src/share/vm/runtime/objectMonitor.cpp

Tue, 02 Nov 2010 16:02:46 -0700

author
iveresov
date
Tue, 02 Nov 2010 16:02:46 -0700
changeset 2246
9de67bf4244d
parent 2233
fa83ab460c54
child 2314
f95d63e2154a
permissions
-rw-r--r--

6996136: VM crash in src/share/vm/runtime/virtualspace.cpp:424
Summary: Turn CDS off if compressed oops is on
Reviewed-by: ysr, kvn, jcoomes, phh

acorn@2233 1 /*
acorn@2233 2 * Copyright (c) 1998, 2009, Oracle and/or its affiliates. All rights reserved.
acorn@2233 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
acorn@2233 4 *
acorn@2233 5 * This code is free software; you can redistribute it and/or modify it
acorn@2233 6 * under the terms of the GNU General Public License version 2 only, as
acorn@2233 7 * published by the Free Software Foundation.
acorn@2233 8 *
acorn@2233 9 * This code is distributed in the hope that it will be useful, but WITHOUT
acorn@2233 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
acorn@2233 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
acorn@2233 12 * version 2 for more details (a copy is included in the LICENSE file that
acorn@2233 13 * accompanied this code).
acorn@2233 14 *
acorn@2233 15 * You should have received a copy of the GNU General Public License version
acorn@2233 16 * 2 along with this work; if not, write to the Free Software Foundation,
acorn@2233 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
acorn@2233 18 *
acorn@2233 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
acorn@2233 20 * or visit www.oracle.com if you need additional information or have any
acorn@2233 21 * questions.
acorn@2233 22 *
acorn@2233 23 */
acorn@2233 24
acorn@2233 25 # include "incls/_precompiled.incl"
acorn@2233 26 # include "incls/_objectMonitor.cpp.incl"
acorn@2233 27
acorn@2233 28 #if defined(__GNUC__) && !defined(IA64)
acorn@2233 29 // Need to inhibit inlining for older versions of GCC to avoid build-time failures
acorn@2233 30 #define ATTR __attribute__((noinline))
acorn@2233 31 #else
acorn@2233 32 #define ATTR
acorn@2233 33 #endif
acorn@2233 34
acorn@2233 35
acorn@2233 36 #ifdef DTRACE_ENABLED
acorn@2233 37
acorn@2233 38 // Only bother with this argument setup if dtrace is available
acorn@2233 39 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly.
acorn@2233 40
acorn@2233 41 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
acorn@2233 42 jlong, uintptr_t, char*, int);
acorn@2233 43 HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
acorn@2233 44 jlong, uintptr_t, char*, int);
acorn@2233 45 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
acorn@2233 46 jlong, uintptr_t, char*, int);
acorn@2233 47 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
acorn@2233 48 jlong, uintptr_t, char*, int);
acorn@2233 49 HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
acorn@2233 50 jlong, uintptr_t, char*, int);
acorn@2233 51
acorn@2233 52 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread) \
acorn@2233 53 char* bytes = NULL; \
acorn@2233 54 int len = 0; \
acorn@2233 55 jlong jtid = SharedRuntime::get_java_tid(thread); \
acorn@2233 56 symbolOop klassname = ((oop)(klassOop))->klass()->klass_part()->name(); \
acorn@2233 57 if (klassname != NULL) { \
acorn@2233 58 bytes = (char*)klassname->bytes(); \
acorn@2233 59 len = klassname->utf8_length(); \
acorn@2233 60 }
acorn@2233 61
acorn@2233 62 #define DTRACE_MONITOR_WAIT_PROBE(monitor, klassOop, thread, millis) \
acorn@2233 63 { \
acorn@2233 64 if (DTraceMonitorProbes) { \
acorn@2233 65 DTRACE_MONITOR_PROBE_COMMON(klassOop, thread); \
acorn@2233 66 HS_DTRACE_PROBE5(hotspot, monitor__wait, jtid, \
acorn@2233 67 (monitor), bytes, len, (millis)); \
acorn@2233 68 } \
acorn@2233 69 }
acorn@2233 70
acorn@2233 71 #define DTRACE_MONITOR_PROBE(probe, monitor, klassOop, thread) \
acorn@2233 72 { \
acorn@2233 73 if (DTraceMonitorProbes) { \
acorn@2233 74 DTRACE_MONITOR_PROBE_COMMON(klassOop, thread); \
acorn@2233 75 HS_DTRACE_PROBE4(hotspot, monitor__##probe, jtid, \
acorn@2233 76 (uintptr_t)(monitor), bytes, len); \
acorn@2233 77 } \
acorn@2233 78 }
acorn@2233 79
acorn@2233 80 #else // ndef DTRACE_ENABLED
acorn@2233 81
acorn@2233 82 #define DTRACE_MONITOR_WAIT_PROBE(klassOop, thread, millis, mon) {;}
acorn@2233 83 #define DTRACE_MONITOR_PROBE(probe, klassOop, thread, mon) {;}
acorn@2233 84
acorn@2233 85 #endif // ndef DTRACE_ENABLED
acorn@2233 86
acorn@2233 87 // Tunables ...
acorn@2233 88 // The knob* variables are effectively final. Once set they should
acorn@2233 89 // never be modified hence. Consider using __read_mostly with GCC.
acorn@2233 90
acorn@2233 91 int ObjectMonitor::Knob_Verbose = 0 ;
acorn@2233 92 int ObjectMonitor::Knob_SpinLimit = 5000 ; // derived by an external tool -
acorn@2233 93 static int Knob_LogSpins = 0 ; // enable jvmstat tally for spins
acorn@2233 94 static int Knob_HandOff = 0 ;
acorn@2233 95 static int Knob_ReportSettings = 0 ;
acorn@2233 96
acorn@2233 97 static int Knob_SpinBase = 0 ; // Floor AKA SpinMin
acorn@2233 98 static int Knob_SpinBackOff = 0 ; // spin-loop backoff
acorn@2233 99 static int Knob_CASPenalty = -1 ; // Penalty for failed CAS
acorn@2233 100 static int Knob_OXPenalty = -1 ; // Penalty for observed _owner change
acorn@2233 101 static int Knob_SpinSetSucc = 1 ; // spinners set the _succ field
acorn@2233 102 static int Knob_SpinEarly = 1 ;
acorn@2233 103 static int Knob_SuccEnabled = 1 ; // futile wake throttling
acorn@2233 104 static int Knob_SuccRestrict = 0 ; // Limit successors + spinners to at-most-one
acorn@2233 105 static int Knob_MaxSpinners = -1 ; // Should be a function of # CPUs
acorn@2233 106 static int Knob_Bonus = 100 ; // spin success bonus
acorn@2233 107 static int Knob_BonusB = 100 ; // spin success bonus
acorn@2233 108 static int Knob_Penalty = 200 ; // spin failure penalty
acorn@2233 109 static int Knob_Poverty = 1000 ;
acorn@2233 110 static int Knob_SpinAfterFutile = 1 ; // Spin after returning from park()
acorn@2233 111 static int Knob_FixedSpin = 0 ;
acorn@2233 112 static int Knob_OState = 3 ; // Spinner checks thread state of _owner
acorn@2233 113 static int Knob_UsePause = 1 ;
acorn@2233 114 static int Knob_ExitPolicy = 0 ;
acorn@2233 115 static int Knob_PreSpin = 10 ; // 20-100 likely better
acorn@2233 116 static int Knob_ResetEvent = 0 ;
acorn@2233 117 static int BackOffMask = 0 ;
acorn@2233 118
acorn@2233 119 static int Knob_FastHSSEC = 0 ;
acorn@2233 120 static int Knob_MoveNotifyee = 2 ; // notify() - disposition of notifyee
acorn@2233 121 static int Knob_QMode = 0 ; // EntryList-cxq policy - queue discipline
acorn@2233 122 static volatile int InitDone = 0 ;
acorn@2233 123
acorn@2233 124 #define TrySpin TrySpin_VaryDuration
acorn@2233 125
acorn@2233 126 // -----------------------------------------------------------------------------
acorn@2233 127 // Theory of operations -- Monitors lists, thread residency, etc:
acorn@2233 128 //
acorn@2233 129 // * A thread acquires ownership of a monitor by successfully
acorn@2233 130 // CAS()ing the _owner field from null to non-null.
acorn@2233 131 //
acorn@2233 132 // * Invariant: A thread appears on at most one monitor list --
acorn@2233 133 // cxq, EntryList or WaitSet -- at any one time.
acorn@2233 134 //
acorn@2233 135 // * Contending threads "push" themselves onto the cxq with CAS
acorn@2233 136 // and then spin/park.
acorn@2233 137 //
acorn@2233 138 // * After a contending thread eventually acquires the lock it must
acorn@2233 139 // dequeue itself from either the EntryList or the cxq.
acorn@2233 140 //
acorn@2233 141 // * The exiting thread identifies and unparks an "heir presumptive"
acorn@2233 142 // tentative successor thread on the EntryList. Critically, the
acorn@2233 143 // exiting thread doesn't unlink the successor thread from the EntryList.
acorn@2233 144 // After having been unparked, the wakee will recontend for ownership of
acorn@2233 145 // the monitor. The successor (wakee) will either acquire the lock or
acorn@2233 146 // re-park itself.
acorn@2233 147 //
acorn@2233 148 // Succession is provided for by a policy of competitive handoff.
acorn@2233 149 // The exiting thread does _not_ grant or pass ownership to the
acorn@2233 150 // successor thread. (This is also referred to as "handoff" succession").
acorn@2233 151 // Instead the exiting thread releases ownership and possibly wakes
acorn@2233 152 // a successor, so the successor can (re)compete for ownership of the lock.
acorn@2233 153 // If the EntryList is empty but the cxq is populated the exiting
acorn@2233 154 // thread will drain the cxq into the EntryList. It does so by
acorn@2233 155 // by detaching the cxq (installing null with CAS) and folding
acorn@2233 156 // the threads from the cxq into the EntryList. The EntryList is
acorn@2233 157 // doubly linked, while the cxq is singly linked because of the
acorn@2233 158 // CAS-based "push" used to enqueue recently arrived threads (RATs).
acorn@2233 159 //
acorn@2233 160 // * Concurrency invariants:
acorn@2233 161 //
acorn@2233 162 // -- only the monitor owner may access or mutate the EntryList.
acorn@2233 163 // The mutex property of the monitor itself protects the EntryList
acorn@2233 164 // from concurrent interference.
acorn@2233 165 // -- Only the monitor owner may detach the cxq.
acorn@2233 166 //
acorn@2233 167 // * The monitor entry list operations avoid locks, but strictly speaking
acorn@2233 168 // they're not lock-free. Enter is lock-free, exit is not.
acorn@2233 169 // See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
acorn@2233 170 //
acorn@2233 171 // * The cxq can have multiple concurrent "pushers" but only one concurrent
acorn@2233 172 // detaching thread. This mechanism is immune from the ABA corruption.
acorn@2233 173 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
acorn@2233 174 //
acorn@2233 175 // * Taken together, the cxq and the EntryList constitute or form a
acorn@2233 176 // single logical queue of threads stalled trying to acquire the lock.
acorn@2233 177 // We use two distinct lists to improve the odds of a constant-time
acorn@2233 178 // dequeue operation after acquisition (in the ::enter() epilog) and
acorn@2233 179 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm).
acorn@2233 180 // A key desideratum is to minimize queue & monitor metadata manipulation
acorn@2233 181 // that occurs while holding the monitor lock -- that is, we want to
acorn@2233 182 // minimize monitor lock holds times. Note that even a small amount of
acorn@2233 183 // fixed spinning will greatly reduce the # of enqueue-dequeue operations
acorn@2233 184 // on EntryList|cxq. That is, spinning relieves contention on the "inner"
acorn@2233 185 // locks and monitor metadata.
acorn@2233 186 //
acorn@2233 187 // Cxq points to the the set of Recently Arrived Threads attempting entry.
acorn@2233 188 // Because we push threads onto _cxq with CAS, the RATs must take the form of
acorn@2233 189 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when
acorn@2233 190 // the unlocking thread notices that EntryList is null but _cxq is != null.
acorn@2233 191 //
acorn@2233 192 // The EntryList is ordered by the prevailing queue discipline and
acorn@2233 193 // can be organized in any convenient fashion, such as a doubly-linked list or
acorn@2233 194 // a circular doubly-linked list. Critically, we want insert and delete operations
acorn@2233 195 // to operate in constant-time. If we need a priority queue then something akin
acorn@2233 196 // to Solaris' sleepq would work nicely. Viz.,
acorn@2233 197 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
acorn@2233 198 // Queue discipline is enforced at ::exit() time, when the unlocking thread
acorn@2233 199 // drains the cxq into the EntryList, and orders or reorders the threads on the
acorn@2233 200 // EntryList accordingly.
acorn@2233 201 //
acorn@2233 202 // Barring "lock barging", this mechanism provides fair cyclic ordering,
acorn@2233 203 // somewhat similar to an elevator-scan.
acorn@2233 204 //
acorn@2233 205 // * The monitor synchronization subsystem avoids the use of native
acorn@2233 206 // synchronization primitives except for the narrow platform-specific
acorn@2233 207 // park-unpark abstraction. See the comments in os_solaris.cpp regarding
acorn@2233 208 // the semantics of park-unpark. Put another way, this monitor implementation
acorn@2233 209 // depends only on atomic operations and park-unpark. The monitor subsystem
acorn@2233 210 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
acorn@2233 211 // underlying OS manages the READY<->RUN transitions.
acorn@2233 212 //
acorn@2233 213 // * Waiting threads reside on the WaitSet list -- wait() puts
acorn@2233 214 // the caller onto the WaitSet.
acorn@2233 215 //
acorn@2233 216 // * notify() or notifyAll() simply transfers threads from the WaitSet to
acorn@2233 217 // either the EntryList or cxq. Subsequent exit() operations will
acorn@2233 218 // unpark the notifyee. Unparking a notifee in notify() is inefficient -
acorn@2233 219 // it's likely the notifyee would simply impale itself on the lock held
acorn@2233 220 // by the notifier.
acorn@2233 221 //
acorn@2233 222 // * An interesting alternative is to encode cxq as (List,LockByte) where
acorn@2233 223 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary
acorn@2233 224 // variable, like _recursions, in the scheme. The threads or Events that form
acorn@2233 225 // the list would have to be aligned in 256-byte addresses. A thread would
acorn@2233 226 // try to acquire the lock or enqueue itself with CAS, but exiting threads
acorn@2233 227 // could use a 1-0 protocol and simply STB to set the LockByte to 0.
acorn@2233 228 // Note that is is *not* word-tearing, but it does presume that full-word
acorn@2233 229 // CAS operations are coherent with intermix with STB operations. That's true
acorn@2233 230 // on most common processors.
acorn@2233 231 //
acorn@2233 232 // * See also http://blogs.sun.com/dave
acorn@2233 233
acorn@2233 234
acorn@2233 235 // -----------------------------------------------------------------------------
acorn@2233 236 // Enter support
acorn@2233 237
acorn@2233 238 bool ObjectMonitor::try_enter(Thread* THREAD) {
acorn@2233 239 if (THREAD != _owner) {
acorn@2233 240 if (THREAD->is_lock_owned ((address)_owner)) {
acorn@2233 241 assert(_recursions == 0, "internal state error");
acorn@2233 242 _owner = THREAD ;
acorn@2233 243 _recursions = 1 ;
acorn@2233 244 OwnerIsThread = 1 ;
acorn@2233 245 return true;
acorn@2233 246 }
acorn@2233 247 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
acorn@2233 248 return false;
acorn@2233 249 }
acorn@2233 250 return true;
acorn@2233 251 } else {
acorn@2233 252 _recursions++;
acorn@2233 253 return true;
acorn@2233 254 }
acorn@2233 255 }
acorn@2233 256
acorn@2233 257 void ATTR ObjectMonitor::enter(TRAPS) {
acorn@2233 258 // The following code is ordered to check the most common cases first
acorn@2233 259 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
acorn@2233 260 Thread * const Self = THREAD ;
acorn@2233 261 void * cur ;
acorn@2233 262
acorn@2233 263 cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
acorn@2233 264 if (cur == NULL) {
acorn@2233 265 // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
acorn@2233 266 assert (_recursions == 0 , "invariant") ;
acorn@2233 267 assert (_owner == Self, "invariant") ;
acorn@2233 268 // CONSIDER: set or assert OwnerIsThread == 1
acorn@2233 269 return ;
acorn@2233 270 }
acorn@2233 271
acorn@2233 272 if (cur == Self) {
acorn@2233 273 // TODO-FIXME: check for integer overflow! BUGID 6557169.
acorn@2233 274 _recursions ++ ;
acorn@2233 275 return ;
acorn@2233 276 }
acorn@2233 277
acorn@2233 278 if (Self->is_lock_owned ((address)cur)) {
acorn@2233 279 assert (_recursions == 0, "internal state error");
acorn@2233 280 _recursions = 1 ;
acorn@2233 281 // Commute owner from a thread-specific on-stack BasicLockObject address to
acorn@2233 282 // a full-fledged "Thread *".
