src/cpu/x86/vm/c1_LIRGenerator_x86.cpp

Thu, 02 Oct 2008 19:58:19 -0700

author
xdono
date
Thu, 02 Oct 2008 19:58:19 -0700
changeset 772
9ee9cf798b59
parent 739
dc7f315e41f7
child 797
f8199438385b
permissions
-rw-r--r--

6754988: Update copyright year
Summary: Update for files that have been modified starting July 2008
Reviewed-by: ohair, tbell

duke@435 1 /*
xdono@631 2 * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRGenerator_x86.cpp.incl"
duke@435 27
duke@435 28 #ifdef ASSERT
duke@435 29 #define __ gen()->lir(__FILE__, __LINE__)->
duke@435 30 #else
duke@435 31 #define __ gen()->lir()->
duke@435 32 #endif
duke@435 33
duke@435 34 // Item will be loaded into a byte register; Intel only
duke@435 35 void LIRItem::load_byte_item() {
duke@435 36 load_item();
duke@435 37 LIR_Opr res = result();
duke@435 38
duke@435 39 if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
duke@435 40 // make sure that it is a byte register
duke@435 41 assert(!value()->type()->is_float() && !value()->type()->is_double(),
duke@435 42 "can't load floats in byte register");
duke@435 43 LIR_Opr reg = _gen->rlock_byte(T_BYTE);
duke@435 44 __ move(res, reg);
duke@435 45
duke@435 46 _result = reg;
duke@435 47 }
duke@435 48 }
duke@435 49
duke@435 50
duke@435 51 void LIRItem::load_nonconstant() {
duke@435 52 LIR_Opr r = value()->operand();
duke@435 53 if (r->is_constant()) {
duke@435 54 _result = r;
duke@435 55 } else {
duke@435 56 load_item();
duke@435 57 }
duke@435 58 }
duke@435 59
duke@435 60 //--------------------------------------------------------------
duke@435 61 // LIRGenerator
duke@435 62 //--------------------------------------------------------------
duke@435 63
duke@435 64
duke@435 65 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
duke@435 66 LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
duke@435 67 LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
duke@435 68 LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
duke@435 69 LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
duke@435 70 LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
duke@435 71 LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
duke@435 72 LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
duke@435 73
duke@435 74
duke@435 75 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
duke@435 76 LIR_Opr opr;
duke@435 77 switch (type->tag()) {
duke@435 78 case intTag: opr = FrameMap::rax_opr; break;
duke@435 79 case objectTag: opr = FrameMap::rax_oop_opr; break;
never@739 80 case longTag: opr = FrameMap::long0_opr; break;
duke@435 81 case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
duke@435 82 case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
duke@435 83
duke@435 84 case addressTag:
duke@435 85 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
duke@435 86 }
duke@435 87
duke@435 88 assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
duke@435 89 return opr;
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
duke@435 94 LIR_Opr reg = new_register(T_INT);
duke@435 95 set_vreg_flag(reg, LIRGenerator::byte_reg);
duke@435 96 return reg;
duke@435 97 }
duke@435 98
duke@435 99
duke@435 100 //--------- loading items into registers --------------------------------
duke@435 101
duke@435 102
duke@435 103 // i486 instructions can inline constants
duke@435 104 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
duke@435 105 if (type == T_SHORT || type == T_CHAR) {
duke@435 106 // there is no immediate move of word values in asembler_i486.?pp
duke@435 107 return false;
duke@435 108 }
duke@435 109 Constant* c = v->as_Constant();
duke@435 110 if (c && c->state() == NULL) {
duke@435 111 // constants of any type can be stored directly, except for
duke@435 112 // unloaded object constants.
duke@435 113 return true;
duke@435 114 }
duke@435 115 return false;
duke@435 116 }
duke@435 117
duke@435 118
duke@435 119 bool LIRGenerator::can_inline_as_constant(Value v) const {
never@739 120 if (v->type()->tag() == longTag) return false;
duke@435 121 return v->type()->tag() != objectTag ||
duke@435 122 (v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
duke@435 123 }
duke@435 124
duke@435 125
duke@435 126 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
never@739 127 if (c->type() == T_LONG) return false;
duke@435 128 return c->type() != T_OBJECT || c->as_jobject() == NULL;
duke@435 129 }
duke@435 130
duke@435 131
duke@435 132 LIR_Opr LIRGenerator::safepoint_poll_register() {
duke@435 133 return LIR_OprFact::illegalOpr;
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
duke@435 138 int shift, int disp, BasicType type) {
duke@435 139 assert(base->is_register(), "must be");
duke@435 140 if (index->is_constant()) {
duke@435 141 return new LIR_Address(base,
duke@435 142 (index->as_constant_ptr()->as_jint() << shift) + disp,
duke@435 143 type);
duke@435 144 } else {
duke@435 145 return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
duke@435 146 }
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
duke@435 151 BasicType type, bool needs_card_mark) {
duke@435 152 int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
duke@435 153
duke@435 154 LIR_Address* addr;
duke@435 155 if (index_opr->is_constant()) {
kvn@464 156 int elem_size = type2aelembytes(type);
duke@435 157 addr = new LIR_Address(array_opr,
duke@435 158 offset_in_bytes + index_opr->as_jint() * elem_size, type);
duke@435 159 } else {
never@739 160 #ifdef _LP64
never@739 161 if (index_opr->type() == T_INT) {
never@739 162 LIR_Opr tmp = new_register(T_LONG);
never@739 163 __ convert(Bytecodes::_i2l, index_opr, tmp);
never@739 164 index_opr = tmp;
never@739 165 }
never@739 166 #endif // _LP64
duke@435 167 addr = new LIR_Address(array_opr,
duke@435 168 index_opr,
duke@435 169 LIR_Address::scale(type),
duke@435 170 offset_in_bytes, type);
duke@435 171 }
duke@435 172 if (needs_card_mark) {
duke@435 173 // This store will need a precise card mark, so go ahead and
duke@435 174 // compute the full adddres instead of computing once for the
duke@435 175 // store and again for the card mark.
