src/share/vm/opto/node.cpp

Wed, 24 Oct 2012 14:33:22 -0700

author
kvn
date
Wed, 24 Oct 2012 14:33:22 -0700
changeset 4205
a3ecd773a7b9
parent 4115
e626685e9f6c
child 4315
2aff40cb4703
permissions
-rw-r--r--

7184394: add intrinsics to use AES instructions
Summary: Use new x86 AES instructions for AESCrypt.
Reviewed-by: twisti, kvn, roland
Contributed-by: tom.deneau@amd.com

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "libadt/vectset.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/cfgnode.hpp"
stefank@2314 29 #include "opto/connode.hpp"
stefank@2314 30 #include "opto/machnode.hpp"
stefank@2314 31 #include "opto/matcher.hpp"
stefank@2314 32 #include "opto/node.hpp"
stefank@2314 33 #include "opto/opcodes.hpp"
stefank@2314 34 #include "opto/regmask.hpp"
stefank@2314 35 #include "opto/type.hpp"
stefank@2314 36 #include "utilities/copy.hpp"
duke@435 37
duke@435 38 class RegMask;
duke@435 39 // #include "phase.hpp"
duke@435 40 class PhaseTransform;
duke@435 41 class PhaseGVN;
duke@435 42
duke@435 43 // Arena we are currently building Nodes in
duke@435 44 const uint Node::NotAMachineReg = 0xffff0000;
duke@435 45
duke@435 46 #ifndef PRODUCT
duke@435 47 extern int nodes_created;
duke@435 48 #endif
duke@435 49
duke@435 50 #ifdef ASSERT
duke@435 51
duke@435 52 //-------------------------- construct_node------------------------------------
duke@435 53 // Set a breakpoint here to identify where a particular node index is built.
duke@435 54 void Node::verify_construction() {
duke@435 55 _debug_orig = NULL;
duke@435 56 int old_debug_idx = Compile::debug_idx();
duke@435 57 int new_debug_idx = old_debug_idx+1;
duke@435 58 if (new_debug_idx > 0) {
duke@435 59 // Arrange that the lowest five decimal digits of _debug_idx
duke@435 60 // will repeat thos of _idx. In case this is somehow pathological,
duke@435 61 // we continue to assign negative numbers (!) consecutively.
duke@435 62 const int mod = 100000;
duke@435 63 int bump = (int)(_idx - new_debug_idx) % mod;
duke@435 64 if (bump < 0) bump += mod;
duke@435 65 assert(bump >= 0 && bump < mod, "");
duke@435 66 new_debug_idx += bump;
duke@435 67 }
duke@435 68 Compile::set_debug_idx(new_debug_idx);
duke@435 69 set_debug_idx( new_debug_idx );
duke@435 70 assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
duke@435 71 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
duke@435 72 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
duke@435 73 BREAKPOINT;
duke@435 74 }
duke@435 75 #if OPTO_DU_ITERATOR_ASSERT
duke@435 76 _last_del = NULL;
duke@435 77 _del_tick = 0;
duke@435 78 #endif
duke@435 79 _hash_lock = 0;
duke@435 80 }
duke@435 81
duke@435 82
duke@435 83 // #ifdef ASSERT ...
duke@435 84
duke@435 85 #if OPTO_DU_ITERATOR_ASSERT
duke@435 86 void DUIterator_Common::sample(const Node* node) {
duke@435 87 _vdui = VerifyDUIterators;
duke@435 88 _node = node;
duke@435 89 _outcnt = node->_outcnt;
duke@435 90 _del_tick = node->_del_tick;
duke@435 91 _last = NULL;
duke@435 92 }
duke@435 93
duke@435 94 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
duke@435 95 assert(_node == node, "consistent iterator source");
duke@435 96 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
duke@435 97 }
duke@435 98
duke@435 99 void DUIterator_Common::verify_resync() {
duke@435 100 // Ensure that the loop body has just deleted the last guy produced.
duke@435 101 const Node* node = _node;
duke@435 102 // Ensure that at least one copy of the last-seen edge was deleted.
duke@435 103 // Note: It is OK to delete multiple copies of the last-seen edge.
duke@435 104 // Unfortunately, we have no way to verify that all the deletions delete
duke@435 105 // that same edge. On this point we must use the Honor System.
duke@435 106 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
duke@435 107 assert(node->_last_del == _last, "must have deleted the edge just produced");
duke@435 108 // We liked this deletion, so accept the resulting outcnt and tick.
duke@435 109 _outcnt = node->_outcnt;
duke@435 110 _del_tick = node->_del_tick;
duke@435 111 }
duke@435 112
duke@435 113 void DUIterator_Common::reset(const DUIterator_Common& that) {
duke@435 114 if (this == &that) return; // ignore assignment to self
duke@435 115 if (!_vdui) {
duke@435 116 // We need to initialize everything, overwriting garbage values.
duke@435 117 _last = that._last;
duke@435 118 _vdui = that._vdui;
duke@435 119 }
duke@435 120 // Note: It is legal (though odd) for an iterator over some node x
duke@435 121 // to be reassigned to iterate over another node y. Some doubly-nested
duke@435 122 // progress loops depend on being able to do this.
duke@435 123 const Node* node = that._node;
duke@435 124 // Re-initialize everything, except _last.
duke@435 125 _node = node;
duke@435 126 _outcnt = node->_outcnt;
duke@435 127 _del_tick = node->_del_tick;
duke@435 128 }
duke@435 129
duke@435 130 void DUIterator::sample(const Node* node) {
duke@435 131 DUIterator_Common::sample(node); // Initialize the assertion data.
duke@435 132 _refresh_tick = 0; // No refreshes have happened, as yet.
duke@435 133 }
duke@435 134
duke@435 135 void DUIterator::verify(const Node* node, bool at_end_ok) {
duke@435 136 DUIterator_Common::verify(node, at_end_ok);
duke@435 137 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range");
duke@435 138 }
duke@435 139
duke@435 140 void DUIterator::verify_increment() {
duke@435 141 if (_refresh_tick & 1) {
duke@435 142 // We have refreshed the index during this loop.
duke@435 143 // Fix up _idx to meet asserts.
duke@435 144 if (_idx > _outcnt) _idx = _outcnt;
duke@435 145 }
duke@435 146 verify(_node, true);
duke@435 147 }
duke@435 148
duke@435 149 void DUIterator::verify_resync() {
duke@435 150 // Note: We do not assert on _outcnt, because insertions are OK here.
duke@435 151 DUIterator_Common::verify_resync();
duke@435 152 // Make sure we are still in sync, possibly with no more out-edges:
duke@435 153 verify(_node, true);
duke@435 154 }
duke@435 155
duke@435 156 void DUIterator::reset(const DUIterator& that) {
duke@435 157 if (this == &that) return; // self assignment is always a no-op
duke@435 158 assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
duke@435 159 assert(that._idx == 0, "assign only the result of Node::outs()");
duke@435 160 assert(_idx == that._idx, "already assigned _idx");
duke@435 161 if (!_vdui) {
duke@435 162 // We need to initialize everything, overwriting garbage values.
duke@435 163 sample(that._node);
duke@435 164 } else {
duke@435 165 DUIterator_Common::reset(that);
duke@435 166 if (_refresh_tick & 1) {
duke@435 167 _refresh_tick++; // Clear the "was refreshed" flag.
duke@435 168 }
duke@435 169 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
duke@435 170 }
duke@435 171 }
duke@435 172
duke@435 173 void DUIterator::refresh() {
duke@435 174 DUIterator_Common::sample(_node); // Re-fetch assertion data.
duke@435 175 _refresh_tick |= 1; // Set the "was refreshed" flag.
duke@435 176 }
duke@435 177
duke@435 178 void DUIterator::verify_finish() {
duke@435 179 // If the loop has killed the node, do not require it to re-run.
duke@435 180 if (_node->_outcnt == 0) _refresh_tick &= ~1;
duke@435 181 // If this assert triggers, it means that a loop used refresh_out_pos
duke@435 182 // to re-synch an iteration index, but the loop did not correctly
duke@435 183 // re-run itself, using a "while (progress)" construct.
duke@435 184 // This iterator enforces the rule that you must keep trying the loop
duke@435 185 // until it "runs clean" without any need for refreshing.
duke@435 186 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
duke@435 187 }
duke@435 188
duke@435 189
duke@435 190 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
duke@435 191 DUIterator_Common::verify(node, at_end_ok);
duke@435 192 Node** out = node->_out;
duke@435 193 uint cnt = node->_outcnt;
duke@435 194 assert(cnt == _outcnt, "no insertions allowed");
duke@435 195 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
duke@435 196 // This last check is carefully designed to work for NO_OUT_ARRAY.
duke@435 197 }
duke@435 198
duke@435 199 void DUIterator_Fast::verify_limit() {
duke@435 200 const Node* node = _node;
duke@435 201 verify(node, true);
duke@435 202 assert(_outp == node->_out + node->_outcnt, "limit still correct");
duke@435 203 }
duke@435 204
duke@435 205 void DUIterator_Fast::verify_resync() {
duke@435 206 const Node* node = _node;
duke@435 207 if (_outp == node->_out + _outcnt) {
duke@435 208 // Note that the limit imax, not the pointer i, gets updated with the
duke@435 209 // exact count of deletions. (For the pointer it's always "--i".)
duke@435 210 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
duke@435 211 // This is a limit pointer, with a name like "imax".
duke@435 212 // Fudge the _last field so that the common assert will be happy.
duke@435 213 _last = (Node*) node->_last_del;
duke@435 214 DUIterator_Common::verify_resync();
duke@435 215 } else {
duke@435 216 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
duke@435 217 // A normal internal pointer.
duke@435 218 DUIterator_Common::verify_resync();
duke@435 219 // Make sure we are still in sync, possibly with no more out-edges:
duke@435 220 verify(node, true);
duke@435 221 }
duke@435 222 }
duke@435 223
duke@435 224 void DUIterator_Fast::verify_relimit(uint n) {
duke@435 225 const Node* node = _node;
duke@435 226 assert((int)n > 0, "use imax -= n only with a positive count");
duke@435 227 // This must be a limit pointer, with a name like "imax".
duke@435 228 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
duke@435 229 // The reported number of deletions must match what the node saw.
duke@435 230 assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
duke@435 231 // Fudge the _last field so that the common assert will be happy.
duke@435 232 _last = (Node*) node->_last_del;
duke@435 233 DUIterator_Common::verify_resync();
duke@435 234 }
duke@435 235
duke@435 236 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
duke@435 237 assert(_outp == that._outp, "already assigned _outp");
duke@435 238 DUIterator_Common::reset(that);
duke@435 239 }
duke@435 240
duke@435 241 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
duke@435 242 // at_end_ok means the _outp is allowed to underflow by 1
duke@435 243 _outp += at_end_ok;
duke@435 244 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc.
duke@435 245 _outp -= at_end_ok;
duke@435 246 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
duke@435 247 }
duke@435 248
duke@435 249 void DUIterator_Last::verify_limit() {
duke@435 250 // Do not require the limit address to be resynched.
duke@435 251 //verify(node, true);
duke@435 252 assert(_outp == _node->_out, "limit still correct");
duke@435 253 }
duke@435 254
duke@435 255 void DUIterator_Last::verify_step(uint num_edges) {
duke@435 256 assert((int)num_edges > 0, "need non-zero edge count for loop progress");
duke@435 257 _outcnt -= num_edges;
duke@435 258 _del_tick += num_edges;
duke@435 259 // Make sure we are still in sync, possibly with no more out-edges:
duke@435 260 const Node* node = _node;
duke@435 261 verify(node, true);
duke@435 262 assert(node->_last_del == _last, "must have deleted the edge just produced");
duke@435 263 }
duke@435 264
duke@435 265 #endif //OPTO_DU_ITERATOR_ASSERT
duke@435 266
duke@435 267
duke@435 268 #endif //ASSERT
duke@435 269
duke@435 270
duke@435 271 // This constant used to initialize _out may be any non-null value.
duke@435 272 // The value NULL is reserved for the top node only.
