src/share/vm/opto/node.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 740
ab075d07f1ba
child 1844
cff162798819
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_node.cpp.incl"
duke@435 27
duke@435 28 class RegMask;
duke@435 29 // #include "phase.hpp"
duke@435 30 class PhaseTransform;
duke@435 31 class PhaseGVN;
duke@435 32
duke@435 33 // Arena we are currently building Nodes in
duke@435 34 const uint Node::NotAMachineReg = 0xffff0000;
duke@435 35
duke@435 36 #ifndef PRODUCT
duke@435 37 extern int nodes_created;
duke@435 38 #endif
duke@435 39
duke@435 40 #ifdef ASSERT
duke@435 41
duke@435 42 //-------------------------- construct_node------------------------------------
duke@435 43 // Set a breakpoint here to identify where a particular node index is built.
duke@435 44 void Node::verify_construction() {
duke@435 45 _debug_orig = NULL;
duke@435 46 int old_debug_idx = Compile::debug_idx();
duke@435 47 int new_debug_idx = old_debug_idx+1;
duke@435 48 if (new_debug_idx > 0) {
duke@435 49 // Arrange that the lowest five decimal digits of _debug_idx
duke@435 50 // will repeat thos of _idx. In case this is somehow pathological,
duke@435 51 // we continue to assign negative numbers (!) consecutively.
duke@435 52 const int mod = 100000;
duke@435 53 int bump = (int)(_idx - new_debug_idx) % mod;
duke@435 54 if (bump < 0) bump += mod;
duke@435 55 assert(bump >= 0 && bump < mod, "");
duke@435 56 new_debug_idx += bump;
duke@435 57 }
duke@435 58 Compile::set_debug_idx(new_debug_idx);
duke@435 59 set_debug_idx( new_debug_idx );
duke@435 60 assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
duke@435 61 if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
duke@435 62 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
duke@435 63 BREAKPOINT;
duke@435 64 }
duke@435 65 #if OPTO_DU_ITERATOR_ASSERT
duke@435 66 _last_del = NULL;
duke@435 67 _del_tick = 0;
duke@435 68 #endif
duke@435 69 _hash_lock = 0;
duke@435 70 }
duke@435 71
duke@435 72
duke@435 73 // #ifdef ASSERT ...
duke@435 74
duke@435 75 #if OPTO_DU_ITERATOR_ASSERT
duke@435 76 void DUIterator_Common::sample(const Node* node) {
duke@435 77 _vdui = VerifyDUIterators;
duke@435 78 _node = node;
duke@435 79 _outcnt = node->_outcnt;
duke@435 80 _del_tick = node->_del_tick;
duke@435 81 _last = NULL;
duke@435 82 }
duke@435 83
duke@435 84 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
duke@435 85 assert(_node == node, "consistent iterator source");
duke@435 86 assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
duke@435 87 }
duke@435 88
duke@435 89 void DUIterator_Common::verify_resync() {
duke@435 90 // Ensure that the loop body has just deleted the last guy produced.
duke@435 91 const Node* node = _node;
duke@435 92 // Ensure that at least one copy of the last-seen edge was deleted.
duke@435 93 // Note: It is OK to delete multiple copies of the last-seen edge.
duke@435 94 // Unfortunately, we have no way to verify that all the deletions delete
duke@435 95 // that same edge. On this point we must use the Honor System.
duke@435 96 assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
duke@435 97 assert(node->_last_del == _last, "must have deleted the edge just produced");
duke@435 98 // We liked this deletion, so accept the resulting outcnt and tick.
duke@435 99 _outcnt = node->_outcnt;
duke@435 100 _del_tick = node->_del_tick;
duke@435 101 }
duke@435 102
duke@435 103 void DUIterator_Common::reset(const DUIterator_Common& that) {
duke@435 104 if (this == &that) return; // ignore assignment to self
duke@435 105 if (!_vdui) {
duke@435 106 // We need to initialize everything, overwriting garbage values.
duke@435 107 _last = that._last;
duke@435 108 _vdui = that._vdui;
duke@435 109 }
duke@435 110 // Note: It is legal (though odd) for an iterator over some node x
duke@435 111 // to be reassigned to iterate over another node y. Some doubly-nested
duke@435 112 // progress loops depend on being able to do this.
duke@435 113 const Node* node = that._node;
duke@435 114 // Re-initialize everything, except _last.
duke@435 115 _node = node;
duke@435 116 _outcnt = node->_outcnt;
duke@435 117 _del_tick = node->_del_tick;
duke@435 118 }
duke@435 119
duke@435 120 void DUIterator::sample(const Node* node) {
duke@435 121 DUIterator_Common::sample(node); // Initialize the assertion data.
duke@435 122 _refresh_tick = 0; // No refreshes have happened, as yet.
duke@435 123 }
duke@435 124
duke@435 125 void DUIterator::verify(const Node* node, bool at_end_ok) {
duke@435 126 DUIterator_Common::verify(node, at_end_ok);
duke@435 127 assert(_idx < node->_outcnt + (uint)at_end_ok, "idx in range");
duke@435 128 }
duke@435 129
duke@435 130 void DUIterator::verify_increment() {
duke@435 131 if (_refresh_tick & 1) {
duke@435 132 // We have refreshed the index during this loop.
duke@435 133 // Fix up _idx to meet asserts.
duke@435 134 if (_idx > _outcnt) _idx = _outcnt;
duke@435 135 }
duke@435 136 verify(_node, true);
duke@435 137 }
duke@435 138
duke@435 139 void DUIterator::verify_resync() {
duke@435 140 // Note: We do not assert on _outcnt, because insertions are OK here.
duke@435 141 DUIterator_Common::verify_resync();
duke@435 142 // Make sure we are still in sync, possibly with no more out-edges:
duke@435 143 verify(_node, true);
duke@435 144 }
duke@435 145
duke@435 146 void DUIterator::reset(const DUIterator& that) {
duke@435 147 if (this == &that) return; // self assignment is always a no-op
duke@435 148 assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
duke@435 149 assert(that._idx == 0, "assign only the result of Node::outs()");
duke@435 150 assert(_idx == that._idx, "already assigned _idx");
duke@435 151 if (!_vdui) {
duke@435 152 // We need to initialize everything, overwriting garbage values.
duke@435 153 sample(that._node);
duke@435 154 } else {
duke@435 155 DUIterator_Common::reset(that);
duke@435 156 if (_refresh_tick & 1) {
duke@435 157 _refresh_tick++; // Clear the "was refreshed" flag.
duke@435 158 }
duke@435 159 assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
duke@435 160 }
duke@435 161 }
duke@435 162
duke@435 163 void DUIterator::refresh() {
duke@435 164 DUIterator_Common::sample(_node); // Re-fetch assertion data.
duke@435 165 _refresh_tick |= 1; // Set the "was refreshed" flag.
duke@435 166 }
duke@435 167
duke@435 168 void DUIterator::verify_finish() {
duke@435 169 // If the loop has killed the node, do not require it to re-run.
duke@435 170 if (_node->_outcnt == 0) _refresh_tick &= ~1;
duke@435 171 // If this assert triggers, it means that a loop used refresh_out_pos
duke@435 172 // to re-synch an iteration index, but the loop did not correctly
duke@435 173 // re-run itself, using a "while (progress)" construct.
duke@435 174 // This iterator enforces the rule that you must keep trying the loop
duke@435 175 // until it "runs clean" without any need for refreshing.
duke@435 176 assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
duke@435 177 }
duke@435 178
duke@435 179
duke@435 180 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
duke@435 181 DUIterator_Common::verify(node, at_end_ok);
duke@435 182 Node** out = node->_out;
duke@435 183 uint cnt = node->_outcnt;
duke@435 184 assert(cnt == _outcnt, "no insertions allowed");
duke@435 185 assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
duke@435 186 // This last check is carefully designed to work for NO_OUT_ARRAY.
duke@435 187 }
duke@435 188
duke@435 189 void DUIterator_Fast::verify_limit() {
duke@435 190 const Node* node = _node;
duke@435 191 verify(node, true);
duke@435 192 assert(_outp == node->_out + node->_outcnt, "limit still correct");
duke@435 193 }
duke@435 194
duke@435 195 void DUIterator_Fast::verify_resync() {
duke@435 196 const Node* node = _node;
duke@435 197 if (_outp == node->_out + _outcnt) {
duke@435 198 // Note that the limit imax, not the pointer i, gets updated with the
duke@435 199 // exact count of deletions. (For the pointer it's always "--i".)
duke@435 200 assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
duke@435 201 // This is a limit pointer, with a name like "imax".
duke@435 202 // Fudge the _last field so that the common assert will be happy.
duke@435 203 _last = (Node*) node->_last_del;
duke@435 204 DUIterator_Common::verify_resync();
duke@435 205 } else {
duke@435 206 assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
duke@435 207 // A normal internal pointer.
duke@435 208 DUIterator_Common::verify_resync();
duke@435 209 // Make sure we are still in sync, possibly with no more out-edges:
duke@435 210 verify(node, true);
duke@435 211 }
duke@435 212 }
duke@435 213
duke@435 214 void DUIterator_Fast::verify_relimit(uint n) {
duke@435 215 const Node* node = _node;
duke@435 216 assert((int)n > 0, "use imax -= n only with a positive count");
duke@435 217 // This must be a limit pointer, with a name like "imax".
duke@435 218 assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
duke@435 219 // The reported number of deletions must match what the node saw.
duke@435 220 assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
duke@435 221 // Fudge the _last field so that the common assert will be happy.
duke@435 222 _last = (Node*) node->_last_del;
duke@435 223 DUIterator_Common::verify_resync();
duke@435 224 }
duke@435 225
duke@435 226 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
duke@435 227 assert(_outp == that._outp, "already assigned _outp");
duke@435 228 DUIterator_Common::reset(that);
duke@435 229 }
duke@435 230
duke@435 231 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
duke@435 232 // at_end_ok means the _outp is allowed to underflow by 1
duke@435 233 _outp += at_end_ok;
duke@435 234 DUIterator_Fast::verify(node, at_end_ok); // check _del_tick, etc.
duke@435 235 _outp -= at_end_ok;
duke@435 236 assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
duke@435 237 }
duke@435 238
duke@435 239 void DUIterator_Last::verify_limit() {
duke@435 240 // Do not require the limit address to be resynched.
duke@435 241 //verify(node, true);
duke@435 242 assert(_outp == _node->_out, "limit still correct");
duke@435 243 }
duke@435 244
duke@435 245 void DUIterator_Last::verify_step(uint num_edges) {
duke@435 246 assert((int)num_edges > 0, "need non-zero edge count for loop progress");
duke@435 247 _outcnt -= num_edges;
duke@435 248 _del_tick += num_edges;
duke@435 249 // Make sure we are still in sync, possibly with no more out-edges:
duke@435 250 const Node* node = _node;
duke@435 251 verify(node, true);
duke@435 252 assert(node->_last_del == _last, "must have deleted the edge just produced");
duke@435 253 }
duke@435 254
duke@435 255 #endif //OPTO_DU_ITERATOR_ASSERT
duke@435 256
duke@435 257
duke@435 258 #endif //ASSERT
duke@435 259
duke@435 260
duke@435 261 // This constant used to initialize _out may be any non-null value.
duke@435 262 // The value NULL is reserved for the top node only.
duke@435 263 #define NO_OUT_ARRAY ((Node**)-1)
duke@435 264
duke@435 265 // This funny expression handshakes with Node::operator new
duke@435 266 // to pull Compile::current out of the new node's _out field,
duke@435 267 // and then calls a subroutine which manages most field
duke@435 268 // initializations. The only one which is tricky is the
duke@435 269 // _idx field, which is const, and so must be initialized
duke@435 270 // by a return value, not an assignment.
duke@435 271 //
duke@435 272 // (Aren't you thankful that Java finals don't require so many tricks?)
duke@435 273 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
duke@435 274 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
duke@435 275 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
duke@435 276 #endif
duke@435 277
duke@435 278 // Out-of-line code from node constructors.