never@739 176 LIR_Opr tmp = new_pointer_register();
duke@435 177 __ leal(LIR_OprFact::address(addr), tmp);
duke@435 178 return new LIR_Address(tmp, 0, type);
duke@435 179 } else {
duke@435 180 return addr;
duke@435 181 }
duke@435 182 }
duke@435 183
duke@435 184
duke@435 185 void LIRGenerator::increment_counter(address counter, int step) {
never@739 186 LIR_Opr pointer = new_pointer_register();
never@739 187 __ move(LIR_OprFact::intptrConst(counter), pointer);
duke@435 188 LIR_Address* addr = new LIR_Address(pointer, 0, T_INT);
duke@435 189 increment_counter(addr, step);
duke@435 190 }
duke@435 191
duke@435 192
duke@435 193 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
duke@435 194 __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
duke@435 195 }
duke@435 196
duke@435 197
duke@435 198 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
duke@435 199 __ cmp_mem_int(condition, base, disp, c, info);
duke@435 200 }
duke@435 201
duke@435 202
duke@435 203 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
duke@435 204 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
duke@435 205 }
duke@435 206
duke@435 207
duke@435 208 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
duke@435 209 __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
duke@435 210 }
duke@435 211
duke@435 212
duke@435 213 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
duke@435 214 if (tmp->is_valid()) {
duke@435 215 if (is_power_of_2(c + 1)) {
duke@435 216 __ move(left, tmp);
duke@435 217 __ shift_left(left, log2_intptr(c + 1), left);
duke@435 218 __ sub(left, tmp, result);
duke@435 219 return true;
duke@435 220 } else if (is_power_of_2(c - 1)) {
duke@435 221 __ move(left, tmp);
duke@435 222 __ shift_left(left, log2_intptr(c - 1), left);
duke@435 223 __ add(left, tmp, result);
duke@435 224 return true;
duke@435 225 }
duke@435 226 }
duke@435 227 return false;
duke@435 228 }
duke@435 229
duke@435 230
duke@435 231 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
duke@435 232 BasicType type = item->type();
duke@435 233 __ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
duke@435 234 }
duke@435 235
duke@435 236 //----------------------------------------------------------------------
duke@435 237 // visitor functions
duke@435 238 //----------------------------------------------------------------------
duke@435 239
duke@435 240
duke@435 241 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
duke@435 242 assert(x->is_root(),"");
duke@435 243 bool needs_range_check = true;
duke@435 244 bool use_length = x->length() != NULL;
duke@435 245 bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
duke@435 246 bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
duke@435 247 !get_jobject_constant(x->value())->is_null_object());
duke@435 248
duke@435 249 LIRItem array(x->array(), this);
duke@435 250 LIRItem index(x->index(), this);
duke@435 251 LIRItem value(x->value(), this);
duke@435 252 LIRItem length(this);
duke@435 253
duke@435 254 array.load_item();
duke@435 255 index.load_nonconstant();
duke@435 256
duke@435 257 if (use_length) {
duke@435 258 needs_range_check = x->compute_needs_range_check();
duke@435 259 if (needs_range_check) {
duke@435 260 length.set_instruction(x->length());
duke@435 261 length.load_item();
duke@435 262 }
duke@435 263 }
duke@435 264 if (needs_store_check) {
duke@435 265 value.load_item();
duke@435 266 } else {
duke@435 267 value.load_for_store(x->elt_type());
duke@435 268 }
duke@435 269
duke@435 270 set_no_result(x);
duke@435 271
duke@435 272 // the CodeEmitInfo must be duplicated for each different
duke@435 273 // LIR-instruction because spilling can occur anywhere between two
duke@435 274 // instructions and so the debug information must be different
duke@435 275 CodeEmitInfo* range_check_info = state_for(x);
duke@435 276 CodeEmitInfo* null_check_info = NULL;
duke@435 277 if (x->needs_null_check()) {
duke@435 278 null_check_info = new CodeEmitInfo(range_check_info);
duke@435 279 }
duke@435 280
duke@435 281 // emit array address setup early so it schedules better
duke@435 282 LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
duke@435 283
duke@435 284 if (GenerateRangeChecks && needs_range_check) {
duke@435 285 if (use_length) {
duke@435 286 __ cmp(lir_cond_belowEqual, length.result(), index.result());
duke@435 287 __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
duke@435 288 } else {
duke@435 289 array_range_check(array.result(), index.result(), null_check_info, range_check_info);
duke@435 290 // range_check also does the null check
duke@435 291 null_check_info = NULL;
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 if (GenerateArrayStoreCheck && needs_store_check) {
duke@435 296 LIR_Opr tmp1 = new_register(objectType);
duke@435 297 LIR_Opr tmp2 = new_register(objectType);
duke@435 298 LIR_Opr tmp3 = new_register(objectType);
duke@435 299
duke@435 300 CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
duke@435 301 __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3, store_check_info);
duke@435 302 }
duke@435 303
duke@435 304 if (obj_store) {
duke@435 305 __ move(value.result(), array_addr, null_check_info);
duke@435 306 // Seems to be a precise
duke@435 307 post_barrier(LIR_OprFact::address(array_addr), value.result());
duke@435 308 } else {
duke@435 309 __ move(value.result(), array_addr, null_check_info);
duke@435 310 }
duke@435 311 }
duke@435 312
duke@435 313
duke@435 314 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
duke@435 315 assert(x->is_root(),"");
duke@435 316 LIRItem obj(x->obj(), this);
duke@435 317 obj.load_item();
duke@435 318
duke@435 319 set_no_result(x);
duke@435 320
duke@435 321 // "lock" stores the address of the monitor stack slot, so this is not an oop
duke@435 322 LIR_Opr lock = new_register(T_INT);
duke@435 323 // Need a scratch register for biased locking on x86
duke@435 324 LIR_Opr scratch = LIR_OprFact::illegalOpr;
duke@435 325 if (UseBiasedLocking) {
duke@435 326 scratch = new_register(T_INT);
duke@435 327 }
duke@435 328
duke@435 329 CodeEmitInfo* info_for_exception = NULL;
duke@435 330 if (x->needs_null_check()) {
duke@435 331 info_for_exception = state_for(x, x->lock_stack_before());
duke@435 332 }
duke@435 333 // this CodeEmitInfo must not have the xhandlers because here the
duke@435 334 // object is already locked (xhandlers expect object to be unlocked)
duke@435 335 CodeEmitInfo* info = state_for(x, x->state(), true);
duke@435 336 monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
duke@435 337 x->monitor_no(), info_for_exception, info);
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
duke@435 342 assert(x->is_root(),"");
duke@435 343
duke@435 344 LIRItem obj(x->obj(), this);
duke@435 345 obj.dont_load_item();
duke@435 346
duke@435 347 LIR_Opr lock = new_register(T_INT);
duke@435 348 LIR_Opr obj_temp = new_register(T_INT);
duke@435 349 set_no_result(x);
duke@435 350 monitor_exit(obj_temp, lock, syncTempOpr(), x->monitor_no());
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 // _ineg, _lneg, _fneg, _dneg
duke@435 355 void LIRGenerator::do_NegateOp(NegateOp* x) {
duke@435 356 LIRItem value(x->x(), this);
duke@435 357 value.set_destroys_register();
duke@435 358 value.load_item();
duke@435 359 LIR_Opr reg = rlock(x);
duke@435 360 __ negate(value.result(), reg);
duke@435 361
duke@435 362 set_result(x, round_item(reg));
duke@435 363 }
duke@435 364
duke@435 365
duke@435 366 // for _fadd, _fmul, _fsub, _fdiv, _frem
duke@435 367 // _dadd, _dmul, _dsub, _ddiv, _drem
duke@435 368 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
duke@435 369 LIRItem left(x->x(), this);
duke@435 370 LIRItem right(x->y(), this);
duke@435 371 LIRItem* left_arg = &left;
duke@435 372 LIRItem* right_arg = &right;
duke@435 373 assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
duke@435 374 bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
duke@435 375 if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
duke@435 376 left.load_item();
duke@435 377 } else {
duke@435 378 left.dont_load_item();
duke@435 379 }
duke@435 380
duke@435 381 // do not load right operand if it is a constant. only 0 and 1 are
duke@435 382 // loaded because there are special instructions for loading them
duke@435 383 // without memory access (not needed for SSE2 instructions)
duke@435 384 bool must_load_right = false;
duke@435 385 if (right.is_constant()) {
duke@435 386 LIR_Const* c = right.result()->as_constant_ptr();
duke@435 387 assert(c != NULL, "invalid constant");
duke@435 388 assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
duke@435 389
duke@435 390 if (c->type() == T_FLOAT) {
duke@435 391 must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
duke@435 392 } else {
duke@435 393 must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
duke@435 394 }
duke@435 395 }
duke@435 396
duke@435 397 if (must_load_both) {
duke@435 398 // frem and drem destroy also right operand, so move it to a new register
duke@435 399 right.set_destroys_register();
duke@435 400 right.load_item();
duke@435 401 } else if (right.is_register() || must_load_right) {
duke@435 402 right.load_item();
duke@435 403 } else {
duke@435 404 right.dont_load_item();
duke@435 405 }
duke@435 406 LIR_Opr reg = rlock(x);
duke@435 407 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 408 if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
duke@435 409 tmp = new_register(T_DOUBLE);
duke@435 410 }
duke@435 411
duke@435 412 if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
duke@435 413 // special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
duke@435 414 LIR_Opr fpu0, fpu1;
duke@435 415 if (x->op() == Bytecodes::_frem) {
duke@435 416 fpu0 = LIR_OprFact::single_fpu(0);
duke@435 417 fpu1 = LIR_OprFact::single_fpu(1);
duke@435 418 } else {
duke@435 419 fpu0 = LIR_OprFact::double_fpu(0);
duke@435 420 fpu1 = LIR_OprFact::double_fpu(1);
duke@435 421 }
duke@435 422 __ move(right.result(), fpu1); // order of left and right operand is important!