duke@435 273 #define NO_OUT_ARRAY ((Node**)-1)
duke@435 274
duke@435 275 // This funny expression handshakes with Node::operator new
duke@435 276 // to pull Compile::current out of the new node's _out field,
duke@435 277 // and then calls a subroutine which manages most field
duke@435 278 // initializations. The only one which is tricky is the
duke@435 279 // _idx field, which is const, and so must be initialized
duke@435 280 // by a return value, not an assignment.
duke@435 281 //
duke@435 282 // (Aren't you thankful that Java finals don't require so many tricks?)
duke@435 283 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
duke@435 284 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
duke@435 285 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 286 #endif
duke@435 287
duke@435 288 // Out-of-line code from node constructors.
duke@435 289 // Executed only when extra debug info. is being passed around.
duke@435 290 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
duke@435 291 C->set_node_notes_at(idx, nn);
duke@435 292 }
duke@435 293
duke@435 294 // Shared initialization code.
duke@435 295 inline int Node::Init(int req, Compile* C) {
duke@435 296 assert(Compile::current() == C, "must use operator new(Compile*)");
duke@435 297 int idx = C->next_unique();
duke@435 298
kvn@4115 299 // Allocate memory for the necessary number of edges.
kvn@4115 300 if (req > 0) {
kvn@4115 301 // Allocate space for _in array to have double alignment.
kvn@4115 302 _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
kvn@4115 303 #ifdef ASSERT
kvn@4115 304 _in[req-1] = this; // magic cookie for assertion check
kvn@4115 305 #endif
kvn@4115 306 }
duke@435 307 // If there are default notes floating around, capture them:
duke@435 308 Node_Notes* nn = C->default_node_notes();
duke@435 309 if (nn != NULL) init_node_notes(C, idx, nn);
duke@435 310
duke@435 311 // Note: At this point, C is dead,
duke@435 312 // and we begin to initialize the new Node.
duke@435 313
duke@435 314 _cnt = _max = req;
duke@435 315 _outcnt = _outmax = 0;
duke@435 316 _class_id = Class_Node;
duke@435 317 _flags = 0;
duke@435 318 _out = NO_OUT_ARRAY;
duke@435 319 return idx;
duke@435 320 }
duke@435 321
duke@435 322 //------------------------------Node-------------------------------------------
duke@435 323 // Create a Node, with a given number of required edges.
duke@435 324 Node::Node(uint req)
duke@435 325 : _idx(IDX_INIT(req))
duke@435 326 {
duke@435 327 assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
duke@435 328 debug_only( verify_construction() );
duke@435 329 NOT_PRODUCT(nodes_created++);
duke@435 330 if (req == 0) {
duke@435 331 assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
duke@435 332 _in = NULL;
duke@435 333 } else {
duke@435 334 assert( _in[req-1] == this, "Must pass arg count to 'new'" );
duke@435 335 Node** to = _in;
duke@435 336 for(uint i = 0; i < req; i++) {
duke@435 337 to[i] = NULL;
duke@435 338 }
duke@435 339 }
duke@435 340 }
duke@435 341
duke@435 342 //------------------------------Node-------------------------------------------
duke@435 343 Node::Node(Node *n0)
duke@435 344 : _idx(IDX_INIT(1))
duke@435 345 {
duke@435 346 debug_only( verify_construction() );
duke@435 347 NOT_PRODUCT(nodes_created++);
duke@435 348 // Assert we allocated space for input array already
duke@435 349 assert( _in[0] == this, "Must pass arg count to 'new'" );
duke@435 350 assert( is_not_dead(n0), "can not use dead node");
duke@435 351 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 352 }
duke@435 353
duke@435 354 //------------------------------Node-------------------------------------------
duke@435 355 Node::Node(Node *n0, Node *n1)
duke@435 356 : _idx(IDX_INIT(2))
duke@435 357 {
duke@435 358 debug_only( verify_construction() );
duke@435 359 NOT_PRODUCT(nodes_created++);
duke@435 360 // Assert we allocated space for input array already
duke@435 361 assert( _in[1] == this, "Must pass arg count to 'new'" );
duke@435 362 assert( is_not_dead(n0), "can not use dead node");
duke@435 363 assert( is_not_dead(n1), "can not use dead node");
duke@435 364 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 365 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 366 }
duke@435 367
duke@435 368 //------------------------------Node-------------------------------------------
duke@435 369 Node::Node(Node *n0, Node *n1, Node *n2)
duke@435 370 : _idx(IDX_INIT(3))
duke@435 371 {
duke@435 372 debug_only( verify_construction() );
duke@435 373 NOT_PRODUCT(nodes_created++);
duke@435 374 // Assert we allocated space for input array already
duke@435 375 assert( _in[2] == this, "Must pass arg count to 'new'" );
duke@435 376 assert( is_not_dead(n0), "can not use dead node");
duke@435 377 assert( is_not_dead(n1), "can not use dead node");
duke@435 378 assert( is_not_dead(n2), "can not use dead node");
duke@435 379 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 380 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 381 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 382 }
duke@435 383
duke@435 384 //------------------------------Node-------------------------------------------
duke@435 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
duke@435 386 : _idx(IDX_INIT(4))
duke@435 387 {
duke@435 388 debug_only( verify_construction() );
duke@435 389 NOT_PRODUCT(nodes_created++);
duke@435 390 // Assert we allocated space for input array already
duke@435 391 assert( _in[3] == this, "Must pass arg count to 'new'" );
duke@435 392 assert( is_not_dead(n0), "can not use dead node");
duke@435 393 assert( is_not_dead(n1), "can not use dead node");
duke@435 394 assert( is_not_dead(n2), "can not use dead node");
duke@435 395 assert( is_not_dead(n3), "can not use dead node");
duke@435 396 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 397 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 398 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 399 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 400 }
duke@435 401
duke@435 402 //------------------------------Node-------------------------------------------
duke@435 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
duke@435 404 : _idx(IDX_INIT(5))
duke@435 405 {
duke@435 406 debug_only( verify_construction() );
duke@435 407 NOT_PRODUCT(nodes_created++);
duke@435 408 // Assert we allocated space for input array already
duke@435 409 assert( _in[4] == this, "Must pass arg count to 'new'" );
duke@435 410 assert( is_not_dead(n0), "can not use dead node");
duke@435 411 assert( is_not_dead(n1), "can not use dead node");
duke@435 412 assert( is_not_dead(n2), "can not use dead node");
duke@435 413 assert( is_not_dead(n3), "can not use dead node");
duke@435 414 assert( is_not_dead(n4), "can not use dead node");
duke@435 415 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 416 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 417 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 418 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 419 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@435 420 }
duke@435 421
duke@435 422 //------------------------------Node-------------------------------------------
duke@435 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
duke@435 424 Node *n4, Node *n5)
duke@435 425 : _idx(IDX_INIT(6))
duke@435 426 {
duke@435 427 debug_only( verify_construction() );
duke@435 428 NOT_PRODUCT(nodes_created++);
duke@435 429 // Assert we allocated space for input array already
duke@435 430 assert( _in[5] == this, "Must pass arg count to 'new'" );
duke@435 431 assert( is_not_dead(n0), "can not use dead node");
duke@435 432 assert( is_not_dead(n1), "can not use dead node");
duke@435 433 assert( is_not_dead(n2), "can not use dead node");
duke@435 434 assert( is_not_dead(n3), "can not use dead node");
duke@435 435 assert( is_not_dead(n4), "can not use dead node");
duke@435 436 assert( is_not_dead(n5), "can not use dead node");
duke@435 437 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 438 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 439 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 440 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 441 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@435 442 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
duke@435 443 }
duke@435 444
duke@435 445 //------------------------------Node-------------------------------------------
duke@435 446 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
duke@435 447 Node *n4, Node *n5, Node *n6)
duke@435 448 : _idx(IDX_INIT(7))
duke@435 449 {
duke@435 450 debug_only( verify_construction() );
duke@435 451 NOT_PRODUCT(nodes_created++);
duke@435 452 // Assert we allocated space for input array already
duke@435 453 assert( _in[6] == this, "Must pass arg count to 'new'" );
duke@435 454 assert( is_not_dead(n0), "can not use dead node");
duke@435 455 assert( is_not_dead(n1), "can not use dead node");
duke@435 456 assert( is_not_dead(n2), "can not use dead node");
duke@435 457 assert( is_not_dead(n3), "can not use dead node");
duke@435 458 assert( is_not_dead(n4), "can not use dead node");
duke@435 459 assert( is_not_dead(n5), "can not use dead node");
duke@435 460 assert( is_not_dead(n6), "can not use dead node");
duke@435 461 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 462 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 463 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 464 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 465 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@435 466 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
duke@435 467 _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
duke@435 468 }
duke@435 469
duke@435 470
duke@435 471 //------------------------------clone------------------------------------------
duke@435 472 // Clone a Node.
duke@435 473 Node *Node::clone() const {
duke@435 474 Compile *compile = Compile::current();
duke@435 475 uint s = size_of(); // Size of inherited Node
duke@435 476 Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
duke@435 477 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
duke@435 478 // Set the new input pointer array
duke@435 479 n->_in = (Node**)(((char*)n)+s);
duke@435 480 // Cannot share the old output pointer array, so kill it
duke@435 481 n->_out = NO_OUT_ARRAY;
duke@435 482 // And reset the counters to 0
duke@435 483 n->_outcnt = 0;
duke@435 484 n->_outmax = 0;
duke@435 485 // Unlock this guy, since he is not in any hash table.
duke@435 486 debug_only(n->_hash_lock = 0);
duke@435 487 // Walk the old node's input list to duplicate its edges
duke@435 488 uint i;
duke@435 489 for( i = 0; i < len(); i++ ) {
duke@435 490 Node *x = in(i);
duke@435 491 n->_in[i] = x;
duke@435 492 if (x != NULL) x->add_out(n);
duke@435 493 }
duke@435 494 if (is_macro())
duke@435 495 compile->add_macro_node(n);
duke@435 496
duke@435 497 n->set_idx(compile->next_unique()); // Get new unique index as well
duke@435 498 debug_only( n->verify_construction() );
duke@435 499 NOT_PRODUCT(nodes_created++);
duke@435 500 // Do not patch over the debug_idx of a clone, because it makes it
duke@435 501 // impossible to break on the clone's moment of creation.
duke@435 502 //debug_only( n->set_debug_idx( debug_idx() ) );
duke@435 503
duke@435 504 compile->copy_node_notes_to(n, (Node*) this);
duke@435 505
duke@435 506 // MachNode clone
duke@435 507 uint nopnds;
duke@435 508 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
duke@435 509 MachNode *mach = n->as_Mach();
duke@435 510 MachNode *mthis = this->as_Mach();
duke@435 511 // Get address of _opnd_array.
duke@435 512 // It should be the same offset since it is the clone of this node.
duke@435 513 MachOper **from = mthis->_opnds;
duke@435 514 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
duke@435 515 pointer_delta((const void*)from,
duke@435 516 (const void*)(&mthis->_opnds), 1));
duke@435 517 mach->_opnds = to;
duke@435 518 for ( uint i = 0; i < nopnds; ++i ) {
duke@435 519 to[i] = from[i]->clone(compile);
duke@435 520 }
duke@435 521 }
duke@435 522 // cloning CallNode may need to clone JVMState
duke@435 523 if (n->is_Call()) {
duke@435 524 CallNode *call = n->as_Call();
duke@435 525 call->clone_jvms();
duke@435 526 }
duke@435 527 return n; // Return the clone
duke@435 528 }
duke@435 529
duke@435 530 //---------------------------setup_is_top--------------------------------------
duke@435 531 // Call this when changing the top node, to reassert the invariants
duke@435 532 // required by Node::is_top. See Compile::set_cached_top_node.
duke@435 533 void Node::setup_is_top() {
duke@435 534 if (this == (Node*)Compile::current()->top()) {
duke@435 535 // This node has just become top. Kill its out array.
