src/share/vm/c1/c1_ValueStack.hpp

Sat, 01 Dec 2007 00:00:00 +0000

author
duke
date
Sat, 01 Dec 2007 00:00:00 +0000
changeset 435
a61af66fc99e
child 1907
c18cbe5936b8
permissions
-rw-r--r--

Initial load

duke@435 1 /*
duke@435 2 * Copyright 1999-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class ValueStack: public CompilationResourceObj {
duke@435 26 private:
duke@435 27 IRScope* _scope; // the enclosing scope
duke@435 28 bool _lock_stack; // indicates that this ValueStack is for an exception site
duke@435 29 Values _locals; // the locals
duke@435 30 Values _stack; // the expression stack
duke@435 31 Values _locks; // the monitor stack (holding the locked values)
duke@435 32
duke@435 33 Value check(ValueTag tag, Value t) {
duke@435 34 assert(tag == t->type()->tag() || tag == objectTag && t->type()->tag() == addressTag, "types must correspond");
duke@435 35 return t;
duke@435 36 }
duke@435 37
duke@435 38 Value check(ValueTag tag, Value t, Value h) {
duke@435 39 assert(h->as_HiWord()->lo_word() == t, "incorrect stack pair");
duke@435 40 return check(tag, t);
duke@435 41 }
duke@435 42
duke@435 43 // helper routine
duke@435 44 static void apply(Values list, void f(Value*));
duke@435 45
duke@435 46 public:
duke@435 47 // creation
duke@435 48 ValueStack(IRScope* scope, int locals_size, int max_stack_size);
duke@435 49
duke@435 50 // merging
duke@435 51 ValueStack* copy(); // returns a copy of this w/ cleared locals
duke@435 52 ValueStack* copy_locks(); // returns a copy of this w/ cleared locals and stack
duke@435 53 // Note that when inlining of methods with exception
duke@435 54 // handlers is enabled, this stack may have a
duke@435 55 // non-empty expression stack (size defined by
duke@435 56 // scope()->lock_stack_size())
duke@435 57 bool is_same(ValueStack* s); // returns true if this & s's types match (w/o checking locals)
duke@435 58 bool is_same_across_scopes(ValueStack* s); // same as is_same but returns true even if stacks are in different scopes (used for block merging w/inlining)
duke@435 59
duke@435 60 // accessors
duke@435 61 IRScope* scope() const { return _scope; }
duke@435 62 bool is_lock_stack() const { return _lock_stack; }
duke@435 63 int locals_size() const { return _locals.length(); }
duke@435 64 int stack_size() const { return _stack.length(); }
duke@435 65 int locks_size() const { return _locks.length(); }
duke@435 66 int max_stack_size() const { return _stack.capacity(); }
duke@435 67 bool stack_is_empty() const { return _stack.is_empty(); }
duke@435 68 bool no_active_locks() const { return _locks.is_empty(); }
duke@435 69 ValueStack* caller_state() const;
duke@435 70
duke@435 71 // locals access
duke@435 72 void clear_locals(); // sets all locals to NULL;
duke@435 73
duke@435 74 // Kill local i. Also kill local i+1 if i was a long or double.
duke@435 75 void invalidate_local(int i) {
duke@435 76 Value x = _locals.at(i);
duke@435 77 if (x != NULL && x->type()->is_double_word()) {
duke@435 78 assert(_locals.at(i + 1)->as_HiWord()->lo_word() == x, "locals inconsistent");
duke@435 79 _locals.at_put(i + 1, NULL);
duke@435 80 }
duke@435 81 _locals.at_put(i, NULL);
duke@435 82 }
duke@435 83
duke@435 84
duke@435 85 Value load_local(int i) const {
duke@435 86 Value x = _locals.at(i);
duke@435 87 if (x != NULL && x->type()->is_illegal()) return NULL;
duke@435 88 assert(x == NULL || x->as_HiWord() == NULL, "index points to hi word");
duke@435 89 assert(x == NULL || x->type()->is_illegal() || x->type()->is_single_word() || x == _locals.at(i+1)->as_HiWord()->lo_word(), "locals inconsistent");
duke@435 90 return x;
duke@435 91 }
duke@435 92
duke@435 93 Value local_at(int i) const { return _locals.at(i); }
duke@435 94
duke@435 95 // Store x into local i.
