector(collector),
duke@435 1556 _span(span),
duke@435 1557 _yield(should_yield),
duke@435 1558 _bitMap(bitMap),
duke@435 1559 _markStack(markStack),
duke@435 1560 _scanningClosure(cl) {
duke@435 1561 }
duke@435 1562
duke@435 1563 void do_object(oop p) {
duke@435 1564 guarantee(false, "call do_object_careful instead");
duke@435 1565 }
duke@435 1566
duke@435 1567 size_t do_object_careful(oop p) {
duke@435 1568 guarantee(false, "Unexpected caller");
duke@435 1569 return 0;
duke@435 1570 }
duke@435 1571
duke@435 1572 size_t do_object_careful_m(oop p, MemRegion mr);
duke@435 1573
duke@435 1574 void setFreelistLock(Mutex* m) {
duke@435 1575 _freelistLock = m;
duke@435 1576 _scanningClosure->set_freelistLock(m);
duke@435 1577 }
duke@435 1578
duke@435 1579 private:
duke@435 1580 inline bool do_yield_check();
duke@435 1581
duke@435 1582 void do_yield_work();
duke@435 1583 };
duke@435 1584
duke@435 1585 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
duke@435 1586 CMSCollector* _collector;
duke@435 1587 MemRegion _span;
duke@435 1588 bool _yield;
duke@435 1589 CMSBitMap* _bit_map;
duke@435 1590 CMSMarkStack* _mark_stack;
duke@435 1591 PushAndMarkClosure* _scanning_closure;
duke@435 1592 unsigned int _before_count;
duke@435 1593
duke@435 1594 public:
duke@435 1595 SurvivorSpacePrecleanClosure(CMSCollector* collector,
duke@435 1596 MemRegion span,
duke@435 1597 CMSBitMap* bit_map,
duke@435 1598 CMSMarkStack* mark_stack,
duke@435 1599 PushAndMarkClosure* cl,
duke@435 1600 unsigned int before_count,
duke@435 1601 bool should_yield):
duke@435 1602 _collector(collector),
duke@435 1603 _span(span),
duke@435 1604 _yield(should_yield),
duke@435 1605 _bit_map(bit_map),
duke@435 1606 _mark_stack(mark_stack),
duke@435 1607 _scanning_closure(cl),
duke@435 1608 _before_count(before_count)
duke@435 1609 { }
duke@435 1610
duke@435 1611 void do_object(oop p) {
duke@435 1612 guarantee(false, "call do_object_careful instead");
duke@435 1613 }
duke@435 1614
duke@435 1615 size_t do_object_careful(oop p);
duke@435 1616
duke@435 1617 size_t do_object_careful_m(oop p, MemRegion mr) {
duke@435 1618 guarantee(false, "Unexpected caller");
duke@435 1619 return 0;
duke@435 1620 }
duke@435 1621
duke@435 1622 private:
duke@435 1623 inline void do_yield_check();
duke@435 1624 void do_yield_work();
duke@435 1625 };
duke@435 1626
duke@435 1627 // This closure is used to accomplish the sweeping work
duke@435 1628 // after the second checkpoint but before the concurrent reset
duke@435 1629 // phase.
duke@435 1630 //
duke@435 1631 // Terminology
duke@435 1632 // left hand chunk (LHC) - block of one or more chunks currently being
duke@435 1633 // coalesced. The LHC is available for coalescing with a new chunk.
duke@435 1634 // right hand chunk (RHC) - block that is currently being swept that is
duke@435 1635 // free or garbage that can be coalesced with the LHC.
duke@435 1636 // _inFreeRange is true if there is currently a LHC
duke@435 1637 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
duke@435 1638 // _freeRangeInFreeLists is true if the LHC is in the free lists.
duke@435 1639 // _freeFinger is the address of the current LHC
duke@435 1640 class SweepClosure: public BlkClosureCareful {
duke@435 1641 CMSCollector* _collector; // collector doing the work
duke@435 1642 ConcurrentMarkSweepGeneration* _g; // Generation being swept
duke@435 1643 CompactibleFreeListSpace* _sp; // Space being swept
duke@435 1644 HeapWord* _limit;
duke@435 1645 Mutex* _freelistLock; // Free list lock (in space)
duke@435 1646 CMSBitMap* _bitMap; // Marking bit map (in
duke@435 1647 // generation)
duke@435 1648 bool _inFreeRange; // Indicates if we are in the
duke@435 1649 // midst of a free run
duke@435 1650 bool _freeRangeInFreeLists;
duke@435 1651 // Often, we have just found
duke@435 1652 // a free chunk and started
duke@435 1653 // a new free range; we do not
duke@435 1654 // eagerly remove this chunk from
duke@435 1655 // the free lists unless there is
duke@435 1656 // a possibility of coalescing.