duke@435 536 _outcnt = _outmax = 0;
duke@435 537 _out = NULL; // marker value for top
duke@435 538 assert(is_top(), "must be top");
duke@435 539 } else {
duke@435 540 if (_out == NULL) _out = NO_OUT_ARRAY;
duke@435 541 assert(!is_top(), "must not be top");
duke@435 542 }
duke@435 543 }
duke@435 544
duke@435 545
duke@435 546 //------------------------------~Node------------------------------------------
duke@435 547 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
duke@435 548 extern int reclaim_idx ;
duke@435 549 extern int reclaim_in ;
duke@435 550 extern int reclaim_node;
duke@435 551 void Node::destruct() {
duke@435 552 // Eagerly reclaim unique Node numberings
duke@435 553 Compile* compile = Compile::current();
duke@435 554 if ((uint)_idx+1 == compile->unique()) {
duke@435 555 compile->set_unique(compile->unique()-1);
duke@435 556 #ifdef ASSERT
duke@435 557 reclaim_idx++;
duke@435 558 #endif
duke@435 559 }
duke@435 560 // Clear debug info:
duke@435 561 Node_Notes* nn = compile->node_notes_at(_idx);
duke@435 562 if (nn != NULL) nn->clear();
duke@435 563 // Walk the input array, freeing the corresponding output edges
duke@435 564 _cnt = _max; // forget req/prec distinction
duke@435 565 uint i;
duke@435 566 for( i = 0; i < _max; i++ ) {
duke@435 567 set_req(i, NULL);
duke@435 568 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
duke@435 569 }
duke@435 570 assert(outcnt() == 0, "deleting a node must not leave a dangling use");
duke@435 571 // See if the input array was allocated just prior to the object
duke@435 572 int edge_size = _max*sizeof(void*);
duke@435 573 int out_edge_size = _outmax*sizeof(void*);
duke@435 574 char *edge_end = ((char*)_in) + edge_size;
duke@435 575 char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
duke@435 576 char *out_edge_end = out_array + out_edge_size;
duke@435 577 int node_size = size_of();
duke@435 578
duke@435 579 // Free the output edge array
duke@435 580 if (out_edge_size > 0) {
duke@435 581 #ifdef ASSERT
duke@435 582 if( out_edge_end == compile->node_arena()->hwm() )
duke@435 583 reclaim_in += out_edge_size; // count reclaimed out edges with in edges
duke@435 584 #endif
duke@435 585 compile->node_arena()->Afree(out_array, out_edge_size);
duke@435 586 }
duke@435 587
duke@435 588 // Free the input edge array and the node itself
duke@435 589 if( edge_end == (char*)this ) {
duke@435 590 #ifdef ASSERT
duke@435 591 if( edge_end+node_size == compile->node_arena()->hwm() ) {
duke@435 592 reclaim_in += edge_size;
duke@435 593 reclaim_node+= node_size;
duke@435 594 }
duke@435 595 #else
duke@435 596 // It was; free the input array and object all in one hit
duke@435 597 compile->node_arena()->Afree(_in,edge_size+node_size);
duke@435 598 #endif
duke@435 599 } else {
duke@435 600
duke@435 601 // Free just the input array
duke@435 602 #ifdef ASSERT
duke@435 603 if( edge_end == compile->node_arena()->hwm() )
duke@435 604 reclaim_in += edge_size;
duke@435 605 #endif
duke@435 606 compile->node_arena()->Afree(_in,edge_size);
duke@435 607
duke@435 608 // Free just the object
duke@435 609 #ifdef ASSERT
duke@435 610 if( ((char*)this) + node_size == compile->node_arena()->hwm() )
duke@435 611 reclaim_node+= node_size;
duke@435 612 #else
duke@435 613 compile->node_arena()->Afree(this,node_size);
duke@435 614 #endif
duke@435 615 }
duke@435 616 if (is_macro()) {
duke@435 617 compile->remove_macro_node(this);
duke@435 618 }
duke@435 619 #ifdef ASSERT
duke@435 620 // We will not actually delete the storage, but we'll make the node unusable.
duke@435 621 *(address*)this = badAddress; // smash the C++ vtbl, probably
duke@435 622 _in = _out = (Node**) badAddress;
duke@435 623 _max = _cnt = _outmax = _outcnt = 0;
duke@435 624 #endif
duke@435 625 }
duke@435 626
duke@435 627 //------------------------------grow-------------------------------------------
duke@435 628 // Grow the input array, making space for more edges
duke@435 629 void Node::grow( uint len ) {
duke@435 630 Arena* arena = Compile::current()->node_arena();
duke@435 631 uint new_max = _max;
duke@435 632 if( new_max == 0 ) {
duke@435 633 _max = 4;
duke@435 634 _in = (Node**)arena->Amalloc(4*sizeof(Node*));
duke@435 635 Node** to = _in;
duke@435 636 to[0] = NULL;
duke@435 637 to[1] = NULL;
duke@435 638 to[2] = NULL;
duke@435 639 to[3] = NULL;
duke@435 640 return;
duke@435 641 }
duke@435 642 while( new_max <= len ) new_max <<= 1; // Find next power-of-2
duke@435 643 // Trimming to limit allows a uint8 to handle up to 255 edges.
duke@435 644 // Previously I was using only powers-of-2 which peaked at 128 edges.
duke@435 645 //if( new_max >= limit ) new_max = limit-1;
duke@435 646 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
duke@435 647 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
duke@435 648 _max = new_max; // Record new max length
duke@435 649 // This assertion makes sure that Node::_max is wide enough to
duke@435 650 // represent the numerical value of new_max.
duke@435 651 assert(_max == new_max && _max > len, "int width of _max is too small");
duke@435 652 }
duke@435 653
duke@435 654 //-----------------------------out_grow----------------------------------------
duke@435 655 // Grow the input array, making space for more edges
duke@435 656 void Node::out_grow( uint len ) {
duke@435 657 assert(!is_top(), "cannot grow a top node's out array");
duke@435 658 Arena* arena = Compile::current()->node_arena();
duke@435 659 uint new_max = _outmax;
duke@435 660 if( new_max == 0 ) {
duke@435 661 _outmax = 4;
duke@435 662 _out = (Node **)arena->Amalloc(4*sizeof(Node*));
duke@435 663 return;
duke@435 664 }
duke@435 665 while( new_max <= len ) new_max <<= 1; // Find next power-of-2
duke@435 666 // Trimming to limit allows a uint8 to handle up to 255 edges.
duke@435 667 // Previously I was using only powers-of-2 which peaked at 128 edges.
duke@435 668 //if( new_max >= limit ) new_max = limit-1;
duke@435 669 assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
duke@435 670 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
duke@435 671 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
duke@435 672 _outmax = new_max; // Record new max length
duke@435 673 // This assertion makes sure that Node::_max is wide enough to
duke@435 674 // represent the numerical value of new_max.
duke@435 675 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
duke@435 676 }
duke@435 677
duke@435 678 #ifdef ASSERT
duke@435 679 //------------------------------is_dead----------------------------------------
duke@435 680 bool Node::is_dead() const {
duke@435 681 // Mach and pinch point nodes may look like dead.
duke@435 682 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
duke@435 683 return false;
duke@435 684 for( uint i = 0; i < _max; i++ )
duke@435 685 if( _in[i] != NULL )
duke@435 686 return false;
duke@435 687 dump();
duke@435 688 return true;
duke@435 689 }
duke@435 690 #endif
duke@435 691
duke@435 692 //------------------------------add_req----------------------------------------
duke@435 693 // Add a new required input at the end
duke@435 694 void Node::add_req( Node *n ) {
duke@435 695 assert( is_not_dead(n), "can not use dead node");
duke@435 696
duke@435 697 // Look to see if I can move precedence down one without reallocating
duke@435 698 if( (_cnt >= _max) || (in(_max-1) != NULL) )
duke@435 699 grow( _max+1 );
duke@435 700
duke@435 701 // Find a precedence edge to move
duke@435 702 if( in(_cnt) != NULL ) { // Next precedence edge is busy?
duke@435 703 uint i;
duke@435 704 for( i=_cnt; i<_max; i++ )
duke@435 705 if( in(i) == NULL ) // Find the NULL at end of prec edge list
duke@435 706 break; // There must be one, since we grew the array
duke@435 707 _in[i] = in(_cnt); // Move prec over, making space for req edge
duke@435 708 }
duke@435 709 _in[_cnt++] = n; // Stuff over old prec edge
duke@435 710 if (n != NULL) n->add_out((Node *)this);
duke@435 711 }
duke@435 712
duke@435 713 //---------------------------add_req_batch-------------------------------------
duke@435 714 // Add a new required input at the end
duke@435 715 void Node::add_req_batch( Node *n, uint m ) {
duke@435 716 assert( is_not_dead(n), "can not use dead node");
duke@435 717 // check various edge cases
duke@435 718 if ((int)m <= 1) {
duke@435 719 assert((int)m >= 0, "oob");
duke@435 720 if (m != 0) add_req(n);
duke@435 721 return;
duke@435 722 }
duke@435 723
duke@435 724 // Look to see if I can move precedence down one without reallocating
duke@435 725 if( (_cnt+m) > _max || _in[_max-m] )
duke@435 726 grow( _max+m );
duke@435 727
duke@435 728 // Find a precedence edge to move
duke@435 729 if( _in[_cnt] != NULL ) { // Next precedence edge is busy?
duke@435 730 uint i;
duke@435 731 for( i=_cnt; i<_max; i++ )
duke@435 732 if( _in[i] == NULL ) // Find the NULL at end of prec edge list
duke@435 733 break; // There must be one, since we grew the array
duke@435 734 // Slide all the precs over by m positions (assume #prec << m).
duke@435 735 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
duke@435 736 }
duke@435 737
duke@435 738 // Stuff over the old prec edges
duke@435 739 for(uint i=0; i<m; i++ ) {
duke@435 740 _in[_cnt++] = n;
duke@435 741 }
duke@435 742
duke@435 743 // Insert multiple out edges on the node.
duke@435 744 if (n != NULL && !n->is_top()) {
duke@435 745 for(uint i=0; i<m; i++ ) {
duke@435 746 n->add_out((Node *)this);
duke@435 747 }
duke@435 748 }
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------del_req----------------------------------------
duke@435 752 // Delete the required edge and compact the edge array
duke@435 753 void Node::del_req( uint idx ) {
kvn@2561 754 assert( idx < _cnt, "oob");
kvn@2561 755 assert( !VerifyHashTableKeys || _hash_lock == 0,
kvn@2561 756 "remove node from hash table before modifying it");
duke@435 757 // First remove corresponding def-use edge
duke@435 758 Node *n = in(idx);
duke@435 759 if (n != NULL) n->del_out((Node *)this);
duke@435 760 _in[idx] = in(--_cnt); // Compact the array
duke@435 761 _in[_cnt] = NULL; // NULL out emptied slot
duke@435 762 }
duke@435 763
duke@435 764 //------------------------------ins_req----------------------------------------
duke@435 765 // Insert a new required input at the end
duke@435 766 void Node::ins_req( uint idx, Node *n ) {
duke@435 767 assert( is_not_dead(n), "can not use dead node");
duke@435 768 add_req(NULL); // Make space
duke@435 769 assert( idx < _max, "Must have allocated enough space");
duke@435 770 // Slide over
duke@435 771 if(_cnt-idx-1 > 0) {
duke@435 772 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
duke@435 773 }
duke@435 774 _in[idx] = n; // Stuff over old required edge
duke@435 775 if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
duke@435 776 }
duke@435 777
duke@435 778 //-----------------------------find_edge---------------------------------------
duke@435 779 int Node::find_edge(Node* n) {
duke@435 780 for (uint i = 0; i < len(); i++) {
duke@435 781 if (_in[i] == n) return i;
duke@435 782 }
duke@435 783 return -1;
duke@435 784 }
duke@435 785
duke@435 786 //----------------------------replace_edge-------------------------------------
duke@435 787 int Node::replace_edge(Node* old, Node* neww) {
duke@435 788 if (old == neww) return 0; // nothing to do
duke@435 789 uint nrep = 0;
duke@435 790 for (uint i = 0; i < len(); i++) {
duke@435 791 if (in(i) == old) {
duke@435 792 if (i < req())
duke@435 793 set_req(i, neww);
duke@435 794 else
duke@435 795 set_prec(i, neww);
duke@435 796 nrep++;
duke@435 797 }
duke@435 798 }
duke@435 799 return nrep;
duke@435 800 }
duke@435 801
duke@435 802 //-------------------------disconnect_inputs-----------------------------------
duke@435 803 // NULL out all inputs to eliminate incoming Def-Use edges.