duke@435 423 __ move(left.result(), fpu0);
duke@435 424 __ rem (fpu0, fpu1, fpu0);
duke@435 425 __ move(fpu0, reg);
duke@435 426
duke@435 427 } else {
duke@435 428 arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp);
duke@435 429 }
duke@435 430
duke@435 431 set_result(x, round_item(reg));
duke@435 432 }
duke@435 433
duke@435 434
duke@435 435 // for _ladd, _lmul, _lsub, _ldiv, _lrem
duke@435 436 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
duke@435 437 if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
duke@435 438 // long division is implemented as a direct call into the runtime
duke@435 439 LIRItem left(x->x(), this);
duke@435 440 LIRItem right(x->y(), this);
duke@435 441
duke@435 442 // the check for division by zero destroys the right operand
duke@435 443 right.set_destroys_register();
duke@435 444
duke@435 445 BasicTypeList signature(2);
duke@435 446 signature.append(T_LONG);
duke@435 447 signature.append(T_LONG);
duke@435 448 CallingConvention* cc = frame_map()->c_calling_convention(&signature);
duke@435 449
duke@435 450 // check for division by zero (destroys registers of right operand!)
duke@435 451 CodeEmitInfo* info = state_for(x);
duke@435 452
duke@435 453 const LIR_Opr result_reg = result_register_for(x->type());
duke@435 454 left.load_item_force(cc->at(1));
duke@435 455 right.load_item();
duke@435 456
duke@435 457 __ move(right.result(), cc->at(0));
duke@435 458
duke@435 459 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
duke@435 460 __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
duke@435 461
duke@435 462 address entry;
duke@435 463 switch (x->op()) {
duke@435 464 case Bytecodes::_lrem:
duke@435 465 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
duke@435 466 break; // check if dividend is 0 is done elsewhere
duke@435 467 case Bytecodes::_ldiv:
duke@435 468 entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
duke@435 469 break; // check if dividend is 0 is done elsewhere
duke@435 470 case Bytecodes::_lmul:
duke@435 471 entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
duke@435 472 break;
duke@435 473 default:
duke@435 474 ShouldNotReachHere();
duke@435 475 }
duke@435 476
duke@435 477 LIR_Opr result = rlock_result(x);
duke@435 478 __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
duke@435 479 __ move(result_reg, result);
duke@435 480 } else if (x->op() == Bytecodes::_lmul) {
duke@435 481 // missing test if instr is commutative and if we should swap
duke@435 482 LIRItem left(x->x(), this);
duke@435 483 LIRItem right(x->y(), this);
duke@435 484
duke@435 485 // right register is destroyed by the long mul, so it must be
duke@435 486 // copied to a new register.
duke@435 487 right.set_destroys_register();
duke@435 488
duke@435 489 left.load_item();
duke@435 490 right.load_item();
duke@435 491
never@739 492 LIR_Opr reg = FrameMap::long0_opr;
duke@435 493 arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
duke@435 494 LIR_Opr result = rlock_result(x);
duke@435 495 __ move(reg, result);
duke@435 496 } else {
duke@435 497 // missing test if instr is commutative and if we should swap
duke@435 498 LIRItem left(x->x(), this);
duke@435 499 LIRItem right(x->y(), this);
duke@435 500
duke@435 501 left.load_item();
duke@435 502 // dont load constants to save register
duke@435 503 right.load_nonconstant();
duke@435 504 rlock_result(x);
duke@435 505 arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
duke@435 506 }
duke@435 507 }
duke@435 508
duke@435 509
duke@435 510
duke@435 511 // for: _iadd, _imul, _isub, _idiv, _irem
duke@435 512 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
duke@435 513 if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
duke@435 514 // The requirements for division and modulo
duke@435 515 // input : rax,: dividend min_int
duke@435 516 // reg: divisor (may not be rax,/rdx) -1
duke@435 517 //
duke@435 518 // output: rax,: quotient (= rax, idiv reg) min_int
duke@435 519 // rdx: remainder (= rax, irem reg) 0
duke@435 520
duke@435 521 // rax, and rdx will be destroyed
duke@435 522
duke@435 523 // Note: does this invalidate the spec ???
duke@435 524 LIRItem right(x->y(), this);
duke@435 525 LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
duke@435 526
duke@435 527 // call state_for before load_item_force because state_for may
duke@435 528 // force the evaluation of other instructions that are needed for
duke@435 529 // correct debug info. Otherwise the live range of the fix
duke@435 530 // register might be too long.