duke@435 96 void store_local(int i, Value x) {
duke@435 97 // Kill the old value
duke@435 98 invalidate_local(i);
duke@435 99 _locals.at_put(i, x);
duke@435 100
duke@435 101 // Writing a double word can kill other locals
duke@435 102 if (x != NULL && x->type()->is_double_word()) {
duke@435 103 // If x + i was the start of a double word local then kill i + 2.
duke@435 104 Value x2 = _locals.at(i + 1);
duke@435 105 if (x2 != NULL && x2->type()->is_double_word()) {
duke@435 106 _locals.at_put(i + 2, NULL);
duke@435 107 }
duke@435 108
duke@435 109 // If x is a double word local, also update i + 1.
duke@435 110 #ifdef ASSERT
duke@435 111 _locals.at_put(i + 1, x->hi_word());
duke@435 112 #else
duke@435 113 _locals.at_put(i + 1, NULL);
duke@435 114 #endif
duke@435 115 }
duke@435 116 // If x - 1 was the start of a double word local then kill i - 1.
duke@435 117 if (i > 0) {
duke@435 118 Value prev = _locals.at(i - 1);
duke@435 119 if (prev != NULL && prev->type()->is_double_word()) {
duke@435 120 _locals.at_put(i - 1, NULL);
duke@435 121 }
duke@435 122 }
duke@435 123 }
duke@435 124
duke@435 125 void replace_locals(ValueStack* with);
duke@435 126
duke@435 127 // stack access
duke@435 128 Value stack_at(int i) const {
duke@435 129 Value x = _stack.at(i);
duke@435 130 assert(x->as_HiWord() == NULL, "index points to hi word");
duke@435 131 assert(x->type()->is_single_word() ||
duke@435 132 x->subst() == _stack.at(i+1)->as_HiWord()->lo_word(), "stack inconsistent");
duke@435 133 return x;
duke@435 134 }
duke@435 135
duke@435 136 Value stack_at_inc(int& i) const {
duke@435 137 Value x = stack_at(i);
duke@435 138 i += x->type()->size();
duke@435 139 return x;
duke@435 140 }
duke@435 141
duke@435 142 // pinning support
duke@435 143 void pin_stack_for_linear_scan();
duke@435 144
duke@435 145 // iteration
duke@435 146 void values_do(void f(Value*));
duke@435 147
duke@435 148 // untyped manipulation (for dup_x1, etc.)
duke@435 149 void clear_stack() { _stack.clear(); }
duke@435 150 void truncate_stack(int size) { _stack.trunc_to(size); }
duke@435 151 void raw_push(Value t) { _stack.push(t); }
duke@435 152 Value raw_pop() { return _stack.pop(); }
duke@435 153
duke@435 154 // typed manipulation
duke@435 155 void ipush(Value t) { _stack.push(check(intTag , t)); }
duke@435 156 void fpush(Value t) { _stack.push(check(floatTag , t)); }
duke@435 157 void apush(Value t) { _stack.push(check(objectTag , t)); }
duke@435 158 void rpush(Value t) { _stack.push(check(addressTag, t)); }
duke@435 159 #ifdef ASSERT
duke@435 160 // in debug mode, use HiWord for 2-word values
duke@435 161 void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(new HiWord(t)); }
duke@435 162 void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(new HiWord(t)); }
duke@435 163 #else
duke@435 164 // in optimized mode, use NULL for 2-word values
duke@435 165 void lpush(Value t) { _stack.push(check(longTag , t)); _stack.push(NULL); }
duke@435 166 void dpush(Value t) { _stack.push(check(doubleTag , t)); _stack.push(NULL); }
duke@435 167 #endif // ASSERT
duke@435 168
duke@435 169 void push(ValueType* type, Value t) {