duke@435 804 // Return the number of edges between 'n' and 'this'
duke@435 805 int Node::disconnect_inputs(Node *n) {
duke@435 806 int edges_to_n = 0;
duke@435 807
duke@435 808 uint cnt = req();
duke@435 809 for( uint i = 0; i < cnt; ++i ) {
duke@435 810 if( in(i) == 0 ) continue;
duke@435 811 if( in(i) == n ) ++edges_to_n;
duke@435 812 set_req(i, NULL);
duke@435 813 }
duke@435 814 // Remove precedence edges if any exist
duke@435 815 // Note: Safepoints may have precedence edges, even during parsing
duke@435 816 if( (req() != len()) && (in(req()) != NULL) ) {
duke@435 817 uint max = len();
duke@435 818 for( uint i = 0; i < max; ++i ) {
duke@435 819 if( in(i) == 0 ) continue;
duke@435 820 if( in(i) == n ) ++edges_to_n;
duke@435 821 set_prec(i, NULL);
duke@435 822 }
duke@435 823 }
duke@435 824
duke@435 825 // Node::destruct requires all out edges be deleted first
duke@435 826 // debug_only(destruct();) // no reuse benefit expected
duke@435 827 return edges_to_n;
duke@435 828 }
duke@435 829
duke@435 830 //-----------------------------uncast---------------------------------------
duke@435 831 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
duke@435 832 // Strip away casting. (It is depth-limited.)
duke@435 833 Node* Node::uncast() const {
duke@435 834 // Should be inline:
duke@435 835 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
kvn@500 836 if (is_ConstraintCast() || is_CheckCastPP())
duke@435 837 return uncast_helper(this);
duke@435 838 else
duke@435 839 return (Node*) this;
duke@435 840 }
duke@435 841
duke@435 842 //---------------------------uncast_helper-------------------------------------
duke@435 843 Node* Node::uncast_helper(const Node* p) {
kvn@3407 844 #ifdef ASSERT
kvn@3407 845 uint depth_count = 0;
kvn@3407 846 const Node* orig_p = p;
kvn@3407 847 #endif
kvn@3407 848
kvn@3407 849 while (true) {
kvn@3407 850 #ifdef ASSERT
kvn@3407 851 if (depth_count >= K) {
kvn@3407 852 orig_p->dump(4);
kvn@3407 853 if (p != orig_p)
kvn@3407 854 p->dump(1);
kvn@3407 855 }
kvn@3407 856 assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
kvn@3407 857 #endif
duke@435 858 if (p == NULL || p->req() != 2) {
duke@435 859 break;
duke@435 860 } else if (p->is_ConstraintCast()) {
duke@435 861 p = p->in(1);
kvn@500 862 } else if (p->is_CheckCastPP()) {
duke@435 863 p = p->in(1);
duke@435 864 } else {
duke@435 865 break;
duke@435 866 }
duke@435 867 }
duke@435 868 return (Node*) p;
duke@435 869 }
duke@435 870
duke@435 871 //------------------------------add_prec---------------------------------------
duke@435 872 // Add a new precedence input. Precedence inputs are unordered, with
duke@435 873 // duplicates removed and NULLs packed down at the end.
duke@435 874 void Node::add_prec( Node *n ) {
duke@435 875 assert( is_not_dead(n), "can not use dead node");
duke@435 876
duke@435 877 // Check for NULL at end
duke@435 878 if( _cnt >= _max || in(_max-1) )
duke@435 879 grow( _max+1 );
duke@435 880
duke@435 881 // Find a precedence edge to move
duke@435 882 uint i = _cnt;
duke@435 883 while( in(i) != NULL ) i++;
duke@435 884 _in[i] = n; // Stuff prec edge over NULL
duke@435 885 if ( n != NULL) n->add_out((Node *)this); // Add mirror edge
duke@435 886 }
duke@435 887
duke@435 888 //------------------------------rm_prec----------------------------------------
duke@435 889 // Remove a precedence input. Precedence inputs are unordered, with
duke@435 890 // duplicates removed and NULLs packed down at the end.
duke@435 891 void Node::rm_prec( uint j ) {
duke@435 892
duke@435 893 // Find end of precedence list to pack NULLs
duke@435 894 uint i;
duke@435 895 for( i=j; i<_max; i++ )
duke@435 896 if( !_in[i] ) // Find the NULL at end of prec edge list
duke@435 897 break;
duke@435 898 if (_in[j] != NULL) _in[j]->del_out((Node *)this);
duke@435 899 _in[j] = _in[--i]; // Move last element over removed guy
duke@435 900 _in[i] = NULL; // NULL out last element
duke@435 901 }
duke@435 902
duke@435 903 //------------------------------size_of----------------------------------------
duke@435 904 uint Node::size_of() const { return sizeof(*this); }
duke@435 905
duke@435 906 //------------------------------ideal_reg--------------------------------------
duke@435 907 uint Node::ideal_reg() const { return 0; }
duke@435 908
duke@435 909 //------------------------------jvms-------------------------------------------
duke@435 910 JVMState* Node::jvms() const { return NULL; }
duke@435 911
duke@435 912 #ifdef ASSERT
duke@435 913 //------------------------------jvms-------------------------------------------
duke@435 914 bool Node::verify_jvms(const JVMState* using_jvms) const {
duke@435 915 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 916 if (jvms == using_jvms) return true;
duke@435 917 }
duke@435 918 return false;
duke@435 919 }
duke@435 920
duke@435 921 //------------------------------init_NodeProperty------------------------------
duke@435 922 void Node::init_NodeProperty() {
duke@435 923 assert(_max_classes <= max_jushort, "too many NodeProperty classes");
duke@435 924 assert(_max_flags <= max_jushort, "too many NodeProperty flags");
duke@435 925 }
duke@435 926 #endif
duke@435 927
duke@435 928 //------------------------------format-----------------------------------------
duke@435 929 // Print as assembly
duke@435 930 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
duke@435 931 //------------------------------emit-------------------------------------------
duke@435 932 // Emit bytes starting at parameter 'ptr'.
duke@435 933 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
duke@435 934 //------------------------------size-------------------------------------------
duke@435 935 // Size of instruction in bytes
duke@435 936 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
duke@435 937
duke@435 938 //------------------------------CFG Construction-------------------------------
duke@435 939 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
duke@435 940 // Goto and Return.
duke@435 941 const Node *Node::is_block_proj() const { return 0; }
duke@435 942
duke@435 943 // Minimum guaranteed type
duke@435 944 const Type *Node::bottom_type() const { return Type::BOTTOM; }
duke@435 945
duke@435 946
duke@435 947 //------------------------------raise_bottom_type------------------------------
duke@435 948 // Get the worst-case Type output for this Node.
duke@435 949 void Node::raise_bottom_type(const Type* new_type) {
duke@435 950 if (is_Type()) {
duke@435 951 TypeNode *n = this->as_Type();
duke@435 952 if (VerifyAliases) {
duke@435 953 assert(new_type->higher_equal(n->type()), "new type must refine old type");
duke@435 954 }
duke@435 955 n->set_type(new_type);
duke@435 956 } else if (is_Load()) {
duke@435 957 LoadNode *n = this->as_Load();
duke@435 958 if (VerifyAliases) {
duke@435 959 assert(new_type->higher_equal(n->type()), "new type must refine old type");
duke@435 960 }
duke@435 961 n->set_type(new_type);
duke@435 962 }
duke@435 963 }
duke@435 964
duke@435 965 //------------------------------Identity---------------------------------------
duke@435 966 // Return a node that the given node is equivalent to.
duke@435 967 Node *Node::Identity( PhaseTransform * ) {
duke@435 968 return this; // Default to no identities
duke@435 969 }
duke@435 970
duke@435 971 //------------------------------Value------------------------------------------
duke@435 972 // Compute a new Type for a node using the Type of the inputs.
duke@435 973 const Type *Node::Value( PhaseTransform * ) const {
duke@435 974 return bottom_type(); // Default to worst-case Type
duke@435 975 }
duke@435 976
duke@435 977 //------------------------------Ideal------------------------------------------
duke@435 978 //
duke@435 979 // 'Idealize' the graph rooted at this Node.
duke@435 980 //
duke@435 981 // In order to be efficient and flexible there are some subtle invariants
duke@435 982 // these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks
duke@435 983 // these invariants, although its too slow to have on by default. If you are
duke@435 984 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
duke@435 985 //
duke@435 986 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
duke@435 987 // pointer. If ANY change is made, it must return the root of the reshaped
duke@435 988 // graph - even if the root is the same Node. Example: swapping the inputs
duke@435 989 // to an AddINode gives the same answer and same root, but you still have to
duke@435 990 // return the 'this' pointer instead of NULL.
duke@435 991 //
duke@435 992 // You cannot return an OLD Node, except for the 'this' pointer. Use the
duke@435 993 // Identity call to return an old Node; basically if Identity can find
duke@435 994 // another Node have the Ideal call make no change and return NULL.
duke@435 995 // Example: AddINode::Ideal must check for add of zero; in this case it
duke@435 996 // returns NULL instead of doing any graph reshaping.
duke@435 997 //
duke@435 998 // You cannot modify any old Nodes except for the 'this' pointer. Due to
duke@435 999 // sharing there may be other users of the old Nodes relying on their current
duke@435 1000 // semantics. Modifying them will break the other users.
duke@435 1001 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
duke@435 1002 // "X+3" unchanged in case it is shared.
duke@435 1003 //
twisti@1040 1004 // If you modify the 'this' pointer's inputs, you should use
twisti@1040 1005 // 'set_req'. If you are making a new Node (either as the new root or
twisti@1040 1006 // some new internal piece) you may use 'init_req' to set the initial
twisti@1040 1007 // value. You can make a new Node with either 'new' or 'clone'. In
twisti@1040 1008 // either case, def-use info is correctly maintained.
twisti@1040 1009 //
duke@435 1010 // Example: reshape "(X+3)+4" into "X+7":
twisti@1040 1011 // set_req(1, in(1)->in(1));
twisti@1040 1012 // set_req(2, phase->intcon(7));
duke@435 1013 // return this;
twisti@1040 1014 // Example: reshape "X*4" into "X<<2"
kvn@4115 1015 // return new (C) LShiftINode(in(1), phase->intcon(2));
duke@435 1016 //
duke@435 1017 // You must call 'phase->transform(X)' on any new Nodes X you make, except
twisti@1040 1018 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X".
kvn@4115 1019 // Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
kvn@4115 1020 // return new (C) AddINode(shift, in(1));
duke@435 1021 //
duke@435 1022 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
kvn@4115 1023 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
duke@435 1024 // The Right Thing with def-use info.
duke@435 1025 //
duke@435 1026 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped
duke@435 1027 // graph uses the 'this' Node it must be the root. If you want a Node with
duke@435 1028 // the same Opcode as the 'this' pointer use 'clone'.
duke@435 1029 //
duke@435 1030 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1031 return NULL; // Default to being Ideal already
duke@435 1032 }
duke@435 1033
duke@435 1034 // Some nodes have specific Ideal subgraph transformations only if they are
duke@435 1035 // unique users of specific nodes. Such nodes should be put on IGVN worklist
duke@435 1036 // for the transformations to happen.
duke@435 1037 bool Node::has_special_unique_user() const {
duke@435 1038 assert(outcnt() == 1, "match only for unique out");
duke@435 1039 Node* n = unique_out();
duke@435 1040 int op = Opcode();
duke@435 1041 if( this->is_Store() ) {
duke@435 1042 // Condition for back-to-back stores folding.