duke@435 279 // Executed only when extra debug info. is being passed around.
duke@435 280 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
duke@435 281 C->set_node_notes_at(idx, nn);
duke@435 282 }
duke@435 283
duke@435 284 // Shared initialization code.
duke@435 285 inline int Node::Init(int req, Compile* C) {
duke@435 286 assert(Compile::current() == C, "must use operator new(Compile*)");
duke@435 287 int idx = C->next_unique();
duke@435 288
duke@435 289 // If there are default notes floating around, capture them:
duke@435 290 Node_Notes* nn = C->default_node_notes();
duke@435 291 if (nn != NULL) init_node_notes(C, idx, nn);
duke@435 292
duke@435 293 // Note: At this point, C is dead,
duke@435 294 // and we begin to initialize the new Node.
duke@435 295
duke@435 296 _cnt = _max = req;
duke@435 297 _outcnt = _outmax = 0;
duke@435 298 _class_id = Class_Node;
duke@435 299 _flags = 0;
duke@435 300 _out = NO_OUT_ARRAY;
duke@435 301 return idx;
duke@435 302 }
duke@435 303
duke@435 304 //------------------------------Node-------------------------------------------
duke@435 305 // Create a Node, with a given number of required edges.
duke@435 306 Node::Node(uint req)
duke@435 307 : _idx(IDX_INIT(req))
duke@435 308 {
duke@435 309 assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
duke@435 310 debug_only( verify_construction() );
duke@435 311 NOT_PRODUCT(nodes_created++);
duke@435 312 if (req == 0) {
duke@435 313 assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
duke@435 314 _in = NULL;
duke@435 315 } else {
duke@435 316 assert( _in[req-1] == this, "Must pass arg count to 'new'" );
duke@435 317 Node** to = _in;
duke@435 318 for(uint i = 0; i < req; i++) {
duke@435 319 to[i] = NULL;
duke@435 320 }
duke@435 321 }
duke@435 322 }
duke@435 323
duke@435 324 //------------------------------Node-------------------------------------------
duke@435 325 Node::Node(Node *n0)
duke@435 326 : _idx(IDX_INIT(1))
duke@435 327 {
duke@435 328 debug_only( verify_construction() );
duke@435 329 NOT_PRODUCT(nodes_created++);
duke@435 330 // Assert we allocated space for input array already
duke@435 331 assert( _in[0] == this, "Must pass arg count to 'new'" );
duke@435 332 assert( is_not_dead(n0), "can not use dead node");
duke@435 333 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 334 }
duke@435 335
duke@435 336 //------------------------------Node-------------------------------------------
duke@435 337 Node::Node(Node *n0, Node *n1)
duke@435 338 : _idx(IDX_INIT(2))
duke@435 339 {
duke@435 340 debug_only( verify_construction() );
duke@435 341 NOT_PRODUCT(nodes_created++);
duke@435 342 // Assert we allocated space for input array already
duke@435 343 assert( _in[1] == this, "Must pass arg count to 'new'" );
duke@435 344 assert( is_not_dead(n0), "can not use dead node");
duke@435 345 assert( is_not_dead(n1), "can not use dead node");
duke@435 346 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 347 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 348 }
duke@435 349
duke@435 350 //------------------------------Node-------------------------------------------
duke@435 351 Node::Node(Node *n0, Node *n1, Node *n2)
duke@435 352 : _idx(IDX_INIT(3))
duke@435 353 {
duke@435 354 debug_only( verify_construction() );
duke@435 355 NOT_PRODUCT(nodes_created++);
duke@435 356 // Assert we allocated space for input array already
duke@435 357 assert( _in[2] == this, "Must pass arg count to 'new'" );
duke@435 358 assert( is_not_dead(n0), "can not use dead node");
duke@435 359 assert( is_not_dead(n1), "can not use dead node");
duke@435 360 assert( is_not_dead(n2), "can not use dead node");
duke@435 361 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 362 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 363 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 364 }
duke@435 365
duke@435 366 //------------------------------Node-------------------------------------------
duke@435 367 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
duke@435 368 : _idx(IDX_INIT(4))
duke@435 369 {
duke@435 370 debug_only( verify_construction() );
duke@435 371 NOT_PRODUCT(nodes_created++);
duke@435 372 // Assert we allocated space for input array already
duke@435 373 assert( _in[3] == this, "Must pass arg count to 'new'" );
duke@435 374 assert( is_not_dead(n0), "can not use dead node");
duke@435 375 assert( is_not_dead(n1), "can not use dead node");
duke@435 376 assert( is_not_dead(n2), "can not use dead node");
duke@435 377 assert( is_not_dead(n3), "can not use dead node");
duke@435 378 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 379 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 380 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 381 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 382 }
duke@435 383
duke@435 384 //------------------------------Node-------------------------------------------
duke@435 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
duke@435 386 : _idx(IDX_INIT(5))
duke@435 387 {
duke@435 388 debug_only( verify_construction() );
duke@435 389 NOT_PRODUCT(nodes_created++);
duke@435 390 // Assert we allocated space for input array already
duke@435 391 assert( _in[4] == this, "Must pass arg count to 'new'" );
duke@435 392 assert( is_not_dead(n0), "can not use dead node");
duke@435 393 assert( is_not_dead(n1), "can not use dead node");
duke@435 394 assert( is_not_dead(n2), "can not use dead node");
duke@435 395 assert( is_not_dead(n3), "can not use dead node");
duke@435 396 assert( is_not_dead(n4), "can not use dead node");
duke@435 397 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 398 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 399 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 400 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 401 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@435 402 }
duke@435 403
duke@435 404 //------------------------------Node-------------------------------------------
duke@435 405 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
duke@435 406 Node *n4, Node *n5)
duke@435 407 : _idx(IDX_INIT(6))
duke@435 408 {
duke@435 409 debug_only( verify_construction() );
duke@435 410 NOT_PRODUCT(nodes_created++);
duke@435 411 // Assert we allocated space for input array already
duke@435 412 assert( _in[5] == this, "Must pass arg count to 'new'" );
duke@435 413 assert( is_not_dead(n0), "can not use dead node");
duke@435 414 assert( is_not_dead(n1), "can not use dead node");
duke@435 415 assert( is_not_dead(n2), "can not use dead node");
duke@435 416 assert( is_not_dead(n3), "can not use dead node");
duke@435 417 assert( is_not_dead(n4), "can not use dead node");
duke@435 418 assert( is_not_dead(n5), "can not use dead node");
duke@435 419 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 420 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 421 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 422 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 423 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@435 424 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
duke@435 425 }
duke@435 426
duke@435 427 //------------------------------Node-------------------------------------------
duke@435 428 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
duke@435 429 Node *n4, Node *n5, Node *n6)
duke@435 430 : _idx(IDX_INIT(7))
duke@435 431 {
duke@435 432 debug_only( verify_construction() );
duke@435 433 NOT_PRODUCT(nodes_created++);
duke@435 434 // Assert we allocated space for input array already
duke@435 435 assert( _in[6] == this, "Must pass arg count to 'new'" );
duke@435 436 assert( is_not_dead(n0), "can not use dead node");
duke@435 437 assert( is_not_dead(n1), "can not use dead node");
duke@435 438 assert( is_not_dead(n2), "can not use dead node");
duke@435 439 assert( is_not_dead(n3), "can not use dead node");
duke@435 440 assert( is_not_dead(n4), "can not use dead node");
duke@435 441 assert( is_not_dead(n5), "can not use dead node");
duke@435 442 assert( is_not_dead(n6), "can not use dead node");
duke@435 443 _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
duke@435 444 _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
duke@435 445 _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
duke@435 446 _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
duke@435 447 _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
duke@435 448 _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
duke@435 449 _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
duke@435 450 }
duke@435 451
duke@435 452
duke@435 453 //------------------------------clone------------------------------------------
duke@435 454 // Clone a Node.
duke@435 455 Node *Node::clone() const {
duke@435 456 Compile *compile = Compile::current();
duke@435 457 uint s = size_of(); // Size of inherited Node
duke@435 458 Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
duke@435 459 Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
duke@435 460 // Set the new input pointer array
duke@435 461 n->_in = (Node**)(((char*)n)+s);
duke@435 462 // Cannot share the old output pointer array, so kill it
duke@435 463 n->_out = NO_OUT_ARRAY;
duke@435 464 // And reset the counters to 0
duke@435 465 n->_outcnt = 0;
duke@435 466 n->_outmax = 0;
duke@435 467 // Unlock this guy, since he is not in any hash table.
duke@435 468 debug_only(n->_hash_lock = 0);
duke@435 469 // Walk the old node's input list to duplicate its edges
duke@435 470 uint i;
duke@435 471 for( i = 0; i < len(); i++ ) {
duke@435 472 Node *x = in(i);
duke@435 473 n->_in[i] = x;
duke@435 474 if (x != NULL) x->add_out(n);
duke@435 475 }
duke@435 476 if (is_macro())
duke@435 477 compile->add_macro_node(n);
duke@435 478
duke@435 479 n->set_idx(compile->next_unique()); // Get new unique index as well
duke@435 480 debug_only( n->verify_construction() );
duke@435 481 NOT_PRODUCT(nodes_created++);
duke@435 482 // Do not patch over the debug_idx of a clone, because it makes it
duke@435 483 // impossible to break on the clone's moment of creation.
duke@435 484 //debug_only( n->set_debug_idx( debug_idx() ) );
duke@435 485
duke@435 486 compile->copy_node_notes_to(n, (Node*) this);
duke@435 487
duke@435 488 // MachNode clone
duke@435 489 uint nopnds;
duke@435 490 if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
duke@435 491 MachNode *mach = n->as_Mach();
duke@435 492 MachNode *mthis = this->as_Mach();
duke@435 493 // Get address of _opnd_array.
duke@435 494 // It should be the same offset since it is the clone of this node.
duke@435 495 MachOper **from = mthis->_opnds;
duke@435 496 MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
duke@435 497 pointer_delta((const void*)from,
duke@435 498 (const void*)(&mthis->_opnds), 1));
duke@435 499 mach->_opnds = to;
duke@435 500 for ( uint i = 0; i < nopnds; ++i ) {
duke@435 501 to[i] = from[i]->clone(compile);
duke@435 502 }
duke@435 503 }
duke@435 504 // cloning CallNode may need to clone JVMState
duke@435 505 if (n->is_Call()) {
duke@435 506 CallNode *call = n->as_Call();
duke@435 507 call->clone_jvms();
duke@435 508 }
duke@435 509 return n; // Return the clone
duke@435 510 }
duke@435 511
duke@435 512 //---------------------------setup_is_top--------------------------------------
duke@435 513 // Call this when changing the top node, to reassert the invariants
duke@435 514 // required by Node::is_top. See Compile::set_cached_top_node.
duke@435 515 void Node::setup_is_top() {
duke@435 516 if (this == (Node*)Compile::current()->top()) {
duke@435 517 // This node has just become top. Kill its out array.