acorn@2233 283 _owner = Self ;
acorn@2233 284 OwnerIsThread = 1 ;
acorn@2233 285 return ;
acorn@2233 286 }
acorn@2233 287
acorn@2233 288 // We've encountered genuine contention.
acorn@2233 289 assert (Self->_Stalled == 0, "invariant") ;
acorn@2233 290 Self->_Stalled = intptr_t(this) ;
acorn@2233 291
acorn@2233 292 // Try one round of spinning *before* enqueueing Self
acorn@2233 293 // and before going through the awkward and expensive state
acorn@2233 294 // transitions. The following spin is strictly optional ...
acorn@2233 295 // Note that if we acquire the monitor from an initial spin
acorn@2233 296 // we forgo posting JVMTI events and firing DTRACE probes.
acorn@2233 297 if (Knob_SpinEarly && TrySpin (Self) > 0) {
acorn@2233 298 assert (_owner == Self , "invariant") ;
acorn@2233 299 assert (_recursions == 0 , "invariant") ;
acorn@2233 300 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 301 Self->_Stalled = 0 ;
acorn@2233 302 return ;
acorn@2233 303 }
acorn@2233 304
acorn@2233 305 assert (_owner != Self , "invariant") ;
acorn@2233 306 assert (_succ != Self , "invariant") ;
acorn@2233 307 assert (Self->is_Java_thread() , "invariant") ;
acorn@2233 308 JavaThread * jt = (JavaThread *) Self ;
acorn@2233 309 assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
acorn@2233 310 assert (jt->thread_state() != _thread_blocked , "invariant") ;
acorn@2233 311 assert (this->object() != NULL , "invariant") ;
acorn@2233 312 assert (_count >= 0, "invariant") ;
acorn@2233 313
acorn@2233 314 // Prevent deflation at STW-time. See deflate_idle_monitors() and is_busy().
acorn@2233 315 // Ensure the object-monitor relationship remains stable while there's contention.
acorn@2233 316 Atomic::inc_ptr(&_count);
acorn@2233 317
acorn@2233 318 { // Change java thread status to indicate blocked on monitor enter.
acorn@2233 319 JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
acorn@2233 320
acorn@2233 321 DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
acorn@2233 322 if (JvmtiExport::should_post_monitor_contended_enter()) {
acorn@2233 323 JvmtiExport::post_monitor_contended_enter(jt, this);
acorn@2233 324 }
acorn@2233 325
acorn@2233 326 OSThreadContendState osts(Self->osthread());
acorn@2233 327 ThreadBlockInVM tbivm(jt);
acorn@2233 328
acorn@2233 329 Self->set_current_pending_monitor(this);
acorn@2233 330
acorn@2233 331 // TODO-FIXME: change the following for(;;) loop to straight-line code.
acorn@2233 332 for (;;) {
acorn@2233 333 jt->set_suspend_equivalent();
acorn@2233 334 // cleared by handle_special_suspend_equivalent_condition()
acorn@2233 335 // or java_suspend_self()
acorn@2233 336
acorn@2233 337 EnterI (THREAD) ;
acorn@2233 338
acorn@2233 339 if (!ExitSuspendEquivalent(jt)) break ;
acorn@2233 340
acorn@2233 341 //
acorn@2233 342 // We have acquired the contended monitor, but while we were
acorn@2233 343 // waiting another thread suspended us. We don't want to enter
acorn@2233 344 // the monitor while suspended because that would surprise the
acorn@2233 345 // thread that suspended us.
acorn@2233 346 //
acorn@2233 347 _recursions = 0 ;
acorn@2233 348 _succ = NULL ;
acorn@2233 349 exit (Self) ;
acorn@2233 350
acorn@2233 351 jt->java_suspend_self();
acorn@2233 352 }
acorn@2233 353 Self->set_current_pending_monitor(NULL);
acorn@2233 354 }
acorn@2233 355
acorn@2233 356 Atomic::dec_ptr(&_count);
acorn@2233 357 assert (_count >= 0, "invariant") ;
acorn@2233 358 Self->_Stalled = 0 ;
acorn@2233 359
acorn@2233 360 // Must either set _recursions = 0 or ASSERT _recursions == 0.
acorn@2233 361 assert (_recursions == 0 , "invariant") ;
acorn@2233 362 assert (_owner == Self , "invariant") ;
acorn@2233 363 assert (_succ != Self , "invariant") ;
acorn@2233 364 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 365
acorn@2233 366 // The thread -- now the owner -- is back in vm mode.
acorn@2233 367 // Report the glorious news via TI,DTrace and jvmstat.
acorn@2233 368 // The probe effect is non-trivial. All the reportage occurs
acorn@2233 369 // while we hold the monitor, increasing the length of the critical
acorn@2233 370 // section. Amdahl's parallel speedup law comes vividly into play.
acorn@2233 371 //
acorn@2233 372 // Another option might be to aggregate the events (thread local or
acorn@2233 373 // per-monitor aggregation) and defer reporting until a more opportune
acorn@2233 374 // time -- such as next time some thread encounters contention but has
acorn@2233 375 // yet to acquire the lock. While spinning that thread could
acorn@2233 376 // spinning we could increment JVMStat counters, etc.
acorn@2233 377
acorn@2233 378 DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
acorn@2233 379 if (JvmtiExport::should_post_monitor_contended_entered()) {
acorn@2233 380 JvmtiExport::post_monitor_contended_entered(jt, this);
acorn@2233 381 }
acorn@2233 382 if (ObjectMonitor::_sync_ContendedLockAttempts != NULL) {
acorn@2233 383 ObjectMonitor::_sync_ContendedLockAttempts->inc() ;
acorn@2233 384 }
acorn@2233 385 }
acorn@2233 386
acorn@2233 387
acorn@2233 388 // Caveat: TryLock() is not necessarily serializing if it returns failure.
acorn@2233 389 // Callers must compensate as needed.
acorn@2233 390
acorn@2233 391 int ObjectMonitor::TryLock (Thread * Self) {
acorn@2233 392 for (;;) {
acorn@2233 393 void * own = _owner ;
acorn@2233 394 if (own != NULL) return 0 ;
acorn@2233 395 if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
acorn@2233 396 // Either guarantee _recursions == 0 or set _recursions = 0.
acorn@2233 397 assert (_recursions == 0, "invariant") ;
acorn@2233 398 assert (_owner == Self, "invariant") ;
acorn@2233 399 // CONSIDER: set or assert that OwnerIsThread == 1
acorn@2233 400 return 1 ;
acorn@2233 401 }
acorn@2233 402 // The lock had been free momentarily, but we lost the race to the lock.
acorn@2233 403 // Interference -- the CAS failed.
acorn@2233 404 // We can either return -1 or retry.
acorn@2233 405 // Retry doesn't make as much sense because the lock was just acquired.
acorn@2233 406 if (true) return -1 ;
acorn@2233 407 }
acorn@2233 408 }
acorn@2233 409
acorn@2233 410 void ATTR ObjectMonitor::EnterI (TRAPS) {
acorn@2233 411 Thread * Self = THREAD ;
acorn@2233 412 assert (Self->is_Java_thread(), "invariant") ;
acorn@2233 413 assert (((JavaThread *) Self)->thread_state() == _thread_blocked , "invariant") ;
acorn@2233 414
acorn@2233 415 // Try the lock - TATAS
acorn@2233 416 if (TryLock (Self) > 0) {
acorn@2233 417 assert (_succ != Self , "invariant") ;
acorn@2233 418 assert (_owner == Self , "invariant") ;
acorn@2233 419 assert (_Responsible != Self , "invariant") ;
acorn@2233 420 return ;
acorn@2233 421 }
acorn@2233 422
acorn@2233 423 DeferredInitialize () ;
acorn@2233 424
acorn@2233 425 // We try one round of spinning *before* enqueueing Self.
acorn@2233 426 //
acorn@2233 427 // If the _owner is ready but OFFPROC we could use a YieldTo()
acorn@2233 428 // operation to donate the remainder of this thread's quantum
acorn@2233 429 // to the owner. This has subtle but beneficial affinity
acorn@2233 430 // effects.
acorn@2233 431
acorn@2233 432 if (TrySpin (Self) > 0) {
acorn@2233 433 assert (_owner == Self , "invariant") ;
acorn@2233 434 assert (_succ != Self , "invariant") ;
acorn@2233 435 assert (_Responsible != Self , "invariant") ;
acorn@2233 436 return ;
acorn@2233 437 }
acorn@2233 438
acorn@2233 439 // The Spin failed -- Enqueue and park the thread ...
acorn@2233 440 assert (_succ != Self , "invariant") ;
acorn@2233 441 assert (_owner != Self , "invariant") ;
acorn@2233 442 assert (_Responsible != Self , "invariant") ;
acorn@2233 443
acorn@2233 444 // Enqueue "Self" on ObjectMonitor's _cxq.
acorn@2233 445 //
acorn@2233 446 // Node acts as a proxy for Self.
acorn@2233 447 // As an aside, if were to ever rewrite the synchronization code mostly
acorn@2233 448 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
acorn@2233 449 // Java objects. This would avoid awkward lifecycle and liveness issues,
acorn@2233 450 // as well as eliminate a subset of ABA issues.
acorn@2233 451 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
acorn@2233 452 //
acorn@2233 453
acorn@2233 454 ObjectWaiter node(Self) ;
acorn@2233 455 Self->_ParkEvent->reset() ;
acorn@2233 456 node._prev = (ObjectWaiter *) 0xBAD ;
acorn@2233 457 node.TState = ObjectWaiter::TS_CXQ ;
acorn@2233 458
acorn@2233 459 // Push "Self" onto the front of the _cxq.
acorn@2233 460 // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
acorn@2233 461 // Note that spinning tends to reduce the rate at which threads
acorn@2233 462 // enqueue and dequeue on EntryList|cxq.
acorn@2233 463 ObjectWaiter * nxt ;
acorn@2233 464 for (;;) {
acorn@2233 465 node._next = nxt = _cxq ;
acorn@2233 466 if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
acorn@2233 467
acorn@2233 468 // Interference - the CAS failed because _cxq changed. Just retry.
acorn@2233 469 // As an optional optimization we retry the lock.
acorn@2233 470 if (TryLock (Self) > 0) {
acorn@2233 471 assert (_succ != Self , "invariant") ;
acorn@2233 472 assert (_owner == Self , "invariant") ;
acorn@2233 473 assert (_Responsible != Self , "invariant") ;
acorn@2233 474 return ;
acorn@2233 475 }
acorn@2233 476 }
acorn@2233 477
acorn@2233 478 // Check for cxq|EntryList edge transition to non-null. This indicates
acorn@2233 479 // the onset of contention. While contention persists exiting threads
acorn@2233 480 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit
acorn@2233 481 // operations revert to the faster 1-0 mode. This enter operation may interleave
acorn@2233 482 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
acorn@2233 483 // arrange for one of the contending thread to use a timed park() operations
acorn@2233 484 // to detect and recover from the race. (Stranding is form of progress failure
acorn@2233 485 // where the monitor is unlocked but all the contending threads remain parked).
acorn@2233 486 // That is, at least one of the contended threads will periodically poll _owner.
acorn@2233 487 // One of the contending threads will become the designated "Responsible" thread.
acorn@2233 488 // The Responsible thread uses a timed park instead of a normal indefinite park
acorn@2233 489 // operation -- it periodically wakes and checks for and recovers from potential
acorn@2233 490 // strandings admitted by 1-0 exit operations. We need at most one Responsible
acorn@2233 491 // thread per-monitor at any given moment. Only threads on cxq|EntryList may
acorn@2233 492 // be responsible for a monitor.
acorn@2233 493 //
acorn@2233 494 // Currently, one of the contended threads takes on the added role of "Responsible".
acorn@2233 495 // A viable alternative would be to use a dedicated "stranding checker" thread
acorn@2233 496 // that periodically iterated over all the threads (or active monitors) and unparked
acorn@2233 497 // successors where there was risk of stranding. This would help eliminate the
acorn@2233 498 // timer scalability issues we see on some platforms as we'd only have one thread
acorn@2233 499 // -- the checker -- parked on a timer.
acorn@2233 500
acorn@2233 501 if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
acorn@2233 502 // Try to assume the role of responsible thread for the monitor.
acorn@2233 503 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=Self }
acorn@2233 504 Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
acorn@2233 505 }
acorn@2233 506
acorn@2233 507 // The lock have been released while this thread was occupied queueing
acorn@2233 508 // itself onto _cxq. To close the race and avoid "stranding" and
acorn@2233 509 // progress-liveness failure we must resample-retry _owner before parking.
acorn@2233 510 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
acorn@2233 511 // In this case the ST-MEMBAR is accomplished with CAS().
acorn@2233 512 //
acorn@2233 513 // TODO: Defer all thread state transitions until park-time.
acorn@2233 514 // Since state transitions are heavy and inefficient we'd like
acorn@2233 515 // to defer the state transitions until absolutely necessary,
acorn@2233 516 // and in doing so avoid some transitions ...
acorn@2233 517
acorn@2233 518 TEVENT (Inflated enter - Contention) ;
acorn@2233 519 int nWakeups = 0 ;
acorn@2233 520 int RecheckInterval = 1 ;
acorn@2233 521
acorn@2233 522 for (;;) {
acorn@2233 523
acorn@2233 524 if (TryLock (Self) > 0) break ;
acorn@2233 525 assert (_owner != Self, "invariant") ;
acorn@2233 526
acorn@2233 527 if ((SyncFlags & 2) && _Responsible == NULL) {
acorn@2233 528 Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
acorn@2233 529 }
acorn@2233 530
acorn@2233 531 // park self
acorn@2233 532 if (_Responsible == Self || (SyncFlags & 1)) {
acorn@2233 533 TEVENT (Inflated enter - park TIMED) ;
acorn@2233 534 Self->_ParkEvent->park ((jlong) RecheckInterval) ;
acorn@2233 535 // Increase the RecheckInterval, but clamp the value.
acorn@2233 536 RecheckInterval *= 8 ;
acorn@2233 537 if (RecheckInterval > 1000) RecheckInterval = 1000 ;
acorn@2233 538 } else {
acorn@2233 539 TEVENT (Inflated enter - park UNTIMED) ;
acorn@2233 540 Self->_ParkEvent->park() ;
acorn@2233 541 }
acorn@2233 542
acorn@2233 543 if (TryLock(Self) > 0) break ;
acorn@2233 544
acorn@2233 545 // The lock is still contested.
acorn@2233 546 // Keep a tally of the # of futile wakeups.
acorn@2233 547 // Note that the counter is not protected by a lock or updated by atomics.
acorn@2233 548 // That is by design - we trade "lossy" counters which are exposed to
acorn@2233 549 // races during updates for a lower probe effect.
acorn@2233 550 TEVENT (Inflated enter - Futile wakeup) ;
acorn@2233 551 if (ObjectMonitor::_sync_FutileWakeups != NULL) {
acorn@2233 552 ObjectMonitor::_sync_FutileWakeups->inc() ;
acorn@2233 553 }
acorn@2233 554 ++ nWakeups ;
acorn@2233 555
acorn@2233 556 // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
acorn@2233 557 // We can defer clearing _succ until after the spin completes
acorn@2233 558 // TrySpin() must tolerate being called with _succ == Self.
acorn@2233 559 // Try yet another round of adaptive spinning.
acorn@2233 560 if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
acorn@2233 561
acorn@2233 562 // We can find that we were unpark()ed and redesignated _succ while
acorn@2233 563 // we were spinning. That's harmless. If we iterate and call park(),
acorn@2233 564 // park() will consume the event and return immediately and we'll
acorn@2233 565 // just spin again. This pattern can repeat, leaving _succ to simply
acorn@2233 566 // spin on a CPU. Enable Knob_ResetEvent to clear pending unparks().
acorn@2233 567 // Alternately, we can sample fired() here, and if set, forgo spinning
acorn@2233 568 // in the next iteration.
acorn@2233 569
acorn@2233 570 if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
acorn@2233 571 Self->_ParkEvent->reset() ;
acorn@2233 572 OrderAccess::fence() ;
acorn@2233 573 }
acorn@2233 574 if (_succ == Self) _succ = NULL ;
acorn@2233 575
acorn@2233 576 // Invariant: after clearing _succ a thread *must* retry _owner before parking.
acorn@2233 577 OrderAccess::fence() ;
acorn@2233 578 }
acorn@2233 579
acorn@2233 580 // Egress :
acorn@2233 581 // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
acorn@2233 582 // Normally we'll find Self on the EntryList .
acorn@2233 583 // From the perspective of the lock owner (this thread), the
acorn@2233 584 // EntryList is stable and cxq is prepend-only.
acorn@2233 585 // The head of cxq is volatile but the interior is stable.
acorn@2233 586 // In addition, Self.TState is stable.