duke@435 1043 return n->Opcode() == op && n->in(MemNode::Memory) == this;
duke@435 1044 } else if( op == Op_AddL ) {
duke@435 1045 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
duke@435 1046 return n->Opcode() == Op_ConvL2I && n->in(1) == this;
duke@435 1047 } else if( op == Op_SubI || op == Op_SubL ) {
duke@435 1048 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
duke@435 1049 return n->Opcode() == op && n->in(2) == this;
duke@435 1050 }
duke@435 1051 return false;
duke@435 1052 };
duke@435 1053
kvn@520 1054 //--------------------------find_exact_control---------------------------------
kvn@520 1055 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
kvn@520 1056 Node* Node::find_exact_control(Node* ctrl) {
kvn@520 1057 if (ctrl == NULL && this->is_Region())
kvn@520 1058 ctrl = this->as_Region()->is_copy();
kvn@520 1059
kvn@520 1060 if (ctrl != NULL && ctrl->is_CatchProj()) {
kvn@520 1061 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
kvn@520 1062 ctrl = ctrl->in(0);
kvn@520 1063 if (ctrl != NULL && !ctrl->is_top())
kvn@520 1064 ctrl = ctrl->in(0);
kvn@520 1065 }
kvn@520 1066
kvn@520 1067 if (ctrl != NULL && ctrl->is_Proj())
kvn@520 1068 ctrl = ctrl->in(0);
kvn@520 1069
kvn@520 1070 return ctrl;
kvn@520 1071 }
kvn@520 1072
kvn@520 1073 //--------------------------dominates------------------------------------------
kvn@520 1074 // Helper function for MemNode::all_controls_dominate().
kvn@520 1075 // Check if 'this' control node dominates or equal to 'sub' control node.
kvn@628 1076 // We already know that if any path back to Root or Start reaches 'this',
kvn@628 1077 // then all paths so, so this is a simple search for one example,
kvn@628 1078 // not an exhaustive search for a counterexample.
kvn@520 1079 bool Node::dominates(Node* sub, Node_List &nlist) {
kvn@520 1080 assert(this->is_CFG(), "expecting control");
kvn@520 1081 assert(sub != NULL && sub->is_CFG(), "expecting control");
kvn@520 1082
kvn@590 1083 // detect dead cycle without regions
kvn@590 1084 int iterations_without_region_limit = DominatorSearchLimit;
kvn@590 1085
kvn@520 1086 Node* orig_sub = sub;
kvn@628 1087 Node* dom = this;
kvn@628 1088 bool met_dom = false;
kvn@520 1089 nlist.clear();
kvn@598 1090
kvn@628 1091 // Walk 'sub' backward up the chain to 'dom', watching for regions.
kvn@628 1092 // After seeing 'dom', continue up to Root or Start.
kvn@628 1093 // If we hit a region (backward split point), it may be a loop head.
kvn@628 1094 // Keep going through one of the region's inputs. If we reach the
kvn@628 1095 // same region again, go through a different input. Eventually we
kvn@628 1096 // will either exit through the loop head, or give up.
kvn@628 1097 // (If we get confused, break out and return a conservative 'false'.)
kvn@628 1098 while (sub != NULL) {
kvn@628 1099 if (sub->is_top()) break; // Conservative answer for dead code.
kvn@628 1100 if (sub == dom) {
kvn@520 1101 if (nlist.size() == 0) {
kvn@520 1102 // No Region nodes except loops were visited before and the EntryControl
kvn@520 1103 // path was taken for loops: it did not walk in a cycle.
kvn@628 1104 return true;
kvn@628 1105 } else if (met_dom) {
kvn@628 1106 break; // already met before: walk in a cycle
kvn@598 1107 } else {
kvn@520 1108 // Region nodes were visited. Continue walk up to Start or Root
kvn@520 1109 // to make sure that it did not walk in a cycle.
kvn@628 1110 met_dom = true; // first time meet
kvn@590 1111 iterations_without_region_limit = DominatorSearchLimit; // Reset
kvn@598 1112 }
kvn@520 1113 }
kvn@598 1114 if (sub->is_Start() || sub->is_Root()) {
kvn@628 1115 // Success if we met 'dom' along a path to Start or Root.
kvn@628 1116 // We assume there are no alternative paths that avoid 'dom'.
kvn@628 1117 // (This assumption is up to the caller to ensure!)
kvn@628 1118 return met_dom;
kvn@598 1119 }
kvn@628 1120 Node* up = sub->in(0);
kvn@628 1121 // Normalize simple pass-through regions and projections:
kvn@628 1122 up = sub->find_exact_control(up);
kvn@628 1123 // If sub == up, we found a self-loop. Try to push past it.
kvn@628 1124 if (sub == up && sub->is_Loop()) {
kvn@628 1125 // Take loop entry path on the way up to 'dom'.
kvn@598 1126 up = sub->in(1); // in(LoopNode::EntryControl);
kvn@628 1127 } else if (sub == up && sub->is_Region() && sub->req() != 3) {
kvn@628 1128 // Always take in(1) path on the way up to 'dom' for clone regions
kvn@628 1129 // (with only one input) or regions which merge > 2 paths
kvn@628 1130 // (usually used to merge fast/slow paths).
kvn@628 1131 up = sub->in(1);
kvn@598 1132 } else if (sub == up && sub->is_Region()) {
kvn@628 1133 // Try both paths for Regions with 2 input paths (it may be a loop head).
kvn@628 1134 // It could give conservative 'false' answer without information
kvn@628 1135 // which region's input is the entry path.
kvn@598 1136 iterations_without_region_limit = DominatorSearchLimit; // Reset
kvn@520 1137
kvn@598 1138 bool region_was_visited_before = false;
kvn@628 1139 // Was this Region node visited before?
kvn@628 1140 // If so, we have reached it because we accidentally took a
kvn@628 1141 // loop-back edge from 'sub' back into the body of the loop,
kvn@628 1142 // and worked our way up again to the loop header 'sub'.
kvn@628 1143 // So, take the first unexplored path on the way up to 'dom'.
kvn@628 1144 for (int j = nlist.size() - 1; j >= 0; j--) {
kvn@628 1145 intptr_t ni = (intptr_t)nlist.at(j);
kvn@628 1146 Node* visited = (Node*)(ni & ~1);
kvn@628 1147 bool visited_twice_already = ((ni & 1) != 0);
kvn@628 1148 if (visited == sub) {
kvn@628 1149 if (visited_twice_already) {
kvn@628 1150 // Visited 2 paths, but still stuck in loop body. Give up.
kvn@628 1151 return false;
kvn@520 1152 }
kvn@628 1153 // The Region node was visited before only once.
kvn@628 1154 // (We will repush with the low bit set, below.)
kvn@628 1155 nlist.remove(j);
kvn@628 1156 // We will find a new edge and re-insert.
kvn@628 1157 region_was_visited_before = true;
kvn@520 1158 break;
kvn@520 1159 }
kvn@520 1160 }
kvn@628 1161
kvn@628 1162 // Find an incoming edge which has not been seen yet; walk through it.
kvn@628 1163 assert(up == sub, "");
kvn@628 1164 uint skip = region_was_visited_before ? 1 : 0;
kvn@628 1165 for (uint i = 1; i < sub->req(); i++) {
kvn@628 1166 Node* in = sub->in(i);
kvn@628 1167 if (in != NULL && !in->is_top() && in != sub) {
kvn@628 1168 if (skip == 0) {
kvn@628 1169 up = in;
kvn@628 1170 break;
kvn@628 1171 }
kvn@628 1172 --skip; // skip this nontrivial input
kvn@598 1173 }
kvn@520 1174 }
kvn@628 1175
kvn@628 1176 // Set 0 bit to indicate that both paths were taken.
kvn@628 1177 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
kvn@520 1178 }
kvn@628 1179
kvn@628 1180 if (up == sub) {
kvn@628 1181 break; // some kind of tight cycle
kvn@628 1182 }
kvn@628 1183 if (up == orig_sub && met_dom) {
kvn@628 1184 // returned back after visiting 'dom'
kvn@628 1185 break; // some kind of cycle
kvn@598 1186 }
kvn@598 1187 if (--iterations_without_region_limit < 0) {
kvn@628 1188 break; // dead cycle
kvn@598 1189 }
kvn@520 1190 sub = up;
kvn@520 1191 }
kvn@628 1192
kvn@628 1193 // Did not meet Root or Start node in pred. chain.
kvn@628 1194 // Conservative answer for dead code.
kvn@628 1195 return false;
kvn@520 1196 }
kvn@520 1197
duke@435 1198 //------------------------------remove_dead_region-----------------------------
duke@435 1199 // This control node is dead. Follow the subgraph below it making everything
duke@435 1200 // using it dead as well. This will happen normally via the usual IterGVN
duke@435 1201 // worklist but this call is more efficient. Do not update use-def info
duke@435 1202 // inside the dead region, just at the borders.
kvn@740 1203 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
duke@435 1204 // Con's are a popular node to re-hit in the hash table again.
kvn@740 1205 if( dead->is_Con() ) return;
duke@435 1206
duke@435 1207 // Can't put ResourceMark here since igvn->_worklist uses the same arena
duke@435 1208 // for verify pass with +VerifyOpto and we add/remove elements in it here.
duke@435 1209 Node_List nstack(Thread::current()->resource_area());
duke@435 1210
duke@435 1211 Node *top = igvn->C->top();
duke@435 1212 nstack.push(dead);
duke@435 1213
duke@435 1214 while (nstack.size() > 0) {
duke@435 1215 dead = nstack.pop();
duke@435 1216 if (dead->outcnt() > 0) {
duke@435 1217 // Keep dead node on stack until all uses are processed.
duke@435 1218 nstack.push(dead);
duke@435 1219 // For all Users of the Dead... ;-)
duke@435 1220 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
duke@435 1221 Node* use = dead->last_out(k);
duke@435 1222 igvn->hash_delete(use); // Yank from hash table prior to mod
duke@435 1223 if (use->in(0) == dead) { // Found another dead node
jcoomes@1844 1224 assert (!use->is_Con(), "Control for Con node should be Root node.");
duke@435 1225 use->set_req(0, top); // Cut dead edge to prevent processing
duke@435 1226 nstack.push(use); // the dead node again.
duke@435 1227 } else { // Else found a not-dead user
duke@435 1228 for (uint j = 1; j < use->req(); j++) {
duke@435 1229 if (use->in(j) == dead) { // Turn all dead inputs into TOP
duke@435 1230 use->set_req(j, top);
duke@435 1231 }
duke@435 1232 }
duke@435 1233 igvn->_worklist.push(use);
duke@435 1234 }
duke@435 1235 // Refresh the iterator, since any number of kills might have happened.
duke@435 1236 k = dead->last_outs(kmin);
duke@435 1237 }
duke@435 1238 } else { // (dead->outcnt() == 0)
duke@435 1239 // Done with outputs.
duke@435 1240 igvn->hash_delete(dead);
duke@435 1241 igvn->_worklist.remove(dead);
duke@435 1242 igvn->set_type(dead, Type::TOP);
duke@435 1243 if (dead->is_macro()) {
duke@435 1244 igvn->C->remove_macro_node(dead);
duke@435 1245 }
duke@435 1246 // Kill all inputs to the dead guy
duke@435 1247 for (uint i=0; i < dead->req(); i++) {
duke@435 1248 Node *n = dead->in(i); // Get input to dead guy
duke@435 1249 if (n != NULL && !n->is_top()) { // Input is valid?
duke@435 1250 dead->set_req(i, top); // Smash input away
duke@435 1251 if (n->outcnt() == 0) { // Input also goes dead?
duke@435 1252 if (!n->is_Con())
duke@435 1253 nstack.push(n); // Clear it out as well
duke@435 1254 } else if (n->outcnt() == 1 &&
duke@435 1255 n->has_special_unique_user()) {
duke@435 1256 igvn->add_users_to_worklist( n );
duke@435 1257 } else if (n->outcnt() <= 2 && n->is_Store()) {
duke@435 1258 // Push store's uses on worklist to enable folding optimization for
duke@435 1259 // store/store and store/load to the same address.
duke@435 1260 // The restriction (outcnt() <= 2) is the same as in set_req_X()
duke@435 1261 // and remove_globally_dead_node().
duke@435 1262 igvn->add_users_to_worklist( n );
duke@435 1263 }
duke@435 1264 }
duke@435 1265 }
duke@435 1266 } // (dead->outcnt() == 0)
duke@435 1267 } // while (nstack.size() > 0) for outputs
kvn@740 1268 return;
duke@435 1269 }
duke@435 1270
duke@435 1271 //------------------------------remove_dead_region-----------------------------
duke@435 1272 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
duke@435 1273 Node *n = in(0);
duke@435 1274 if( !n ) return false;
duke@435 1275 // Lost control into this guy? I.e., it became unreachable?
duke@435 1276 // Aggressively kill all unreachable code.