duke@435 518 _outcnt = _outmax = 0;
duke@435 519 _out = NULL; // marker value for top
duke@435 520 assert(is_top(), "must be top");
duke@435 521 } else {
duke@435 522 if (_out == NULL) _out = NO_OUT_ARRAY;
duke@435 523 assert(!is_top(), "must not be top");
duke@435 524 }
duke@435 525 }
duke@435 526
duke@435 527
duke@435 528 //------------------------------~Node------------------------------------------
duke@435 529 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
duke@435 530 extern int reclaim_idx ;
duke@435 531 extern int reclaim_in ;
duke@435 532 extern int reclaim_node;
duke@435 533 void Node::destruct() {
duke@435 534 // Eagerly reclaim unique Node numberings
duke@435 535 Compile* compile = Compile::current();
duke@435 536 if ((uint)_idx+1 == compile->unique()) {
duke@435 537 compile->set_unique(compile->unique()-1);
duke@435 538 #ifdef ASSERT
duke@435 539 reclaim_idx++;
duke@435 540 #endif
duke@435 541 }
duke@435 542 // Clear debug info:
duke@435 543 Node_Notes* nn = compile->node_notes_at(_idx);
duke@435 544 if (nn != NULL) nn->clear();
duke@435 545 // Walk the input array, freeing the corresponding output edges
duke@435 546 _cnt = _max; // forget req/prec distinction
duke@435 547 uint i;
duke@435 548 for( i = 0; i < _max; i++ ) {
duke@435 549 set_req(i, NULL);
duke@435 550 //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
duke@435 551 }
duke@435 552 assert(outcnt() == 0, "deleting a node must not leave a dangling use");
duke@435 553 // See if the input array was allocated just prior to the object
duke@435 554 int edge_size = _max*sizeof(void*);
duke@435 555 int out_edge_size = _outmax*sizeof(void*);
duke@435 556 char *edge_end = ((char*)_in) + edge_size;
duke@435 557 char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
duke@435 558 char *out_edge_end = out_array + out_edge_size;
duke@435 559 int node_size = size_of();
duke@435 560
duke@435 561 // Free the output edge array
duke@435 562 if (out_edge_size > 0) {
duke@435 563 #ifdef ASSERT
duke@435 564 if( out_edge_end == compile->node_arena()->hwm() )
duke@435 565 reclaim_in += out_edge_size; // count reclaimed out edges with in edges
duke@435 566 #endif
duke@435 567 compile->node_arena()->Afree(out_array, out_edge_size);
duke@435 568 }
duke@435 569
duke@435 570 // Free the input edge array and the node itself
duke@435 571 if( edge_end == (char*)this ) {
duke@435 572 #ifdef ASSERT
duke@435 573 if( edge_end+node_size == compile->node_arena()->hwm() ) {
duke@435 574 reclaim_in += edge_size;
duke@435 575 reclaim_node+= node_size;
duke@435 576 }
duke@435 577 #else
duke@435 578 // It was; free the input array and object all in one hit
duke@435 579 compile->node_arena()->Afree(_in,edge_size+node_size);
duke@435 580 #endif
duke@435 581 } else {
duke@435 582
duke@435 583 // Free just the input array
duke@435 584 #ifdef ASSERT
duke@435 585 if( edge_end == compile->node_arena()->hwm() )
duke@435 586 reclaim_in += edge_size;
duke@435 587 #endif
duke@435 588 compile->node_arena()->Afree(_in,edge_size);
duke@435 589
duke@435 590 // Free just the object
duke@435 591 #ifdef ASSERT
duke@435 592 if( ((char*)this) + node_size == compile->node_arena()->hwm() )
duke@435 593 reclaim_node+= node_size;
duke@435 594 #else
duke@435 595 compile->node_arena()->Afree(this,node_size);
duke@435 596 #endif
duke@435 597 }
duke@435 598 if (is_macro()) {
duke@435 599 compile->remove_macro_node(this);
duke@435 600 }
duke@435 601 #ifdef ASSERT
duke@435 602 // We will not actually delete the storage, but we'll make the node unusable.
duke@435 603 *(address*)this = badAddress; // smash the C++ vtbl, probably
duke@435 604 _in = _out = (Node**) badAddress;
duke@435 605 _max = _cnt = _outmax = _outcnt = 0;
duke@435 606 #endif
duke@435 607 }
duke@435 608
duke@435 609 //------------------------------grow-------------------------------------------
duke@435 610 // Grow the input array, making space for more edges
duke@435 611 void Node::grow( uint len ) {
duke@435 612 Arena* arena = Compile::current()->node_arena();
duke@435 613 uint new_max = _max;
duke@435 614 if( new_max == 0 ) {
duke@435 615 _max = 4;
duke@435 616 _in = (Node**)arena->Amalloc(4*sizeof(Node*));
duke@435 617 Node** to = _in;
duke@435 618 to[0] = NULL;
duke@435 619 to[1] = NULL;
duke@435 620 to[2] = NULL;
duke@435 621 to[3] = NULL;
duke@435 622 return;
duke@435 623 }
duke@435 624 while( new_max <= len ) new_max <<= 1; // Find next power-of-2
duke@435 625 // Trimming to limit allows a uint8 to handle up to 255 edges.
duke@435 626 // Previously I was using only powers-of-2 which peaked at 128 edges.
duke@435 627 //if( new_max >= limit ) new_max = limit-1;
duke@435 628 _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
duke@435 629 Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
duke@435 630 _max = new_max; // Record new max length
duke@435 631 // This assertion makes sure that Node::_max is wide enough to
duke@435 632 // represent the numerical value of new_max.
duke@435 633 assert(_max == new_max && _max > len, "int width of _max is too small");
duke@435 634 }
duke@435 635
duke@435 636 //-----------------------------out_grow----------------------------------------
duke@435 637 // Grow the input array, making space for more edges
duke@435 638 void Node::out_grow( uint len ) {
duke@435 639 assert(!is_top(), "cannot grow a top node's out array");
duke@435 640 Arena* arena = Compile::current()->node_arena();
duke@435 641 uint new_max = _outmax;
duke@435 642 if( new_max == 0 ) {
duke@435 643 _outmax = 4;
duke@435 644 _out = (Node **)arena->Amalloc(4*sizeof(Node*));
duke@435 645 return;
duke@435 646 }
duke@435 647 while( new_max <= len ) new_max <<= 1; // Find next power-of-2
duke@435 648 // Trimming to limit allows a uint8 to handle up to 255 edges.
duke@435 649 // Previously I was using only powers-of-2 which peaked at 128 edges.
duke@435 650 //if( new_max >= limit ) new_max = limit-1;
duke@435 651 assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
duke@435 652 _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
duke@435 653 //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
duke@435 654 _outmax = new_max; // Record new max length
duke@435 655 // This assertion makes sure that Node::_max is wide enough to
duke@435 656 // represent the numerical value of new_max.
duke@435 657 assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
duke@435 658 }
duke@435 659
duke@435 660 #ifdef ASSERT
duke@435 661 //------------------------------is_dead----------------------------------------
duke@435 662 bool Node::is_dead() const {
duke@435 663 // Mach and pinch point nodes may look like dead.
duke@435 664 if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
duke@435 665 return false;
duke@435 666 for( uint i = 0; i < _max; i++ )
duke@435 667 if( _in[i] != NULL )
duke@435 668 return false;
duke@435 669 dump();
duke@435 670 return true;
duke@435 671 }
duke@435 672 #endif
duke@435 673
duke@435 674 //------------------------------add_req----------------------------------------
duke@435 675 // Add a new required input at the end
duke@435 676 void Node::add_req( Node *n ) {
duke@435 677 assert( is_not_dead(n), "can not use dead node");
duke@435 678
duke@435 679 // Look to see if I can move precedence down one without reallocating
duke@435 680 if( (_cnt >= _max) || (in(_max-1) != NULL) )
duke@435 681 grow( _max+1 );
duke@435 682
duke@435 683 // Find a precedence edge to move
duke@435 684 if( in(_cnt) != NULL ) { // Next precedence edge is busy?
duke@435 685 uint i;
duke@435 686 for( i=_cnt; i<_max; i++ )
duke@435 687 if( in(i) == NULL ) // Find the NULL at end of prec edge list
duke@435 688 break; // There must be one, since we grew the array
duke@435 689 _in[i] = in(_cnt); // Move prec over, making space for req edge
duke@435 690 }
duke@435 691 _in[_cnt++] = n; // Stuff over old prec edge
duke@435 692 if (n != NULL) n->add_out((Node *)this);
duke@435 693 }
duke@435 694
duke@435 695 //---------------------------add_req_batch-------------------------------------
duke@435 696 // Add a new required input at the end
duke@435 697 void Node::add_req_batch( Node *n, uint m ) {
duke@435 698 assert( is_not_dead(n), "can not use dead node");
duke@435 699 // check various edge cases
duke@435 700 if ((int)m <= 1) {
duke@435 701 assert((int)m >= 0, "oob");
duke@435 702 if (m != 0) add_req(n);
duke@435 703 return;
duke@435 704 }
duke@435 705
duke@435 706 // Look to see if I can move precedence down one without reallocating
duke@435 707 if( (_cnt+m) > _max || _in[_max-m] )
duke@435 708 grow( _max+m );
duke@435 709
duke@435 710 // Find a precedence edge to move
duke@435 711 if( _in[_cnt] != NULL ) { // Next precedence edge is busy?
duke@435 712 uint i;
duke@435 713 for( i=_cnt; i<_max; i++ )
duke@435 714 if( _in[i] == NULL ) // Find the NULL at end of prec edge list
duke@435 715 break; // There must be one, since we grew the array
duke@435 716 // Slide all the precs over by m positions (assume #prec << m).
duke@435 717 Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
duke@435 718 }
duke@435 719
duke@435 720 // Stuff over the old prec edges
duke@435 721 for(uint i=0; i<m; i++ ) {
duke@435 722 _in[_cnt++] = n;
duke@435 723 }
duke@435 724
duke@435 725 // Insert multiple out edges on the node.
duke@435 726 if (n != NULL && !n->is_top()) {
duke@435 727 for(uint i=0; i<m; i++ ) {
duke@435 728 n->add_out((Node *)this);
duke@435 729 }
duke@435 730 }
duke@435 731 }
duke@435 732
duke@435 733 //------------------------------del_req----------------------------------------
duke@435 734 // Delete the required edge and compact the edge array
duke@435 735 void Node::del_req( uint idx ) {
duke@435 736 // First remove corresponding def-use edge
duke@435 737 Node *n = in(idx);
duke@435 738 if (n != NULL) n->del_out((Node *)this);
duke@435 739 _in[idx] = in(--_cnt); // Compact the array
duke@435 740 _in[_cnt] = NULL; // NULL out emptied slot
duke@435 741 }
duke@435 742
duke@435 743 //------------------------------ins_req----------------------------------------
duke@435 744 // Insert a new required input at the end
duke@435 745 void Node::ins_req( uint idx, Node *n ) {
duke@435 746 assert( is_not_dead(n), "can not use dead node");
duke@435 747 add_req(NULL); // Make space
duke@435 748 assert( idx < _max, "Must have allocated enough space");
duke@435 749 // Slide over
duke@435 750 if(_cnt-idx-1 > 0) {
duke@435 751 Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
duke@435 752 }
duke@435 753 _in[idx] = n; // Stuff over old required edge
duke@435 754 if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
duke@435 755 }
duke@435 756
duke@435 757 //-----------------------------find_edge---------------------------------------
duke@435 758 int Node::find_edge(Node* n) {
duke@435 759 for (uint i = 0; i < len(); i++) {
duke@435 760 if (_in[i] == n) return i;
duke@435 761 }
duke@435 762 return -1;
duke@435 763 }
duke@435 764
duke@435 765 //----------------------------replace_edge-------------------------------------
duke@435 766 int Node::replace_edge(Node* old, Node* neww) {
duke@435 767 if (old == neww) return 0; // nothing to do
duke@435 768 uint nrep = 0;
duke@435 769 for (uint i = 0; i < len(); i++) {
duke@435 770 if (in(i) == old) {
duke@435 771 if (i < req())
duke@435 772 set_req(i, neww);
duke@435 773 else
duke@435 774 set_prec(i, neww);
duke@435 775 nrep++;
duke@435 776 }
duke@435 777 }
duke@435 778 return nrep;
duke@435 779 }
duke@435 780
duke@435 781 //-------------------------disconnect_inputs-----------------------------------
duke@435 782 // NULL out all inputs to eliminate incoming Def-Use edges.