acorn@2233 587
acorn@2233 588 assert (_owner == Self , "invariant") ;
acorn@2233 589 assert (object() != NULL , "invariant") ;
acorn@2233 590 // I'd like to write:
acorn@2233 591 // guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 592 // but as we're at a safepoint that's not safe.
acorn@2233 593
acorn@2233 594 UnlinkAfterAcquire (Self, &node) ;
acorn@2233 595 if (_succ == Self) _succ = NULL ;
acorn@2233 596
acorn@2233 597 assert (_succ != Self, "invariant") ;
acorn@2233 598 if (_Responsible == Self) {
acorn@2233 599 _Responsible = NULL ;
acorn@2233 600 // Dekker pivot-point.
acorn@2233 601 // Consider OrderAccess::storeload() here
acorn@2233 602
acorn@2233 603 // We may leave threads on cxq|EntryList without a designated
acorn@2233 604 // "Responsible" thread. This is benign. When this thread subsequently
acorn@2233 605 // exits the monitor it can "see" such preexisting "old" threads --
acorn@2233 606 // threads that arrived on the cxq|EntryList before the fence, above --
acorn@2233 607 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads
acorn@2233 608 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
acorn@2233 609 // non-null and elect a new "Responsible" timer thread.
acorn@2233 610 //
acorn@2233 611 // This thread executes:
acorn@2233 612 // ST Responsible=null; MEMBAR (in enter epilog - here)
acorn@2233 613 // LD cxq|EntryList (in subsequent exit)
acorn@2233 614 //
acorn@2233 615 // Entering threads in the slow/contended path execute:
acorn@2233 616 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
acorn@2233 617 // The (ST cxq; MEMBAR) is accomplished with CAS().
acorn@2233 618 //
acorn@2233 619 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
acorn@2233 620 // exit operation from floating above the ST Responsible=null.
acorn@2233 621 //
acorn@2233 622 // In *practice* however, EnterI() is always followed by some atomic
acorn@2233 623 // operation such as the decrement of _count in ::enter(). Those atomics
acorn@2233 624 // obviate the need for the explicit MEMBAR, above.
acorn@2233 625 }
acorn@2233 626
acorn@2233 627 // We've acquired ownership with CAS().
acorn@2233 628 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
acorn@2233 629 // But since the CAS() this thread may have also stored into _succ,
acorn@2233 630 // EntryList, cxq or Responsible. These meta-data updates must be
acorn@2233 631 // visible __before this thread subsequently drops the lock.
acorn@2233 632 // Consider what could occur if we didn't enforce this constraint --
acorn@2233 633 // STs to monitor meta-data and user-data could reorder with (become
acorn@2233 634 // visible after) the ST in exit that drops ownership of the lock.
acorn@2233 635 // Some other thread could then acquire the lock, but observe inconsistent
acorn@2233 636 // or old monitor meta-data and heap data. That violates the JMM.
acorn@2233 637 // To that end, the 1-0 exit() operation must have at least STST|LDST
acorn@2233 638 // "release" barrier semantics. Specifically, there must be at least a
acorn@2233 639 // STST|LDST barrier in exit() before the ST of null into _owner that drops
acorn@2233 640 // the lock. The barrier ensures that changes to monitor meta-data and data
acorn@2233 641 // protected by the lock will be visible before we release the lock, and
acorn@2233 642 // therefore before some other thread (CPU) has a chance to acquire the lock.
acorn@2233 643 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
acorn@2233 644 //
acorn@2233 645 // Critically, any prior STs to _succ or EntryList must be visible before
acorn@2233 646 // the ST of null into _owner in the *subsequent* (following) corresponding
acorn@2233 647 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily
acorn@2233 648 // execute a serializing instruction.
acorn@2233 649
acorn@2233 650 if (SyncFlags & 8) {
acorn@2233 651 OrderAccess::fence() ;
acorn@2233 652 }
acorn@2233 653 return ;
acorn@2233 654 }
acorn@2233 655
acorn@2233 656 // ReenterI() is a specialized inline form of the latter half of the
acorn@2233 657 // contended slow-path from EnterI(). We use ReenterI() only for
acorn@2233 658 // monitor reentry in wait().
acorn@2233 659 //
acorn@2233 660 // In the future we should reconcile EnterI() and ReenterI(), adding
acorn@2233 661 // Knob_Reset and Knob_SpinAfterFutile support and restructuring the
acorn@2233 662 // loop accordingly.
acorn@2233 663
acorn@2233 664 void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
acorn@2233 665 assert (Self != NULL , "invariant") ;
acorn@2233 666 assert (SelfNode != NULL , "invariant") ;
acorn@2233 667 assert (SelfNode->_thread == Self , "invariant") ;
acorn@2233 668 assert (_waiters > 0 , "invariant") ;
acorn@2233 669 assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
acorn@2233 670 assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
acorn@2233 671 JavaThread * jt = (JavaThread *) Self ;
acorn@2233 672
acorn@2233 673 int nWakeups = 0 ;
acorn@2233 674 for (;;) {
acorn@2233 675 ObjectWaiter::TStates v = SelfNode->TState ;
acorn@2233 676 guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 677 assert (_owner != Self, "invariant") ;
acorn@2233 678
acorn@2233 679 if (TryLock (Self) > 0) break ;
acorn@2233 680 if (TrySpin (Self) > 0) break ;
acorn@2233 681
acorn@2233 682 TEVENT (Wait Reentry - parking) ;
acorn@2233 683
acorn@2233 684 // State transition wrappers around park() ...
acorn@2233 685 // ReenterI() wisely defers state transitions until
acorn@2233 686 // it's clear we must park the thread.
acorn@2233 687 {
acorn@2233 688 OSThreadContendState osts(Self->osthread());
acorn@2233 689 ThreadBlockInVM tbivm(jt);
acorn@2233 690
acorn@2233 691 // cleared by handle_special_suspend_equivalent_condition()
acorn@2233 692 // or java_suspend_self()
acorn@2233 693 jt->set_suspend_equivalent();
acorn@2233 694 if (SyncFlags & 1) {
acorn@2233 695 Self->_ParkEvent->park ((jlong)1000) ;
acorn@2233 696 } else {
acorn@2233 697 Self->_ParkEvent->park () ;
acorn@2233 698 }
acorn@2233 699
acorn@2233 700 // were we externally suspended while we were waiting?
acorn@2233 701 for (;;) {
acorn@2233 702 if (!ExitSuspendEquivalent (jt)) break ;
acorn@2233 703 if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
acorn@2233 704 jt->java_suspend_self();
acorn@2233 705 jt->set_suspend_equivalent();
acorn@2233 706 }
acorn@2233 707 }
acorn@2233 708
acorn@2233 709 // Try again, but just so we distinguish between futile wakeups and
acorn@2233 710 // successful wakeups. The following test isn't algorithmically
acorn@2233 711 // necessary, but it helps us maintain sensible statistics.
acorn@2233 712 if (TryLock(Self) > 0) break ;
acorn@2233 713
acorn@2233 714 // The lock is still contested.
acorn@2233 715 // Keep a tally of the # of futile wakeups.
acorn@2233 716 // Note that the counter is not protected by a lock or updated by atomics.
acorn@2233 717 // That is by design - we trade "lossy" counters which are exposed to
acorn@2233 718 // races during updates for a lower probe effect.
acorn@2233 719 TEVENT (Wait Reentry - futile wakeup) ;
acorn@2233 720 ++ nWakeups ;
acorn@2233 721
acorn@2233 722 // Assuming this is not a spurious wakeup we'll normally
acorn@2233 723 // find that _succ == Self.
acorn@2233 724 if (_succ == Self) _succ = NULL ;
acorn@2233 725
acorn@2233 726 // Invariant: after clearing _succ a contending thread
acorn@2233 727 // *must* retry _owner before parking.
acorn@2233 728 OrderAccess::fence() ;
acorn@2233 729
acorn@2233 730 if (ObjectMonitor::_sync_FutileWakeups != NULL) {
acorn@2233 731 ObjectMonitor::_sync_FutileWakeups->inc() ;
acorn@2233 732 }
acorn@2233 733 }
acorn@2233 734
acorn@2233 735 // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
acorn@2233 736 // Normally we'll find Self on the EntryList.
acorn@2233 737 // Unlinking from the EntryList is constant-time and atomic-free.
acorn@2233 738 // From the perspective of the lock owner (this thread), the
acorn@2233 739 // EntryList is stable and cxq is prepend-only.
acorn@2233 740 // The head of cxq is volatile but the interior is stable.
acorn@2233 741 // In addition, Self.TState is stable.
acorn@2233 742
acorn@2233 743 assert (_owner == Self, "invariant") ;
acorn@2233 744 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 745 UnlinkAfterAcquire (Self, SelfNode) ;
acorn@2233 746 if (_succ == Self) _succ = NULL ;
acorn@2233 747 assert (_succ != Self, "invariant") ;
acorn@2233 748 SelfNode->TState = ObjectWaiter::TS_RUN ;
acorn@2233 749 OrderAccess::fence() ; // see comments at the end of EnterI()
acorn@2233 750 }
acorn@2233 751
acorn@2233 752 // after the thread acquires the lock in ::enter(). Equally, we could defer
acorn@2233 753 // unlinking the thread until ::exit()-time.
acorn@2233 754
acorn@2233 755 void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
acorn@2233 756 {
acorn@2233 757 assert (_owner == Self, "invariant") ;
acorn@2233 758 assert (SelfNode->_thread == Self, "invariant") ;
acorn@2233 759
acorn@2233 760 if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
acorn@2233 761 // Normal case: remove Self from the DLL EntryList .
acorn@2233 762 // This is a constant-time operation.
acorn@2233 763 ObjectWaiter * nxt = SelfNode->_next ;
acorn@2233 764 ObjectWaiter * prv = SelfNode->_prev ;
acorn@2233 765 if (nxt != NULL) nxt->_prev = prv ;
acorn@2233 766 if (prv != NULL) prv->_next = nxt ;
acorn@2233 767 if (SelfNode == _EntryList ) _EntryList = nxt ;
acorn@2233 768 assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 769 assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 770 TEVENT (Unlink from EntryList) ;
acorn@2233 771 } else {
acorn@2233 772 guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 773 // Inopportune interleaving -- Self is still on the cxq.
acorn@2233 774 // This usually means the enqueue of self raced an exiting thread.
acorn@2233 775 // Normally we'll find Self near the front of the cxq, so
acorn@2233 776 // dequeueing is typically fast. If needbe we can accelerate
acorn@2233 777 // this with some MCS/CHL-like bidirectional list hints and advisory
acorn@2233 778 // back-links so dequeueing from the interior will normally operate
acorn@2233 779 // in constant-time.
acorn@2233 780 // Dequeue Self from either the head (with CAS) or from the interior
acorn@2233 781 // with a linear-time scan and normal non-atomic memory operations.
acorn@2233 782 // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
acorn@2233 783 // and then unlink Self from EntryList. We have to drain eventually,
acorn@2233 784 // so it might as well be now.
acorn@2233 785
acorn@2233 786 ObjectWaiter * v = _cxq ;
acorn@2233 787 assert (v != NULL, "invariant") ;
acorn@2233 788 if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
acorn@2233 789 // The CAS above can fail from interference IFF a "RAT" arrived.
acorn@2233 790 // In that case Self must be in the interior and can no longer be
acorn@2233 791 // at the head of cxq.
acorn@2233 792 if (v == SelfNode) {
acorn@2233 793 assert (_cxq != v, "invariant") ;
acorn@2233 794 v = _cxq ; // CAS above failed - start scan at head of list
acorn@2233 795 }
acorn@2233 796 ObjectWaiter * p ;
acorn@2233 797 ObjectWaiter * q = NULL ;
acorn@2233 798 for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
acorn@2233 799 q = p ;
acorn@2233 800 assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 801 }
acorn@2233 802 assert (v != SelfNode, "invariant") ;
acorn@2233 803 assert (p == SelfNode, "Node not found on cxq") ;
acorn@2233 804 assert (p != _cxq, "invariant") ;
acorn@2233 805 assert (q != NULL, "invariant") ;
acorn@2233 806 assert (q->_next == p, "invariant") ;
acorn@2233 807 q->_next = p->_next ;
acorn@2233 808 }
acorn@2233 809 TEVENT (Unlink from cxq) ;
acorn@2233 810 }
acorn@2233 811
acorn@2233 812 // Diagnostic hygiene ...
acorn@2233 813 SelfNode->_prev = (ObjectWaiter *) 0xBAD ;
acorn@2233 814 SelfNode->_next = (ObjectWaiter *) 0xBAD ;
acorn@2233 815 SelfNode->TState = ObjectWaiter::TS_RUN ;
acorn@2233 816 }
acorn@2233 817
acorn@2233 818 // -----------------------------------------------------------------------------
acorn@2233 819 // Exit support
acorn@2233 820 //
acorn@2233 821 // exit()
acorn@2233 822 // ~~~~~~
acorn@2233 823 // Note that the collector can't reclaim the objectMonitor or deflate
acorn@2233 824 // the object out from underneath the thread calling ::exit() as the
acorn@2233 825 // thread calling ::exit() never transitions to a stable state.
acorn@2233 826 // This inhibits GC, which in turn inhibits asynchronous (and
acorn@2233 827 // inopportune) reclamation of "this".
acorn@2233 828 //
acorn@2233 829 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
acorn@2233 830 // There's one exception to the claim above, however. EnterI() can call
acorn@2233 831 // exit() to drop a lock if the acquirer has been externally suspended.
acorn@2233 832 // In that case exit() is called with _thread_state as _thread_blocked,
acorn@2233 833 // but the monitor's _count field is > 0, which inhibits reclamation.
acorn@2233 834 //
acorn@2233 835 // 1-0 exit
acorn@2233 836 // ~~~~~~~~
acorn@2233 837 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
acorn@2233 838 // the fast-path operators have been optimized so the common ::exit()
acorn@2233 839 // operation is 1-0. See i486.ad fast_unlock(), for instance.
acorn@2233 840 // The code emitted by fast_unlock() elides the usual MEMBAR. This
acorn@2233 841 // greatly improves latency -- MEMBAR and CAS having considerable local
acorn@2233 842 // latency on modern processors -- but at the cost of "stranding". Absent the
acorn@2233 843 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
acorn@2233 844 // ::enter() path, resulting in the entering thread being stranding
acorn@2233 845 // and a progress-liveness failure. Stranding is extremely rare.
acorn@2233 846 // We use timers (timed park operations) & periodic polling to detect
acorn@2233 847 // and recover from stranding. Potentially stranded threads periodically
acorn@2233 848 // wake up and poll the lock. See the usage of the _Responsible variable.
acorn@2233 849 //
acorn@2233 850 // The CAS() in enter provides for safety and exclusion, while the CAS or
acorn@2233 851 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking
acorn@2233 852 // eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
acorn@2233 853 // We detect and recover from stranding with timers.
acorn@2233 854 //
acorn@2233 855 // If a thread transiently strands it'll park until (a) another
acorn@2233 856 // thread acquires the lock and then drops the lock, at which time the
acorn@2233 857 // exiting thread will notice and unpark the stranded thread, or, (b)
acorn@2233 858 // the timer expires. If the lock is high traffic then the stranding latency
acorn@2233 859 // will be low due to (a). If the lock is low traffic then the odds of
acorn@2233 860 // stranding are lower, although the worst-case stranding latency
acorn@2233 861 // is longer. Critically, we don't want to put excessive load in the
acorn@2233 862 // platform's timer subsystem. We want to minimize both the timer injection
acorn@2233 863 // rate (timers created/sec) as well as the number of timers active at
acorn@2233 864 // any one time. (more precisely, we want to minimize timer-seconds, which is
acorn@2233 865 // the integral of the # of active timers at any instant over time).
acorn@2233 866 // Both impinge on OS scalability. Given that, at most one thread parked on
acorn@2233 867 // a monitor will use a timer.
acorn@2233 868
acorn@2233 869 void ATTR ObjectMonitor::exit(TRAPS) {
acorn@2233 870 Thread * Self = THREAD ;
acorn@2233 871 if (THREAD != _owner) {
acorn@2233 872 if (THREAD->is_lock_owned((address) _owner)) {
acorn@2233 873 // Transmute _owner from a BasicLock pointer to a Thread address.
acorn@2233 874 // We don't need to hold _mutex for this transition.
acorn@2233 875 // Non-null to Non-null is safe as long as all readers can
acorn@2233 876 // tolerate either flavor.
acorn@2233 877 assert (_recursions == 0, "invariant") ;
acorn@2233 878 _owner = THREAD ;
acorn@2233 879 _recursions = 0 ;
acorn@2233 880 OwnerIsThread = 1 ;
acorn@2233 881 } else {
acorn@2233 882 // NOTE: we need to handle unbalanced monitor enter/exit
acorn@2233 883 // in native code by throwing an exception.
acorn@2233 884 // TODO: Throw an IllegalMonitorStateException ?