duke@435 1277 if (can_reshape && n->is_top()) {
kvn@740 1278 kill_dead_code(this, phase->is_IterGVN());
kvn@740 1279 return false; // Node is dead.
duke@435 1280 }
duke@435 1281
duke@435 1282 if( n->is_Region() && n->as_Region()->is_copy() ) {
duke@435 1283 Node *m = n->nonnull_req();
duke@435 1284 set_req(0, m);
duke@435 1285 return true;
duke@435 1286 }
duke@435 1287 return false;
duke@435 1288 }
duke@435 1289
duke@435 1290 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 1291 // Idealize graph, using DU info. Must clone result into new-space
duke@435 1292 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
duke@435 1293 return NULL; // Default to no change
duke@435 1294 }
duke@435 1295
duke@435 1296 //------------------------------hash-------------------------------------------
duke@435 1297 // Hash function over Nodes.
duke@435 1298 uint Node::hash() const {
duke@435 1299 uint sum = 0;
duke@435 1300 for( uint i=0; i<_cnt; i++ ) // Add in all inputs
duke@435 1301 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs
duke@435 1302 return (sum>>2) + _cnt + Opcode();
duke@435 1303 }
duke@435 1304
duke@435 1305 //------------------------------cmp--------------------------------------------
duke@435 1306 // Compare special parts of simple Nodes
duke@435 1307 uint Node::cmp( const Node &n ) const {
duke@435 1308 return 1; // Must be same
duke@435 1309 }
duke@435 1310
duke@435 1311 //------------------------------rematerialize-----------------------------------
duke@435 1312 // Should we clone rather than spill this instruction?
duke@435 1313 bool Node::rematerialize() const {
duke@435 1314 if ( is_Mach() )
duke@435 1315 return this->as_Mach()->rematerialize();
duke@435 1316 else
duke@435 1317 return (_flags & Flag_rematerialize) != 0;
duke@435 1318 }
duke@435 1319
duke@435 1320 //------------------------------needs_anti_dependence_check---------------------
duke@435 1321 // Nodes which use memory without consuming it, hence need antidependences.
duke@435 1322 bool Node::needs_anti_dependence_check() const {
duke@435 1323 if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
duke@435 1324 return false;
duke@435 1325 else
duke@435 1326 return in(1)->bottom_type()->has_memory();
duke@435 1327 }
duke@435 1328
duke@435 1329
duke@435 1330 // Get an integer constant from a ConNode (or CastIINode).
duke@435 1331 // Return a default value if there is no apparent constant here.
duke@435 1332 const TypeInt* Node::find_int_type() const {
duke@435 1333 if (this->is_Type()) {
duke@435 1334 return this->as_Type()->type()->isa_int();
duke@435 1335 } else if (this->is_Con()) {
duke@435 1336 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
duke@435 1337 return this->bottom_type()->isa_int();
duke@435 1338 }
duke@435 1339 return NULL;
duke@435 1340 }
duke@435 1341
duke@435 1342 // Get a pointer constant from a ConstNode.
duke@435 1343 // Returns the constant if it is a pointer ConstNode
duke@435 1344 intptr_t Node::get_ptr() const {
duke@435 1345 assert( Opcode() == Op_ConP, "" );
duke@435 1346 return ((ConPNode*)this)->type()->is_ptr()->get_con();
duke@435 1347 }
duke@435 1348
coleenp@548 1349 // Get a narrow oop constant from a ConNNode.
coleenp@548 1350 intptr_t Node::get_narrowcon() const {
coleenp@548 1351 assert( Opcode() == Op_ConN, "" );
coleenp@548 1352 return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
coleenp@548 1353 }
coleenp@548 1354
duke@435 1355 // Get a long constant from a ConNode.
duke@435 1356 // Return a default value if there is no apparent constant here.
duke@435 1357 const TypeLong* Node::find_long_type() const {
duke@435 1358 if (this->is_Type()) {
duke@435 1359 return this->as_Type()->type()->isa_long();
duke@435 1360 } else if (this->is_Con()) {
duke@435 1361 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
duke@435 1362 return this->bottom_type()->isa_long();
duke@435 1363 }
duke@435 1364 return NULL;
duke@435 1365 }
duke@435 1366
duke@435 1367 // Get a double constant from a ConstNode.
duke@435 1368 // Returns the constant if it is a double ConstNode
duke@435 1369 jdouble Node::getd() const {
duke@435 1370 assert( Opcode() == Op_ConD, "" );
duke@435 1371 return ((ConDNode*)this)->type()->is_double_constant()->getd();
duke@435 1372 }
duke@435 1373
duke@435 1374 // Get a float constant from a ConstNode.
duke@435 1375 // Returns the constant if it is a float ConstNode
duke@435 1376 jfloat Node::getf() const {
duke@435 1377 assert( Opcode() == Op_ConF, "" );
duke@435 1378 return ((ConFNode*)this)->type()->is_float_constant()->getf();
duke@435 1379 }
duke@435 1380
duke@435 1381 #ifndef PRODUCT
duke@435 1382
duke@435 1383 //----------------------------NotANode----------------------------------------
duke@435 1384 // Used in debugging code to avoid walking across dead or uninitialized edges.
duke@435 1385 static inline bool NotANode(const Node* n) {
duke@435 1386 if (n == NULL) return true;
duke@435 1387 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
duke@435 1388 if (*(address*)n == badAddress) return true; // kill by Node::destruct
duke@435 1389 return false;
duke@435 1390 }
duke@435 1391
duke@435 1392
duke@435 1393 //------------------------------find------------------------------------------
duke@435 1394 // Find a neighbor of this Node with the given _idx
duke@435 1395 // If idx is negative, find its absolute value, following both _in and _out.
never@2685 1396 static void find_recur(Compile* C, Node* &result, Node *n, int idx, bool only_ctrl,
never@2685 1397 VectorSet* old_space, VectorSet* new_space ) {
duke@435 1398 int node_idx = (idx >= 0) ? idx : -idx;
duke@435 1399 if (NotANode(n)) return; // Gracefully handle NULL, -1, 0xabababab, etc.
never@2685 1400 // Contained in new_space or old_space? Check old_arena first since it's mostly empty.
never@2685 1401 VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
duke@435 1402 if( v->test(n->_idx) ) return;
duke@435 1403 if( (int)n->_idx == node_idx
duke@435 1404 debug_only(|| n->debug_idx() == node_idx) ) {
duke@435 1405 if (result != NULL)
duke@435 1406 tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
duke@435 1407 (uintptr_t)result, (uintptr_t)n, node_idx);
duke@435 1408 result = n;
duke@435 1409 }
duke@435 1410 v->set(n->_idx);
duke@435 1411 for( uint i=0; i<n->len(); i++ ) {
duke@435 1412 if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
never@2685 1413 find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
duke@435 1414 }
duke@435 1415 // Search along forward edges also:
duke@435 1416 if (idx < 0 && !only_ctrl) {
duke@435 1417 for( uint j=0; j<n->outcnt(); j++ ) {
never@2685 1418 find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
duke@435 1419 }
duke@435 1420 }
duke@435 1421 #ifdef ASSERT
never@2685 1422 // Search along debug_orig edges last, checking for cycles
never@2685 1423 Node* orig = n->debug_orig();
never@2685 1424 if (orig != NULL) {
never@2685 1425 do {
never@2685 1426 if (NotANode(orig)) break;
never@2685 1427 find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
never@2685 1428 orig = orig->debug_orig();
never@2685 1429 } while (orig != NULL && orig != n->debug_orig());
duke@435 1430 }
duke@435 1431 #endif //ASSERT
duke@435 1432 }
duke@435 1433
duke@435 1434 // call this from debugger:
duke@435 1435 Node* find_node(Node* n, int idx) {
duke@435 1436 return n->find(idx);
duke@435 1437 }
duke@435 1438
duke@435 1439 //------------------------------find-------------------------------------------
duke@435 1440 Node* Node::find(int idx) const {
duke@435 1441 ResourceArea *area = Thread::current()->resource_area();
duke@435 1442 VectorSet old_space(area), new_space(area);
duke@435 1443 Node* result = NULL;
never@2685 1444 find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
duke@435 1445 return result;
duke@435 1446 }
duke@435 1447
duke@435 1448 //------------------------------find_ctrl--------------------------------------
duke@435 1449 // Find an ancestor to this node in the control history with given _idx
duke@435 1450 Node* Node::find_ctrl(int idx) const {
duke@435 1451 ResourceArea *area = Thread::current()->resource_area();
duke@435 1452 VectorSet old_space(area), new_space(area);
duke@435 1453 Node* result = NULL;
never@2685 1454 find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
duke@435 1455 return result;
duke@435 1456 }
duke@435 1457 #endif
duke@435 1458
duke@435 1459
duke@435 1460
duke@435 1461 #ifndef PRODUCT
duke@435 1462 int Node::_in_dump_cnt = 0;
duke@435 1463
duke@435 1464 // -----------------------------Name-------------------------------------------
duke@435 1465 extern const char *NodeClassNames[];
duke@435 1466 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
duke@435 1467
duke@435 1468 static bool is_disconnected(const Node* n) {
duke@435 1469 for (uint i = 0; i < n->req(); i++) {
duke@435 1470 if (n->in(i) != NULL) return false;
duke@435 1471 }
duke@435 1472 return true;
duke@435 1473 }
duke@435 1474
duke@435 1475 #ifdef ASSERT
duke@435 1476 static void dump_orig(Node* orig) {
duke@435 1477 Compile* C = Compile::current();
duke@435 1478 if (NotANode(orig)) orig = NULL;
duke@435 1479 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
duke@435 1480 if (orig == NULL) return;
duke@435 1481 tty->print(" !orig=");
duke@435 1482 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
duke@435 1483 if (NotANode(fast)) fast = NULL;
duke@435 1484 while (orig != NULL) {
duke@435 1485 bool discon = is_disconnected(orig); // if discon, print [123] else 123
duke@435 1486 if (discon) tty->print("[");
duke@435 1487 if (!Compile::current()->node_arena()->contains(orig))
duke@435 1488 tty->print("o");
duke@435 1489 tty->print("%d", orig->_idx);
duke@435 1490 if (discon) tty->print("]");
duke@435 1491 orig = orig->debug_orig();
duke@435 1492 if (NotANode(orig)) orig = NULL;
duke@435 1493 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
duke@435 1494 if (orig != NULL) tty->print(",");
duke@435 1495 if (fast != NULL) {
duke@435 1496 // Step fast twice for each single step of orig:
duke@435 1497 fast = fast->debug_orig();
duke@435 1498 if (NotANode(fast)) fast = NULL;
duke@435 1499 if (fast != NULL && fast != orig) {
duke@435 1500 fast = fast->debug_orig();
duke@435 1501 if (NotANode(fast)) fast = NULL;
duke@435 1502 }
duke@435 1503 if (fast == orig) {
duke@435 1504 tty->print("...");
duke@435 1505 break;
duke@435 1506 }
duke@435 1507 }
duke@435 1508 }
duke@435 1509 }
duke@435 1510
duke@435 1511 void Node::set_debug_orig(Node* orig) {
duke@435 1512 _debug_orig = orig;
duke@435 1513 if (BreakAtNode == 0) return;
duke@435 1514 if (NotANode(orig)) orig = NULL;
duke@435 1515 int trip = 10;
duke@435 1516 while (orig != NULL) {
duke@435 1517 if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
duke@435 1518 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
duke@435 1519 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
duke@435 1520 BREAKPOINT;
duke@435 1521 }
duke@435 1522 orig = orig->debug_orig();
duke@435 1523 if (NotANode(orig)) orig = NULL;
duke@435 1524 if (trip-- <= 0) break;
duke@435 1525 }
duke@435 1526 }
duke@435 1527 #endif //ASSERT
duke@435 1528
duke@435 1529 //------------------------------dump------------------------------------------
duke@435 1530 // Dump a Node
duke@435 1531 void Node::dump() const {
duke@435 1532 Compile* C = Compile::current();
duke@435 1533 bool is_new = C->node_arena()->contains(this);
duke@435 1534 _in_dump_cnt++;
duke@435 1535 tty->print("%c%d\t%s\t=== ",
duke@435 1536 is_new ? ' ' : 'o', _idx, Name());
duke@435 1537
duke@435 1538 // Dump the required and precedence inputs
duke@435 1539 dump_req();
duke@435 1540 dump_prec();
duke@435 1541 // Dump the outputs
duke@435 1542 dump_out();
duke@435 1543
duke@435 1544 if (is_disconnected(this)) {
duke@435 1545 #ifdef ASSERT
duke@435 1546 tty->print(" [%d]",debug_idx());
duke@435 1547 dump_orig(debug_orig());
duke@435 1548 #endif
duke@435 1549 tty->cr();
duke@435 1550 _in_dump_cnt--;
duke@435 1551 return; // don't process dead nodes
duke@435 1552 }
duke@435 1553
duke@435 1554 // Dump node-specific info
duke@435 1555 dump_spec(tty);
duke@435 1556 #ifdef ASSERT
duke@435 1557 // Dump the non-reset _debug_idx
duke@435 1558 if( Verbose && WizardMode ) {
duke@435 1559 tty->print(" [%d]",debug_idx());
duke@435 1560 }
duke@435 1561 #endif
duke@435 1562
duke@435 1563 const Type *t = bottom_type();
duke@435 1564
duke@435 1565 if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
duke@435 1566 const TypeInstPtr *toop = t->isa_instptr();
duke@435 1567 const TypeKlassPtr *tkls = t->isa_klassptr();
duke@435 1568 ciKlass* klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
duke@435 1569 if( klass && klass->is_loaded() && klass->is_interface() ) {
duke@435 1570 tty->print(" Interface:");
duke@435 1571 } else if( toop ) {
duke@435 1572 tty->print(" Oop:");
duke@435 1573 } else if( tkls ) {
duke@435 1574 tty->print(" Klass:");
duke@435 1575 }
duke@435 1576 t->dump();
duke@435 1577 } else if( t == Type::MEMORY ) {
duke@435 1578 tty->print(" Memory:");
duke@435 1579 MemNode::dump_adr_type(this, adr_type(), tty);
duke@435 1580 } else if( Verbose || WizardMode ) {
duke@435 1581 tty->print(" Type:");
duke@435 1582 if( t ) {
duke@435 1583 t->dump();
duke@435 1584 } else {
duke@435 1585 tty->print("no type");
duke@435 1586 }
kvn@3882 1587 } else if (t->isa_vect() && this->is_MachSpillCopy()) {
kvn@3882 1588 // Dump MachSpillcopy vector type.