duke@435 531 CodeEmitInfo* info = state_for(x);
duke@435 532
duke@435 533 left.load_item_force(divInOpr());
duke@435 534
duke@435 535 right.load_item();
duke@435 536
duke@435 537 LIR_Opr result = rlock_result(x);
duke@435 538 LIR_Opr result_reg;
duke@435 539 if (x->op() == Bytecodes::_idiv) {
duke@435 540 result_reg = divOutOpr();
duke@435 541 } else {
duke@435 542 result_reg = remOutOpr();
duke@435 543 }
duke@435 544
duke@435 545 if (!ImplicitDiv0Checks) {
duke@435 546 __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
duke@435 547 __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info));
duke@435 548 }
duke@435 549 LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
duke@435 550 if (x->op() == Bytecodes::_irem) {
duke@435 551 __ irem(left.result(), right.result(), result_reg, tmp, info);
duke@435 552 } else if (x->op() == Bytecodes::_idiv) {
duke@435 553 __ idiv(left.result(), right.result(), result_reg, tmp, info);
duke@435 554 } else {
duke@435 555 ShouldNotReachHere();
duke@435 556 }
duke@435 557
duke@435 558 __ move(result_reg, result);
duke@435 559 } else {
duke@435 560 // missing test if instr is commutative and if we should swap
duke@435 561 LIRItem left(x->x(), this);
duke@435 562 LIRItem right(x->y(), this);
duke@435 563 LIRItem* left_arg = &left;
duke@435 564 LIRItem* right_arg = &right;
duke@435 565 if (x->is_commutative() && left.is_stack() && right.is_register()) {
duke@435 566 // swap them if left is real stack (or cached) and right is real register(not cached)
duke@435 567 left_arg = &right;
duke@435 568 right_arg = &left;
duke@435 569 }
duke@435 570
duke@435 571 left_arg->load_item();
duke@435 572
duke@435 573 // do not need to load right, as we can handle stack and constants
duke@435 574 if (x->op() == Bytecodes::_imul ) {
duke@435 575 // check if we can use shift instead
duke@435 576 bool use_constant = false;
duke@435 577 bool use_tmp = false;
duke@435 578 if (right_arg->is_constant()) {
duke@435 579 int iconst = right_arg->get_jint_constant();
duke@435 580 if (iconst > 0) {
duke@435 581 if (is_power_of_2(iconst)) {
duke@435 582 use_constant = true;
duke@435 583 } else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
duke@435 584 use_constant = true;
duke@435 585 use_tmp = true;
duke@435 586 }
duke@435 587 }
duke@435 588 }
duke@435 589 if (use_constant) {
duke@435 590 right_arg->dont_load_item();
duke@435 591 } else {
duke@435 592 right_arg->load_item();
duke@435 593 }
duke@435 594 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 595 if (use_tmp) {
duke@435 596 tmp = new_register(T_INT);
duke@435 597 }
duke@435 598 rlock_result(x);
duke@435 599
duke@435 600 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
duke@435 601 } else {
duke@435 602 right_arg->dont_load_item();
duke@435 603 rlock_result(x);
duke@435 604 LIR_Opr tmp = LIR_OprFact::illegalOpr;
duke@435 605 arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
duke@435 606 }
duke@435 607 }
duke@435 608 }
duke@435 609
duke@435 610
duke@435 611 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
duke@435 612 // when an operand with use count 1 is the left operand, then it is
duke@435 613 // likely that no move for 2-operand-LIR-form is necessary
duke@435 614 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
duke@435 615 x->swap_operands();
duke@435 616 }
duke@435 617
duke@435 618 ValueTag tag = x->type()->tag();
duke@435 619 assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
duke@435 620 switch (tag) {
duke@435 621 case floatTag:
duke@435 622 case doubleTag: do_ArithmeticOp_FPU(x); return;
duke@435 623 case longTag: do_ArithmeticOp_Long(x); return;
duke@435 624 case intTag: do_ArithmeticOp_Int(x); return;
duke@435 625 }
duke@435 626 ShouldNotReachHere();
duke@435 627 }
duke@435 628
duke@435 629
duke@435 630 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
duke@435 631 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
duke@435 632 // count must always be in rcx
duke@435 633 LIRItem value(x->x(), this);
duke@435 634 LIRItem count(x->y(), this);
duke@435 635
duke@435 636 ValueTag elemType = x->type()->tag();
duke@435 637 bool must_load_count = !count.is_constant() || elemType == longTag;
duke@435 638 if (must_load_count) {
duke@435 639 // count for long must be in register
duke@435 640 count.load_item_force(shiftCountOpr());
duke@435 641 } else {
duke@435 642 count.dont_load_item();
duke@435 643 }
duke@435 644 value.load_item();
duke@435 645 LIR_Opr reg = rlock_result(x);
duke@435 646
duke@435 647 shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
duke@435 648 }
duke@435 649
duke@435 650
duke@435 651 // _iand, _land, _ior, _lor, _ixor, _lxor
duke@435 652 void LIRGenerator::do_LogicOp(LogicOp* x) {
duke@435 653 // when an operand with use count 1 is the left operand, then it is
duke@435 654 // likely that no move for 2-operand-LIR-form is necessary
duke@435 655 if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
duke@435 656 x->swap_operands();
duke@435 657 }
duke@435 658
duke@435 659 LIRItem left(x->x(), this);
duke@435 660 LIRItem right(x->y(), this);
duke@435 661
duke@435 662 left.load_item();
duke@435 663 right.load_nonconstant();
duke@435 664 LIR_Opr reg = rlock_result(x);
duke@435 665
duke@435 666 logic_op(x->op(), reg, left.result(), right.result());
duke@435 667 }
duke@435 668
duke@435 669
duke@435 670
duke@435 671 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
duke@435 672 void LIRGenerator::do_CompareOp(CompareOp* x) {
duke@435 673 LIRItem left(x->x(), this);
duke@435 674 LIRItem right(x->y(), this);
duke@435 675 ValueTag tag = x->x()->type()->tag();
duke@435 676 if (tag == longTag) {
duke@435 677 left.set_destroys_register();
duke@435 678 }
duke@435 679 left.load_item();
duke@435 680 right.load_item();
duke@435 681 LIR_Opr reg = rlock_result(x);
duke@435 682
duke@435 683 if (x->x()->type()->is_float_kind()) {
duke@435 684 Bytecodes::Code code = x->op();
duke@435 685 __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
duke@435 686 } else if (x->x()->type()->tag() == longTag) {
duke@435 687 __ lcmp2int(left.result(), right.result(), reg);
duke@435 688 } else {
duke@435 689 Unimplemented();
duke@435 690 }
duke@435 691 }
duke@435 692
duke@435 693
duke@435 694 void LIRGenerator::do_AttemptUpdate(Intrinsic* x) {
duke@435 695 assert(x->number_of_arguments() == 3, "wrong type");
duke@435 696 LIRItem obj (x->argument_at(0), this); // AtomicLong object
duke@435 697 LIRItem cmp_value (x->argument_at(1), this); // value to compare with field
duke@435 698 LIRItem new_value (x->argument_at(2), this); // replace field with new_value if it matches cmp_value
duke@435 699
duke@435 700 // compare value must be in rdx,eax (hi,lo); may be destroyed by cmpxchg8 instruction
never@739 701 cmp_value.load_item_force(FrameMap::long0_opr);
duke@435 702
