src/share/vm/gc_implementation/parallelScavenge/psParallelCompact.cpp

Sat, 08 Oct 2016 09:31:28 -0400

author
fujie
date
Sat, 08 Oct 2016 09:31:28 -0400
changeset 124
9d7e35a93fad
parent 121
fc16fcee952c
child 192
21e5e0259a4c
permissions
-rw-r--r--

The parallel GC mark-phase should be MT-safe for 3A2000.

aoqi@0 1 /*
aoqi@0 2 * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
aoqi@0 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@0 4 *
aoqi@0 5 * This code is free software; you can redistribute it and/or modify it
aoqi@0 6 * under the terms of the GNU General Public License version 2 only, as
aoqi@0 7 * published by the Free Software Foundation.
aoqi@0 8 *
aoqi@0 9 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@0 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@0 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@0 12 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@0 13 * accompanied this code).
aoqi@0 14 *
aoqi@0 15 * You should have received a copy of the GNU General Public License version
aoqi@0 16 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@0 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@0 18 *
aoqi@0 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@0 20 * or visit www.oracle.com if you need additional information or have any
aoqi@0 21 * questions.
aoqi@0 22 *
aoqi@0 23 */
aoqi@0 24
aoqi@0 25 #include "precompiled.hpp"
aoqi@0 26 #include "classfile/symbolTable.hpp"
aoqi@0 27 #include "classfile/systemDictionary.hpp"
aoqi@0 28 #include "code/codeCache.hpp"
aoqi@0 29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
aoqi@0 30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
aoqi@0 31 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
aoqi@0 32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
aoqi@0 33 #include "gc_implementation/parallelScavenge/psCompactionManager.inline.hpp"
aoqi@0 34 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
aoqi@0 35 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
aoqi@0 36 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
aoqi@0 37 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
aoqi@0 38 #include "gc_implementation/parallelScavenge/psPromotionManager.inline.hpp"
aoqi@0 39 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
aoqi@0 40 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
aoqi@0 41 #include "gc_implementation/shared/gcHeapSummary.hpp"
aoqi@0 42 #include "gc_implementation/shared/gcTimer.hpp"
aoqi@0 43 #include "gc_implementation/shared/gcTrace.hpp"
aoqi@0 44 #include "gc_implementation/shared/gcTraceTime.hpp"
aoqi@0 45 #include "gc_implementation/shared/isGCActiveMark.hpp"
aoqi@0 46 #include "gc_interface/gcCause.hpp"
aoqi@0 47 #include "memory/gcLocker.inline.hpp"
aoqi@0 48 #include "memory/referencePolicy.hpp"
aoqi@0 49 #include "memory/referenceProcessor.hpp"
aoqi@0 50 #include "oops/methodData.hpp"
aoqi@0 51 #include "oops/oop.inline.hpp"
aoqi@0 52 #include "oops/oop.pcgc.inline.hpp"
aoqi@0 53 #include "runtime/fprofiler.hpp"
aoqi@0 54 #include "runtime/safepoint.hpp"
aoqi@0 55 #include "runtime/vmThread.hpp"
aoqi@0 56 #include "services/management.hpp"
aoqi@0 57 #include "services/memoryService.hpp"
aoqi@0 58 #include "services/memTracker.hpp"
aoqi@0 59 #include "utilities/events.hpp"
aoqi@0 60 #include "utilities/stack.inline.hpp"
aoqi@0 61
aoqi@0 62 #include <math.h>
aoqi@0 63
aoqi@0 64 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
aoqi@0 65
aoqi@0 66 // All sizes are in HeapWords.
aoqi@0 67 const size_t ParallelCompactData::Log2RegionSize = 16; // 64K words
aoqi@0 68 const size_t ParallelCompactData::RegionSize = (size_t)1 << Log2RegionSize;
aoqi@0 69 const size_t ParallelCompactData::RegionSizeBytes =
aoqi@0 70 RegionSize << LogHeapWordSize;
aoqi@0 71 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