duke@435 783 // Return the number of edges between 'n' and 'this'
duke@435 784 int Node::disconnect_inputs(Node *n) {
duke@435 785 int edges_to_n = 0;
duke@435 786
duke@435 787 uint cnt = req();
duke@435 788 for( uint i = 0; i < cnt; ++i ) {
duke@435 789 if( in(i) == 0 ) continue;
duke@435 790 if( in(i) == n ) ++edges_to_n;
duke@435 791 set_req(i, NULL);
duke@435 792 }
duke@435 793 // Remove precedence edges if any exist
duke@435 794 // Note: Safepoints may have precedence edges, even during parsing
duke@435 795 if( (req() != len()) && (in(req()) != NULL) ) {
duke@435 796 uint max = len();
duke@435 797 for( uint i = 0; i < max; ++i ) {
duke@435 798 if( in(i) == 0 ) continue;
duke@435 799 if( in(i) == n ) ++edges_to_n;
duke@435 800 set_prec(i, NULL);
duke@435 801 }
duke@435 802 }
duke@435 803
duke@435 804 // Node::destruct requires all out edges be deleted first
duke@435 805 // debug_only(destruct();) // no reuse benefit expected
duke@435 806 return edges_to_n;
duke@435 807 }
duke@435 808
duke@435 809 //-----------------------------uncast---------------------------------------
duke@435 810 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
duke@435 811 // Strip away casting. (It is depth-limited.)
duke@435 812 Node* Node::uncast() const {
duke@435 813 // Should be inline:
duke@435 814 //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
kvn@500 815 if (is_ConstraintCast() || is_CheckCastPP())
duke@435 816 return uncast_helper(this);
duke@435 817 else
duke@435 818 return (Node*) this;
duke@435 819 }
duke@435 820
duke@435 821 //---------------------------uncast_helper-------------------------------------
duke@435 822 Node* Node::uncast_helper(const Node* p) {
duke@435 823 uint max_depth = 3;
duke@435 824 for (uint i = 0; i < max_depth; i++) {
duke@435 825 if (p == NULL || p->req() != 2) {
duke@435 826 break;
duke@435 827 } else if (p->is_ConstraintCast()) {
duke@435 828 p = p->in(1);
kvn@500 829 } else if (p->is_CheckCastPP()) {
duke@435 830 p = p->in(1);
duke@435 831 } else {
duke@435 832 break;
duke@435 833 }
duke@435 834 }
duke@435 835 return (Node*) p;
duke@435 836 }
duke@435 837
duke@435 838 //------------------------------add_prec---------------------------------------
duke@435 839 // Add a new precedence input. Precedence inputs are unordered, with
duke@435 840 // duplicates removed and NULLs packed down at the end.
duke@435 841 void Node::add_prec( Node *n ) {
duke@435 842 assert( is_not_dead(n), "can not use dead node");
duke@435 843
duke@435 844 // Check for NULL at end
duke@435 845 if( _cnt >= _max || in(_max-1) )
duke@435 846 grow( _max+1 );
duke@435 847
duke@435 848 // Find a precedence edge to move
duke@435 849 uint i = _cnt;
duke@435 850 while( in(i) != NULL ) i++;
duke@435 851 _in[i] = n; // Stuff prec edge over NULL
duke@435 852 if ( n != NULL) n->add_out((Node *)this); // Add mirror edge
duke@435 853 }
duke@435 854
duke@435 855 //------------------------------rm_prec----------------------------------------
duke@435 856 // Remove a precedence input. Precedence inputs are unordered, with
duke@435 857 // duplicates removed and NULLs packed down at the end.
duke@435 858 void Node::rm_prec( uint j ) {
duke@435 859
duke@435 860 // Find end of precedence list to pack NULLs
duke@435 861 uint i;
duke@435 862 for( i=j; i<_max; i++ )
duke@435 863 if( !_in[i] ) // Find the NULL at end of prec edge list
duke@435 864 break;
duke@435 865 if (_in[j] != NULL) _in[j]->del_out((Node *)this);
duke@435 866 _in[j] = _in[--i]; // Move last element over removed guy
duke@435 867 _in[i] = NULL; // NULL out last element
duke@435 868 }
duke@435 869
duke@435 870 //------------------------------size_of----------------------------------------
duke@435 871 uint Node::size_of() const { return sizeof(*this); }
duke@435 872
duke@435 873 //------------------------------ideal_reg--------------------------------------
duke@435 874 uint Node::ideal_reg() const { return 0; }
duke@435 875
duke@435 876 //------------------------------jvms-------------------------------------------
duke@435 877 JVMState* Node::jvms() const { return NULL; }
duke@435 878
duke@435 879 #ifdef ASSERT
duke@435 880 //------------------------------jvms-------------------------------------------
duke@435 881 bool Node::verify_jvms(const JVMState* using_jvms) const {
duke@435 882 for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
duke@435 883 if (jvms == using_jvms) return true;
duke@435 884 }
duke@435 885 return false;
duke@435 886 }
duke@435 887
duke@435 888 //------------------------------init_NodeProperty------------------------------
duke@435 889 void Node::init_NodeProperty() {
duke@435 890 assert(_max_classes <= max_jushort, "too many NodeProperty classes");
duke@435 891 assert(_max_flags <= max_jushort, "too many NodeProperty flags");
duke@435 892 }
duke@435 893 #endif
duke@435 894
duke@435 895 //------------------------------format-----------------------------------------
duke@435 896 // Print as assembly
duke@435 897 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
duke@435 898 //------------------------------emit-------------------------------------------
duke@435 899 // Emit bytes starting at parameter 'ptr'.
duke@435 900 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
duke@435 901 //------------------------------size-------------------------------------------
duke@435 902 // Size of instruction in bytes
duke@435 903 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
duke@435 904
duke@435 905 //------------------------------CFG Construction-------------------------------
duke@435 906 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
duke@435 907 // Goto and Return.
duke@435 908 const Node *Node::is_block_proj() const { return 0; }
duke@435 909
duke@435 910 // Minimum guaranteed type
duke@435 911 const Type *Node::bottom_type() const { return Type::BOTTOM; }
duke@435 912
duke@435 913
duke@435 914 //------------------------------raise_bottom_type------------------------------
duke@435 915 // Get the worst-case Type output for this Node.
duke@435 916 void Node::raise_bottom_type(const Type* new_type) {
duke@435 917 if (is_Type()) {
duke@435 918 TypeNode *n = this->as_Type();
duke@435 919 if (VerifyAliases) {
duke@435 920 assert(new_type->higher_equal(n->type()), "new type must refine old type");
duke@435 921 }
duke@435 922 n->set_type(new_type);
duke@435 923 } else if (is_Load()) {
duke@435 924 LoadNode *n = this->as_Load();
duke@435 925 if (VerifyAliases) {
duke@435 926 assert(new_type->higher_equal(n->type()), "new type must refine old type");
duke@435 927 }
duke@435 928 n->set_type(new_type);
duke@435 929 }
duke@435 930 }
duke@435 931
duke@435 932 //------------------------------Identity---------------------------------------
duke@435 933 // Return a node that the given node is equivalent to.
duke@435 934 Node *Node::Identity( PhaseTransform * ) {
duke@435 935 return this; // Default to no identities
duke@435 936 }
duke@435 937
duke@435 938 //------------------------------Value------------------------------------------
duke@435 939 // Compute a new Type for a node using the Type of the inputs.
duke@435 940 const Type *Node::Value( PhaseTransform * ) const {
duke@435 941 return bottom_type(); // Default to worst-case Type
duke@435 942 }
duke@435 943
duke@435 944 //------------------------------Ideal------------------------------------------
duke@435 945 //
duke@435 946 // 'Idealize' the graph rooted at this Node.
duke@435 947 //
duke@435 948 // In order to be efficient and flexible there are some subtle invariants
duke@435 949 // these Ideal calls need to hold. Running with '+VerifyIterativeGVN' checks
duke@435 950 // these invariants, although its too slow to have on by default. If you are
duke@435 951 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
duke@435 952 //
duke@435 953 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
duke@435 954 // pointer. If ANY change is made, it must return the root of the reshaped
duke@435 955 // graph - even if the root is the same Node. Example: swapping the inputs
duke@435 956 // to an AddINode gives the same answer and same root, but you still have to
duke@435 957 // return the 'this' pointer instead of NULL.
duke@435 958 //
duke@435 959 // You cannot return an OLD Node, except for the 'this' pointer. Use the
duke@435 960 // Identity call to return an old Node; basically if Identity can find
duke@435 961 // another Node have the Ideal call make no change and return NULL.
duke@435 962 // Example: AddINode::Ideal must check for add of zero; in this case it
duke@435 963 // returns NULL instead of doing any graph reshaping.
duke@435 964 //
duke@435 965 // You cannot modify any old Nodes except for the 'this' pointer. Due to
duke@435 966 // sharing there may be other users of the old Nodes relying on their current
duke@435 967 // semantics. Modifying them will break the other users.
duke@435 968 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
duke@435 969 // "X+3" unchanged in case it is shared.
duke@435 970 //
twisti@1040 971 // If you modify the 'this' pointer's inputs, you should use
twisti@1040 972 // 'set_req'. If you are making a new Node (either as the new root or
twisti@1040 973 // some new internal piece) you may use 'init_req' to set the initial
twisti@1040 974 // value. You can make a new Node with either 'new' or 'clone'. In
twisti@1040 975 // either case, def-use info is correctly maintained.
twisti@1040 976 //
duke@435 977 // Example: reshape "(X+3)+4" into "X+7":
twisti@1040 978 // set_req(1, in(1)->in(1));
twisti@1040 979 // set_req(2, phase->intcon(7));
duke@435 980 // return this;
twisti@1040 981 // Example: reshape "X*4" into "X<<2"
twisti@1040 982 // return new (C,3) LShiftINode(in(1), phase->intcon(2));
duke@435 983 //
duke@435 984 // You must call 'phase->transform(X)' on any new Nodes X you make, except
twisti@1040 985 // for the returned root node. Example: reshape "X*31" with "(X<<5)-X".
duke@435 986 // Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
twisti@1040 987 // return new (C,3) AddINode(shift, in(1));
duke@435 988 //
duke@435 989 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
duke@435 990 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
duke@435 991 // The Right Thing with def-use info.
duke@435 992 //
duke@435 993 // You cannot bury the 'this' Node inside of a graph reshape. If the reshaped
duke@435 994 // graph uses the 'this' Node it must be the root. If you want a Node with
duke@435 995 // the same Opcode as the 'this' pointer use 'clone'.
duke@435 996 //
duke@435 997 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 998 return NULL; // Default to being Ideal already
duke@435 999 }
duke@435 1000
duke@435 1001 // Some nodes have specific Ideal subgraph transformations only if they are
duke@435 1002 // unique users of specific nodes. Such nodes should be put on IGVN worklist
duke@435 1003 // for the transformations to happen.
duke@435 1004 bool Node::has_special_unique_user() const {
duke@435 1005 assert(outcnt() == 1, "match only for unique out");
duke@435 1006 Node* n = unique_out();
duke@435 1007 int op = Opcode();
duke@435 1008 if( this->is_Store() ) {
duke@435 1009 // Condition for back-to-back stores folding.
duke@435 1010 return n->Opcode() == op && n->in(MemNode::Memory) == this;
duke@435 1011 } else if( op == Op_AddL ) {
duke@435 1012 // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
duke@435 1013 return n->Opcode() == Op_ConvL2I && n->in(1) == this;
duke@435 1014 } else if( op == Op_SubI || op == Op_SubL ) {
duke@435 1015 // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
duke@435 1016 return n->Opcode() == op && n->in(2) == this;
duke@435 1017 }
duke@435 1018 return false;
duke@435 1019 };
duke@435 1020
kvn@520 1021 //--------------------------find_exact_control---------------------------------
kvn@520 1022 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
kvn@520 1023 Node* Node::find_exact_control(Node* ctrl) {
kvn@520 1024 if (ctrl == NULL && this->is_Region())
kvn@520 1025 ctrl = this->as_Region()->is_copy();
kvn@520 1026
kvn@520 1027 if (ctrl != NULL && ctrl->is_CatchProj()) {
kvn@520 1028 if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
kvn@520 1029 ctrl = ctrl->in(0);
kvn@520 1030 if (ctrl != NULL && !ctrl->is_top())
kvn@520 1031 ctrl = ctrl->in(0);
kvn@520 1032 }
kvn@520 1033
kvn@520 1034 if (ctrl != NULL && ctrl->is_Proj())
kvn@520 1035 ctrl = ctrl->in(0);
kvn@520 1036
kvn@520 1037 return ctrl;
kvn@520 1038 }
kvn@520 1039
kvn@520 1040 //--------------------------dominates------------------------------------------
kvn@520 1041 // Helper function for MemNode::all_controls_dominate().