duke@435 170 switch (type->tag()) {
duke@435 171 case intTag : ipush(t); return;
duke@435 172 case longTag : lpush(t); return;
duke@435 173 case floatTag : fpush(t); return;
duke@435 174 case doubleTag : dpush(t); return;
duke@435 175 case objectTag : apush(t); return;
duke@435 176 case addressTag: rpush(t); return;
duke@435 177 }
duke@435 178 ShouldNotReachHere();
duke@435 179 }
duke@435 180
duke@435 181 Value ipop() { return check(intTag , _stack.pop()); }
duke@435 182 Value fpop() { return check(floatTag , _stack.pop()); }
duke@435 183 Value apop() { return check(objectTag , _stack.pop()); }
duke@435 184 Value rpop() { return check(addressTag, _stack.pop()); }
duke@435 185 #ifdef ASSERT
duke@435 186 // in debug mode, check for HiWord consistency
duke@435 187 Value lpop() { Value h = _stack.pop(); return check(longTag , _stack.pop(), h); }
duke@435 188 Value dpop() { Value h = _stack.pop(); return check(doubleTag, _stack.pop(), h); }
duke@435 189 #else
duke@435 190 // in optimized mode, ignore HiWord since it is NULL
duke@435 191 Value lpop() { _stack.pop(); return check(longTag , _stack.pop()); }
duke@435 192 Value dpop() { _stack.pop(); return check(doubleTag, _stack.pop()); }
duke@435 193 #endif // ASSERT
duke@435 194
duke@435 195 Value pop(ValueType* type) {
duke@435 196 switch (type->tag()) {
duke@435 197 case intTag : return ipop();
duke@435 198 case longTag : return lpop();
duke@435 199 case floatTag : return fpop();
duke@435 200 case doubleTag : return dpop();
duke@435 201 case objectTag : return apop();
duke@435 202 case addressTag: return rpop();
duke@435 203 }
duke@435 204 ShouldNotReachHere();
duke@435 205 return NULL;
duke@435 206 }
duke@435 207
duke@435 208 Values* pop_arguments(int argument_size);
duke@435 209
duke@435 210 // locks access
duke@435 211 int lock (IRScope* scope, Value obj);
duke@435 212 int unlock();
duke@435 213 Value lock_at(int i) const { return _locks.at(i); }
duke@435 214
duke@435 215 // Inlining support
duke@435 216 ValueStack* push_scope(IRScope* scope); // "Push" new scope, returning new resulting stack
duke@435 217 // Preserves stack and locks, destroys locals
duke@435 218 ValueStack* pop_scope(); // "Pop" topmost scope, returning new resulting stack
duke@435 219 // Preserves stack and locks, destroys locals
duke@435 220
duke@435 221 // SSA form IR support
duke@435 222 void setup_phi_for_stack(BlockBegin* b, int index);
duke@435 223 void setup_phi_for_local(BlockBegin* b, int index);
duke@435 224
duke@435 225 // debugging
duke@435 226 void print() PRODUCT_RETURN;
duke@435 227 void verify() PRODUCT_RETURN;
duke@435 228 };
duke@435 229
duke@435 230
duke@435 231
duke@435 232 // Macro definitions for simple iteration of stack and local values of a ValueStack
duke@435 233 // The macros can be used like a for-loop. All variables (state, index and value)
duke@435 234 // must be defined before the loop.
duke@435 235 // When states are nested because of inlining, the stack of the innermost state
duke@435 236 // cumulates also the stack of the nested states. In contrast, the locals of all
duke@435 237 // states must be iterated each.