duke@435 703 // new value must be in rcx,ebx (hi,lo)
never@739 704 new_value.load_item_force(FrameMap::long1_opr);
duke@435 705
duke@435 706 // object pointer register is overwritten with field address
duke@435 707 obj.load_item();
duke@435 708
duke@435 709 // generate compare-and-swap; produces zero condition if swap occurs
duke@435 710 int value_offset = sun_misc_AtomicLongCSImpl::value_offset();
duke@435 711 LIR_Opr addr = obj.result();
duke@435 712 __ add(addr, LIR_OprFact::intConst(value_offset), addr);
duke@435 713 LIR_Opr t1 = LIR_OprFact::illegalOpr; // no temp needed
duke@435 714 LIR_Opr t2 = LIR_OprFact::illegalOpr; // no temp needed
duke@435 715 __ cas_long(addr, cmp_value.result(), new_value.result(), t1, t2);
duke@435 716
duke@435 717 // generate conditional move of boolean result
duke@435 718 LIR_Opr result = rlock_result(x);
duke@435 719 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
duke@435 720 }
duke@435 721
duke@435 722
duke@435 723 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
duke@435 724 assert(x->number_of_arguments() == 4, "wrong type");
duke@435 725 LIRItem obj (x->argument_at(0), this); // object
duke@435 726 LIRItem offset(x->argument_at(1), this); // offset of field
duke@435 727 LIRItem cmp (x->argument_at(2), this); // value to compare with field
duke@435 728 LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
duke@435 729
duke@435 730 assert(obj.type()->tag() == objectTag, "invalid type");
never@739 731
never@739 732 // In 64bit the type can be long, sparc doesn't have this assert
never@739 733 // assert(offset.type()->tag() == intTag, "invalid type");
never@739 734
duke@435 735 assert(cmp.type()->tag() == type->tag(), "invalid type");
duke@435 736 assert(val.type()->tag() == type->tag(), "invalid type");
duke@435 737
duke@435 738 // get address of field
duke@435 739 obj.load_item();
duke@435 740 offset.load_nonconstant();
duke@435 741
duke@435 742 if (type == objectType) {
duke@435 743 cmp.load_item_force(FrameMap::rax_oop_opr);
duke@435 744 val.load_item();
duke@435 745 } else if (type == intType) {
duke@435 746 cmp.load_item_force(FrameMap::rax_opr);
duke@435 747 val.load_item();
duke@435 748 } else if (type == longType) {
never@739 749 cmp.load_item_force(FrameMap::long0_opr);
never@739 750 val.load_item_force(FrameMap::long1_opr);
duke@435 751 } else {
duke@435 752 ShouldNotReachHere();
duke@435 753 }
duke@435 754
duke@435 755 LIR_Opr addr = new_pointer_register();
duke@435 756 __ move(obj.result(), addr);
duke@435 757 __ add(addr, offset.result(), addr);
duke@435 758
duke@435 759
duke@435 760
duke@435 761 LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
duke@435 762 if (type == objectType)
duke@435 763 __ cas_obj(addr, cmp.result(), val.result(), ill, ill);
duke@435 764 else if (type == intType)
duke@435 765 __ cas_int(addr, cmp.result(), val.result(), ill, ill);
duke@435 766 else if (type == longType)
duke@435 767 __ cas_long(addr, cmp.result(), val.result(), ill, ill);
duke@435 768 else {
duke@435 769 ShouldNotReachHere();
duke@435 770 }
duke@435 771
duke@435 772 // generate conditional move of boolean result
duke@435 773 LIR_Opr result = rlock_result(x);
duke@435 774 __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result);
duke@435 775 if (type == objectType) { // Write-barrier needed for Object fields.
duke@435 776 // Seems to be precise
duke@435 777 post_barrier(addr, val.result());
duke@435 778 }
duke@435 779 }
duke@435 780
duke@435 781
duke@435 782 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
duke@435 783 assert(x->number_of_arguments() == 1, "wrong type");
duke@435 784 LIRItem value(x->argument_at(0), this);
duke@435 785
duke@435 786 bool use_fpu = false;
duke@435 787 if (UseSSE >= 2) {
duke@435 788 switch(x->id()) {
duke@435 789 case vmIntrinsics::_dsin:
duke@435 790 case vmIntrinsics::_dcos:
duke@435 791 case vmIntrinsics::_dtan:
duke@435 792 case vmIntrinsics::_dlog:
duke@435 793 case vmIntrinsics::_dlog10:
duke@435 794 use_fpu = true;
duke@435 795 }
duke@435 796 } else {
duke@435 797 value.set_destroys_register();
duke@435 798 }
duke@435 799
duke@435 800 value.load_item();
duke@435 801
duke@435 802 LIR_Opr calc_input = value.result();
duke@435 803 LIR_Opr calc_result = rlock_result(x);
duke@435 804
duke@435 805 // sin and cos need two free fpu stack slots, so register two temporary operands
duke@435 806 LIR_Opr tmp1 = FrameMap::caller_save_fpu_reg_at(0);
duke@435 807 LIR_Opr tmp2 = FrameMap::caller_save_fpu_reg_at(1);
duke@435 808
duke@435 809 if (use_fpu) {
duke@435 810 LIR_Opr tmp = FrameMap::fpu0_double_opr;
duke@435 811 __ move(calc_input, tmp);
duke@435 812
duke@435 813 calc_input = tmp;
duke@435 814 calc_result = tmp;
duke@435 815 tmp1 = FrameMap::caller_save_fpu_reg_at(1);
duke@435 816 tmp2 = FrameMap::caller_save_fpu_reg_at(2);
duke@435 817 }
duke@435 818
duke@435 819 switch(x->id()) {
duke@435 820 case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 821 case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 822 case vmIntrinsics::_dsin: __ sin (calc_input, calc_result, tmp1, tmp2); break;
duke@435 823 case vmIntrinsics::_dcos: __ cos (calc_input, calc_result, tmp1, tmp2); break;
duke@435 824 case vmIntrinsics::_dtan: __ tan (calc_input, calc_result, tmp1, tmp2); break;
duke@435 825 case vmIntrinsics::_dlog: __ log (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 826 case vmIntrinsics::_dlog10: __ log10(calc_input, calc_result, LIR_OprFact::illegalOpr); break;
duke@435 827 default: ShouldNotReachHere();
duke@435 828 }
duke@435 829
duke@435 830 if (use_fpu) {
duke@435 831 __ move(calc_result, x->operand());
duke@435 832 }
duke@435 833 }
duke@435 834
duke@435 835
duke@435 836 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
duke@435 837 assert(x->number_of_arguments() == 5, "wrong type");
duke@435 838 LIRItem src(x->argument_at(0), this);
duke@435 839 LIRItem src_pos(x->argument_at(1), this);
duke@435 840 LIRItem dst(x->argument_at(2), this);
duke@435 841 LIRItem dst_pos(x->argument_at(3), this);
duke@435 842 LIRItem length(x->argument_at(4), this);
duke@435 843
duke@435 844 // operands for arraycopy must use fixed registers, otherwise
duke@435 845 // LinearScan will fail allocation (because arraycopy always needs a
duke@435 846 // call)
never@739 847
never@739 848 #ifndef _LP64
duke@435 849 src.load_item_force (FrameMap::rcx_oop_opr);
duke@435 850 src_pos.load_item_force (FrameMap::rdx_opr);
duke@435 851 dst.load_item_force (FrameMap::rax_oop_opr);
duke@435 852 dst_pos.load_item_force (FrameMap::rbx_opr);
duke@435 853 length.load_item_force (FrameMap::rdi_opr);
duke@435 854 LIR_Opr tmp = (FrameMap::rsi_opr);
never@739 855 #else
never@739 856
never@739 857 // The java calling convention will give us enough registers
never@739 858 // so that on the stub side the args will be perfect already.