kvn@520 1042 // Check if 'this' control node dominates or equal to 'sub' control node.
kvn@628 1043 // We already know that if any path back to Root or Start reaches 'this',
kvn@628 1044 // then all paths so, so this is a simple search for one example,
kvn@628 1045 // not an exhaustive search for a counterexample.
kvn@520 1046 bool Node::dominates(Node* sub, Node_List &nlist) {
kvn@520 1047 assert(this->is_CFG(), "expecting control");
kvn@520 1048 assert(sub != NULL && sub->is_CFG(), "expecting control");
kvn@520 1049
kvn@590 1050 // detect dead cycle without regions
kvn@590 1051 int iterations_without_region_limit = DominatorSearchLimit;
kvn@590 1052
kvn@520 1053 Node* orig_sub = sub;
kvn@628 1054 Node* dom = this;
kvn@628 1055 bool met_dom = false;
kvn@520 1056 nlist.clear();
kvn@598 1057
kvn@628 1058 // Walk 'sub' backward up the chain to 'dom', watching for regions.
kvn@628 1059 // After seeing 'dom', continue up to Root or Start.
kvn@628 1060 // If we hit a region (backward split point), it may be a loop head.
kvn@628 1061 // Keep going through one of the region's inputs. If we reach the
kvn@628 1062 // same region again, go through a different input. Eventually we
kvn@628 1063 // will either exit through the loop head, or give up.
kvn@628 1064 // (If we get confused, break out and return a conservative 'false'.)
kvn@628 1065 while (sub != NULL) {
kvn@628 1066 if (sub->is_top()) break; // Conservative answer for dead code.
kvn@628 1067 if (sub == dom) {
kvn@520 1068 if (nlist.size() == 0) {
kvn@520 1069 // No Region nodes except loops were visited before and the EntryControl
kvn@520 1070 // path was taken for loops: it did not walk in a cycle.
kvn@628 1071 return true;
kvn@628 1072 } else if (met_dom) {
kvn@628 1073 break; // already met before: walk in a cycle
kvn@598 1074 } else {
kvn@520 1075 // Region nodes were visited. Continue walk up to Start or Root
kvn@520 1076 // to make sure that it did not walk in a cycle.
kvn@628 1077 met_dom = true; // first time meet
kvn@590 1078 iterations_without_region_limit = DominatorSearchLimit; // Reset
kvn@598 1079 }
kvn@520 1080 }
kvn@598 1081 if (sub->is_Start() || sub->is_Root()) {
kvn@628 1082 // Success if we met 'dom' along a path to Start or Root.
kvn@628 1083 // We assume there are no alternative paths that avoid 'dom'.
kvn@628 1084 // (This assumption is up to the caller to ensure!)
kvn@628 1085 return met_dom;
kvn@598 1086 }
kvn@628 1087 Node* up = sub->in(0);
kvn@628 1088 // Normalize simple pass-through regions and projections:
kvn@628 1089 up = sub->find_exact_control(up);
kvn@628 1090 // If sub == up, we found a self-loop. Try to push past it.
kvn@628 1091 if (sub == up && sub->is_Loop()) {
kvn@628 1092 // Take loop entry path on the way up to 'dom'.
kvn@598 1093 up = sub->in(1); // in(LoopNode::EntryControl);
kvn@628 1094 } else if (sub == up && sub->is_Region() && sub->req() != 3) {
kvn@628 1095 // Always take in(1) path on the way up to 'dom' for clone regions
kvn@628 1096 // (with only one input) or regions which merge > 2 paths
kvn@628 1097 // (usually used to merge fast/slow paths).
kvn@628 1098 up = sub->in(1);
kvn@598 1099 } else if (sub == up && sub->is_Region()) {
kvn@628 1100 // Try both paths for Regions with 2 input paths (it may be a loop head).
kvn@628 1101 // It could give conservative 'false' answer without information
kvn@628 1102 // which region's input is the entry path.
kvn@598 1103 iterations_without_region_limit = DominatorSearchLimit; // Reset
kvn@520 1104
kvn@598 1105 bool region_was_visited_before = false;
kvn@628 1106 // Was this Region node visited before?
kvn@628 1107 // If so, we have reached it because we accidentally took a
kvn@628 1108 // loop-back edge from 'sub' back into the body of the loop,
kvn@628 1109 // and worked our way up again to the loop header 'sub'.
kvn@628 1110 // So, take the first unexplored path on the way up to 'dom'.
kvn@628 1111 for (int j = nlist.size() - 1; j >= 0; j--) {
kvn@628 1112 intptr_t ni = (intptr_t)nlist.at(j);
kvn@628 1113 Node* visited = (Node*)(ni & ~1);
kvn@628 1114 bool visited_twice_already = ((ni & 1) != 0);
kvn@628 1115 if (visited == sub) {
kvn@628 1116 if (visited_twice_already) {
kvn@628 1117 // Visited 2 paths, but still stuck in loop body. Give up.
kvn@628 1118 return false;
kvn@520 1119 }
kvn@628 1120 // The Region node was visited before only once.
kvn@628 1121 // (We will repush with the low bit set, below.)
kvn@628 1122 nlist.remove(j);
kvn@628 1123 // We will find a new edge and re-insert.
kvn@628 1124 region_was_visited_before = true;
kvn@520 1125 break;
kvn@520 1126 }
kvn@520 1127 }
kvn@628 1128
kvn@628 1129 // Find an incoming edge which has not been seen yet; walk through it.
kvn@628 1130 assert(up == sub, "");
kvn@628 1131 uint skip = region_was_visited_before ? 1 : 0;
kvn@628 1132 for (uint i = 1; i < sub->req(); i++) {
kvn@628 1133 Node* in = sub->in(i);
kvn@628 1134 if (in != NULL && !in->is_top() && in != sub) {
kvn@628 1135 if (skip == 0) {
kvn@628 1136 up = in;
kvn@628 1137 break;
kvn@628 1138 }
kvn@628 1139 --skip; // skip this nontrivial input
kvn@598 1140 }
kvn@520 1141 }
kvn@628 1142
kvn@628 1143 // Set 0 bit to indicate that both paths were taken.
kvn@628 1144 nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
kvn@520 1145 }
kvn@628 1146
kvn@628 1147 if (up == sub) {
kvn@628 1148 break; // some kind of tight cycle
kvn@628 1149 }
kvn@628 1150 if (up == orig_sub && met_dom) {
kvn@628 1151 // returned back after visiting 'dom'
kvn@628 1152 break; // some kind of cycle
kvn@598 1153 }
kvn@598 1154 if (--iterations_without_region_limit < 0) {
kvn@628 1155 break; // dead cycle
kvn@598 1156 }
kvn@520 1157 sub = up;
kvn@520 1158 }
kvn@628 1159
kvn@628 1160 // Did not meet Root or Start node in pred. chain.
kvn@628 1161 // Conservative answer for dead code.
kvn@628 1162 return false;
kvn@520 1163 }
kvn@520 1164
duke@435 1165 //------------------------------remove_dead_region-----------------------------
duke@435 1166 // This control node is dead. Follow the subgraph below it making everything
duke@435 1167 // using it dead as well. This will happen normally via the usual IterGVN
duke@435 1168 // worklist but this call is more efficient. Do not update use-def info
duke@435 1169 // inside the dead region, just at the borders.
kvn@740 1170 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
duke@435 1171 // Con's are a popular node to re-hit in the hash table again.
kvn@740 1172 if( dead->is_Con() ) return;
duke@435 1173
duke@435 1174 // Can't put ResourceMark here since igvn->_worklist uses the same arena
duke@435 1175 // for verify pass with +VerifyOpto and we add/remove elements in it here.
duke@435 1176 Node_List nstack(Thread::current()->resource_area());
duke@435 1177
duke@435 1178 Node *top = igvn->C->top();
duke@435 1179 nstack.push(dead);
duke@435 1180
duke@435 1181 while (nstack.size() > 0) {
duke@435 1182 dead = nstack.pop();
duke@435 1183 if (dead->outcnt() > 0) {
duke@435 1184 // Keep dead node on stack until all uses are processed.
duke@435 1185 nstack.push(dead);
duke@435 1186 // For all Users of the Dead... ;-)
duke@435 1187 for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
duke@435 1188 Node* use = dead->last_out(k);
duke@435 1189 igvn->hash_delete(use); // Yank from hash table prior to mod
duke@435 1190 if (use->in(0) == dead) { // Found another dead node
duke@435 1191 assert (!use->is_Con(), "Control for Con node should be Root node.")
duke@435 1192 use->set_req(0, top); // Cut dead edge to prevent processing
duke@435 1193 nstack.push(use); // the dead node again.
duke@435 1194 } else { // Else found a not-dead user
duke@435 1195 for (uint j = 1; j < use->req(); j++) {
duke@435 1196 if (use->in(j) == dead) { // Turn all dead inputs into TOP
duke@435 1197 use->set_req(j, top);
duke@435 1198 }
duke@435 1199 }
duke@435 1200 igvn->_worklist.push(use);
duke@435 1201 }
duke@435 1202 // Refresh the iterator, since any number of kills might have happened.
duke@435 1203 k = dead->last_outs(kmin);
duke@435 1204 }
duke@435 1205 } else { // (dead->outcnt() == 0)
duke@435 1206 // Done with outputs.
duke@435 1207 igvn->hash_delete(dead);
duke@435 1208 igvn->_worklist.remove(dead);
duke@435 1209 igvn->set_type(dead, Type::TOP);
duke@435 1210 if (dead->is_macro()) {
duke@435 1211 igvn->C->remove_macro_node(dead);
duke@435 1212 }
duke@435 1213 // Kill all inputs to the dead guy
duke@435 1214 for (uint i=0; i < dead->req(); i++) {
duke@435 1215 Node *n = dead->in(i); // Get input to dead guy
duke@435 1216 if (n != NULL && !n->is_top()) { // Input is valid?
duke@435 1217 dead->set_req(i, top); // Smash input away
duke@435 1218 if (n->outcnt() == 0) { // Input also goes dead?
duke@435 1219 if (!n->is_Con())
duke@435 1220 nstack.push(n); // Clear it out as well
duke@435 1221 } else if (n->outcnt() == 1 &&
duke@435 1222 n->has_special_unique_user()) {
duke@435 1223 igvn->add_users_to_worklist( n );
duke@435 1224 } else if (n->outcnt() <= 2 && n->is_Store()) {
duke@435 1225 // Push store's uses on worklist to enable folding optimization for
duke@435 1226 // store/store and store/load to the same address.
duke@435 1227 // The restriction (outcnt() <= 2) is the same as in set_req_X()
duke@435 1228 // and remove_globally_dead_node().
duke@435 1229 igvn->add_users_to_worklist( n );
duke@435 1230 }
duke@435 1231 }
duke@435 1232 }
duke@435 1233 } // (dead->outcnt() == 0)
duke@435 1234 } // while (nstack.size() > 0) for outputs
kvn@740 1235 return;
duke@435 1236 }
duke@435 1237
duke@435 1238 //------------------------------remove_dead_region-----------------------------
duke@435 1239 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
duke@435 1240 Node *n = in(0);
duke@435 1241 if( !n ) return false;
duke@435 1242 // Lost control into this guy? I.e., it became unreachable?
duke@435 1243 // Aggressively kill all unreachable code.
duke@435 1244 if (can_reshape && n->is_top()) {
kvn@740 1245 kill_dead_code(this, phase->is_IterGVN());
kvn@740 1246 return false; // Node is dead.