duke@435 238 // Use the following code pattern to iterate all stack values and all nested local values:
duke@435 239 //
duke@435 240 // ValueStack* state = ... // state that is iterated
duke@435 241 // int index; // current loop index (overwritten in loop)
duke@435 242 // Value value; // value at current loop index (overwritten in loop)
duke@435 243 //
duke@435 244 // for_each_stack_value(state, index, value {
duke@435 245 // do something with value and index
duke@435 246 // }
duke@435 247 //
duke@435 248 // for_each_state(state) {
duke@435 249 // for_each_local_value(state, index, value) {
duke@435 250 // do something with value and index
duke@435 251 // }
duke@435 252 // }
duke@435 253 // as an invariant, state is NULL now
duke@435 254
duke@435 255
duke@435 256 // construct a unique variable name with the line number where the macro is used
duke@435 257 #define temp_var3(x) temp__ ## x
duke@435 258 #define temp_var2(x) temp_var3(x)
duke@435 259 #define temp_var temp_var2(__LINE__)
duke@435 260
duke@435 261 #define for_each_state(state) \
duke@435 262 for (; state != NULL; state = state->caller_state())
duke@435 263
duke@435 264 #define for_each_local_value(state, index, value) \
duke@435 265 int temp_var = state->locals_size(); \
duke@435 266 for (index = 0; \
duke@435 267 index < temp_var && (value = state->local_at(index), true); \
duke@435 268 index += (value == NULL || value->type()->is_illegal() ? 1 : value->type()->size())) \
duke@435 269 if (value != NULL)
duke@435 270
duke@435 271
duke@435 272 #define for_each_stack_value(state, index, value) \
duke@435 273 int temp_var = state->stack_size(); \
duke@435 274 for (index = 0; \
duke@435 275 index < temp_var && (value = state->stack_at(index), true); \
duke@435 276 index += value->type()->size())
duke@435 277
duke@435 278
duke@435 279 #define for_each_lock_value(state, index, value) \
duke@435 280 int temp_var = state->locks_size(); \
duke@435 281 for (index = 0; \
duke@435 282 index < temp_var && (value = state->lock_at(index), true); \
duke@435 283 index++) \
duke@435 284 if (value != NULL)
duke@435 285
duke@435 286
duke@435 287 // Macro definition for simple iteration of all state values of a ValueStack
duke@435 288 // Because the code cannot be executed in a single loop, the code must be passed
duke@435 289 // as a macro parameter.
duke@435 290 // Use the following code pattern to iterate all stack values and all nested local values:
duke@435 291 //
duke@435 292 // ValueStack* state = ... // state that is iterated
duke@435 293 // for_each_state_value(state, value,
duke@435 294 // do something with value (note that this is a macro parameter)
duke@435 295 // );
duke@435 296
duke@435 297 #define for_each_state_value(v_state, v_value, v_code) \
duke@435 298 { \
duke@435 299 int cur_index; \
duke@435 300 ValueStack* cur_state = v_state; \
duke@435 301 Value v_value; \
duke@435 302 { \
duke@435 303 for_each_stack_value(cur_state, cur_index, v_value) { \
duke@435 304 v_code; \
duke@435 305 } \
duke@435 306 } \
duke@435 307 for_each_state(cur_state) { \
duke@435 308 for_each_local_value(cur_state, cur_index, v_value) { \
duke@435 309 v_code; \
duke@435 310 } \
duke@435 311 } \
duke@435 312 }
duke@435 313
duke@435 314
duke@435 315 // Macro definition for simple iteration of all phif functions of a block, i.e all
duke@435 316 // phi functions of the ValueStack where the block matches.
duke@435 317 // Use the following code pattern to iterate all phi functions of a block:
duke@435 318 //
duke@435 319 // BlockBegin* block = ... // block that is iterated
duke@435 320 // for_each_phi_function(block, phi,
duke@435 321 // do something with the phi function phi (note that this is a macro parameter)
duke@435 322 // );
duke@435 323
duke@435 324 #define for_each_phi_fun(v_block, v_phi, v_code) \
duke@435 325 { \
duke@435 326 int cur_index; \
duke@435 327 ValueStack* cur_state = v_block->state(); \
duke@435 328 Value value; \
duke@435 329 { \
duke@435 330 for_each_stack_value(cur_state, cur_index, value) { \
duke@435 331 Phi* v_phi = value->as_Phi(); \
duke@435 332 if (v_phi != NULL && v_phi->block() == v_block) { \
duke@435 333 v_code; \
duke@435 334 } \
duke@435 335 } \
duke@435 336 } \
duke@435 337 { \
duke@435 338 for_each_local_value(cur_state, cur_index, value) { \
duke@435 339 Phi* v_phi = value->as_Phi(); \
duke@435 340 if (v_phi != NULL && v_phi->block() == v_block) { \
duke@435 341 v_code; \
duke@435 342 } \
duke@435 343 } \
duke@435 344 } \
duke@435 345 }

mercurial