kvn@3882 1589 t->dump();
duke@435 1590 }
duke@435 1591 if (is_new) {
duke@435 1592 debug_only(dump_orig(debug_orig()));
duke@435 1593 Node_Notes* nn = C->node_notes_at(_idx);
duke@435 1594 if (nn != NULL && !nn->is_clear()) {
duke@435 1595 if (nn->jvms() != NULL) {
duke@435 1596 tty->print(" !jvms:");
duke@435 1597 nn->jvms()->dump_spec(tty);
duke@435 1598 }
duke@435 1599 }
duke@435 1600 }
duke@435 1601 tty->cr();
duke@435 1602 _in_dump_cnt--;
duke@435 1603 }
duke@435 1604
duke@435 1605 //------------------------------dump_req--------------------------------------
duke@435 1606 void Node::dump_req() const {
duke@435 1607 // Dump the required input edges
duke@435 1608 for (uint i = 0; i < req(); i++) { // For all required inputs
duke@435 1609 Node* d = in(i);
duke@435 1610 if (d == NULL) {
duke@435 1611 tty->print("_ ");
duke@435 1612 } else if (NotANode(d)) {
duke@435 1613 tty->print("NotANode "); // uninitialized, sentinel, garbage, etc.
duke@435 1614 } else {
duke@435 1615 tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
duke@435 1616 }
duke@435 1617 }
duke@435 1618 }
duke@435 1619
duke@435 1620
duke@435 1621 //------------------------------dump_prec-------------------------------------
duke@435 1622 void Node::dump_prec() const {
duke@435 1623 // Dump the precedence edges
duke@435 1624 int any_prec = 0;
duke@435 1625 for (uint i = req(); i < len(); i++) { // For all precedence inputs
duke@435 1626 Node* p = in(i);
duke@435 1627 if (p != NULL) {
duke@435 1628 if( !any_prec++ ) tty->print(" |");
duke@435 1629 if (NotANode(p)) { tty->print("NotANode "); continue; }
duke@435 1630 tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
duke@435 1631 }
duke@435 1632 }
duke@435 1633 }
duke@435 1634
duke@435 1635 //------------------------------dump_out--------------------------------------
duke@435 1636 void Node::dump_out() const {
duke@435 1637 // Delimit the output edges
duke@435 1638 tty->print(" [[");
duke@435 1639 // Dump the output edges
duke@435 1640 for (uint i = 0; i < _outcnt; i++) { // For all outputs
duke@435 1641 Node* u = _out[i];
duke@435 1642 if (u == NULL) {
duke@435 1643 tty->print("_ ");
duke@435 1644 } else if (NotANode(u)) {
duke@435 1645 tty->print("NotANode ");
duke@435 1646 } else {
duke@435 1647 tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
duke@435 1648 }
duke@435 1649 }
duke@435 1650 tty->print("]] ");
duke@435 1651 }
duke@435 1652
duke@435 1653 //------------------------------dump_nodes-------------------------------------
duke@435 1654 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
duke@435 1655 Node* s = (Node*)start; // remove const
duke@435 1656 if (NotANode(s)) return;
duke@435 1657
kvn@459 1658 uint depth = (uint)ABS(d);
kvn@459 1659 int direction = d;
duke@435 1660 Compile* C = Compile::current();
kvn@475 1661 GrowableArray <Node *> nstack(C->unique());
duke@435 1662
kvn@475 1663 nstack.append(s);
kvn@475 1664 int begin = 0;
kvn@475 1665 int end = 0;
kvn@475 1666 for(uint i = 0; i < depth; i++) {
kvn@475 1667 end = nstack.length();
kvn@475 1668 for(int j = begin; j < end; j++) {
kvn@475 1669 Node* tp = nstack.at(j);
kvn@475 1670 uint limit = direction > 0 ? tp->len() : tp->outcnt();
kvn@475 1671 for(uint k = 0; k < limit; k++) {
kvn@475 1672 Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
duke@435 1673
kvn@475 1674 if (NotANode(n)) continue;
kvn@475 1675 // do not recurse through top or the root (would reach unrelated stuff)
kvn@475 1676 if (n->is_Root() || n->is_top()) continue;
kvn@475 1677 if (only_ctrl && !n->is_CFG()) continue;
duke@435 1678
kvn@475 1679 bool on_stack = nstack.contains(n);
kvn@475 1680 if (!on_stack) {
kvn@475 1681 nstack.append(n);
duke@435 1682 }
duke@435 1683 }
duke@435 1684 }
kvn@475 1685 begin = end;
kvn@475 1686 }
kvn@475 1687 end = nstack.length();
kvn@475 1688 if (direction > 0) {
kvn@475 1689 for(int j = end-1; j >= 0; j--) {
kvn@475 1690 nstack.at(j)->dump();
kvn@475 1691 }
kvn@475 1692 } else {
kvn@475 1693 for(int j = 0; j < end; j++) {
kvn@475 1694 nstack.at(j)->dump();
kvn@475 1695 }
duke@435 1696 }
duke@435 1697 }
duke@435 1698
duke@435 1699 //------------------------------dump-------------------------------------------
duke@435 1700 void Node::dump(int d) const {
duke@435 1701 dump_nodes(this, d, false);
duke@435 1702 }
duke@435 1703
duke@435 1704 //------------------------------dump_ctrl--------------------------------------
duke@435 1705 // Dump a Node's control history to depth
duke@435 1706 void Node::dump_ctrl(int d) const {
duke@435 1707 dump_nodes(this, d, true);
duke@435 1708 }
duke@435 1709
duke@435 1710 // VERIFICATION CODE
duke@435 1711 // For each input edge to a node (ie - for each Use-Def edge), verify that
duke@435 1712 // there is a corresponding Def-Use edge.
duke@435 1713 //------------------------------verify_edges-----------------------------------
duke@435 1714 void Node::verify_edges(Unique_Node_List &visited) {
duke@435 1715 uint i, j, idx;
duke@435 1716 int cnt;
duke@435 1717 Node *n;
duke@435 1718
duke@435 1719 // Recursive termination test
duke@435 1720 if (visited.member(this)) return;
duke@435 1721 visited.push(this);
duke@435 1722
twisti@1040 1723 // Walk over all input edges, checking for correspondence
duke@435 1724 for( i = 0; i < len(); i++ ) {
duke@435 1725 n = in(i);
duke@435 1726 if (n != NULL && !n->is_top()) {
duke@435 1727 // Count instances of (Node *)this
duke@435 1728 cnt = 0;
duke@435 1729 for (idx = 0; idx < n->_outcnt; idx++ ) {
duke@435 1730 if (n->_out[idx] == (Node *)this) cnt++;
duke@435 1731 }
duke@435 1732 assert( cnt > 0,"Failed to find Def-Use edge." );
duke@435 1733 // Check for duplicate edges
duke@435 1734 // walk the input array downcounting the input edges to n
duke@435 1735 for( j = 0; j < len(); j++ ) {
duke@435 1736 if( in(j) == n ) cnt--;
duke@435 1737 }
duke@435 1738 assert( cnt == 0,"Mismatched edge count.");
duke@435 1739 } else if (n == NULL) {
duke@435 1740 assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
duke@435 1741 } else {
duke@435 1742 assert(n->is_top(), "sanity");
duke@435 1743 // Nothing to check.
duke@435 1744 }
duke@435 1745 }
duke@435 1746 // Recursive walk over all input edges
duke@435 1747 for( i = 0; i < len(); i++ ) {
duke@435 1748 n = in(i);
duke@435 1749 if( n != NULL )
duke@435 1750 in(i)->verify_edges(visited);
duke@435 1751 }
duke@435 1752 }
duke@435 1753
duke@435 1754 //------------------------------verify_recur-----------------------------------
duke@435 1755 static const Node *unique_top = NULL;
duke@435 1756
duke@435 1757 void Node::verify_recur(const Node *n, int verify_depth,
duke@435 1758 VectorSet &old_space, VectorSet &new_space) {
duke@435 1759 if ( verify_depth == 0 ) return;
duke@435 1760 if (verify_depth > 0) --verify_depth;
duke@435 1761
duke@435 1762 Compile* C = Compile::current();
duke@435 1763
duke@435 1764 // Contained in new_space or old_space?
duke@435 1765 VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
duke@435 1766 // Check for visited in the proper space. Numberings are not unique
twisti@1040 1767 // across spaces so we need a separate VectorSet for each space.
duke@435 1768 if( v->test_set(n->_idx) ) return;
duke@435 1769
duke@435 1770 if (n->is_Con() && n->bottom_type() == Type::TOP) {
duke@435 1771 if (C->cached_top_node() == NULL)
duke@435 1772 C->set_cached_top_node((Node*)n);
duke@435 1773 assert(C->cached_top_node() == n, "TOP node must be unique");
duke@435 1774 }
duke@435 1775
duke@435 1776 for( uint i = 0; i < n->len(); i++ ) {
duke@435 1777 Node *x = n->in(i);
duke@435 1778 if (!x || x->is_top()) continue;
duke@435 1779
duke@435 1780 // Verify my input has a def-use edge to me
duke@435 1781 if (true /*VerifyDefUse*/) {
duke@435 1782 // Count use-def edges from n to x
duke@435 1783 int cnt = 0;
duke@435 1784 for( uint j = 0; j < n->len(); j++ )
duke@435 1785 if( n->in(j) == x )
duke@435 1786 cnt++;
duke@435 1787 // Count def-use edges from x to n
duke@435 1788 uint max = x->_outcnt;
duke@435 1789 for( uint k = 0; k < max; k++ )
duke@435 1790 if (x->_out[k] == n)
duke@435 1791 cnt--;
duke@435 1792 assert( cnt == 0, "mismatched def-use edge counts" );
duke@435 1793 }
duke@435 1794
duke@435 1795 verify_recur(x, verify_depth, old_space, new_space);
duke@435 1796 }
duke@435 1797
duke@435 1798 }
duke@435 1799
duke@435 1800 //------------------------------verify-----------------------------------------
duke@435 1801 // Check Def-Use info for my subgraph
duke@435 1802 void Node::verify() const {
duke@435 1803 Compile* C = Compile::current();
duke@435 1804 Node* old_top = C->cached_top_node();
duke@435 1805 ResourceMark rm;
duke@435 1806 ResourceArea *area = Thread::current()->resource_area();
duke@435 1807 VectorSet old_space(area), new_space(area);
duke@435 1808 verify_recur(this, -1, old_space, new_space);
duke@435 1809 C->set_cached_top_node(old_top);
duke@435 1810 }
duke@435 1811 #endif
duke@435 1812
duke@435 1813
duke@435 1814 //------------------------------walk-------------------------------------------
duke@435 1815 // Graph walk, with both pre-order and post-order functions
duke@435 1816 void Node::walk(NFunc pre, NFunc post, void *env) {
duke@435 1817 VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
duke@435 1818 walk_(pre, post, env, visited);
duke@435 1819 }
duke@435 1820
duke@435 1821 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
duke@435 1822 if( visited.test_set(_idx) ) return;
duke@435 1823 pre(*this,env); // Call the pre-order walk function
duke@435 1824 for( uint i=0; i<_max; i++ )
duke@435 1825 if( in(i) ) // Input exists and is not walked?