duke@435 1247 }
duke@435 1248
duke@435 1249 if( n->is_Region() && n->as_Region()->is_copy() ) {
duke@435 1250 Node *m = n->nonnull_req();
duke@435 1251 set_req(0, m);
duke@435 1252 return true;
duke@435 1253 }
duke@435 1254 return false;
duke@435 1255 }
duke@435 1256
duke@435 1257 //------------------------------Ideal_DU_postCCP-------------------------------
duke@435 1258 // Idealize graph, using DU info. Must clone result into new-space
duke@435 1259 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
duke@435 1260 return NULL; // Default to no change
duke@435 1261 }
duke@435 1262
duke@435 1263 //------------------------------hash-------------------------------------------
duke@435 1264 // Hash function over Nodes.
duke@435 1265 uint Node::hash() const {
duke@435 1266 uint sum = 0;
duke@435 1267 for( uint i=0; i<_cnt; i++ ) // Add in all inputs
duke@435 1268 sum = (sum<<1)-(uintptr_t)in(i); // Ignore embedded NULLs
duke@435 1269 return (sum>>2) + _cnt + Opcode();
duke@435 1270 }
duke@435 1271
duke@435 1272 //------------------------------cmp--------------------------------------------
duke@435 1273 // Compare special parts of simple Nodes
duke@435 1274 uint Node::cmp( const Node &n ) const {
duke@435 1275 return 1; // Must be same
duke@435 1276 }
duke@435 1277
duke@435 1278 //------------------------------rematerialize-----------------------------------
duke@435 1279 // Should we clone rather than spill this instruction?
duke@435 1280 bool Node::rematerialize() const {
duke@435 1281 if ( is_Mach() )
duke@435 1282 return this->as_Mach()->rematerialize();
duke@435 1283 else
duke@435 1284 return (_flags & Flag_rematerialize) != 0;
duke@435 1285 }
duke@435 1286
duke@435 1287 //------------------------------needs_anti_dependence_check---------------------
duke@435 1288 // Nodes which use memory without consuming it, hence need antidependences.
duke@435 1289 bool Node::needs_anti_dependence_check() const {
duke@435 1290 if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
duke@435 1291 return false;
duke@435 1292 else
duke@435 1293 return in(1)->bottom_type()->has_memory();
duke@435 1294 }
duke@435 1295
duke@435 1296
duke@435 1297 // Get an integer constant from a ConNode (or CastIINode).
duke@435 1298 // Return a default value if there is no apparent constant here.
duke@435 1299 const TypeInt* Node::find_int_type() const {
duke@435 1300 if (this->is_Type()) {
duke@435 1301 return this->as_Type()->type()->isa_int();
duke@435 1302 } else if (this->is_Con()) {
duke@435 1303 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
duke@435 1304 return this->bottom_type()->isa_int();
duke@435 1305 }
duke@435 1306 return NULL;
duke@435 1307 }
duke@435 1308
duke@435 1309 // Get a pointer constant from a ConstNode.
duke@435 1310 // Returns the constant if it is a pointer ConstNode
duke@435 1311 intptr_t Node::get_ptr() const {
duke@435 1312 assert( Opcode() == Op_ConP, "" );
duke@435 1313 return ((ConPNode*)this)->type()->is_ptr()->get_con();
duke@435 1314 }
duke@435 1315
coleenp@548 1316 // Get a narrow oop constant from a ConNNode.
coleenp@548 1317 intptr_t Node::get_narrowcon() const {
coleenp@548 1318 assert( Opcode() == Op_ConN, "" );
coleenp@548 1319 return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
coleenp@548 1320 }
coleenp@548 1321
duke@435 1322 // Get a long constant from a ConNode.
duke@435 1323 // Return a default value if there is no apparent constant here.
duke@435 1324 const TypeLong* Node::find_long_type() const {
duke@435 1325 if (this->is_Type()) {
duke@435 1326 return this->as_Type()->type()->isa_long();
duke@435 1327 } else if (this->is_Con()) {
duke@435 1328 assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
duke@435 1329 return this->bottom_type()->isa_long();
duke@435 1330 }
duke@435 1331 return NULL;
duke@435 1332 }
duke@435 1333
duke@435 1334 // Get a double constant from a ConstNode.
duke@435 1335 // Returns the constant if it is a double ConstNode
duke@435 1336 jdouble Node::getd() const {
duke@435 1337 assert( Opcode() == Op_ConD, "" );
duke@435 1338 return ((ConDNode*)this)->type()->is_double_constant()->getd();
duke@435 1339 }
duke@435 1340
duke@435 1341 // Get a float constant from a ConstNode.
duke@435 1342 // Returns the constant if it is a float ConstNode
duke@435 1343 jfloat Node::getf() const {
duke@435 1344 assert( Opcode() == Op_ConF, "" );
duke@435 1345 return ((ConFNode*)this)->type()->is_float_constant()->getf();
duke@435 1346 }
duke@435 1347
duke@435 1348 #ifndef PRODUCT
duke@435 1349
duke@435 1350 //----------------------------NotANode----------------------------------------
duke@435 1351 // Used in debugging code to avoid walking across dead or uninitialized edges.
duke@435 1352 static inline bool NotANode(const Node* n) {
duke@435 1353 if (n == NULL) return true;
duke@435 1354 if (((intptr_t)n & 1) != 0) return true; // uninitialized, etc.
duke@435 1355 if (*(address*)n == badAddress) return true; // kill by Node::destruct
duke@435 1356 return false;
duke@435 1357 }
duke@435 1358
duke@435 1359
duke@435 1360 //------------------------------find------------------------------------------
duke@435 1361 // Find a neighbor of this Node with the given _idx
duke@435 1362 // If idx is negative, find its absolute value, following both _in and _out.
duke@435 1363 static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
duke@435 1364 VectorSet &old_space, VectorSet &new_space ) {
duke@435 1365 int node_idx = (idx >= 0) ? idx : -idx;
duke@435 1366 if (NotANode(n)) return; // Gracefully handle NULL, -1, 0xabababab, etc.
duke@435 1367 // Contained in new_space or old_space?
duke@435 1368 VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
duke@435 1369 if( v->test(n->_idx) ) return;
duke@435 1370 if( (int)n->_idx == node_idx
duke@435 1371 debug_only(|| n->debug_idx() == node_idx) ) {
duke@435 1372 if (result != NULL)
duke@435 1373 tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
duke@435 1374 (uintptr_t)result, (uintptr_t)n, node_idx);
duke@435 1375 result = n;
duke@435 1376 }
duke@435 1377 v->set(n->_idx);
duke@435 1378 for( uint i=0; i<n->len(); i++ ) {
duke@435 1379 if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
duke@435 1380 find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
duke@435 1381 }
duke@435 1382 // Search along forward edges also:
duke@435 1383 if (idx < 0 && !only_ctrl) {
duke@435 1384 for( uint j=0; j<n->outcnt(); j++ ) {
duke@435 1385 find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
duke@435 1386 }
duke@435 1387 }
duke@435 1388 #ifdef ASSERT
duke@435 1389 // Search along debug_orig edges last:
never@657 1390 for (Node* orig = n->debug_orig(); orig != NULL && n != orig; orig = orig->debug_orig()) {
duke@435 1391 if (NotANode(orig)) break;
duke@435 1392 find_recur( result, orig, idx, only_ctrl, old_space, new_space );
duke@435 1393 }
duke@435 1394 #endif //ASSERT
duke@435 1395 }
duke@435 1396
duke@435 1397 // call this from debugger:
duke@435 1398 Node* find_node(Node* n, int idx) {
duke@435 1399 return n->find(idx);
duke@435 1400 }
duke@435 1401
duke@435 1402 //------------------------------find-------------------------------------------
duke@435 1403 Node* Node::find(int idx) const {
duke@435 1404 ResourceArea *area = Thread::current()->resource_area();
duke@435 1405 VectorSet old_space(area), new_space(area);
duke@435 1406 Node* result = NULL;
duke@435 1407 find_recur( result, (Node*) this, idx, false, old_space, new_space );
duke@435 1408 return result;
duke@435 1409 }
duke@435 1410
duke@435 1411 //------------------------------find_ctrl--------------------------------------
duke@435 1412 // Find an ancestor to this node in the control history with given _idx
duke@435 1413 Node* Node::find_ctrl(int idx) const {
duke@435 1414 ResourceArea *area = Thread::current()->resource_area();
duke@435 1415 VectorSet old_space(area), new_space(area);
duke@435 1416 Node* result = NULL;
duke@435 1417 find_recur( result, (Node*) this, idx, true, old_space, new_space );
duke@435 1418 return result;
duke@435 1419 }
duke@435 1420 #endif
duke@435 1421
duke@435 1422
duke@435 1423
duke@435 1424 #ifndef PRODUCT
duke@435 1425 int Node::_in_dump_cnt = 0;
duke@435 1426
duke@435 1427 // -----------------------------Name-------------------------------------------
duke@435 1428 extern const char *NodeClassNames[];
duke@435 1429 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
duke@435 1430
duke@435 1431 static bool is_disconnected(const Node* n) {
duke@435 1432 for (uint i = 0; i < n->req(); i++) {
duke@435 1433 if (n->in(i) != NULL) return false;
duke@435 1434 }
duke@435 1435 return true;
duke@435 1436 }
duke@435 1437
duke@435 1438 #ifdef ASSERT
duke@435 1439 static void dump_orig(Node* orig) {
duke@435 1440 Compile* C = Compile::current();
duke@435 1441 if (NotANode(orig)) orig = NULL;
duke@435 1442 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
duke@435 1443 if (orig == NULL) return;
duke@435 1444 tty->print(" !orig=");
duke@435 1445 Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
duke@435 1446 if (NotANode(fast)) fast = NULL;
duke@435 1447 while (orig != NULL) {
duke@435 1448 bool discon = is_disconnected(orig); // if discon, print [123] else 123
duke@435 1449 if (discon) tty->print("[");
duke@435 1450 if (!Compile::current()->node_arena()->contains(orig))
duke@435 1451 tty->print("o");
duke@435 1452 tty->print("%d", orig->_idx);
duke@435 1453 if (discon) tty->print("]");
duke@435 1454 orig = orig->debug_orig();
duke@435 1455 if (NotANode(orig)) orig = NULL;
duke@435 1456 if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
duke@435 1457 if (orig != NULL) tty->print(",");
duke@435 1458 if (fast != NULL) {
duke@435 1459 // Step fast twice for each single step of orig:
duke@435 1460 fast = fast->debug_orig();
duke@435 1461 if (NotANode(fast)) fast = NULL;
duke@435 1462 if (fast != NULL && fast != orig) {
duke@435 1463 fast = fast->debug_orig();
duke@435 1464 if (NotANode(fast)) fast = NULL;
duke@435 1465 }
duke@435 1466 if (fast == orig) {
duke@435 1467 tty->print("...");
duke@435 1468 break;
duke@435 1469 }
duke@435 1470 }
duke@435 1471 }
duke@435 1472 }
duke@435 1473
duke@435 1474 void Node::set_debug_orig(Node* orig) {
duke@435 1475 _debug_orig = orig;
duke@435 1476 if (BreakAtNode == 0) return;
duke@435 1477 if (NotANode(orig)) orig = NULL;
duke@435 1478 int trip = 10;
duke@435 1479 while (orig != NULL) {
duke@435 1480 if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
duke@435 1481 tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
duke@435 1482 this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
duke@435 1483 BREAKPOINT;
duke@435 1484 }
duke@435 1485 orig = orig->debug_orig();
duke@435 1486 if (NotANode(orig)) orig = NULL;
duke@435 1487 if (trip-- <= 0) break;
duke@435 1488 }
duke@435 1489 }
duke@435 1490 #endif //ASSERT
duke@435 1491
duke@435 1492 //------------------------------dump------------------------------------------
duke@435 1493 // Dump a Node
duke@435 1494 void Node::dump() const {
duke@435 1495 Compile* C = Compile::current();
duke@435 1496 bool is_new = C->node_arena()->contains(this);
duke@435 1497 _in_dump_cnt++;
duke@435 1498 tty->print("%c%d\t%s\t=== ",
duke@435 1499 is_new ? ' ' : 'o', _idx, Name());
duke@435 1500
duke@435 1501 // Dump the required and precedence inputs
duke@435 1502 dump_req();
duke@435 1503 dump_prec();
duke@435 1504 // Dump the outputs
duke@435 1505 dump_out();
duke@435 1506
duke@435 1507 if (is_disconnected(this)) {
duke@435 1508 #ifdef ASSERT
duke@435 1509 tty->print(" [%d]",debug_idx());
duke@435 1510 dump_orig(debug_orig());
duke@435 1511 #endif
duke@435 1512 tty->cr();
duke@435 1513 _in_dump_cnt--;
duke@435 1514 return; // don't process dead nodes
duke@435 1515 }
duke@435 1516
duke@435 1517 // Dump node-specific info
duke@435 1518 dump_spec(tty);
duke@435 1519 #ifdef ASSERT
duke@435 1520 // Dump the non-reset _debug_idx
duke@435 1521 if( Verbose && WizardMode ) {
duke@435 1522 tty->print(" [%d]",debug_idx());
duke@435 1523 }
duke@435 1524 #endif
duke@435 1525
duke@435 1526 const Type *t = bottom_type();
duke@435 1527
duke@435 1528 if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
duke@435 1529 const TypeInstPtr *toop = t->isa_instptr();
duke@435 1530 const TypeKlassPtr *tkls = t->isa_klassptr();
duke@435 1531 ciKlass* klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
duke@435 1532 if( klass && klass->is_loaded() && klass->is_interface() ) {
duke@435 1533 tty->print(" Interface:");
duke@435 1534 } else if( toop ) {
duke@435 1535 tty->print(" Oop:");
duke@435 1536 } else if( tkls ) {
duke@435 1537 tty->print(" Klass:");
duke@435 1538 }
duke@435 1539 t->dump();
duke@435 1540 } else if( t == Type::MEMORY ) {
duke@435 1541 tty->print(" Memory:");
duke@435 1542 MemNode::dump_adr_type(this, adr_type(), tty);
duke@435 1543 } else if( Verbose || WizardMode ) {
duke@435 1544 tty->print(" Type:");
duke@435 1545 if( t ) {
duke@435 1546 t->dump();
duke@435 1547 } else {
duke@435 1548 tty->print("no type");
duke@435 1549 }
duke@435 1550 }
duke@435 1551 if (is_new) {
duke@435 1552 debug_only(dump_orig(debug_orig()));
duke@435 1553 Node_Notes* nn = C->node_notes_at(_idx);
duke@435 1554 if (nn != NULL && !nn->is_clear()) {
duke@435 1555 if (nn->jvms() != NULL) {
duke@435 1556 tty->print(" !jvms:");
duke@435 1557 nn->jvms()->dump_spec(tty);
duke@435 1558 }
duke@435 1559 }
duke@435 1560 }
duke@435 1561 tty->cr();
duke@435 1562 _in_dump_cnt--;
duke@435 1563 }
duke@435 1564
duke@435 1565 //------------------------------dump_req--------------------------------------
duke@435 1566 void Node::dump_req() const {
duke@435 1567 // Dump the required input edges
duke@435 1568 for (uint i = 0; i < req(); i++) { // For all required inputs
duke@435 1569 Node* d = in(i);
duke@435 1570 if (d == NULL) {
duke@435 1571 tty->print("_ ");
duke@435 1572 } else if (NotANode(d)) {
duke@435 1573 tty->print("NotANode "); // uninitialized, sentinel, garbage, etc.