never@739 859 // On the other slow/special case side we call C and the arg
never@739 860 // positions are not similar enough to pick one as the best.
never@739 861 // Also because the java calling convention is a "shifted" version
never@739 862 // of the C convention we can process the java args trivially into C
never@739 863 // args without worry of overwriting during the xfer
never@739 864
never@739 865 src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
never@739 866 src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
never@739 867 dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
never@739 868 dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
never@739 869 length.load_item_force (FrameMap::as_opr(j_rarg4));
never@739 870
never@739 871 LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
never@739 872 #endif // LP64
never@739 873
duke@435 874 set_no_result(x);
duke@435 875
duke@435 876 int flags;
duke@435 877 ciArrayKlass* expected_type;
duke@435 878 arraycopy_helper(x, &flags, &expected_type);
duke@435 879
duke@435 880 CodeEmitInfo* info = state_for(x, x->state()); // we may want to have stack (deoptimization?)
duke@435 881 __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
duke@435 882 }
duke@435 883
duke@435 884
duke@435 885 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
duke@435 886 // _i2b, _i2c, _i2s
duke@435 887 LIR_Opr fixed_register_for(BasicType type) {
duke@435 888 switch (type) {
duke@435 889 case T_FLOAT: return FrameMap::fpu0_float_opr;
duke@435 890 case T_DOUBLE: return FrameMap::fpu0_double_opr;
duke@435 891 case T_INT: return FrameMap::rax_opr;
never@739 892 case T_LONG: return FrameMap::long0_opr;
duke@435 893 default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
duke@435 894 }
duke@435 895 }
duke@435 896
duke@435 897 void LIRGenerator::do_Convert(Convert* x) {
duke@435 898 // flags that vary for the different operations and different SSE-settings
duke@435 899 bool fixed_input, fixed_result, round_result, needs_stub;
duke@435 900
duke@435 901 switch (x->op()) {
duke@435 902 case Bytecodes::_i2l: // fall through
duke@435 903 case Bytecodes::_l2i: // fall through
duke@435 904 case Bytecodes::_i2b: // fall through
duke@435 905 case Bytecodes::_i2c: // fall through
duke@435 906 case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 907
duke@435 908 case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 909 case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 910 case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 911 case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
duke@435 912 case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
duke@435 913 case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
duke@435 914 case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
duke@435 915 case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
duke@435 916 case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
duke@435 917 case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
duke@435 918 default: ShouldNotReachHere();
duke@435 919 }
duke@435 920
duke@435 921 LIRItem value(x->value(), this);
duke@435 922 value.load_item();
duke@435 923 LIR_Opr input = value.result();
duke@435 924 LIR_Opr result = rlock(x);
duke@435 925
duke@435 926 // arguments of lir_convert
duke@435 927 LIR_Opr conv_input = input;
duke@435 928 LIR_Opr conv_result = result;
duke@435 929 ConversionStub* stub = NULL;
duke@435 930
duke@435 931 if (fixed_input) {
duke@435 932 conv_input = fixed_register_for(input->type());
duke@435 933 __ move(input, conv_input);
duke@435 934 }
duke@435 935
duke@435 936 assert(fixed_result == false || round_result == false, "cannot set both");
duke@435 937 if (fixed_result) {
duke@435 938 conv_result = fixed_register_for(result->type());
duke@435 939 } else if (round_result) {
duke@435 940 result = new_register(result->type());
duke@435 941 set_vreg_flag(result, must_start_in_memory);
duke@435 942 }
duke@435 943
duke@435 944 if (needs_stub) {
duke@435 945 stub = new ConversionStub(x->op(), conv_input, conv_result);
duke@435 946 }
duke@435 947
duke@435 948 __ convert(x->op(), conv_input, conv_result, stub);
duke@435 949
duke@435 950 if (result != conv_result) {
duke@435 951 __ move(conv_result, result);
duke@435 952 }
duke@435 953
duke@435 954 assert(result->is_virtual(), "result must be virtual register");
duke@435 955 set_result(x, result);
duke@435 956 }
duke@435 957
duke@435 958
duke@435 959 void LIRGenerator::do_NewInstance(NewInstance* x) {
duke@435 960 if (PrintNotLoaded && !x->klass()->is_loaded()) {
duke@435 961 tty->print_cr(" ###class not loaded at new bci %d", x->bci());
duke@435 962 }
duke@435 963 CodeEmitInfo* info = state_for(x, x->state());
duke@435 964 LIR_Opr reg = result_register_for(x->type());
duke@435 965 LIR_Opr klass_reg = new_register(objectType);
duke@435 966 new_instance(reg, x->klass(),
duke@435 967 FrameMap::rcx_oop_opr,
duke@435 968 FrameMap::rdi_oop_opr,
duke@435 969 FrameMap::rsi_oop_opr,
duke@435 970 LIR_OprFact::illegalOpr,
duke@435 971 FrameMap::rdx_oop_opr, info);
duke@435 972 LIR_Opr result = rlock_result(x);
duke@435 973 __ move(reg, result);
duke@435 974 }
duke@435 975
duke@435 976
duke@435 977 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
duke@435 978 CodeEmitInfo* info = state_for(x, x->state());
duke@435 979
duke@435 980 LIRItem length(x->length(), this);
duke@435 981 length.load_item_force(FrameMap::rbx_opr);
duke@435 982
duke@435 983 LIR_Opr reg = result_register_for(x->type());
duke@435 984 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
duke@435 985 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
duke@435 986 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
duke@435 987 LIR_Opr tmp4 = reg;
duke@435 988 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
duke@435 989 LIR_Opr len = length.result();
duke@435 990 BasicType elem_type = x->elt_type();
duke@435 991
duke@435 992 __ oop2reg(ciTypeArrayKlass::make(elem_type)->encoding(), klass_reg);
duke@435 993
duke@435 994 CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
duke@435 995 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
duke@435 996
duke@435 997 LIR_Opr result = rlock_result(x);
duke@435 998 __ move(reg, result);
duke@435 999 }
duke@435 1000
duke@435 1001
duke@435 1002 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
duke@435 1003 LIRItem length(x->length(), this);
duke@435 1004 // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
duke@435 1005 // and therefore provide the state before the parameters have been consumed
duke@435 1006 CodeEmitInfo* patching_info = NULL;
duke@435 1007 if (!x->klass()->is_loaded() || PatchALot) {
duke@435 1008 patching_info = state_for(x, x->state_before());
duke@435 1009 }
duke@435 1010
duke@435 1011 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1012
duke@435 1013 const LIR_Opr reg = result_register_for(x->type());
duke@435 1014 LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
duke@435 1015 LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
duke@435 1016 LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
duke@435 1017 LIR_Opr tmp4 = reg;
duke@435 1018 LIR_Opr klass_reg = FrameMap::rdx_oop_opr;
duke@435 1019
duke@435 1020 length.load_item_force(FrameMap::rbx_opr);
duke@435 1021 LIR_Opr len = length.result();
duke@435 1022
duke@435 1023 CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
duke@435 1024 ciObject* obj = (ciObject*) ciObjArrayKlass::make(x->klass());
duke@435 1025 if (obj == ciEnv::unloaded_ciobjarrayklass()) {
duke@435 1026 BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
duke@435 1027 }
duke@435 1028 jobject2reg_with_patching(klass_reg, obj, patching_info);
duke@435 1029 __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
duke@435 1030
duke@435 1031 LIR_Opr result = rlock_result(x);
duke@435 1032 __ move(reg, result);
duke@435 1033 }
duke@435 1034
duke@435 1035
duke@435 1036 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
duke@435 1037 Values* dims = x->dims();
duke@435 1038 int i = dims->length();
duke@435 1039 LIRItemList* items = new LIRItemList(dims->length(), NULL);
duke@435 1040 while (i-- > 0) {
duke@435 1041 LIRItem* size = new LIRItem(dims->at(i), this);
duke@435 1042 items->at_put(i, size);
duke@435 1043 }
duke@435 1044
duke@435 1045 // need to get the info before, as the items may become invalid through item_free
duke@435 1046 CodeEmitInfo* patching_info = NULL;
duke@435 1047 if (!x->klass()->is_loaded() || PatchALot) {
duke@435 1048 patching_info = state_for(x, x->state_before());
duke@435 1049
duke@435 1050 // cannot re-use same xhandlers for multiple CodeEmitInfos, so
duke@435 1051 // clone all handlers.