acorn@2233 885 TEVENT (Exit - Throw IMSX) ;
acorn@2233 886 assert(false, "Non-balanced monitor enter/exit!");
acorn@2233 887 if (false) {
acorn@2233 888 THROW(vmSymbols::java_lang_IllegalMonitorStateException());
acorn@2233 889 }
acorn@2233 890 return;
acorn@2233 891 }
acorn@2233 892 }
acorn@2233 893
acorn@2233 894 if (_recursions != 0) {
acorn@2233 895 _recursions--; // this is simple recursive enter
acorn@2233 896 TEVENT (Inflated exit - recursive) ;
acorn@2233 897 return ;
acorn@2233 898 }
acorn@2233 899
acorn@2233 900 // Invariant: after setting Responsible=null an thread must execute
acorn@2233 901 // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
acorn@2233 902 if ((SyncFlags & 4) == 0) {
acorn@2233 903 _Responsible = NULL ;
acorn@2233 904 }
acorn@2233 905
acorn@2233 906 for (;;) {
acorn@2233 907 assert (THREAD == _owner, "invariant") ;
acorn@2233 908
acorn@2233 909
acorn@2233 910 if (Knob_ExitPolicy == 0) {
acorn@2233 911 // release semantics: prior loads and stores from within the critical section
acorn@2233 912 // must not float (reorder) past the following store that drops the lock.
acorn@2233 913 // On SPARC that requires MEMBAR #loadstore|#storestore.
acorn@2233 914 // But of course in TSO #loadstore|#storestore is not required.
acorn@2233 915 // I'd like to write one of the following:
acorn@2233 916 // A. OrderAccess::release() ; _owner = NULL
acorn@2233 917 // B. OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
acorn@2233 918 // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
acorn@2233 919 // store into a _dummy variable. That store is not needed, but can result
acorn@2233 920 // in massive wasteful coherency traffic on classic SMP systems.
acorn@2233 921 // Instead, I use release_store(), which is implemented as just a simple
acorn@2233 922 // ST on x64, x86 and SPARC.
acorn@2233 923 OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock
acorn@2233 924 OrderAccess::storeload() ; // See if we need to wake a successor
acorn@2233 925 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
acorn@2233 926 TEVENT (Inflated exit - simple egress) ;
acorn@2233 927 return ;
acorn@2233 928 }
acorn@2233 929 TEVENT (Inflated exit - complex egress) ;
acorn@2233 930
acorn@2233 931 // Normally the exiting thread is responsible for ensuring succession,
acorn@2233 932 // but if other successors are ready or other entering threads are spinning
acorn@2233 933 // then this thread can simply store NULL into _owner and exit without
acorn@2233 934 // waking a successor. The existence of spinners or ready successors
acorn@2233 935 // guarantees proper succession (liveness). Responsibility passes to the
acorn@2233 936 // ready or running successors. The exiting thread delegates the duty.
acorn@2233 937 // More precisely, if a successor already exists this thread is absolved
acorn@2233 938 // of the responsibility of waking (unparking) one.
acorn@2233 939 //
acorn@2233 940 // The _succ variable is critical to reducing futile wakeup frequency.
acorn@2233 941 // _succ identifies the "heir presumptive" thread that has been made
acorn@2233 942 // ready (unparked) but that has not yet run. We need only one such
acorn@2233 943 // successor thread to guarantee progress.
acorn@2233 944 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
acorn@2233 945 // section 3.3 "Futile Wakeup Throttling" for details.
acorn@2233 946 //
acorn@2233 947 // Note that spinners in Enter() also set _succ non-null.
acorn@2233 948 // In the current implementation spinners opportunistically set
acorn@2233 949 // _succ so that exiting threads might avoid waking a successor.
acorn@2233 950 // Another less appealing alternative would be for the exiting thread
acorn@2233 951 // to drop the lock and then spin briefly to see if a spinner managed
acorn@2233 952 // to acquire the lock. If so, the exiting thread could exit
acorn@2233 953 // immediately without waking a successor, otherwise the exiting
acorn@2233 954 // thread would need to dequeue and wake a successor.
acorn@2233 955 // (Note that we'd need to make the post-drop spin short, but no
acorn@2233 956 // shorter than the worst-case round-trip cache-line migration time.
acorn@2233 957 // The dropped lock needs to become visible to the spinner, and then
acorn@2233 958 // the acquisition of the lock by the spinner must become visible to
acorn@2233 959 // the exiting thread).
acorn@2233 960 //
acorn@2233 961
acorn@2233 962 // It appears that an heir-presumptive (successor) must be made ready.
acorn@2233 963 // Only the current lock owner can manipulate the EntryList or
acorn@2233 964 // drain _cxq, so we need to reacquire the lock. If we fail
acorn@2233 965 // to reacquire the lock the responsibility for ensuring succession
acorn@2233 966 // falls to the new owner.
acorn@2233 967 //
acorn@2233 968 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
acorn@2233 969 return ;
acorn@2233 970 }
acorn@2233 971 TEVENT (Exit - Reacquired) ;
acorn@2233 972 } else {
acorn@2233 973 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
acorn@2233 974 OrderAccess::release_store_ptr (&_owner, NULL) ; // drop the lock
acorn@2233 975 OrderAccess::storeload() ;
acorn@2233 976 // Ratify the previously observed values.
acorn@2233 977 if (_cxq == NULL || _succ != NULL) {
acorn@2233 978 TEVENT (Inflated exit - simple egress) ;
acorn@2233 979 return ;
acorn@2233 980 }
acorn@2233 981
acorn@2233 982 // inopportune interleaving -- the exiting thread (this thread)
acorn@2233 983 // in the fast-exit path raced an entering thread in the slow-enter
acorn@2233 984 // path.
acorn@2233 985 // We have two choices:
acorn@2233 986 // A. Try to reacquire the lock.
acorn@2233 987 // If the CAS() fails return immediately, otherwise
acorn@2233 988 // we either restart/rerun the exit operation, or simply
acorn@2233 989 // fall-through into the code below which wakes a successor.
acorn@2233 990 // B. If the elements forming the EntryList|cxq are TSM
acorn@2233 991 // we could simply unpark() the lead thread and return
acorn@2233 992 // without having set _succ.
acorn@2233 993 if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
acorn@2233 994 TEVENT (Inflated exit - reacquired succeeded) ;
acorn@2233 995 return ;
acorn@2233 996 }
acorn@2233 997 TEVENT (Inflated exit - reacquired failed) ;
acorn@2233 998 } else {
acorn@2233 999 TEVENT (Inflated exit - complex egress) ;
acorn@2233 1000 }
acorn@2233 1001 }
acorn@2233 1002
acorn@2233 1003 guarantee (_owner == THREAD, "invariant") ;
acorn@2233 1004
acorn@2233 1005 ObjectWaiter * w = NULL ;
acorn@2233 1006 int QMode = Knob_QMode ;
acorn@2233 1007
acorn@2233 1008 if (QMode == 2 && _cxq != NULL) {
acorn@2233 1009 // QMode == 2 : cxq has precedence over EntryList.
acorn@2233 1010 // Try to directly wake a successor from the cxq.
acorn@2233 1011 // If successful, the successor will need to unlink itself from cxq.
acorn@2233 1012 w = _cxq ;
acorn@2233 1013 assert (w != NULL, "invariant") ;
acorn@2233 1014 assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1015 ExitEpilog (Self, w) ;
acorn@2233 1016 return ;
acorn@2233 1017 }
acorn@2233 1018
acorn@2233 1019 if (QMode == 3 && _cxq != NULL) {
acorn@2233 1020 // Aggressively drain cxq into EntryList at the first opportunity.
acorn@2233 1021 // This policy ensure that recently-run threads live at the head of EntryList.
acorn@2233 1022 // Drain _cxq into EntryList - bulk transfer.
acorn@2233 1023 // First, detach _cxq.
acorn@2233 1024 // The following loop is tantamount to: w = swap (&cxq, NULL)
acorn@2233 1025 w = _cxq ;
acorn@2233 1026 for (;;) {
acorn@2233 1027 assert (w != NULL, "Invariant") ;
acorn@2233 1028 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
acorn@2233 1029 if (u == w) break ;
acorn@2233 1030 w = u ;
acorn@2233 1031 }
acorn@2233 1032 assert (w != NULL , "invariant") ;
acorn@2233 1033
acorn@2233 1034 ObjectWaiter * q = NULL ;
acorn@2233 1035 ObjectWaiter * p ;
acorn@2233 1036 for (p = w ; p != NULL ; p = p->_next) {
acorn@2233 1037 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1038 p->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1039 p->_prev = q ;
acorn@2233 1040 q = p ;
acorn@2233 1041 }
acorn@2233 1042
acorn@2233 1043 // Append the RATs to the EntryList
acorn@2233 1044 // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
acorn@2233 1045 ObjectWaiter * Tail ;
acorn@2233 1046 for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
acorn@2233 1047 if (Tail == NULL) {
acorn@2233 1048 _EntryList = w ;
acorn@2233 1049 } else {
acorn@2233 1050 Tail->_next = w ;
acorn@2233 1051 w->_prev = Tail ;
acorn@2233 1052 }
acorn@2233 1053
acorn@2233 1054 // Fall thru into code that tries to wake a successor from EntryList
acorn@2233 1055 }
acorn@2233 1056
acorn@2233 1057 if (QMode == 4 && _cxq != NULL) {
acorn@2233 1058 // Aggressively drain cxq into EntryList at the first opportunity.
acorn@2233 1059 // This policy ensure that recently-run threads live at the head of EntryList.
acorn@2233 1060
acorn@2233 1061 // Drain _cxq into EntryList - bulk transfer.
acorn@2233 1062 // First, detach _cxq.
acorn@2233 1063 // The following loop is tantamount to: w = swap (&cxq, NULL)
acorn@2233 1064 w = _cxq ;
acorn@2233 1065 for (;;) {
acorn@2233 1066 assert (w != NULL, "Invariant") ;
acorn@2233 1067 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
acorn@2233 1068 if (u == w) break ;
acorn@2233 1069 w = u ;
acorn@2233 1070 }
acorn@2233 1071 assert (w != NULL , "invariant") ;
acorn@2233 1072
acorn@2233 1073 ObjectWaiter * q = NULL ;
acorn@2233 1074 ObjectWaiter * p ;
acorn@2233 1075 for (p = w ; p != NULL ; p = p->_next) {
acorn@2233 1076 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1077 p->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1078 p->_prev = q ;
acorn@2233 1079 q = p ;
acorn@2233 1080 }
acorn@2233 1081
acorn@2233 1082 // Prepend the RATs to the EntryList
acorn@2233 1083 if (_EntryList != NULL) {
acorn@2233 1084 q->_next = _EntryList ;
acorn@2233 1085 _EntryList->_prev = q ;
acorn@2233 1086 }
acorn@2233 1087 _EntryList = w ;
acorn@2233 1088
acorn@2233 1089 // Fall thru into code that tries to wake a successor from EntryList
acorn@2233 1090 }
acorn@2233 1091
acorn@2233 1092 w = _EntryList ;
acorn@2233 1093 if (w != NULL) {
acorn@2233 1094 // I'd like to write: guarantee (w->_thread != Self).
acorn@2233 1095 // But in practice an exiting thread may find itself on the EntryList.
acorn@2233 1096 // Lets say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and
acorn@2233 1097 // then calls exit(). Exit release the lock by setting O._owner to NULL.
acorn@2233 1098 // Lets say T1 then stalls. T2 acquires O and calls O.notify(). The
acorn@2233 1099 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
acorn@2233 1100 // release the lock "O". T2 resumes immediately after the ST of null into
acorn@2233 1101 // _owner, above. T2 notices that the EntryList is populated, so it
acorn@2233 1102 // reacquires the lock and then finds itself on the EntryList.
acorn@2233 1103 // Given all that, we have to tolerate the circumstance where "w" is
acorn@2233 1104 // associated with Self.
acorn@2233 1105 assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1106 ExitEpilog (Self, w) ;
acorn@2233 1107 return ;
acorn@2233 1108 }
acorn@2233 1109
acorn@2233 1110 // If we find that both _cxq and EntryList are null then just
acorn@2233 1111 // re-run the exit protocol from the top.
acorn@2233 1112 w = _cxq ;
acorn@2233 1113 if (w == NULL) continue ;
acorn@2233 1114
acorn@2233 1115 // Drain _cxq into EntryList - bulk transfer.
acorn@2233 1116 // First, detach _cxq.
acorn@2233 1117 // The following loop is tantamount to: w = swap (&cxq, NULL)
acorn@2233 1118 for (;;) {
acorn@2233 1119 assert (w != NULL, "Invariant") ;
acorn@2233 1120 ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
acorn@2233 1121 if (u == w) break ;
acorn@2233 1122 w = u ;
acorn@2233 1123 }
acorn@2233 1124 TEVENT (Inflated exit - drain cxq into EntryList) ;
acorn@2233 1125
acorn@2233 1126 assert (w != NULL , "invariant") ;
acorn@2233 1127 assert (_EntryList == NULL , "invariant") ;
acorn@2233 1128
acorn@2233 1129 // Convert the LIFO SLL anchored by _cxq into a DLL.
acorn@2233 1130 // The list reorganization step operates in O(LENGTH(w)) time.
acorn@2233 1131 // It's critical that this step operate quickly as
acorn@2233 1132 // "Self" still holds the outer-lock, restricting parallelism
acorn@2233 1133 // and effectively lengthening the critical section.
acorn@2233 1134 // Invariant: s chases t chases u.
acorn@2233 1135 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
acorn@2233 1136 // we have faster access to the tail.
acorn@2233 1137
acorn@2233 1138 if (QMode == 1) {
acorn@2233 1139 // QMode == 1 : drain cxq to EntryList, reversing order
acorn@2233 1140 // We also reverse the order of the list.
acorn@2233 1141 ObjectWaiter * s = NULL ;
acorn@2233 1142 ObjectWaiter * t = w ;
acorn@2233 1143 ObjectWaiter * u = NULL ;
acorn@2233 1144 while (t != NULL) {
acorn@2233 1145 guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 1146 t->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1147 u = t->_next ;
acorn@2233 1148 t->_prev = u ;
acorn@2233 1149 t->_next = s ;
acorn@2233 1150 s = t;
acorn@2233 1151 t = u ;
acorn@2233 1152 }
acorn@2233 1153 _EntryList = s ;
acorn@2233 1154 assert (s != NULL, "invariant") ;
acorn@2233 1155 } else {
acorn@2233 1156 // QMode == 0 or QMode == 2
acorn@2233 1157 _EntryList = w ;
acorn@2233 1158 ObjectWaiter * q = NULL ;
acorn@2233 1159 ObjectWaiter * p ;
acorn@2233 1160 for (p = w ; p != NULL ; p = p->_next) {
acorn@2233 1161 guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
acorn@2233 1162 p->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1163 p->_prev = q ;
acorn@2233 1164 q = p ;
acorn@2233 1165 }
acorn@2233 1166 }
acorn@2233 1167
acorn@2233 1168 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
acorn@2233 1169 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
acorn@2233 1170
acorn@2233 1171 // See if we can abdicate to a spinner instead of waking a thread.
acorn@2233 1172 // A primary goal of the implementation is to reduce the
acorn@2233 1173 // context-switch rate.
acorn@2233 1174 if (_succ != NULL) continue;
acorn@2233 1175
acorn@2233 1176 w = _EntryList ;
acorn@2233 1177 if (w != NULL) {
acorn@2233 1178 guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1179 ExitEpilog (Self, w) ;
acorn@2233 1180 return ;
acorn@2233 1181 }
acorn@2233 1182 }
acorn@2233 1183 }
acorn@2233 1184
acorn@2233 1185 // ExitSuspendEquivalent:
acorn@2233 1186 // A faster alternate to handle_special_suspend_equivalent_condition()
acorn@2233 1187 //
acorn@2233 1188 // handle_special_suspend_equivalent_condition() unconditionally
acorn@2233 1189 // acquires the SR_lock. On some platforms uncontended MutexLocker()
acorn@2233 1190 // operations have high latency. Note that in ::enter() we call HSSEC
acorn@2233 1191 // while holding the monitor, so we effectively lengthen the critical sections.
acorn@2233 1192 //
acorn@2233 1193 // There are a number of possible solutions:
acorn@2233 1194 //
acorn@2233 1195 // A. To ameliorate the problem we might also defer state transitions
acorn@2233 1196 // to as late as possible -- just prior to parking.
acorn@2233 1197 // Given that, we'd call HSSEC after having returned from park(),
acorn@2233 1198 // but before attempting to acquire the monitor. This is only a
acorn@2233 1199 // partial solution. It avoids calling HSSEC while holding the
acorn@2233 1200 // monitor (good), but it still increases successor reacquisition latency --
acorn@2233 1201 // the interval between unparking a successor and the time the successor
acorn@2233 1202 // resumes and retries the lock. See ReenterI(), which defers state transitions.