duke@435 1657 // When true, this flag indicates
duke@435 1658 // that the _freeFinger below
duke@435 1659 // points to a potentially free chunk
duke@435 1660 // that may still be in the free lists
duke@435 1661 bool _lastFreeRangeCoalesced;
duke@435 1662 // free range contains chunks
duke@435 1663 // coalesced
duke@435 1664 bool _yield;
duke@435 1665 // Whether sweeping should be
duke@435 1666 // done with yields. For instance
duke@435 1667 // when done by the foreground
duke@435 1668 // collector we shouldn't yield.
duke@435 1669 HeapWord* _freeFinger; // When _inFreeRange is set, the
duke@435 1670 // pointer to the "left hand
duke@435 1671 // chunk"
duke@435 1672 size_t _freeRangeSize;
duke@435 1673 // When _inFreeRange is set, this
duke@435 1674 // indicates the accumulated size
duke@435 1675 // of the "left hand chunk"
duke@435 1676 NOT_PRODUCT(
duke@435 1677 size_t _numObjectsFreed;
duke@435 1678 size_t _numWordsFreed;
duke@435 1679 size_t _numObjectsLive;
duke@435 1680 size_t _numWordsLive;
duke@435 1681 size_t _numObjectsAlreadyFree;
duke@435 1682 size_t _numWordsAlreadyFree;
duke@435 1683 FreeChunk* _last_fc;
duke@435 1684 )
duke@435 1685 private:
duke@435 1686 // Code that is common to a free chunk or garbage when
duke@435 1687 // encountered during sweeping.
duke@435 1688 void doPostIsFreeOrGarbageChunk(FreeChunk *fc,
duke@435 1689 size_t chunkSize);
duke@435 1690 // Process a free chunk during sweeping.
duke@435 1691 void doAlreadyFreeChunk(FreeChunk *fc);
duke@435 1692 // Process a garbage chunk during sweeping.
duke@435 1693 size_t doGarbageChunk(FreeChunk *fc);
duke@435 1694 // Process a live chunk during sweeping.
duke@435 1695 size_t doLiveChunk(FreeChunk* fc);
duke@435 1696
duke@435 1697 // Accessors.
duke@435 1698 HeapWord* freeFinger() const { return _freeFinger; }
duke@435 1699 void set_freeFinger(HeapWord* v) { _freeFinger = v; }
duke@435 1700 size_t freeRangeSize() const { return _freeRangeSize; }
duke@435 1701 void set_freeRangeSize(size_t v) { _freeRangeSize = v; }
duke@435 1702 bool inFreeRange() const { return _inFreeRange; }
duke@435 1703 void set_inFreeRange(bool v) { _inFreeRange = v; }
duke@435 1704 bool lastFreeRangeCoalesced() const { return _lastFreeRangeCoalesced; }
duke@435 1705 void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
duke@435 1706 bool freeRangeInFreeLists() const { return _freeRangeInFreeLists; }
duke@435 1707 void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
duke@435 1708
duke@435 1709 // Initialize a free range.
duke@435 1710 void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
duke@435 1711 // Return this chunk to the free lists.
duke@435 1712 void flushCurFreeChunk(HeapWord* chunk, size_t size);
duke@435 1713
duke@435 1714 // Check if we should yield and do so when necessary.
duke@435 1715 inline void do_yield_check(HeapWord* addr);
duke@435 1716
duke@435 1717 // Yield
duke@435 1718 void do_yield_work(HeapWord* addr);
duke@435 1719
duke@435 1720 // Debugging/Printing
duke@435 1721 void record_free_block_coalesced(FreeChunk* fc) const PRODUCT_RETURN;
duke@435 1722
duke@435 1723 public:
duke@435 1724 SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
duke@435 1725 CMSBitMap* bitMap, bool should_yield);
duke@435 1726 ~SweepClosure();
duke@435 1727
duke@435 1728 size_t do_blk_careful(HeapWord* addr);
duke@435 1729 };
duke@435 1730
duke@435 1731 // Closures related to weak references processing
duke@435 1732
duke@435 1733 // During CMS' weak reference processing, this is a
duke@435 1734 // work-routine/closure used to complete transitive
duke@435 1735 // marking of objects as live after a certain point
duke@435 1736 // in which an initial set has been completely accumulated.