duke@435 1052 x->set_exception_handlers(new XHandlers(x->exception_handlers()));
duke@435 1053 }
duke@435 1054
duke@435 1055 CodeEmitInfo* info = state_for(x, x->state());
duke@435 1056
duke@435 1057 i = dims->length();
duke@435 1058 while (i-- > 0) {
duke@435 1059 LIRItem* size = items->at(i);
duke@435 1060 size->load_nonconstant();
duke@435 1061
duke@435 1062 store_stack_parameter(size->result(), in_ByteSize(i*4));
duke@435 1063 }
duke@435 1064
duke@435 1065 LIR_Opr reg = result_register_for(x->type());
duke@435 1066 jobject2reg_with_patching(reg, x->klass(), patching_info);
duke@435 1067
duke@435 1068 LIR_Opr rank = FrameMap::rbx_opr;
duke@435 1069 __ move(LIR_OprFact::intConst(x->rank()), rank);
duke@435 1070 LIR_Opr varargs = FrameMap::rcx_opr;
duke@435 1071 __ move(FrameMap::rsp_opr, varargs);
duke@435 1072 LIR_OprList* args = new LIR_OprList(3);
duke@435 1073 args->append(reg);
duke@435 1074 args->append(rank);
duke@435 1075 args->append(varargs);
duke@435 1076 __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
duke@435 1077 LIR_OprFact::illegalOpr,
duke@435 1078 reg, args, info);
duke@435 1079
duke@435 1080 LIR_Opr result = rlock_result(x);
duke@435 1081 __ move(reg, result);
duke@435 1082 }
duke@435 1083
duke@435 1084
duke@435 1085 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
duke@435 1086 // nothing to do for now
duke@435 1087 }
duke@435 1088
duke@435 1089
duke@435 1090 void LIRGenerator::do_CheckCast(CheckCast* x) {
duke@435 1091 LIRItem obj(x->obj(), this);
duke@435 1092
duke@435 1093 CodeEmitInfo* patching_info = NULL;
duke@435 1094 if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
duke@435 1095 // must do this before locking the destination register as an oop register,
duke@435 1096 // and before the obj is loaded (the latter is for deoptimization)
duke@435 1097 patching_info = state_for(x, x->state_before());
duke@435 1098 }
duke@435 1099 obj.load_item();
duke@435 1100
duke@435 1101 // info for exceptions
duke@435 1102 CodeEmitInfo* info_for_exception = state_for(x, x->state()->copy_locks());
duke@435 1103
duke@435 1104 CodeStub* stub;
duke@435 1105 if (x->is_incompatible_class_change_check()) {
duke@435 1106 assert(patching_info == NULL, "can't patch this");
duke@435 1107 stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
duke@435 1108 } else {
duke@435 1109 stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
duke@435 1110 }
duke@435 1111 LIR_Opr reg = rlock_result(x);
duke@435 1112 __ checkcast(reg, obj.result(), x->klass(),
duke@435 1113 new_register(objectType), new_register(objectType),
duke@435 1114 !x->klass()->is_loaded() ? new_register(objectType) : LIR_OprFact::illegalOpr,
duke@435 1115 x->direct_compare(), info_for_exception, patching_info, stub,
duke@435 1116 x->profiled_method(), x->profiled_bci());
duke@435 1117 }
duke@435 1118
duke@435 1119
duke@435 1120 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
duke@435 1121 LIRItem obj(x->obj(), this);
duke@435 1122
duke@435 1123 // result and test object may not be in same register
duke@435 1124 LIR_Opr reg = rlock_result(x);
duke@435 1125 CodeEmitInfo* patching_info = NULL;
duke@435 1126 if ((!x->klass()->is_loaded() || PatchALot)) {
duke@435 1127 // must do this before locking the destination register as an oop register
duke@435 1128 patching_info = state_for(x, x->state_before());
duke@435 1129 }
duke@435 1130 obj.load_item();
duke@435 1131 LIR_Opr tmp = new_register(objectType);
duke@435 1132 __ instanceof(reg, obj.result(), x->klass(),
duke@435 1133 tmp, new_register(objectType), LIR_OprFact::illegalOpr,
duke@435 1134 x->direct_compare(), patching_info);
duke@435 1135 }
duke@435 1136
duke@435 1137
duke@435 1138 void LIRGenerator::do_If(If* x) {
duke@435 1139 assert(x->number_of_sux() == 2, "inconsistency");
duke@435 1140 ValueTag tag = x->x()->type()->tag();
duke@435 1141 bool is_safepoint = x->is_safepoint();
duke@435 1142
duke@435 1143 If::Condition cond = x->cond();
duke@435 1144
duke@435 1145 LIRItem xitem(x->x(), this);
duke@435 1146 LIRItem yitem(x->y(), this);
duke@435 1147 LIRItem* xin = &xitem;
duke@435 1148 LIRItem* yin = &yitem;
duke@435 1149
duke@435 1150 if (tag == longTag) {
duke@435 1151 // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
duke@435 1152 // mirror for other conditions
duke@435 1153 if (cond == If::gtr || cond == If::leq) {
duke@435 1154 cond = Instruction::mirror(cond);
duke@435 1155 xin = &yitem;
duke@435 1156 yin = &xitem;
duke@435 1157 }
duke@435 1158 xin->set_destroys_register();
duke@435 1159 }
duke@435 1160 xin->load_item();
duke@435 1161 if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
duke@435 1162 // inline long zero
duke@435 1163 yin->dont_load_item();
duke@435 1164 } else if (tag == longTag || tag == floatTag || tag == doubleTag) {
duke@435 1165 // longs cannot handle constants at right side
duke@435 1166 yin->load_item();
duke@435 1167 } else {
duke@435 1168 yin->dont_load_item();
duke@435 1169 }
duke@435 1170
duke@435 1171 // add safepoint before generating condition code so it can be recomputed
duke@435 1172 if (x->is_safepoint()) {
duke@435 1173 // increment backedge counter if needed
duke@435 1174 increment_backedge_counter(state_for(x, x->state_before()));
duke@435 1175
duke@435 1176 __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