acorn@2233 1203 // If we use this technique we can also avoid EnterI()-exit() loop
acorn@2233 1204 // in ::enter() where we iteratively drop the lock and then attempt
acorn@2233 1205 // to reacquire it after suspending.
acorn@2233 1206 //
acorn@2233 1207 // B. In the future we might fold all the suspend bits into a
acorn@2233 1208 // composite per-thread suspend flag and then update it with CAS().
acorn@2233 1209 // Alternately, a Dekker-like mechanism with multiple variables
acorn@2233 1210 // would suffice:
acorn@2233 1211 // ST Self->_suspend_equivalent = false
acorn@2233 1212 // MEMBAR
acorn@2233 1213 // LD Self_>_suspend_flags
acorn@2233 1214 //
acorn@2233 1215
acorn@2233 1216
acorn@2233 1217 bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
acorn@2233 1218 int Mode = Knob_FastHSSEC ;
acorn@2233 1219 if (Mode && !jSelf->is_external_suspend()) {
acorn@2233 1220 assert (jSelf->is_suspend_equivalent(), "invariant") ;
acorn@2233 1221 jSelf->clear_suspend_equivalent() ;
acorn@2233 1222 if (2 == Mode) OrderAccess::storeload() ;
acorn@2233 1223 if (!jSelf->is_external_suspend()) return false ;
acorn@2233 1224 // We raced a suspension -- fall thru into the slow path
acorn@2233 1225 TEVENT (ExitSuspendEquivalent - raced) ;
acorn@2233 1226 jSelf->set_suspend_equivalent() ;
acorn@2233 1227 }
acorn@2233 1228 return jSelf->handle_special_suspend_equivalent_condition() ;
acorn@2233 1229 }
acorn@2233 1230
acorn@2233 1231
acorn@2233 1232 void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
acorn@2233 1233 assert (_owner == Self, "invariant") ;
acorn@2233 1234
acorn@2233 1235 // Exit protocol:
acorn@2233 1236 // 1. ST _succ = wakee
acorn@2233 1237 // 2. membar #loadstore|#storestore;
acorn@2233 1238 // 2. ST _owner = NULL
acorn@2233 1239 // 3. unpark(wakee)
acorn@2233 1240
acorn@2233 1241 _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
acorn@2233 1242 ParkEvent * Trigger = Wakee->_event ;
acorn@2233 1243
acorn@2233 1244 // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
acorn@2233 1245 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
acorn@2233 1246 // out-of-scope (non-extant).
acorn@2233 1247 Wakee = NULL ;
acorn@2233 1248
acorn@2233 1249 // Drop the lock
acorn@2233 1250 OrderAccess::release_store_ptr (&_owner, NULL) ;
acorn@2233 1251 OrderAccess::fence() ; // ST _owner vs LD in unpark()
acorn@2233 1252
acorn@2233 1253 if (SafepointSynchronize::do_call_back()) {
acorn@2233 1254 TEVENT (unpark before SAFEPOINT) ;
acorn@2233 1255 }
acorn@2233 1256
acorn@2233 1257 DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
acorn@2233 1258 Trigger->unpark() ;
acorn@2233 1259
acorn@2233 1260 // Maintain stats and report events to JVMTI
acorn@2233 1261 if (ObjectMonitor::_sync_Parks != NULL) {
acorn@2233 1262 ObjectMonitor::_sync_Parks->inc() ;
acorn@2233 1263 }
acorn@2233 1264 }
acorn@2233 1265
acorn@2233 1266
acorn@2233 1267 // -----------------------------------------------------------------------------
acorn@2233 1268 // Class Loader deadlock handling.
acorn@2233 1269 //
acorn@2233 1270 // complete_exit exits a lock returning recursion count
acorn@2233 1271 // complete_exit/reenter operate as a wait without waiting
acorn@2233 1272 // complete_exit requires an inflated monitor
acorn@2233 1273 // The _owner field is not always the Thread addr even with an
acorn@2233 1274 // inflated monitor, e.g. the monitor can be inflated by a non-owning
acorn@2233 1275 // thread due to contention.
acorn@2233 1276 intptr_t ObjectMonitor::complete_exit(TRAPS) {
acorn@2233 1277 Thread * const Self = THREAD;
acorn@2233 1278 assert(Self->is_Java_thread(), "Must be Java thread!");
acorn@2233 1279 JavaThread *jt = (JavaThread *)THREAD;
acorn@2233 1280
acorn@2233 1281 DeferredInitialize();
acorn@2233 1282
acorn@2233 1283 if (THREAD != _owner) {
acorn@2233 1284 if (THREAD->is_lock_owned ((address)_owner)) {
acorn@2233 1285 assert(_recursions == 0, "internal state error");
acorn@2233 1286 _owner = THREAD ; /* Convert from basiclock addr to Thread addr */
acorn@2233 1287 _recursions = 0 ;
acorn@2233 1288 OwnerIsThread = 1 ;
acorn@2233 1289 }
acorn@2233 1290 }
acorn@2233 1291
acorn@2233 1292 guarantee(Self == _owner, "complete_exit not owner");
acorn@2233 1293 intptr_t save = _recursions; // record the old recursion count
acorn@2233 1294 _recursions = 0; // set the recursion level to be 0
acorn@2233 1295 exit (Self) ; // exit the monitor
acorn@2233 1296 guarantee (_owner != Self, "invariant");
acorn@2233 1297 return save;
acorn@2233 1298 }
acorn@2233 1299
acorn@2233 1300 // reenter() enters a lock and sets recursion count
acorn@2233 1301 // complete_exit/reenter operate as a wait without waiting
acorn@2233 1302 void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
acorn@2233 1303 Thread * const Self = THREAD;
acorn@2233 1304 assert(Self->is_Java_thread(), "Must be Java thread!");
acorn@2233 1305 JavaThread *jt = (JavaThread *)THREAD;
acorn@2233 1306
acorn@2233 1307 guarantee(_owner != Self, "reenter already owner");
acorn@2233 1308 enter (THREAD); // enter the monitor
acorn@2233 1309 guarantee (_recursions == 0, "reenter recursion");
acorn@2233 1310 _recursions = recursions;
acorn@2233 1311 return;
acorn@2233 1312 }
acorn@2233 1313
acorn@2233 1314
acorn@2233 1315 // -----------------------------------------------------------------------------
acorn@2233 1316 // A macro is used below because there may already be a pending
acorn@2233 1317 // exception which should not abort the execution of the routines
acorn@2233 1318 // which use this (which is why we don't put this into check_slow and
acorn@2233 1319 // call it with a CHECK argument).
acorn@2233 1320
acorn@2233 1321 #define CHECK_OWNER() \
acorn@2233 1322 do { \
acorn@2233 1323 if (THREAD != _owner) { \
acorn@2233 1324 if (THREAD->is_lock_owned((address) _owner)) { \
acorn@2233 1325 _owner = THREAD ; /* Convert from basiclock addr to Thread addr */ \
acorn@2233 1326 _recursions = 0; \
acorn@2233 1327 OwnerIsThread = 1 ; \
acorn@2233 1328 } else { \
acorn@2233 1329 TEVENT (Throw IMSX) ; \
acorn@2233 1330 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); \
acorn@2233 1331 } \
acorn@2233 1332 } \
acorn@2233 1333 } while (false)
acorn@2233 1334
acorn@2233 1335 // check_slow() is a misnomer. It's called to simply to throw an IMSX exception.
acorn@2233 1336 // TODO-FIXME: remove check_slow() -- it's likely dead.
acorn@2233 1337
acorn@2233 1338 void ObjectMonitor::check_slow(TRAPS) {
acorn@2233 1339 TEVENT (check_slow - throw IMSX) ;
acorn@2233 1340 assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
acorn@2233 1341 THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
acorn@2233 1342 }
acorn@2233 1343
acorn@2233 1344 static int Adjust (volatile int * adr, int dx) {
acorn@2233 1345 int v ;
acorn@2233 1346 for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
acorn@2233 1347 return v ;
acorn@2233 1348 }
acorn@2233 1349 // -----------------------------------------------------------------------------
acorn@2233 1350 // Wait/Notify/NotifyAll
acorn@2233 1351 //
acorn@2233 1352 // Note: a subset of changes to ObjectMonitor::wait()
acorn@2233 1353 // will need to be replicated in complete_exit above
acorn@2233 1354 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
acorn@2233 1355 Thread * const Self = THREAD ;
acorn@2233 1356 assert(Self->is_Java_thread(), "Must be Java thread!");
acorn@2233 1357 JavaThread *jt = (JavaThread *)THREAD;
acorn@2233 1358
acorn@2233 1359 DeferredInitialize () ;
acorn@2233 1360
acorn@2233 1361 // Throw IMSX or IEX.
acorn@2233 1362 CHECK_OWNER();
acorn@2233 1363
acorn@2233 1364 // check for a pending interrupt
acorn@2233 1365 if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
acorn@2233 1366 // post monitor waited event. Note that this is past-tense, we are done waiting.
acorn@2233 1367 if (JvmtiExport::should_post_monitor_waited()) {
acorn@2233 1368 // Note: 'false' parameter is passed here because the
acorn@2233 1369 // wait was not timed out due to thread interrupt.
acorn@2233 1370 JvmtiExport::post_monitor_waited(jt, this, false);
acorn@2233 1371 }
acorn@2233 1372 TEVENT (Wait - Throw IEX) ;
acorn@2233 1373 THROW(vmSymbols::java_lang_InterruptedException());
acorn@2233 1374 return ;
acorn@2233 1375 }
acorn@2233 1376 TEVENT (Wait) ;
acorn@2233 1377
acorn@2233 1378 assert (Self->_Stalled == 0, "invariant") ;
acorn@2233 1379 Self->_Stalled = intptr_t(this) ;
acorn@2233 1380 jt->set_current_waiting_monitor(this);
acorn@2233 1381
acorn@2233 1382 // create a node to be put into the queue
acorn@2233 1383 // Critically, after we reset() the event but prior to park(), we must check
acorn@2233 1384 // for a pending interrupt.
acorn@2233 1385 ObjectWaiter node(Self);
acorn@2233 1386 node.TState = ObjectWaiter::TS_WAIT ;
acorn@2233 1387 Self->_ParkEvent->reset() ;
acorn@2233 1388 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag
acorn@2233 1389
acorn@2233 1390 // Enter the waiting queue, which is a circular doubly linked list in this case
acorn@2233 1391 // but it could be a priority queue or any data structure.
acorn@2233 1392 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only
acorn@2233 1393 // by the the owner of the monitor *except* in the case where park()
acorn@2233 1394 // returns because of a timeout of interrupt. Contention is exceptionally rare
acorn@2233 1395 // so we use a simple spin-lock instead of a heavier-weight blocking lock.
acorn@2233 1396
acorn@2233 1397 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
acorn@2233 1398 AddWaiter (&node) ;
acorn@2233 1399 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1400
acorn@2233 1401 if ((SyncFlags & 4) == 0) {
acorn@2233 1402 _Responsible = NULL ;
acorn@2233 1403 }
acorn@2233 1404 intptr_t save = _recursions; // record the old recursion count
acorn@2233 1405 _waiters++; // increment the number of waiters
acorn@2233 1406 _recursions = 0; // set the recursion level to be 1
acorn@2233 1407 exit (Self) ; // exit the monitor
acorn@2233 1408 guarantee (_owner != Self, "invariant") ;
acorn@2233 1409
acorn@2233 1410 // As soon as the ObjectMonitor's ownership is dropped in the exit()
acorn@2233 1411 // call above, another thread can enter() the ObjectMonitor, do the
acorn@2233 1412 // notify(), and exit() the ObjectMonitor. If the other thread's
acorn@2233 1413 // exit() call chooses this thread as the successor and the unpark()
acorn@2233 1414 // call happens to occur while this thread is posting a
acorn@2233 1415 // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
acorn@2233 1416 // handler using RawMonitors and consuming the unpark().
acorn@2233 1417 //
acorn@2233 1418 // To avoid the problem, we re-post the event. This does no harm
acorn@2233 1419 // even if the original unpark() was not consumed because we are the
acorn@2233 1420 // chosen successor for this monitor.
acorn@2233 1421 if (node._notified != 0 && _succ == Self) {
acorn@2233 1422 node._event->unpark();
acorn@2233 1423 }
acorn@2233 1424
acorn@2233 1425 // The thread is on the WaitSet list - now park() it.
acorn@2233 1426 // On MP systems it's conceivable that a brief spin before we park
acorn@2233 1427 // could be profitable.
acorn@2233 1428 //
acorn@2233 1429 // TODO-FIXME: change the following logic to a loop of the form
acorn@2233 1430 // while (!timeout && !interrupted && _notified == 0) park()
acorn@2233 1431
acorn@2233 1432 int ret = OS_OK ;
acorn@2233 1433 int WasNotified = 0 ;
acorn@2233 1434 { // State transition wrappers
acorn@2233 1435 OSThread* osthread = Self->osthread();
acorn@2233 1436 OSThreadWaitState osts(osthread, true);
acorn@2233 1437 {
acorn@2233 1438 ThreadBlockInVM tbivm(jt);
acorn@2233 1439 // Thread is in thread_blocked state and oop access is unsafe.
acorn@2233 1440 jt->set_suspend_equivalent();
acorn@2233 1441
acorn@2233 1442 if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
acorn@2233 1443 // Intentionally empty
acorn@2233 1444 } else
acorn@2233 1445 if (node._notified == 0) {
acorn@2233 1446 if (millis <= 0) {
acorn@2233 1447 Self->_ParkEvent->park () ;
acorn@2233 1448 } else {
acorn@2233 1449 ret = Self->_ParkEvent->park (millis) ;
acorn@2233 1450 }
acorn@2233 1451 }
acorn@2233 1452
acorn@2233 1453 // were we externally suspended while we were waiting?
acorn@2233 1454 if (ExitSuspendEquivalent (jt)) {
acorn@2233 1455 // TODO-FIXME: add -- if succ == Self then succ = null.
acorn@2233 1456 jt->java_suspend_self();
acorn@2233 1457 }
acorn@2233 1458
acorn@2233 1459 } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
acorn@2233 1460
acorn@2233 1461
acorn@2233 1462 // Node may be on the WaitSet, the EntryList (or cxq), or in transition
acorn@2233 1463 // from the WaitSet to the EntryList.
acorn@2233 1464 // See if we need to remove Node from the WaitSet.
acorn@2233 1465 // We use double-checked locking to avoid grabbing _WaitSetLock
acorn@2233 1466 // if the thread is not on the wait queue.
acorn@2233 1467 //
acorn@2233 1468 // Note that we don't need a fence before the fetch of TState.
acorn@2233 1469 // In the worst case we'll fetch a old-stale value of TS_WAIT previously
acorn@2233 1470 // written by the is thread. (perhaps the fetch might even be satisfied
acorn@2233 1471 // by a look-aside into the processor's own store buffer, although given
acorn@2233 1472 // the length of the code path between the prior ST and this load that's
acorn@2233 1473 // highly unlikely). If the following LD fetches a stale TS_WAIT value
acorn@2233 1474 // then we'll acquire the lock and then re-fetch a fresh TState value.
acorn@2233 1475 // That is, we fail toward safety.
acorn@2233 1476
acorn@2233 1477 if (node.TState == ObjectWaiter::TS_WAIT) {
acorn@2233 1478 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
acorn@2233 1479 if (node.TState == ObjectWaiter::TS_WAIT) {
acorn@2233 1480 DequeueSpecificWaiter (&node) ; // unlink from WaitSet
acorn@2233 1481 assert(node._notified == 0, "invariant");
acorn@2233 1482 node.TState = ObjectWaiter::TS_RUN ;
acorn@2233 1483 }
acorn@2233 1484 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1485 }
acorn@2233 1486
acorn@2233 1487 // The thread is now either on off-list (TS_RUN),
acorn@2233 1488 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
acorn@2233 1489 // The Node's TState variable is stable from the perspective of this thread.
acorn@2233 1490 // No other threads will asynchronously modify TState.
acorn@2233 1491 guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
acorn@2233 1492 OrderAccess::loadload() ;
acorn@2233 1493 if (_succ == Self) _succ = NULL ;
acorn@2233 1494 WasNotified = node._notified ;
acorn@2233 1495
acorn@2233 1496 // Reentry phase -- reacquire the monitor.
acorn@2233 1497 // re-enter contended monitor after object.wait().
acorn@2233 1498 // retain OBJECT_WAIT state until re-enter successfully completes
acorn@2233 1499 // Thread state is thread_in_vm and oop access is again safe,
acorn@2233 1500 // although the raw address of the object may have changed.
acorn@2233 1501 // (Don't cache naked oops over safepoints, of course).
acorn@2233 1502
acorn@2233 1503 // post monitor waited event. Note that this is past-tense, we are done waiting.