duke@435 1826 in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
duke@435 1827 post(*this,env); // Call the post-order walk function
duke@435 1828 }
duke@435 1829
duke@435 1830 void Node::nop(Node &, void*) {}
duke@435 1831
duke@435 1832 //------------------------------Registers--------------------------------------
duke@435 1833 // Do we Match on this edge index or not? Generally false for Control
duke@435 1834 // and true for everything else. Weird for calls & returns.
duke@435 1835 uint Node::match_edge(uint idx) const {
duke@435 1836 return idx; // True for other than index 0 (control)
duke@435 1837 }
duke@435 1838
duke@435 1839 // Register classes are defined for specific machines
duke@435 1840 const RegMask &Node::out_RegMask() const {
duke@435 1841 ShouldNotCallThis();
duke@435 1842 return *(new RegMask());
duke@435 1843 }
duke@435 1844
duke@435 1845 const RegMask &Node::in_RegMask(uint) const {
duke@435 1846 ShouldNotCallThis();
duke@435 1847 return *(new RegMask());
duke@435 1848 }
duke@435 1849
duke@435 1850 //=============================================================================
duke@435 1851 //-----------------------------------------------------------------------------
duke@435 1852 void Node_Array::reset( Arena *new_arena ) {
duke@435 1853 _a->Afree(_nodes,_max*sizeof(Node*));
duke@435 1854 _max = 0;
duke@435 1855 _nodes = NULL;
duke@435 1856 _a = new_arena;
duke@435 1857 }
duke@435 1858
duke@435 1859 //------------------------------clear------------------------------------------
duke@435 1860 // Clear all entries in _nodes to NULL but keep storage
duke@435 1861 void Node_Array::clear() {
duke@435 1862 Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
duke@435 1863 }
duke@435 1864
duke@435 1865 //-----------------------------------------------------------------------------
duke@435 1866 void Node_Array::grow( uint i ) {
duke@435 1867 if( !_max ) {
duke@435 1868 _max = 1;
duke@435 1869 _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
duke@435 1870 _nodes[0] = NULL;
duke@435 1871 }
duke@435 1872 uint old = _max;
duke@435 1873 while( i >= _max ) _max <<= 1; // Double to fit
duke@435 1874 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
duke@435 1875 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
duke@435 1876 }
duke@435 1877
duke@435 1878 //-----------------------------------------------------------------------------
duke@435 1879 void Node_Array::insert( uint i, Node *n ) {
duke@435 1880 if( _nodes[_max-1] ) grow(_max); // Get more space if full
duke@435 1881 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
duke@435 1882 _nodes[i] = n;
duke@435 1883 }
duke@435 1884
duke@435 1885 //-----------------------------------------------------------------------------
duke@435 1886 void Node_Array::remove( uint i ) {
duke@435 1887 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
duke@435 1888 _nodes[_max-1] = NULL;
duke@435 1889 }
duke@435 1890
duke@435 1891 //-----------------------------------------------------------------------------
duke@435 1892 void Node_Array::sort( C_sort_func_t func) {
duke@435 1893 qsort( _nodes, _max, sizeof( Node* ), func );
duke@435 1894 }
duke@435 1895
duke@435 1896 //-----------------------------------------------------------------------------
duke@435 1897 void Node_Array::dump() const {
duke@435 1898 #ifndef PRODUCT
duke@435 1899 for( uint i = 0; i < _max; i++ ) {
duke@435 1900 Node *nn = _nodes[i];
duke@435 1901 if( nn != NULL ) {
duke@435 1902 tty->print("%5d--> ",i); nn->dump();
duke@435 1903 }
duke@435 1904 }
duke@435 1905 #endif
duke@435 1906 }
duke@435 1907
duke@435 1908 //--------------------------is_iteratively_computed------------------------------
duke@435 1909 // Operation appears to be iteratively computed (such as an induction variable)
duke@435 1910 // It is possible for this operation to return false for a loop-varying
duke@435 1911 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
duke@435 1912 bool Node::is_iteratively_computed() {
duke@435 1913 if (ideal_reg()) { // does operation have a result register?
duke@435 1914 for (uint i = 1; i < req(); i++) {
duke@435 1915 Node* n = in(i);
duke@435 1916 if (n != NULL && n->is_Phi()) {
duke@435 1917 for (uint j = 1; j < n->req(); j++) {
duke@435 1918 if (n->in(j) == this) {
duke@435 1919 return true;
duke@435 1920 }
duke@435 1921 }
duke@435 1922 }
duke@435 1923 }
duke@435 1924 }
duke@435 1925 return false;
duke@435 1926 }
duke@435 1927
duke@435 1928 //--------------------------find_similar------------------------------
duke@435 1929 // Return a node with opcode "opc" and same inputs as "this" if one can
duke@435 1930 // be found; Otherwise return NULL;
duke@435 1931 Node* Node::find_similar(int opc) {
duke@435 1932 if (req() >= 2) {
duke@435 1933 Node* def = in(1);
duke@435 1934 if (def && def->outcnt() >= 2) {
duke@435 1935 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
duke@435 1936 Node* use = def->fast_out(i);
duke@435 1937 if (use->Opcode() == opc &&
duke@435 1938 use->req() == req()) {
duke@435 1939 uint j;
duke@435 1940 for (j = 0; j < use->req(); j++) {
duke@435 1941 if (use->in(j) != in(j)) {
duke@435 1942 break;
duke@435 1943 }
duke@435 1944 }
duke@435 1945 if (j == use->req()) {
duke@435 1946 return use;
duke@435 1947 }
duke@435 1948 }
duke@435 1949 }
duke@435 1950 }
duke@435 1951 }
duke@435 1952 return NULL;
duke@435 1953 }
duke@435 1954
duke@435 1955
duke@435 1956 //--------------------------unique_ctrl_out------------------------------
duke@435 1957 // Return the unique control out if only one. Null if none or more than one.
duke@435 1958 Node* Node::unique_ctrl_out() {
duke@435 1959 Node* found = NULL;
duke@435 1960 for (uint i = 0; i < outcnt(); i++) {
duke@435 1961 Node* use = raw_out(i);
duke@435 1962 if (use->is_CFG() && use != this) {
duke@435 1963 if (found != NULL) return NULL;
duke@435 1964 found = use;
duke@435 1965 }
duke@435 1966 }
duke@435 1967 return found;
duke@435 1968 }
duke@435 1969
duke@435 1970 //=============================================================================
duke@435 1971 //------------------------------yank-------------------------------------------
duke@435 1972 // Find and remove
duke@435 1973 void Node_List::yank( Node *n ) {
duke@435 1974 uint i;
duke@435 1975 for( i = 0; i < _cnt; i++ )
duke@435 1976 if( _nodes[i] == n )
duke@435 1977 break;
duke@435 1978
duke@435 1979 if( i < _cnt )
duke@435 1980 _nodes[i] = _nodes[--_cnt];
duke@435 1981 }
duke@435 1982
duke@435 1983 //------------------------------dump-------------------------------------------
duke@435 1984 void Node_List::dump() const {
duke@435 1985 #ifndef PRODUCT
duke@435 1986 for( uint i = 0; i < _cnt; i++ )
duke@435 1987 if( _nodes[i] ) {
duke@435 1988 tty->print("%5d--> ",i);
duke@435 1989 _nodes[i]->dump();
duke@435 1990 }
duke@435 1991 #endif
duke@435 1992 }
duke@435 1993
duke@435 1994 //=============================================================================
duke@435 1995 //------------------------------remove-----------------------------------------
duke@435 1996 void Unique_Node_List::remove( Node *n ) {
duke@435 1997 if( _in_worklist[n->_idx] ) {
duke@435 1998 for( uint i = 0; i < size(); i++ )
duke@435 1999 if( _nodes[i] == n ) {
duke@435 2000 map(i,Node_List::pop());
duke@435 2001 _in_worklist >>= n->_idx;
duke@435 2002 return;
duke@435 2003 }
duke@435 2004 ShouldNotReachHere();
duke@435 2005 }
duke@435 2006 }
duke@435 2007
duke@435 2008 //-----------------------remove_useless_nodes----------------------------------
duke@435 2009 // Remove useless nodes from worklist
duke@435 2010 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
duke@435 2011
duke@435 2012 for( uint i = 0; i < size(); ++i ) {
duke@435 2013 Node *n = at(i);
duke@435 2014 assert( n != NULL, "Did not expect null entries in worklist");
duke@435 2015 if( ! useful.test(n->_idx) ) {
duke@435 2016 _in_worklist >>= n->_idx;
duke@435 2017 map(i,Node_List::pop());
duke@435 2018 // Node *replacement = Node_List::pop();
duke@435 2019 // if( i != size() ) { // Check if removing last entry
duke@435 2020 // _nodes[i] = replacement;
duke@435 2021 // }
duke@435 2022 --i; // Visit popped node
duke@435 2023 // If it was last entry, loop terminates since size() was also reduced
duke@435 2024 }
duke@435 2025 }
duke@435 2026 }
duke@435 2027
duke@435 2028 //=============================================================================
duke@435 2029 void Node_Stack::grow() {
duke@435 2030 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
duke@435 2031 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
duke@435 2032 size_t max = old_max << 1; // max * 2
duke@435 2033 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
duke@435 2034 _inode_max = _inodes + max;
duke@435 2035 _inode_top = _inodes + old_top; // restore _top
duke@435 2036 }
duke@435 2037
kvn@2985 2038 // Node_Stack is used to map nodes.
kvn@2985 2039 Node* Node_Stack::find(uint idx) const {
kvn@2985 2040 uint sz = size();
kvn@2985 2041 for (uint i=0; i < sz; i++) {
kvn@2985 2042 if (idx == index_at(i) )
kvn@2985 2043 return node_at(i);
kvn@2985 2044 }
kvn@2985 2045 return NULL;
kvn@2985 2046 }
kvn@2985 2047
duke@435 2048 //=============================================================================
duke@435 2049 uint TypeNode::size_of() const { return sizeof(*this); }
duke@435 2050 #ifndef PRODUCT
duke@435 2051 void TypeNode::dump_spec(outputStream *st) const {
duke@435 2052 if( !Verbose && !WizardMode ) {
duke@435 2053 // standard dump does this in Verbose and WizardMode
duke@435 2054 st->print(" #"); _type->dump_on(st);
duke@435 2055 }
duke@435 2056 }
duke@435 2057 #endif
duke@435 2058 uint TypeNode::hash() const {
duke@435 2059 return Node::hash() + _type->hash();
duke@435 2060 }
duke@435 2061 uint TypeNode::cmp( const Node &n ) const
duke@435 2062 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
duke@435 2063 const Type *TypeNode::bottom_type() const { return _type; }
duke@435 2064 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
duke@435 2065
duke@435 2066 //------------------------------ideal_reg--------------------------------------
duke@435 2067 uint TypeNode::ideal_reg() const {
coleenp@4037 2068 return _type->ideal_reg();
duke@435 2069 }

mercurial