duke@435 1737 class CMSDrainMarkingStackClosure: public VoidClosure {
duke@435 1738 CMSCollector* _collector;
duke@435 1739 MemRegion _span;
duke@435 1740 CMSMarkStack* _mark_stack;
duke@435 1741 CMSBitMap* _bit_map;
duke@435 1742 CMSKeepAliveClosure* _keep_alive;
duke@435 1743 public:
duke@435 1744 CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
duke@435 1745 CMSBitMap* bit_map, CMSMarkStack* mark_stack,
duke@435 1746 CMSKeepAliveClosure* keep_alive):
duke@435 1747 _collector(collector),
duke@435 1748 _span(span),
duke@435 1749 _bit_map(bit_map),
duke@435 1750 _mark_stack(mark_stack),
duke@435 1751 _keep_alive(keep_alive) { }
duke@435 1752
duke@435 1753 void do_void();
duke@435 1754 };
duke@435 1755
duke@435 1756 // A parallel version of CMSDrainMarkingStackClosure above.
duke@435 1757 class CMSParDrainMarkingStackClosure: public VoidClosure {
duke@435 1758 CMSCollector* _collector;
duke@435 1759 MemRegion _span;
duke@435 1760 OopTaskQueue* _work_queue;
duke@435 1761 CMSBitMap* _bit_map;
duke@435 1762 CMSInnerParMarkAndPushClosure _mark_and_push;
duke@435 1763
duke@435 1764 public:
duke@435 1765 CMSParDrainMarkingStackClosure(CMSCollector* collector,
duke@435 1766 MemRegion span, CMSBitMap* bit_map,
duke@435 1767 OopTaskQueue* work_queue):
duke@435 1768 _collector(collector),
duke@435 1769 _span(span),
duke@435 1770 _bit_map(bit_map),
duke@435 1771 _work_queue(work_queue),
duke@435 1772 _mark_and_push(collector, span, bit_map, work_queue) { }
duke@435 1773
duke@435 1774 public:
duke@435 1775 void trim_queue(uint max);
duke@435 1776 void do_void();
duke@435 1777 };
duke@435 1778
duke@435 1779 // Allow yielding or short-circuiting of reference list
duke@435 1780 // prelceaning work.
duke@435 1781 class CMSPrecleanRefsYieldClosure: public YieldClosure {
duke@435 1782 CMSCollector* _collector;
duke@435 1783 void do_yield_work();
duke@435 1784 public:
duke@435 1785 CMSPrecleanRefsYieldClosure(CMSCollector* collector):
duke@435 1786 _collector(collector) {}
duke@435 1787 virtual bool should_return();
duke@435 1788 };
duke@435 1789
duke@435 1790
duke@435 1791 // Convenience class that locks free list locks for given CMS collector
duke@435 1792 class FreelistLocker: public StackObj {
duke@435 1793 private:
duke@435 1794 CMSCollector* _collector;
duke@435 1795 public:
duke@435 1796 FreelistLocker(CMSCollector* collector):
duke@435 1797 _collector(collector) {
duke@435 1798 _collector->getFreelistLocks();
duke@435 1799 }
duke@435 1800
duke@435 1801 ~FreelistLocker() {
duke@435 1802 _collector->releaseFreelistLocks();
duke@435 1803 }
duke@435 1804 };
duke@435 1805
duke@435 1806 // Mark all dead objects in a given space.
duke@435 1807 class MarkDeadObjectsClosure: public BlkClosure {
duke@435 1808 const CMSCollector* _collector;
duke@435 1809 const CompactibleFreeListSpace* _sp;
duke@435 1810 CMSBitMap* _live_bit_map;
duke@435 1811 CMSBitMap* _dead_bit_map;
duke@435 1812 public:
duke@435 1813 MarkDeadObjectsClosure(const CMSCollector* collector,
duke@435 1814 const CompactibleFreeListSpace* sp,
duke@435 1815 CMSBitMap *live_bit_map,
duke@435 1816 CMSBitMap *dead_bit_map) :
duke@435 1817 _collector(collector),
duke@435 1818 _sp(sp),
duke@435 1819 _live_bit_map(live_bit_map),
duke@435 1820 _dead_bit_map(dead_bit_map) {}
duke@435 1821 size_t do_blk(HeapWord* addr);
duke@435 1822 };

mercurial