acorn@2233 1504 if (JvmtiExport::should_post_monitor_waited()) {
acorn@2233 1505 JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
acorn@2233 1506 }
acorn@2233 1507 OrderAccess::fence() ;
acorn@2233 1508
acorn@2233 1509 assert (Self->_Stalled != 0, "invariant") ;
acorn@2233 1510 Self->_Stalled = 0 ;
acorn@2233 1511
acorn@2233 1512 assert (_owner != Self, "invariant") ;
acorn@2233 1513 ObjectWaiter::TStates v = node.TState ;
acorn@2233 1514 if (v == ObjectWaiter::TS_RUN) {
acorn@2233 1515 enter (Self) ;
acorn@2233 1516 } else {
acorn@2233 1517 guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
acorn@2233 1518 ReenterI (Self, &node) ;
acorn@2233 1519 node.wait_reenter_end(this);
acorn@2233 1520 }
acorn@2233 1521
acorn@2233 1522 // Self has reacquired the lock.
acorn@2233 1523 // Lifecycle - the node representing Self must not appear on any queues.
acorn@2233 1524 // Node is about to go out-of-scope, but even if it were immortal we wouldn't
acorn@2233 1525 // want residual elements associated with this thread left on any lists.
acorn@2233 1526 guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
acorn@2233 1527 assert (_owner == Self, "invariant") ;
acorn@2233 1528 assert (_succ != Self , "invariant") ;
acorn@2233 1529 } // OSThreadWaitState()
acorn@2233 1530
acorn@2233 1531 jt->set_current_waiting_monitor(NULL);
acorn@2233 1532
acorn@2233 1533 guarantee (_recursions == 0, "invariant") ;
acorn@2233 1534 _recursions = save; // restore the old recursion count
acorn@2233 1535 _waiters--; // decrement the number of waiters
acorn@2233 1536
acorn@2233 1537 // Verify a few postconditions
acorn@2233 1538 assert (_owner == Self , "invariant") ;
acorn@2233 1539 assert (_succ != Self , "invariant") ;
acorn@2233 1540 assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
acorn@2233 1541
acorn@2233 1542 if (SyncFlags & 32) {
acorn@2233 1543 OrderAccess::fence() ;
acorn@2233 1544 }
acorn@2233 1545
acorn@2233 1546 // check if the notification happened
acorn@2233 1547 if (!WasNotified) {
acorn@2233 1548 // no, it could be timeout or Thread.interrupt() or both
acorn@2233 1549 // check for interrupt event, otherwise it is timeout
acorn@2233 1550 if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
acorn@2233 1551 TEVENT (Wait - throw IEX from epilog) ;
acorn@2233 1552 THROW(vmSymbols::java_lang_InterruptedException());
acorn@2233 1553 }
acorn@2233 1554 }
acorn@2233 1555
acorn@2233 1556 // NOTE: Spurious wake up will be consider as timeout.
acorn@2233 1557 // Monitor notify has precedence over thread interrupt.
acorn@2233 1558 }
acorn@2233 1559
acorn@2233 1560
acorn@2233 1561 // Consider:
acorn@2233 1562 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
acorn@2233 1563 // then instead of transferring a thread from the WaitSet to the EntryList
acorn@2233 1564 // we might just dequeue a thread from the WaitSet and directly unpark() it.
acorn@2233 1565
acorn@2233 1566 void ObjectMonitor::notify(TRAPS) {
acorn@2233 1567 CHECK_OWNER();
acorn@2233 1568 if (_WaitSet == NULL) {
acorn@2233 1569 TEVENT (Empty-Notify) ;
acorn@2233 1570 return ;
acorn@2233 1571 }
acorn@2233 1572 DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
acorn@2233 1573
acorn@2233 1574 int Policy = Knob_MoveNotifyee ;
acorn@2233 1575
acorn@2233 1576 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
acorn@2233 1577 ObjectWaiter * iterator = DequeueWaiter() ;
acorn@2233 1578 if (iterator != NULL) {
acorn@2233 1579 TEVENT (Notify1 - Transfer) ;
acorn@2233 1580 guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
acorn@2233 1581 guarantee (iterator->_notified == 0, "invariant") ;
acorn@2233 1582 if (Policy != 4) {
acorn@2233 1583 iterator->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1584 }
acorn@2233 1585 iterator->_notified = 1 ;
acorn@2233 1586
acorn@2233 1587 ObjectWaiter * List = _EntryList ;
acorn@2233 1588 if (List != NULL) {
acorn@2233 1589 assert (List->_prev == NULL, "invariant") ;
acorn@2233 1590 assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1591 assert (List != iterator, "invariant") ;
acorn@2233 1592 }
acorn@2233 1593
acorn@2233 1594 if (Policy == 0) { // prepend to EntryList
acorn@2233 1595 if (List == NULL) {
acorn@2233 1596 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1597 _EntryList = iterator ;
acorn@2233 1598 } else {
acorn@2233 1599 List->_prev = iterator ;
acorn@2233 1600 iterator->_next = List ;
acorn@2233 1601 iterator->_prev = NULL ;
acorn@2233 1602 _EntryList = iterator ;
acorn@2233 1603 }
acorn@2233 1604 } else
acorn@2233 1605 if (Policy == 1) { // append to EntryList
acorn@2233 1606 if (List == NULL) {
acorn@2233 1607 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1608 _EntryList = iterator ;
acorn@2233 1609 } else {
acorn@2233 1610 // CONSIDER: finding the tail currently requires a linear-time walk of
acorn@2233 1611 // the EntryList. We can make tail access constant-time by converting to
acorn@2233 1612 // a CDLL instead of using our current DLL.
acorn@2233 1613 ObjectWaiter * Tail ;
acorn@2233 1614 for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
acorn@2233 1615 assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
acorn@2233 1616 Tail->_next = iterator ;
acorn@2233 1617 iterator->_prev = Tail ;
acorn@2233 1618 iterator->_next = NULL ;
acorn@2233 1619 }
acorn@2233 1620 } else
acorn@2233 1621 if (Policy == 2) { // prepend to cxq
acorn@2233 1622 // prepend to cxq
acorn@2233 1623 if (List == NULL) {
acorn@2233 1624 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1625 _EntryList = iterator ;
acorn@2233 1626 } else {
acorn@2233 1627 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1628 for (;;) {
acorn@2233 1629 ObjectWaiter * Front = _cxq ;
acorn@2233 1630 iterator->_next = Front ;
acorn@2233 1631 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
acorn@2233 1632 break ;
acorn@2233 1633 }
acorn@2233 1634 }
acorn@2233 1635 }
acorn@2233 1636 } else
acorn@2233 1637 if (Policy == 3) { // append to cxq
acorn@2233 1638 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1639 for (;;) {
acorn@2233 1640 ObjectWaiter * Tail ;
acorn@2233 1641 Tail = _cxq ;
acorn@2233 1642 if (Tail == NULL) {
acorn@2233 1643 iterator->_next = NULL ;
acorn@2233 1644 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
acorn@2233 1645 break ;
acorn@2233 1646 }
acorn@2233 1647 } else {
acorn@2233 1648 while (Tail->_next != NULL) Tail = Tail->_next ;
acorn@2233 1649 Tail->_next = iterator ;
acorn@2233 1650 iterator->_prev = Tail ;
acorn@2233 1651 iterator->_next = NULL ;
acorn@2233 1652 break ;
acorn@2233 1653 }
acorn@2233 1654 }
acorn@2233 1655 } else {
acorn@2233 1656 ParkEvent * ev = iterator->_event ;
acorn@2233 1657 iterator->TState = ObjectWaiter::TS_RUN ;
acorn@2233 1658 OrderAccess::fence() ;
acorn@2233 1659 ev->unpark() ;
acorn@2233 1660 }
acorn@2233 1661
acorn@2233 1662 if (Policy < 4) {
acorn@2233 1663 iterator->wait_reenter_begin(this);
acorn@2233 1664 }
acorn@2233 1665
acorn@2233 1666 // _WaitSetLock protects the wait queue, not the EntryList. We could
acorn@2233 1667 // move the add-to-EntryList operation, above, outside the critical section
acorn@2233 1668 // protected by _WaitSetLock. In practice that's not useful. With the
acorn@2233 1669 // exception of wait() timeouts and interrupts the monitor owner
acorn@2233 1670 // is the only thread that grabs _WaitSetLock. There's almost no contention
acorn@2233 1671 // on _WaitSetLock so it's not profitable to reduce the length of the
acorn@2233 1672 // critical section.
acorn@2233 1673 }
acorn@2233 1674
acorn@2233 1675 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1676
acorn@2233 1677 if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
acorn@2233 1678 ObjectMonitor::_sync_Notifications->inc() ;
acorn@2233 1679 }
acorn@2233 1680 }
acorn@2233 1681
acorn@2233 1682
acorn@2233 1683 void ObjectMonitor::notifyAll(TRAPS) {
acorn@2233 1684 CHECK_OWNER();
acorn@2233 1685 ObjectWaiter* iterator;
acorn@2233 1686 if (_WaitSet == NULL) {
acorn@2233 1687 TEVENT (Empty-NotifyAll) ;
acorn@2233 1688 return ;
acorn@2233 1689 }
acorn@2233 1690 DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
acorn@2233 1691
acorn@2233 1692 int Policy = Knob_MoveNotifyee ;
acorn@2233 1693 int Tally = 0 ;
acorn@2233 1694 Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
acorn@2233 1695
acorn@2233 1696 for (;;) {
acorn@2233 1697 iterator = DequeueWaiter () ;
acorn@2233 1698 if (iterator == NULL) break ;
acorn@2233 1699 TEVENT (NotifyAll - Transfer1) ;
acorn@2233 1700 ++Tally ;
acorn@2233 1701
acorn@2233 1702 // Disposition - what might we do with iterator ?
acorn@2233 1703 // a. add it directly to the EntryList - either tail or head.
acorn@2233 1704 // b. push it onto the front of the _cxq.
acorn@2233 1705 // For now we use (a).
acorn@2233 1706
acorn@2233 1707 guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
acorn@2233 1708 guarantee (iterator->_notified == 0, "invariant") ;
acorn@2233 1709 iterator->_notified = 1 ;
acorn@2233 1710 if (Policy != 4) {
acorn@2233 1711 iterator->TState = ObjectWaiter::TS_ENTER ;
acorn@2233 1712 }
acorn@2233 1713
acorn@2233 1714 ObjectWaiter * List = _EntryList ;
acorn@2233 1715 if (List != NULL) {
acorn@2233 1716 assert (List->_prev == NULL, "invariant") ;
acorn@2233 1717 assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
acorn@2233 1718 assert (List != iterator, "invariant") ;
acorn@2233 1719 }
acorn@2233 1720
acorn@2233 1721 if (Policy == 0) { // prepend to EntryList
acorn@2233 1722 if (List == NULL) {
acorn@2233 1723 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1724 _EntryList = iterator ;
acorn@2233 1725 } else {
acorn@2233 1726 List->_prev = iterator ;
acorn@2233 1727 iterator->_next = List ;
acorn@2233 1728 iterator->_prev = NULL ;
acorn@2233 1729 _EntryList = iterator ;
acorn@2233 1730 }
acorn@2233 1731 } else
acorn@2233 1732 if (Policy == 1) { // append to EntryList
acorn@2233 1733 if (List == NULL) {
acorn@2233 1734 iterator->_next = iterator->_prev = NULL ;
acorn@2233 1735 _EntryList = iterator ;
acorn@2233 1736 } else {
acorn@2233 1737 // CONSIDER: finding the tail currently requires a linear-time walk of
acorn@2233 1738 // the EntryList. We can make tail access constant-time by converting to
acorn@2233 1739 // a CDLL instead of using our current DLL.
acorn@2233 1740 ObjectWaiter * Tail ;
acorn@2233 1741 for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
acorn@2233 1742 assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
acorn@2233 1743 Tail->_next = iterator ;
acorn@2233 1744 iterator->_prev = Tail ;
acorn@2233 1745 iterator->_next = NULL ;
acorn@2233 1746 }
acorn@2233 1747 } else
acorn@2233 1748 if (Policy == 2) { // prepend to cxq
acorn@2233 1749 // prepend to cxq
acorn@2233 1750 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1751 for (;;) {
acorn@2233 1752 ObjectWaiter * Front = _cxq ;
acorn@2233 1753 iterator->_next = Front ;
acorn@2233 1754 if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
acorn@2233 1755 break ;
acorn@2233 1756 }
acorn@2233 1757 }
acorn@2233 1758 } else
acorn@2233 1759 if (Policy == 3) { // append to cxq
acorn@2233 1760 iterator->TState = ObjectWaiter::TS_CXQ ;
acorn@2233 1761 for (;;) {
acorn@2233 1762 ObjectWaiter * Tail ;
acorn@2233 1763 Tail = _cxq ;
acorn@2233 1764 if (Tail == NULL) {
acorn@2233 1765 iterator->_next = NULL ;
acorn@2233 1766 if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
acorn@2233 1767 break ;
acorn@2233 1768 }
acorn@2233 1769 } else {
acorn@2233 1770 while (Tail->_next != NULL) Tail = Tail->_next ;
acorn@2233 1771 Tail->_next = iterator ;
acorn@2233 1772 iterator->_prev = Tail ;
acorn@2233 1773 iterator->_next = NULL ;
acorn@2233 1774 break ;
acorn@2233 1775 }
acorn@2233 1776 }
acorn@2233 1777 } else {
acorn@2233 1778 ParkEvent * ev = iterator->_event ;
acorn@2233 1779 iterator->TState = ObjectWaiter::TS_RUN ;
acorn@2233 1780 OrderAccess::fence() ;
acorn@2233 1781 ev->unpark() ;
acorn@2233 1782 }
acorn@2233 1783
acorn@2233 1784 if (Policy < 4) {
acorn@2233 1785 iterator->wait_reenter_begin(this);
acorn@2233 1786 }
acorn@2233 1787
acorn@2233 1788 // _WaitSetLock protects the wait queue, not the EntryList. We could
acorn@2233 1789 // move the add-to-EntryList operation, above, outside the critical section
acorn@2233 1790 // protected by _WaitSetLock. In practice that's not useful. With the
acorn@2233 1791 // exception of wait() timeouts and interrupts the monitor owner
acorn@2233 1792 // is the only thread that grabs _WaitSetLock. There's almost no contention
acorn@2233 1793 // on _WaitSetLock so it's not profitable to reduce the length of the
acorn@2233 1794 // critical section.
acorn@2233 1795 }
acorn@2233 1796
acorn@2233 1797 Thread::SpinRelease (&_WaitSetLock) ;
acorn@2233 1798
acorn@2233 1799 if (Tally != 0 && ObjectMonitor::_sync_Notifications != NULL) {
acorn@2233 1800 ObjectMonitor::_sync_Notifications->inc(Tally) ;
acorn@2233 1801 }
acorn@2233 1802 }
acorn@2233 1803
acorn@2233 1804 // -----------------------------------------------------------------------------
acorn@2233 1805 // Adaptive Spinning Support
acorn@2233 1806 //
acorn@2233 1807 // Adaptive spin-then-block - rational spinning
acorn@2233 1808 //
acorn@2233 1809 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
acorn@2233 1810 // algorithm. On high order SMP systems it would be better to start with
acorn@2233 1811 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH,
acorn@2233 1812 // a contending thread could enqueue itself on the cxq and then spin locally
acorn@2233 1813 // on a thread-specific variable such as its ParkEvent._Event flag.
acorn@2233 1814 // That's left as an exercise for the reader. Note that global spinning is
acorn@2233 1815 // not problematic on Niagara, as the L2$ serves the interconnect and has both
acorn@2233 1816 // low latency and massive bandwidth.
acorn@2233 1817 //
acorn@2233 1818 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
acorn@2233 1819 // acquisition attempts where we opt to spin -- at 100% and vary the spin count
acorn@2233 1820 // (duration) or we can fix the count at approximately the duration of
acorn@2233 1821 // a context switch and vary the frequency. Of course we could also
acorn@2233 1822 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
acorn@2233 1823 // See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
acorn@2233 1824 //
acorn@2233 1825 // This implementation varies the duration "D", where D varies with
acorn@2233 1826 // the success rate of recent spin attempts. (D is capped at approximately
acorn@2233 1827 // length of a round-trip context switch). The success rate for recent
acorn@2233 1828 // spin attempts is a good predictor of the success rate of future spin
acorn@2233 1829 // attempts. The mechanism adapts automatically to varying critical
acorn@2233 1830 // section length (lock modality), system load and degree of parallelism.
acorn@2233 1831 // D is maintained per-monitor in _SpinDuration and is initialized
acorn@2233 1832 // optimistically. Spin frequency is fixed at 100%.
acorn@2233 1833 //
acorn@2233 1834 // Note that _SpinDuration is volatile, but we update it without locks
acorn@2233 1835 // or atomics. The code is designed so that _SpinDuration stays within
acorn@2233 1836 // a reasonable range even in the presence of races. The arithmetic
acorn@2233 1837 // operations on _SpinDuration are closed over the domain of legal values,
acorn@2233 1838 // so at worst a race will install and older but still legal value.