duke@435 1574 } else {
duke@435 1575 tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
duke@435 1576 }
duke@435 1577 }
duke@435 1578 }
duke@435 1579
duke@435 1580
duke@435 1581 //------------------------------dump_prec-------------------------------------
duke@435 1582 void Node::dump_prec() const {
duke@435 1583 // Dump the precedence edges
duke@435 1584 int any_prec = 0;
duke@435 1585 for (uint i = req(); i < len(); i++) { // For all precedence inputs
duke@435 1586 Node* p = in(i);
duke@435 1587 if (p != NULL) {
duke@435 1588 if( !any_prec++ ) tty->print(" |");
duke@435 1589 if (NotANode(p)) { tty->print("NotANode "); continue; }
duke@435 1590 tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
duke@435 1591 }
duke@435 1592 }
duke@435 1593 }
duke@435 1594
duke@435 1595 //------------------------------dump_out--------------------------------------
duke@435 1596 void Node::dump_out() const {
duke@435 1597 // Delimit the output edges
duke@435 1598 tty->print(" [[");
duke@435 1599 // Dump the output edges
duke@435 1600 for (uint i = 0; i < _outcnt; i++) { // For all outputs
duke@435 1601 Node* u = _out[i];
duke@435 1602 if (u == NULL) {
duke@435 1603 tty->print("_ ");
duke@435 1604 } else if (NotANode(u)) {
duke@435 1605 tty->print("NotANode ");
duke@435 1606 } else {
duke@435 1607 tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
duke@435 1608 }
duke@435 1609 }
duke@435 1610 tty->print("]] ");
duke@435 1611 }
duke@435 1612
duke@435 1613 //------------------------------dump_nodes-------------------------------------
duke@435 1614 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
duke@435 1615 Node* s = (Node*)start; // remove const
duke@435 1616 if (NotANode(s)) return;
duke@435 1617
kvn@459 1618 uint depth = (uint)ABS(d);
kvn@459 1619 int direction = d;
duke@435 1620 Compile* C = Compile::current();
kvn@475 1621 GrowableArray <Node *> nstack(C->unique());
duke@435 1622
kvn@475 1623 nstack.append(s);
kvn@475 1624 int begin = 0;
kvn@475 1625 int end = 0;
kvn@475 1626 for(uint i = 0; i < depth; i++) {
kvn@475 1627 end = nstack.length();
kvn@475 1628 for(int j = begin; j < end; j++) {
kvn@475 1629 Node* tp = nstack.at(j);
kvn@475 1630 uint limit = direction > 0 ? tp->len() : tp->outcnt();
kvn@475 1631 for(uint k = 0; k < limit; k++) {
kvn@475 1632 Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
duke@435 1633
kvn@475 1634 if (NotANode(n)) continue;
kvn@475 1635 // do not recurse through top or the root (would reach unrelated stuff)
kvn@475 1636 if (n->is_Root() || n->is_top()) continue;
kvn@475 1637 if (only_ctrl && !n->is_CFG()) continue;
duke@435 1638
kvn@475 1639 bool on_stack = nstack.contains(n);
kvn@475 1640 if (!on_stack) {
kvn@475 1641 nstack.append(n);
duke@435 1642 }
duke@435 1643 }
duke@435 1644 }
kvn@475 1645 begin = end;
kvn@475 1646 }
kvn@475 1647 end = nstack.length();
kvn@475 1648 if (direction > 0) {
kvn@475 1649 for(int j = end-1; j >= 0; j--) {
kvn@475 1650 nstack.at(j)->dump();
kvn@475 1651 }
kvn@475 1652 } else {
kvn@475 1653 for(int j = 0; j < end; j++) {
kvn@475 1654 nstack.at(j)->dump();
kvn@475 1655 }
duke@435 1656 }
duke@435 1657 }
duke@435 1658
duke@435 1659 //------------------------------dump-------------------------------------------
duke@435 1660 void Node::dump(int d) const {
duke@435 1661 dump_nodes(this, d, false);
duke@435 1662 }
duke@435 1663
duke@435 1664 //------------------------------dump_ctrl--------------------------------------
duke@435 1665 // Dump a Node's control history to depth
duke@435 1666 void Node::dump_ctrl(int d) const {
duke@435 1667 dump_nodes(this, d, true);
duke@435 1668 }
duke@435 1669
duke@435 1670 // VERIFICATION CODE
duke@435 1671 // For each input edge to a node (ie - for each Use-Def edge), verify that
duke@435 1672 // there is a corresponding Def-Use edge.
duke@435 1673 //------------------------------verify_edges-----------------------------------
duke@435 1674 void Node::verify_edges(Unique_Node_List &visited) {
duke@435 1675 uint i, j, idx;
duke@435 1676 int cnt;
duke@435 1677 Node *n;
duke@435 1678
duke@435 1679 // Recursive termination test
duke@435 1680 if (visited.member(this)) return;
duke@435 1681 visited.push(this);
duke@435 1682
twisti@1040 1683 // Walk over all input edges, checking for correspondence
duke@435 1684 for( i = 0; i < len(); i++ ) {
duke@435 1685 n = in(i);
duke@435 1686 if (n != NULL && !n->is_top()) {
duke@435 1687 // Count instances of (Node *)this
duke@435 1688 cnt = 0;
duke@435 1689 for (idx = 0; idx < n->_outcnt; idx++ ) {
duke@435 1690 if (n->_out[idx] == (Node *)this) cnt++;
duke@435 1691 }
duke@435 1692 assert( cnt > 0,"Failed to find Def-Use edge." );
duke@435 1693 // Check for duplicate edges
duke@435 1694 // walk the input array downcounting the input edges to n
duke@435 1695 for( j = 0; j < len(); j++ ) {
duke@435 1696 if( in(j) == n ) cnt--;
duke@435 1697 }
duke@435 1698 assert( cnt == 0,"Mismatched edge count.");
duke@435 1699 } else if (n == NULL) {
duke@435 1700 assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
duke@435 1701 } else {
duke@435 1702 assert(n->is_top(), "sanity");
duke@435 1703 // Nothing to check.
duke@435 1704 }
duke@435 1705 }
duke@435 1706 // Recursive walk over all input edges
duke@435 1707 for( i = 0; i < len(); i++ ) {
duke@435 1708 n = in(i);
duke@435 1709 if( n != NULL )
duke@435 1710 in(i)->verify_edges(visited);
duke@435 1711 }
duke@435 1712 }
duke@435 1713
duke@435 1714 //------------------------------verify_recur-----------------------------------
duke@435 1715 static const Node *unique_top = NULL;
duke@435 1716
duke@435 1717 void Node::verify_recur(const Node *n, int verify_depth,
duke@435 1718 VectorSet &old_space, VectorSet &new_space) {
duke@435 1719 if ( verify_depth == 0 ) return;
duke@435 1720 if (verify_depth > 0) --verify_depth;
duke@435 1721
duke@435 1722 Compile* C = Compile::current();
duke@435 1723
duke@435 1724 // Contained in new_space or old_space?
duke@435 1725 VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
duke@435 1726 // Check for visited in the proper space. Numberings are not unique
twisti@1040 1727 // across spaces so we need a separate VectorSet for each space.