duke@435 1177 }
duke@435 1178 set_no_result(x);
duke@435 1179
duke@435 1180 LIR_Opr left = xin->result();
duke@435 1181 LIR_Opr right = yin->result();
duke@435 1182 __ cmp(lir_cond(cond), left, right);
duke@435 1183 profile_branch(x, cond);
duke@435 1184 move_to_phi(x->state());
duke@435 1185 if (x->x()->type()->is_float_kind()) {
duke@435 1186 __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
duke@435 1187 } else {
duke@435 1188 __ branch(lir_cond(cond), right->type(), x->tsux());
duke@435 1189 }
duke@435 1190 assert(x->default_sux() == x->fsux(), "wrong destination above");
duke@435 1191 __ jump(x->default_sux());
duke@435 1192 }
duke@435 1193
duke@435 1194
duke@435 1195 LIR_Opr LIRGenerator::getThreadPointer() {
never@739 1196 #ifdef _LP64
never@739 1197 return FrameMap::as_pointer_opr(r15_thread);
never@739 1198 #else
duke@435 1199 LIR_Opr result = new_register(T_INT);
duke@435 1200 __ get_thread(result);
duke@435 1201 return result;
never@739 1202 #endif //
duke@435 1203 }
duke@435 1204
duke@435 1205 void LIRGenerator::trace_block_entry(BlockBegin* block) {
duke@435 1206 store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
duke@435 1207 LIR_OprList* args = new LIR_OprList();
duke@435 1208 address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
duke@435 1209 __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
duke@435 1210 }
duke@435 1211
duke@435 1212
duke@435 1213 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
duke@435 1214 CodeEmitInfo* info) {
duke@435 1215 if (address->type() == T_LONG) {
duke@435 1216 address = new LIR_Address(address->base(),
duke@435 1217 address->index(), address->scale(),
duke@435 1218 address->disp(), T_DOUBLE);
duke@435 1219 // Transfer the value atomically by using FP moves. This means
duke@435 1220 // the value has to be moved between CPU and FPU registers. It
duke@435 1221 // always has to be moved through spill slot since there's no
duke@435 1222 // quick way to pack the value into an SSE register.
duke@435 1223 LIR_Opr temp_double = new_register(T_DOUBLE);
duke@435 1224 LIR_Opr spill = new_register(T_LONG);
duke@435 1225 set_vreg_flag(spill, must_start_in_memory);
duke@435 1226 __ move(value, spill);
duke@435 1227 __ volatile_move(spill, temp_double, T_LONG);
duke@435 1228 __ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
duke@435 1229 } else {
duke@435 1230 __ store(value, address, info);
duke@435 1231 }
duke@435 1232 }
duke@435 1233
duke@435 1234
duke@435 1235
duke@435 1236 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
duke@435 1237 CodeEmitInfo* info) {
duke@435 1238 if (address->type() == T_LONG) {
duke@435 1239 address = new LIR_Address(address->base(),
duke@435 1240 address->index(), address->scale(),
duke@435 1241 address->disp(), T_DOUBLE);
duke@435 1242 // Transfer the value atomically by using FP moves. This means
duke@435 1243 // the value has to be moved between CPU and FPU registers. In
duke@435 1244 // SSE0 and SSE1 mode it has to be moved through spill slot but in
duke@435 1245 // SSE2+ mode it can be moved directly.
duke@435 1246 LIR_Opr temp_double = new_register(T_DOUBLE);
duke@435 1247 __ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
duke@435 1248 __ volatile_move(temp_double, result, T_LONG);
duke@435 1249 if (UseSSE < 2) {
duke@435 1250 // no spill slot needed in SSE2 mode because xmm->cpu register move is possible
duke@435 1251 set_vreg_flag(result, must_start_in_memory);
duke@435 1252 }
duke@435 1253 } else {
duke@435 1254 __ load(address, result, info);
duke@435 1255 }
duke@435 1256 }
duke@435 1257
duke@435 1258 void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
duke@435 1259 BasicType type, bool is_volatile) {
duke@435 1260 if (is_volatile && type == T_LONG) {
duke@435 1261 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
duke@435 1262 LIR_Opr tmp = new_register(T_DOUBLE);
duke@435 1263 __ load(addr, tmp);
duke@435 1264 LIR_Opr spill = new_register(T_LONG);
duke@435 1265 set_vreg_flag(spill, must_start_in_memory);
duke@435 1266 __ move(tmp, spill);
duke@435 1267 __ move(spill, dst);
duke@435 1268 } else {
duke@435 1269 LIR_Address* addr = new LIR_Address(src, offset, type);
duke@435 1270 __ load(addr, dst);
duke@435 1271 }
duke@435 1272 }
duke@435 1273
duke@435 1274
duke@435 1275 void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
duke@435 1276 BasicType type, bool is_volatile) {
duke@435 1277 if (is_volatile && type == T_LONG) {
duke@435 1278 LIR_Address* addr = new LIR_Address(src, offset, T_DOUBLE);
duke@435 1279 LIR_Opr tmp = new_register(T_DOUBLE);
duke@435 1280 LIR_Opr spill = new_register(T_DOUBLE);
duke@435 1281 set_vreg_flag(spill, must_start_in_memory);
duke@435 1282 __ move(data, spill);
duke@435 1283 __ move(spill, tmp);
duke@435 1284 __ move(tmp, addr);
duke@435 1285 } else {
duke@435 1286 LIR_Address* addr = new LIR_Address(src, offset, type);
duke@435 1287 bool is_obj = (type == T_ARRAY || type == T_OBJECT);
duke@435 1288 if (is_obj) {
duke@435 1289 __ move(data, addr);
duke@435 1290 assert(src->is_register(), "must be register");
duke@435 1291 // Seems to be a precise address
duke@435 1292 post_barrier(LIR_OprFact::address(addr), data);
duke@435 1293 } else {
duke@435 1294 __ move(data, addr);
duke@435 1295 }
duke@435 1296 }
duke@435 1297 }

mercurial