acorn@2233 1839 // At the very worst this introduces some apparent non-determinism.
acorn@2233 1840 // We might spin when we shouldn't or vice-versa, but since the spin
acorn@2233 1841 // count are relatively short, even in the worst case, the effect is harmless.
acorn@2233 1842 //
acorn@2233 1843 // Care must be taken that a low "D" value does not become an
acorn@2233 1844 // an absorbing state. Transient spinning failures -- when spinning
acorn@2233 1845 // is overall profitable -- should not cause the system to converge
acorn@2233 1846 // on low "D" values. We want spinning to be stable and predictable
acorn@2233 1847 // and fairly responsive to change and at the same time we don't want
acorn@2233 1848 // it to oscillate, become metastable, be "too" non-deterministic,
acorn@2233 1849 // or converge on or enter undesirable stable absorbing states.
acorn@2233 1850 //
acorn@2233 1851 // We implement a feedback-based control system -- using past behavior
acorn@2233 1852 // to predict future behavior. We face two issues: (a) if the
acorn@2233 1853 // input signal is random then the spin predictor won't provide optimal
acorn@2233 1854 // results, and (b) if the signal frequency is too high then the control
acorn@2233 1855 // system, which has some natural response lag, will "chase" the signal.
acorn@2233 1856 // (b) can arise from multimodal lock hold times. Transient preemption
acorn@2233 1857 // can also result in apparent bimodal lock hold times.
acorn@2233 1858 // Although sub-optimal, neither condition is particularly harmful, as
acorn@2233 1859 // in the worst-case we'll spin when we shouldn't or vice-versa.
acorn@2233 1860 // The maximum spin duration is rather short so the failure modes aren't bad.
acorn@2233 1861 // To be conservative, I've tuned the gain in system to bias toward
acorn@2233 1862 // _not spinning. Relatedly, the system can sometimes enter a mode where it
acorn@2233 1863 // "rings" or oscillates between spinning and not spinning. This happens
acorn@2233 1864 // when spinning is just on the cusp of profitability, however, so the
acorn@2233 1865 // situation is not dire. The state is benign -- there's no need to add
acorn@2233 1866 // hysteresis control to damp the transition rate between spinning and
acorn@2233 1867 // not spinning.
acorn@2233 1868 //
acorn@2233 1869
acorn@2233 1870 intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
acorn@2233 1871 int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
acorn@2233 1872
acorn@2233 1873 // Spinning: Fixed frequency (100%), vary duration
acorn@2233 1874
acorn@2233 1875
acorn@2233 1876 int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
acorn@2233 1877
acorn@2233 1878 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning.
acorn@2233 1879 int ctr = Knob_FixedSpin ;
acorn@2233 1880 if (ctr != 0) {
acorn@2233 1881 while (--ctr >= 0) {
acorn@2233 1882 if (TryLock (Self) > 0) return 1 ;
acorn@2233 1883 SpinPause () ;
acorn@2233 1884 }
acorn@2233 1885 return 0 ;
acorn@2233 1886 }
acorn@2233 1887
acorn@2233 1888 for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
acorn@2233 1889 if (TryLock(Self) > 0) {
acorn@2233 1890 // Increase _SpinDuration ...
acorn@2233 1891 // Note that we don't clamp SpinDuration precisely at SpinLimit.
acorn@2233 1892 // Raising _SpurDuration to the poverty line is key.
acorn@2233 1893 int x = _SpinDuration ;
acorn@2233 1894 if (x < Knob_SpinLimit) {
acorn@2233 1895 if (x < Knob_Poverty) x = Knob_Poverty ;
acorn@2233 1896 _SpinDuration = x + Knob_BonusB ;
acorn@2233 1897 }
acorn@2233 1898 return 1 ;
acorn@2233 1899 }
acorn@2233 1900 SpinPause () ;
acorn@2233 1901 }
acorn@2233 1902
acorn@2233 1903 // Admission control - verify preconditions for spinning
acorn@2233 1904 //
acorn@2233 1905 // We always spin a little bit, just to prevent _SpinDuration == 0 from
acorn@2233 1906 // becoming an absorbing state. Put another way, we spin briefly to
acorn@2233 1907 // sample, just in case the system load, parallelism, contention, or lock
acorn@2233 1908 // modality changed.
acorn@2233 1909 //
acorn@2233 1910 // Consider the following alternative:
acorn@2233 1911 // Periodically set _SpinDuration = _SpinLimit and try a long/full
acorn@2233 1912 // spin attempt. "Periodically" might mean after a tally of
acorn@2233 1913 // the # of failed spin attempts (or iterations) reaches some threshold.
acorn@2233 1914 // This takes us into the realm of 1-out-of-N spinning, where we
acorn@2233 1915 // hold the duration constant but vary the frequency.
acorn@2233 1916
acorn@2233 1917 ctr = _SpinDuration ;
acorn@2233 1918 if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
acorn@2233 1919 if (ctr <= 0) return 0 ;
acorn@2233 1920
acorn@2233 1921 if (Knob_SuccRestrict && _succ != NULL) return 0 ;
acorn@2233 1922 if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
acorn@2233 1923 TEVENT (Spin abort - notrunnable [TOP]);
acorn@2233 1924 return 0 ;
acorn@2233 1925 }
acorn@2233 1926
acorn@2233 1927 int MaxSpin = Knob_MaxSpinners ;
acorn@2233 1928 if (MaxSpin >= 0) {
acorn@2233 1929 if (_Spinner > MaxSpin) {
acorn@2233 1930 TEVENT (Spin abort -- too many spinners) ;
acorn@2233 1931 return 0 ;
acorn@2233 1932 }
acorn@2233 1933 // Slighty racy, but benign ...
acorn@2233 1934 Adjust (&_Spinner, 1) ;
acorn@2233 1935 }
acorn@2233 1936
acorn@2233 1937 // We're good to spin ... spin ingress.
acorn@2233 1938 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
acorn@2233 1939 // when preparing to LD...CAS _owner, etc and the CAS is likely
acorn@2233 1940 // to succeed.
acorn@2233 1941 int hits = 0 ;
acorn@2233 1942 int msk = 0 ;
acorn@2233 1943 int caspty = Knob_CASPenalty ;
acorn@2233 1944 int oxpty = Knob_OXPenalty ;
acorn@2233 1945 int sss = Knob_SpinSetSucc ;
acorn@2233 1946 if (sss && _succ == NULL ) _succ = Self ;
acorn@2233 1947 Thread * prv = NULL ;
acorn@2233 1948
acorn@2233 1949 // There are three ways to exit the following loop:
acorn@2233 1950 // 1. A successful spin where this thread has acquired the lock.
acorn@2233 1951 // 2. Spin failure with prejudice
acorn@2233 1952 // 3. Spin failure without prejudice
acorn@2233 1953
acorn@2233 1954 while (--ctr >= 0) {
acorn@2233 1955
acorn@2233 1956 // Periodic polling -- Check for pending GC
acorn@2233 1957 // Threads may spin while they're unsafe.
acorn@2233 1958 // We don't want spinning threads to delay the JVM from reaching
acorn@2233 1959 // a stop-the-world safepoint or to steal cycles from GC.
acorn@2233 1960 // If we detect a pending safepoint we abort in order that
acorn@2233 1961 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
acorn@2233 1962 // this thread, if safe, doesn't steal cycles from GC.
acorn@2233 1963 // This is in keeping with the "no loitering in runtime" rule.
acorn@2233 1964 // We periodically check to see if there's a safepoint pending.
acorn@2233 1965 if ((ctr & 0xFF) == 0) {
acorn@2233 1966 if (SafepointSynchronize::do_call_back()) {
acorn@2233 1967 TEVENT (Spin: safepoint) ;
acorn@2233 1968 goto Abort ; // abrupt spin egress
acorn@2233 1969 }
acorn@2233 1970 if (Knob_UsePause & 1) SpinPause () ;
acorn@2233 1971
acorn@2233 1972 int (*scb)(intptr_t,int) = SpinCallbackFunction ;
acorn@2233 1973 if (hits > 50 && scb != NULL) {
acorn@2233 1974 int abend = (*scb)(SpinCallbackArgument, 0) ;
acorn@2233 1975 }
acorn@2233 1976 }
acorn@2233 1977
acorn@2233 1978 if (Knob_UsePause & 2) SpinPause() ;
acorn@2233 1979
acorn@2233 1980 // Exponential back-off ... Stay off the bus to reduce coherency traffic.
acorn@2233 1981 // This is useful on classic SMP systems, but is of less utility on
acorn@2233 1982 // N1-style CMT platforms.
acorn@2233 1983 //
acorn@2233 1984 // Trade-off: lock acquisition latency vs coherency bandwidth.
acorn@2233 1985 // Lock hold times are typically short. A histogram
acorn@2233 1986 // of successful spin attempts shows that we usually acquire
acorn@2233 1987 // the lock early in the spin. That suggests we want to
acorn@2233 1988 // sample _owner frequently in the early phase of the spin,
acorn@2233 1989 // but then back-off and sample less frequently as the spin
acorn@2233 1990 // progresses. The back-off makes a good citizen on SMP big
acorn@2233 1991 // SMP systems. Oversampling _owner can consume excessive
acorn@2233 1992 // coherency bandwidth. Relatedly, if we _oversample _owner we
acorn@2233 1993 // can inadvertently interfere with the the ST m->owner=null.
acorn@2233 1994 // executed by the lock owner.
acorn@2233 1995 if (ctr & msk) continue ;
acorn@2233 1996 ++hits ;
acorn@2233 1997 if ((hits & 0xF) == 0) {
acorn@2233 1998 // The 0xF, above, corresponds to the exponent.
acorn@2233 1999 // Consider: (msk+1)|msk
acorn@2233 2000 msk = ((msk << 2)|3) & BackOffMask ;
acorn@2233 2001 }
acorn@2233 2002
acorn@2233 2003 // Probe _owner with TATAS
acorn@2233 2004 // If this thread observes the monitor transition or flicker
acorn@2233 2005 // from locked to unlocked to locked, then the odds that this
acorn@2233 2006 // thread will acquire the lock in this spin attempt go down
acorn@2233 2007 // considerably. The same argument applies if the CAS fails
acorn@2233 2008 // or if we observe _owner change from one non-null value to
acorn@2233 2009 // another non-null value. In such cases we might abort
acorn@2233 2010 // the spin without prejudice or apply a "penalty" to the
acorn@2233 2011 // spin count-down variable "ctr", reducing it by 100, say.
acorn@2233 2012
acorn@2233 2013 Thread * ox = (Thread *) _owner ;
acorn@2233 2014 if (ox == NULL) {
acorn@2233 2015 ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
acorn@2233 2016 if (ox == NULL) {
acorn@2233 2017 // The CAS succeeded -- this thread acquired ownership
acorn@2233 2018 // Take care of some bookkeeping to exit spin state.
acorn@2233 2019 if (sss && _succ == Self) {
acorn@2233 2020 _succ = NULL ;
acorn@2233 2021 }
acorn@2233 2022 if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
acorn@2233 2023
acorn@2233 2024 // Increase _SpinDuration :
acorn@2233 2025 // The spin was successful (profitable) so we tend toward
acorn@2233 2026 // longer spin attempts in the future.
acorn@2233 2027 // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
acorn@2233 2028 // If we acquired the lock early in the spin cycle it
acorn@2233 2029 // makes sense to increase _SpinDuration proportionally.
acorn@2233 2030 // Note that we don't clamp SpinDuration precisely at SpinLimit.
acorn@2233 2031 int x = _SpinDuration ;
acorn@2233 2032 if (x < Knob_SpinLimit) {
acorn@2233 2033 if (x < Knob_Poverty) x = Knob_Poverty ;
acorn@2233 2034 _SpinDuration = x + Knob_Bonus ;
acorn@2233 2035 }
acorn@2233 2036 return 1 ;
acorn@2233 2037 }
acorn@2233 2038
acorn@2233 2039 // The CAS failed ... we can take any of the following actions:
acorn@2233 2040 // * penalize: ctr -= Knob_CASPenalty
acorn@2233 2041 // * exit spin with prejudice -- goto Abort;
acorn@2233 2042 // * exit spin without prejudice.
acorn@2233 2043 // * Since CAS is high-latency, retry again immediately.
acorn@2233 2044 prv = ox ;
acorn@2233 2045 TEVENT (Spin: cas failed) ;
acorn@2233 2046 if (caspty == -2) break ;
acorn@2233 2047 if (caspty == -1) goto Abort ;
acorn@2233 2048 ctr -= caspty ;
acorn@2233 2049 continue ;
acorn@2233 2050 }
acorn@2233 2051
acorn@2233 2052 // Did lock ownership change hands ?
acorn@2233 2053 if (ox != prv && prv != NULL ) {
acorn@2233 2054 TEVENT (spin: Owner changed)
acorn@2233 2055 if (oxpty == -2) break ;
acorn@2233 2056 if (oxpty == -1) goto Abort ;
acorn@2233 2057 ctr -= oxpty ;
acorn@2233 2058 }
acorn@2233 2059 prv = ox ;
acorn@2233 2060
acorn@2233 2061 // Abort the spin if the owner is not executing.
acorn@2233 2062 // The owner must be executing in order to drop the lock.
acorn@2233 2063 // Spinning while the owner is OFFPROC is idiocy.
acorn@2233 2064 // Consider: ctr -= RunnablePenalty ;
acorn@2233 2065 if (Knob_OState && NotRunnable (Self, ox)) {
acorn@2233 2066 TEVENT (Spin abort - notrunnable);
acorn@2233 2067 goto Abort ;
acorn@2233 2068 }
acorn@2233 2069 if (sss && _succ == NULL ) _succ = Self ;
acorn@2233 2070 }
acorn@2233 2071
acorn@2233 2072 // Spin failed with prejudice -- reduce _SpinDuration.
acorn@2233 2073 // TODO: Use an AIMD-like policy to adjust _SpinDuration.
acorn@2233 2074 // AIMD is globally stable.
acorn@2233 2075 TEVENT (Spin failure) ;
acorn@2233 2076 {
acorn@2233 2077 int x = _SpinDuration ;
acorn@2233 2078 if (x > 0) {
acorn@2233 2079 // Consider an AIMD scheme like: x -= (x >> 3) + 100
acorn@2233 2080 // This is globally sample and tends to damp the response.
acorn@2233 2081 x -= Knob_Penalty ;
acorn@2233 2082 if (x < 0) x = 0 ;
acorn@2233 2083 _SpinDuration = x ;
acorn@2233 2084 }
acorn@2233 2085 }
acorn@2233 2086
acorn@2233 2087 Abort:
acorn@2233 2088 if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
acorn@2233 2089 if (sss && _succ == Self) {
acorn@2233 2090 _succ = NULL ;
acorn@2233 2091 // Invariant: after setting succ=null a contending thread
acorn@2233 2092 // must recheck-retry _owner before parking. This usually happens
acorn@2233 2093 // in the normal usage of TrySpin(), but it's safest
acorn@2233 2094 // to make TrySpin() as foolproof as possible.
acorn@2233 2095 OrderAccess::fence() ;
acorn@2233 2096 if (TryLock(Self) > 0) return 1 ;
acorn@2233 2097 }
acorn@2233 2098 return 0 ;
acorn@2233 2099 }
acorn@2233 2100
acorn@2233 2101 // NotRunnable() -- informed spinning
acorn@2233 2102 //
acorn@2233 2103 // Don't bother spinning if the owner is not eligible to drop the lock.
acorn@2233 2104 // Peek at the owner's schedctl.sc_state and Thread._thread_values and
acorn@2233 2105 // spin only if the owner thread is _thread_in_Java or _thread_in_vm.
acorn@2233 2106 // The thread must be runnable in order to drop the lock in timely fashion.
acorn@2233 2107 // If the _owner is not runnable then spinning will not likely be
acorn@2233 2108 // successful (profitable).
acorn@2233 2109 //
acorn@2233 2110 // Beware -- the thread referenced by _owner could have died
acorn@2233 2111 // so a simply fetch from _owner->_thread_state might trap.
acorn@2233 2112 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
acorn@2233 2113 // Because of the lifecycle issues the schedctl and _thread_state values
acorn@2233 2114 // observed by NotRunnable() might be garbage. NotRunnable must
acorn@2233 2115 // tolerate this and consider the observed _thread_state value
acorn@2233 2116 // as advisory.
acorn@2233 2117 //
acorn@2233 2118 // Beware too, that _owner is sometimes a BasicLock address and sometimes
acorn@2233 2119 // a thread pointer. We differentiate the two cases with OwnerIsThread.
acorn@2233 2120 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
acorn@2233 2121 // with the LSB of _owner. Another option would be to probablistically probe
acorn@2233 2122 // the putative _owner->TypeTag value.
acorn@2233 2123 //
acorn@2233 2124 // Checking _thread_state isn't perfect. Even if the thread is
acorn@2233 2125 // in_java it might be blocked on a page-fault or have been preempted
acorn@2233 2126 // and sitting on a ready/dispatch queue. _thread state in conjunction
acorn@2233 2127 // with schedctl.sc_state gives us a good picture of what the
acorn@2233 2128 // thread is doing, however.