duke@435 1728 if( v->test_set(n->_idx) ) return;
duke@435 1729
duke@435 1730 if (n->is_Con() && n->bottom_type() == Type::TOP) {
duke@435 1731 if (C->cached_top_node() == NULL)
duke@435 1732 C->set_cached_top_node((Node*)n);
duke@435 1733 assert(C->cached_top_node() == n, "TOP node must be unique");
duke@435 1734 }
duke@435 1735
duke@435 1736 for( uint i = 0; i < n->len(); i++ ) {
duke@435 1737 Node *x = n->in(i);
duke@435 1738 if (!x || x->is_top()) continue;
duke@435 1739
duke@435 1740 // Verify my input has a def-use edge to me
duke@435 1741 if (true /*VerifyDefUse*/) {
duke@435 1742 // Count use-def edges from n to x
duke@435 1743 int cnt = 0;
duke@435 1744 for( uint j = 0; j < n->len(); j++ )
duke@435 1745 if( n->in(j) == x )
duke@435 1746 cnt++;
duke@435 1747 // Count def-use edges from x to n
duke@435 1748 uint max = x->_outcnt;
duke@435 1749 for( uint k = 0; k < max; k++ )
duke@435 1750 if (x->_out[k] == n)
duke@435 1751 cnt--;
duke@435 1752 assert( cnt == 0, "mismatched def-use edge counts" );
duke@435 1753 }
duke@435 1754
duke@435 1755 verify_recur(x, verify_depth, old_space, new_space);
duke@435 1756 }
duke@435 1757
duke@435 1758 }
duke@435 1759
duke@435 1760 //------------------------------verify-----------------------------------------
duke@435 1761 // Check Def-Use info for my subgraph
duke@435 1762 void Node::verify() const {
duke@435 1763 Compile* C = Compile::current();
duke@435 1764 Node* old_top = C->cached_top_node();
duke@435 1765 ResourceMark rm;
duke@435 1766 ResourceArea *area = Thread::current()->resource_area();
duke@435 1767 VectorSet old_space(area), new_space(area);
duke@435 1768 verify_recur(this, -1, old_space, new_space);
duke@435 1769 C->set_cached_top_node(old_top);
duke@435 1770 }
duke@435 1771 #endif
duke@435 1772
duke@435 1773
duke@435 1774 //------------------------------walk-------------------------------------------
duke@435 1775 // Graph walk, with both pre-order and post-order functions
duke@435 1776 void Node::walk(NFunc pre, NFunc post, void *env) {
duke@435 1777 VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
duke@435 1778 walk_(pre, post, env, visited);
duke@435 1779 }
duke@435 1780
duke@435 1781 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
duke@435 1782 if( visited.test_set(_idx) ) return;
duke@435 1783 pre(*this,env); // Call the pre-order walk function
duke@435 1784 for( uint i=0; i<_max; i++ )
duke@435 1785 if( in(i) ) // Input exists and is not walked?
duke@435 1786 in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
duke@435 1787 post(*this,env); // Call the post-order walk function
duke@435 1788 }
duke@435 1789
duke@435 1790 void Node::nop(Node &, void*) {}
duke@435 1791
duke@435 1792 //------------------------------Registers--------------------------------------
duke@435 1793 // Do we Match on this edge index or not? Generally false for Control
duke@435 1794 // and true for everything else. Weird for calls & returns.
duke@435 1795 uint Node::match_edge(uint idx) const {
duke@435 1796 return idx; // True for other than index 0 (control)
duke@435 1797 }
duke@435 1798
duke@435 1799 // Register classes are defined for specific machines
duke@435 1800 const RegMask &Node::out_RegMask() const {
duke@435 1801 ShouldNotCallThis();
duke@435 1802 return *(new RegMask());
duke@435 1803 }
duke@435 1804
duke@435 1805 const RegMask &Node::in_RegMask(uint) const {
duke@435 1806 ShouldNotCallThis();
duke@435 1807 return *(new RegMask());
duke@435 1808 }
duke@435 1809
duke@435 1810 //=============================================================================
duke@435 1811 //-----------------------------------------------------------------------------
duke@435 1812 void Node_Array::reset( Arena *new_arena ) {
duke@435 1813 _a->Afree(_nodes,_max*sizeof(Node*));
duke@435 1814 _max = 0;
duke@435 1815 _nodes = NULL;
duke@435 1816 _a = new_arena;
duke@435 1817 }
duke@435 1818
duke@435 1819 //------------------------------clear------------------------------------------
duke@435 1820 // Clear all entries in _nodes to NULL but keep storage
duke@435 1821 void Node_Array::clear() {
duke@435 1822 Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
duke@435 1823 }
duke@435 1824
duke@435 1825 //-----------------------------------------------------------------------------
duke@435 1826 void Node_Array::grow( uint i ) {
duke@435 1827 if( !_max ) {
duke@435 1828 _max = 1;
duke@435 1829 _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
duke@435 1830 _nodes[0] = NULL;
duke@435 1831 }
duke@435 1832 uint old = _max;
duke@435 1833 while( i >= _max ) _max <<= 1; // Double to fit
duke@435 1834 _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
duke@435 1835 Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
duke@435 1836 }
duke@435 1837
duke@435 1838 //-----------------------------------------------------------------------------
duke@435 1839 void Node_Array::insert( uint i, Node *n ) {
duke@435 1840 if( _nodes[_max-1] ) grow(_max); // Get more space if full
duke@435 1841 Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
duke@435 1842 _nodes[i] = n;
duke@435 1843 }
duke@435 1844
duke@435 1845 //-----------------------------------------------------------------------------
duke@435 1846 void Node_Array::remove( uint i ) {
duke@435 1847 Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
duke@435 1848 _nodes[_max-1] = NULL;
duke@435 1849 }
duke@435 1850
duke@435 1851 //-----------------------------------------------------------------------------
duke@435 1852 void Node_Array::sort( C_sort_func_t func) {
duke@435 1853 qsort( _nodes, _max, sizeof( Node* ), func );
duke@435 1854 }
duke@435 1855
duke@435 1856 //-----------------------------------------------------------------------------
duke@435 1857 void Node_Array::dump() const {
duke@435 1858 #ifndef PRODUCT
duke@435 1859 for( uint i = 0; i < _max; i++ ) {
duke@435 1860 Node *nn = _nodes[i];
duke@435 1861 if( nn != NULL ) {
duke@435 1862 tty->print("%5d--> ",i); nn->dump();
duke@435 1863 }
duke@435 1864 }
duke@435 1865 #endif
duke@435 1866 }
duke@435 1867
duke@435 1868 //--------------------------is_iteratively_computed------------------------------
duke@435 1869 // Operation appears to be iteratively computed (such as an induction variable)
duke@435 1870 // It is possible for this operation to return false for a loop-varying
duke@435 1871 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
duke@435 1872 bool Node::is_iteratively_computed() {
duke@435 1873 if (ideal_reg()) { // does operation have a result register?
duke@435 1874 for (uint i = 1; i < req(); i++) {
duke@435 1875 Node* n = in(i);
duke@435 1876 if (n != NULL && n->is_Phi()) {
duke@435 1877 for (uint j = 1; j < n->req(); j++) {
duke@435 1878 if (n->in(j) == this) {
duke@435 1879 return true;
duke@435 1880 }
duke@435 1881 }
duke@435 1882 }
duke@435 1883 }
duke@435 1884 }
duke@435 1885 return false;
duke@435 1886 }
duke@435 1887
duke@435 1888 //--------------------------find_similar------------------------------
duke@435 1889 // Return a node with opcode "opc" and same inputs as "this" if one can
duke@435 1890 // be found; Otherwise return NULL;
duke@435 1891 Node* Node::find_similar(int opc) {
duke@435 1892 if (req() >= 2) {
duke@435 1893 Node* def = in(1);
duke@435 1894 if (def && def->outcnt() >= 2) {
duke@435 1895 for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
duke@435 1896 Node* use = def->fast_out(i);
duke@435 1897 if (use->Opcode() == opc &&
duke@435 1898 use->req() == req()) {
duke@435 1899 uint j;
duke@435 1900 for (j = 0; j < use->req(); j++) {
duke@435 1901 if (use->in(j) != in(j)) {
duke@435 1902 break;
duke@435 1903 }
duke@435 1904 }
duke@435 1905 if (j == use->req()) {
duke@435 1906 return use;
duke@435 1907 }
duke@435 1908 }
duke@435 1909 }
duke@435 1910 }
duke@435 1911 }
duke@435 1912 return NULL;
duke@435 1913 }
duke@435 1914
duke@435 1915
duke@435 1916 //--------------------------unique_ctrl_out------------------------------
duke@435 1917 // Return the unique control out if only one. Null if none or more than one.
duke@435 1918 Node* Node::unique_ctrl_out() {
duke@435 1919 Node* found = NULL;
duke@435 1920 for (uint i = 0; i < outcnt(); i++) {
duke@435 1921 Node* use = raw_out(i);
duke@435 1922 if (use->is_CFG() && use != this) {
duke@435 1923 if (found != NULL) return NULL;
duke@435 1924 found = use;
duke@435 1925 }
duke@435 1926 }
duke@435 1927 return found;
duke@435 1928 }
duke@435 1929
duke@435 1930 //=============================================================================
duke@435 1931 //------------------------------yank-------------------------------------------
duke@435 1932 // Find and remove
duke@435 1933 void Node_List::yank( Node *n ) {
duke@435 1934 uint i;
duke@435 1935 for( i = 0; i < _cnt; i++ )
duke@435 1936 if( _nodes[i] == n )
duke@435 1937 break;
duke@435 1938
duke@435 1939 if( i < _cnt )
duke@435 1940 _nodes[i] = _nodes[--_cnt];
duke@435 1941 }
duke@435 1942
duke@435 1943 //------------------------------dump-------------------------------------------
duke@435 1944 void Node_List::dump() const {
duke@435 1945 #ifndef PRODUCT
duke@435 1946 for( uint i = 0; i < _cnt; i++ )
duke@435 1947 if( _nodes[i] ) {
duke@435 1948 tty->print("%5d--> ",i);
duke@435 1949 _nodes[i]->dump();
duke@435 1950 }
duke@435 1951 #endif
duke@435 1952 }
duke@435 1953
duke@435 1954 //=============================================================================
duke@435 1955 //------------------------------remove-----------------------------------------
duke@435 1956 void Unique_Node_List::remove( Node *n ) {
duke@435 1957 if( _in_worklist[n->_idx] ) {
duke@435 1958 for( uint i = 0; i < size(); i++ )
duke@435 1959 if( _nodes[i] == n ) {
duke@435 1960 map(i,Node_List::pop());
duke@435 1961 _in_worklist >>= n->_idx;
duke@435 1962 return;
duke@435 1963 }
duke@435 1964 ShouldNotReachHere();
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968 //-----------------------remove_useless_nodes----------------------------------
duke@435 1969 // Remove useless nodes from worklist
duke@435 1970 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
duke@435 1971
duke@435 1972 for( uint i = 0; i < size(); ++i ) {
duke@435 1973 Node *n = at(i);
duke@435 1974 assert( n != NULL, "Did not expect null entries in worklist");
duke@435 1975 if( ! useful.test(n->_idx) ) {
duke@435 1976 _in_worklist >>= n->_idx;
duke@435 1977 map(i,Node_List::pop());
duke@435 1978 // Node *replacement = Node_List::pop();
duke@435 1979 // if( i != size() ) { // Check if removing last entry
duke@435 1980 // _nodes[i] = replacement;
duke@435 1981 // }
duke@435 1982 --i; // Visit popped node
duke@435 1983 // If it was last entry, loop terminates since size() was also reduced
duke@435 1984 }
duke@435 1985 }
duke@435 1986 }
duke@435 1987
duke@435 1988 //=============================================================================
duke@435 1989 void Node_Stack::grow() {
duke@435 1990 size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
duke@435 1991 size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
duke@435 1992 size_t max = old_max << 1; // max * 2
duke@435 1993 _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
duke@435 1994 _inode_max = _inodes + max;
duke@435 1995 _inode_top = _inodes + old_top; // restore _top
duke@435 1996 }
duke@435 1997
duke@435 1998 //=============================================================================
duke@435 1999 uint TypeNode::size_of() const { return sizeof(*this); }
duke@435 2000 #ifndef PRODUCT
duke@435 2001 void TypeNode::dump_spec(outputStream *st) const {
duke@435 2002 if( !Verbose && !WizardMode ) {
duke@435 2003 // standard dump does this in Verbose and WizardMode
duke@435 2004 st->print(" #"); _type->dump_on(st);
duke@435 2005 }
duke@435 2006 }
duke@435 2007 #endif
duke@435 2008 uint TypeNode::hash() const {
duke@435 2009 return Node::hash() + _type->hash();
duke@435 2010 }
duke@435 2011 uint TypeNode::cmp( const Node &n ) const
duke@435 2012 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
duke@435 2013 const Type *TypeNode::bottom_type() const { return _type; }
duke@435 2014 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
duke@435 2015
duke@435 2016 //------------------------------ideal_reg--------------------------------------
duke@435 2017 uint TypeNode::ideal_reg() const {
duke@435 2018 return Matcher::base2reg[_type->base()];
duke@435 2019 }

mercurial