acorn@2233 2129 //
acorn@2233 2130 // TODO: check schedctl.sc_state.
acorn@2233 2131 // We'll need to use SafeFetch32() to read from the schedctl block.
acorn@2233 2132 // See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
acorn@2233 2133 //
acorn@2233 2134 // The return value from NotRunnable() is *advisory* -- the
acorn@2233 2135 // result is based on sampling and is not necessarily coherent.
acorn@2233 2136 // The caller must tolerate false-negative and false-positive errors.
acorn@2233 2137 // Spinning, in general, is probabilistic anyway.
acorn@2233 2138
acorn@2233 2139
acorn@2233 2140 int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
acorn@2233 2141 // Check either OwnerIsThread or ox->TypeTag == 2BAD.
acorn@2233 2142 if (!OwnerIsThread) return 0 ;
acorn@2233 2143
acorn@2233 2144 if (ox == NULL) return 0 ;
acorn@2233 2145
acorn@2233 2146 // Avoid transitive spinning ...
acorn@2233 2147 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L.
acorn@2233 2148 // Immediately after T1 acquires L it's possible that T2, also
acorn@2233 2149 // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
acorn@2233 2150 // This occurs transiently after T1 acquired L but before
acorn@2233 2151 // T1 managed to clear T1.Stalled. T2 does not need to abort
acorn@2233 2152 // its spin in this circumstance.
acorn@2233 2153 intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
acorn@2233 2154
acorn@2233 2155 if (BlockedOn == 1) return 1 ;
acorn@2233 2156 if (BlockedOn != 0) {
acorn@2233 2157 return BlockedOn != intptr_t(this) && _owner == ox ;
acorn@2233 2158 }
acorn@2233 2159
acorn@2233 2160 assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
acorn@2233 2161 int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
acorn@2233 2162 // consider also: jst != _thread_in_Java -- but that's overspecific.
acorn@2233 2163 return jst == _thread_blocked || jst == _thread_in_native ;
acorn@2233 2164 }
acorn@2233 2165
acorn@2233 2166
acorn@2233 2167 // -----------------------------------------------------------------------------
acorn@2233 2168 // WaitSet management ...
acorn@2233 2169
acorn@2233 2170 ObjectWaiter::ObjectWaiter(Thread* thread) {
acorn@2233 2171 _next = NULL;
acorn@2233 2172 _prev = NULL;
acorn@2233 2173 _notified = 0;
acorn@2233 2174 TState = TS_RUN ;
acorn@2233 2175 _thread = thread;
acorn@2233 2176 _event = thread->_ParkEvent ;
acorn@2233 2177 _active = false;
acorn@2233 2178 assert (_event != NULL, "invariant") ;
acorn@2233 2179 }
acorn@2233 2180
acorn@2233 2181 void ObjectWaiter::wait_reenter_begin(ObjectMonitor *mon) {
acorn@2233 2182 JavaThread *jt = (JavaThread *)this->_thread;
acorn@2233 2183 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
acorn@2233 2184 }
acorn@2233 2185
acorn@2233 2186 void ObjectWaiter::wait_reenter_end(ObjectMonitor *mon) {
acorn@2233 2187 JavaThread *jt = (JavaThread *)this->_thread;
acorn@2233 2188 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
acorn@2233 2189 }
acorn@2233 2190
acorn@2233 2191 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
acorn@2233 2192 assert(node != NULL, "should not dequeue NULL node");
acorn@2233 2193 assert(node->_prev == NULL, "node already in list");
acorn@2233 2194 assert(node->_next == NULL, "node already in list");
acorn@2233 2195 // put node at end of queue (circular doubly linked list)
acorn@2233 2196 if (_WaitSet == NULL) {
acorn@2233 2197 _WaitSet = node;
acorn@2233 2198 node->_prev = node;
acorn@2233 2199 node->_next = node;
acorn@2233 2200 } else {
acorn@2233 2201 ObjectWaiter* head = _WaitSet ;
acorn@2233 2202 ObjectWaiter* tail = head->_prev;
acorn@2233 2203 assert(tail->_next == head, "invariant check");
acorn@2233 2204 tail->_next = node;
acorn@2233 2205 head->_prev = node;
acorn@2233 2206 node->_next = head;
acorn@2233 2207 node->_prev = tail;
acorn@2233 2208 }
acorn@2233 2209 }
acorn@2233 2210
acorn@2233 2211 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
acorn@2233 2212 // dequeue the very first waiter
acorn@2233 2213 ObjectWaiter* waiter = _WaitSet;
acorn@2233 2214 if (waiter) {
acorn@2233 2215 DequeueSpecificWaiter(waiter);
acorn@2233 2216 }
acorn@2233 2217 return waiter;
acorn@2233 2218 }
acorn@2233 2219
acorn@2233 2220 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
acorn@2233 2221 assert(node != NULL, "should not dequeue NULL node");
acorn@2233 2222 assert(node->_prev != NULL, "node already removed from list");
acorn@2233 2223 assert(node->_next != NULL, "node already removed from list");
acorn@2233 2224 // when the waiter has woken up because of interrupt,
acorn@2233 2225 // timeout or other spurious wake-up, dequeue the
acorn@2233 2226 // waiter from waiting list
acorn@2233 2227 ObjectWaiter* next = node->_next;
acorn@2233 2228 if (next == node) {
acorn@2233 2229 assert(node->_prev == node, "invariant check");
acorn@2233 2230 _WaitSet = NULL;
acorn@2233 2231 } else {
acorn@2233 2232 ObjectWaiter* prev = node->_prev;
acorn@2233 2233 assert(prev->_next == node, "invariant check");
acorn@2233 2234 assert(next->_prev == node, "invariant check");
acorn@2233 2235 next->_prev = prev;
acorn@2233 2236 prev->_next = next;
acorn@2233 2237 if (_WaitSet == node) {
acorn@2233 2238 _WaitSet = next;
acorn@2233 2239 }
acorn@2233 2240 }
acorn@2233 2241 node->_next = NULL;
acorn@2233 2242 node->_prev = NULL;
acorn@2233 2243 }
acorn@2233 2244
acorn@2233 2245 // -----------------------------------------------------------------------------
acorn@2233 2246 // PerfData support
acorn@2233 2247 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = NULL ;
acorn@2233 2248 PerfCounter * ObjectMonitor::_sync_FutileWakeups = NULL ;
acorn@2233 2249 PerfCounter * ObjectMonitor::_sync_Parks = NULL ;
acorn@2233 2250 PerfCounter * ObjectMonitor::_sync_EmptyNotifications = NULL ;
acorn@2233 2251 PerfCounter * ObjectMonitor::_sync_Notifications = NULL ;
acorn@2233 2252 PerfCounter * ObjectMonitor::_sync_PrivateA = NULL ;
acorn@2233 2253 PerfCounter * ObjectMonitor::_sync_PrivateB = NULL ;
acorn@2233 2254 PerfCounter * ObjectMonitor::_sync_SlowExit = NULL ;
acorn@2233 2255 PerfCounter * ObjectMonitor::_sync_SlowEnter = NULL ;
acorn@2233 2256 PerfCounter * ObjectMonitor::_sync_SlowNotify = NULL ;
acorn@2233 2257 PerfCounter * ObjectMonitor::_sync_SlowNotifyAll = NULL ;
acorn@2233 2258 PerfCounter * ObjectMonitor::_sync_FailedSpins = NULL ;
acorn@2233 2259 PerfCounter * ObjectMonitor::_sync_SuccessfulSpins = NULL ;
acorn@2233 2260 PerfCounter * ObjectMonitor::_sync_MonInCirculation = NULL ;
acorn@2233 2261 PerfCounter * ObjectMonitor::_sync_MonScavenged = NULL ;
acorn@2233 2262 PerfCounter * ObjectMonitor::_sync_Inflations = NULL ;
acorn@2233 2263 PerfCounter * ObjectMonitor::_sync_Deflations = NULL ;
acorn@2233 2264 PerfLongVariable * ObjectMonitor::_sync_MonExtant = NULL ;
acorn@2233 2265
acorn@2233 2266 // One-shot global initialization for the sync subsystem.
acorn@2233 2267 // We could also defer initialization and initialize on-demand
acorn@2233 2268 // the first time we call inflate(). Initialization would
acorn@2233 2269 // be protected - like so many things - by the MonitorCache_lock.
acorn@2233 2270
acorn@2233 2271 void ObjectMonitor::Initialize () {
acorn@2233 2272 static int InitializationCompleted = 0 ;
acorn@2233 2273 assert (InitializationCompleted == 0, "invariant") ;
acorn@2233 2274 InitializationCompleted = 1 ;
acorn@2233 2275 if (UsePerfData) {
acorn@2233 2276 EXCEPTION_MARK ;
acorn@2233 2277 #define NEWPERFCOUNTER(n) {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
acorn@2233 2278 #define NEWPERFVARIABLE(n) {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
acorn@2233 2279 NEWPERFCOUNTER(_sync_Inflations) ;
acorn@2233 2280 NEWPERFCOUNTER(_sync_Deflations) ;
acorn@2233 2281 NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
acorn@2233 2282 NEWPERFCOUNTER(_sync_FutileWakeups) ;
acorn@2233 2283 NEWPERFCOUNTER(_sync_Parks) ;
acorn@2233 2284 NEWPERFCOUNTER(_sync_EmptyNotifications) ;
acorn@2233 2285 NEWPERFCOUNTER(_sync_Notifications) ;
acorn@2233 2286 NEWPERFCOUNTER(_sync_SlowEnter) ;
acorn@2233 2287 NEWPERFCOUNTER(_sync_SlowExit) ;
acorn@2233 2288 NEWPERFCOUNTER(_sync_SlowNotify) ;
acorn@2233 2289 NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
acorn@2233 2290 NEWPERFCOUNTER(_sync_FailedSpins) ;
acorn@2233 2291 NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
acorn@2233 2292 NEWPERFCOUNTER(_sync_PrivateA) ;
acorn@2233 2293 NEWPERFCOUNTER(_sync_PrivateB) ;
acorn@2233 2294 NEWPERFCOUNTER(_sync_MonInCirculation) ;
acorn@2233 2295 NEWPERFCOUNTER(_sync_MonScavenged) ;
acorn@2233 2296 NEWPERFVARIABLE(_sync_MonExtant) ;
acorn@2233 2297 #undef NEWPERFCOUNTER
acorn@2233 2298 }
acorn@2233 2299 }
acorn@2233 2300
acorn@2233 2301
acorn@2233 2302 // Compile-time asserts
acorn@2233 2303 // When possible, it's better to catch errors deterministically at
acorn@2233 2304 // compile-time than at runtime. The down-side to using compile-time
acorn@2233 2305 // asserts is that error message -- often something about negative array
acorn@2233 2306 // indices -- is opaque.
acorn@2233 2307
acorn@2233 2308 #define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
acorn@2233 2309
acorn@2233 2310 void ObjectMonitor::ctAsserts() {
acorn@2233 2311 CTASSERT(offset_of (ObjectMonitor, _header) == 0);
acorn@2233 2312 }
acorn@2233 2313
acorn@2233 2314
acorn@2233 2315 static char * kvGet (char * kvList, const char * Key) {
acorn@2233 2316 if (kvList == NULL) return NULL ;
acorn@2233 2317 size_t n = strlen (Key) ;
acorn@2233 2318 char * Search ;
acorn@2233 2319 for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
acorn@2233 2320 if (strncmp (Search, Key, n) == 0) {
acorn@2233 2321 if (Search[n] == '=') return Search + n + 1 ;
acorn@2233 2322 if (Search[n] == 0) return (char *) "1" ;
acorn@2233 2323 }
acorn@2233 2324 }
acorn@2233 2325 return NULL ;
acorn@2233 2326 }
acorn@2233 2327
acorn@2233 2328 static int kvGetInt (char * kvList, const char * Key, int Default) {
acorn@2233 2329 char * v = kvGet (kvList, Key) ;
acorn@2233 2330 int rslt = v ? ::strtol (v, NULL, 0) : Default ;
acorn@2233 2331 if (Knob_ReportSettings && v != NULL) {
acorn@2233 2332 ::printf (" SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
acorn@2233 2333 ::fflush (stdout) ;
acorn@2233 2334 }
acorn@2233 2335 return rslt ;
acorn@2233 2336 }
acorn@2233 2337
acorn@2233 2338 void ObjectMonitor::DeferredInitialize () {
acorn@2233 2339 if (InitDone > 0) return ;
acorn@2233 2340 if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
acorn@2233 2341 while (InitDone != 1) ;
acorn@2233 2342 return ;
acorn@2233 2343 }
acorn@2233 2344
acorn@2233 2345 // One-shot global initialization ...
acorn@2233 2346 // The initialization is idempotent, so we don't need locks.
acorn@2233 2347 // In the future consider doing this via os::init_2().
acorn@2233 2348 // SyncKnobs consist of <Key>=<Value> pairs in the style
acorn@2233 2349 // of environment variables. Start by converting ':' to NUL.
acorn@2233 2350
acorn@2233 2351 if (SyncKnobs == NULL) SyncKnobs = "" ;
acorn@2233 2352
acorn@2233 2353 size_t sz = strlen (SyncKnobs) ;
acorn@2233 2354 char * knobs = (char *) malloc (sz + 2) ;
acorn@2233 2355 if (knobs == NULL) {
acorn@2233 2356 vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
acorn@2233 2357 guarantee (0, "invariant") ;
acorn@2233 2358 }
acorn@2233 2359 strcpy (knobs, SyncKnobs) ;
acorn@2233 2360 knobs[sz+1] = 0 ;
acorn@2233 2361 for (char * p = knobs ; *p ; p++) {
acorn@2233 2362 if (*p == ':') *p = 0 ;
acorn@2233 2363 }
acorn@2233 2364
acorn@2233 2365 #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
acorn@2233 2366 SETKNOB(ReportSettings) ;
acorn@2233 2367 SETKNOB(Verbose) ;
acorn@2233 2368 SETKNOB(FixedSpin) ;
acorn@2233 2369 SETKNOB(SpinLimit) ;
acorn@2233 2370 SETKNOB(SpinBase) ;
acorn@2233 2371 SETKNOB(SpinBackOff);
acorn@2233 2372 SETKNOB(CASPenalty) ;
acorn@2233 2373 SETKNOB(OXPenalty) ;
acorn@2233 2374 SETKNOB(LogSpins) ;
acorn@2233 2375 SETKNOB(SpinSetSucc) ;
acorn@2233 2376 SETKNOB(SuccEnabled) ;
acorn@2233 2377 SETKNOB(SuccRestrict) ;
acorn@2233 2378 SETKNOB(Penalty) ;
acorn@2233 2379 SETKNOB(Bonus) ;
acorn@2233 2380 SETKNOB(BonusB) ;
acorn@2233 2381 SETKNOB(Poverty) ;
acorn@2233 2382 SETKNOB(SpinAfterFutile) ;
acorn@2233 2383 SETKNOB(UsePause) ;
acorn@2233 2384 SETKNOB(SpinEarly) ;
acorn@2233 2385 SETKNOB(OState) ;
acorn@2233 2386 SETKNOB(MaxSpinners) ;
acorn@2233 2387 SETKNOB(PreSpin) ;
acorn@2233 2388 SETKNOB(ExitPolicy) ;
acorn@2233 2389 SETKNOB(QMode);
acorn@2233 2390 SETKNOB(ResetEvent) ;
acorn@2233 2391 SETKNOB(MoveNotifyee) ;
acorn@2233 2392 SETKNOB(FastHSSEC) ;
acorn@2233 2393 #undef SETKNOB
acorn@2233 2394
acorn@2233 2395 if (os::is_MP()) {
acorn@2233 2396 BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
acorn@2233 2397 if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
acorn@2233 2398 // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
acorn@2233 2399 } else {
acorn@2233 2400 Knob_SpinLimit = 0 ;
acorn@2233 2401 Knob_SpinBase = 0 ;
acorn@2233 2402 Knob_PreSpin = 0 ;
acorn@2233 2403 Knob_FixedSpin = -1 ;
acorn@2233 2404 }
acorn@2233 2405
acorn@2233 2406 if (Knob_LogSpins == 0) {
acorn@2233 2407 ObjectMonitor::_sync_FailedSpins = NULL ;
acorn@2233 2408 }
acorn@2233 2409
acorn@2233 2410 free (knobs) ;
acorn@2233 2411 OrderAccess::fence() ;
acorn@2233 2412 InitDone = 1 ;
acorn@2233 2413 }
acorn@2233 2414
acorn@2233 2415 #ifndef PRODUCT
acorn@2233 2416 void ObjectMonitor::verify() {
acorn@2233 2417 }
acorn@2233 2418
acorn@2233 2419 void ObjectMonitor::print() {
acorn@2233 2420 }
acorn@2233 2421 #endif

mercurial