aoqi@0 72 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
aoqi@0 73 const size_t ParallelCompactData::RegionAddrMask = ~RegionAddrOffsetMask;
aoqi@0 74
aoqi@0 75 const size_t ParallelCompactData::Log2BlockSize = 7; // 128 words
aoqi@0 76 const size_t ParallelCompactData::BlockSize = (size_t)1 << Log2BlockSize;
aoqi@0 77 const size_t ParallelCompactData::BlockSizeBytes =
aoqi@0 78 BlockSize << LogHeapWordSize;
aoqi@0 79 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
aoqi@0 80 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
aoqi@0 81 const size_t ParallelCompactData::BlockAddrMask = ~BlockAddrOffsetMask;
aoqi@0 82
aoqi@0 83 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
aoqi@0 84 const size_t ParallelCompactData::Log2BlocksPerRegion =
aoqi@0 85 Log2RegionSize - Log2BlockSize;
aoqi@0 86
aoqi@0 87 const ParallelCompactData::RegionData::region_sz_t
aoqi@0 88 ParallelCompactData::RegionData::dc_shift = 27;
aoqi@0 89
aoqi@0 90 const ParallelCompactData::RegionData::region_sz_t
aoqi@0 91 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
aoqi@0 92
aoqi@0 93 const ParallelCompactData::RegionData::region_sz_t
aoqi@0 94 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
aoqi@0 95
aoqi@0 96 const ParallelCompactData::RegionData::region_sz_t
aoqi@0 97 ParallelCompactData::RegionData::los_mask = ~dc_mask;
aoqi@0 98
aoqi@0 99 const ParallelCompactData::RegionData::region_sz_t
aoqi@0 100 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
aoqi@0 101
aoqi@0 102 const ParallelCompactData::RegionData::region_sz_t
aoqi@0 103 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
aoqi@0 104
aoqi@0 105 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
aoqi@0 106 bool PSParallelCompact::_print_phases = false;
aoqi@0 107
aoqi@0 108 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
aoqi@0 109 Klass* PSParallelCompact::_updated_int_array_klass_obj = NULL;
aoqi@0 110
aoqi@0 111 double PSParallelCompact::_dwl_mean;
aoqi@0 112 double PSParallelCompact::_dwl_std_dev;
aoqi@0 113 double PSParallelCompact::_dwl_first_term;
aoqi@0 114 double PSParallelCompact::_dwl_adjustment;
aoqi@0 115 #ifdef ASSERT
aoqi@0 116 bool PSParallelCompact::_dwl_initialized = false;
aoqi@0 117 #endif // #ifdef ASSERT
aoqi@0 118
aoqi@0 119 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
aoqi@0 120 HeapWord* destination)
aoqi@0 121 {
aoqi@0 122 assert(src_region_idx != 0, "invalid src_region_idx");
aoqi@0 123 assert(partial_obj_size != 0, "invalid partial_obj_size argument");
aoqi@0 124 assert(destination != NULL, "invalid destination argument");
aoqi@0 125
aoqi@0 126 _src_region_idx = src_region_idx;
aoqi@0 127 _partial_obj_size = partial_obj_size;
aoqi@0 128 _destination = destination;
aoqi@0 129
aoqi@0 130 // These fields may not be updated below, so make sure they're clear.
aoqi@0 131 assert(_dest_region_addr == NULL, "should have been cleared");
aoqi@0 132 assert(_first_src_addr == NULL, "should have been cleared");
aoqi@0 133
aoqi@0 134 // Determine the number of destination regions for the partial object.
aoqi@0 135 HeapWord* const last_word = destination + partial_obj_size - 1;
aoqi@0 136 const ParallelCompactData& sd = PSParallelCompact::summary_data();
aoqi@0 137 HeapWord* const beg_region_addr = sd.region_align_down(destination);
aoqi@0 138 HeapWord* const end_region_addr = sd.region_align_down(last_word);
aoqi@0 139
aoqi@0 140 if (beg_region_addr == end_region_addr) {
aoqi@0 141 // One destination region.
aoqi@0 142 _destination_count = 1;
aoqi@0 143 if (end_region_addr == destination) {
aoqi@0 144 // The destination falls on a region boundary, thus the first word of the
aoqi@0 145 // partial object will be the first word copied to the destination region.
aoqi@0 146 _dest_region_addr = end_region_addr;
aoqi@0 147 _first_src_addr = sd.region_to_addr(src_region_idx);
aoqi@0 148 }
aoqi@0 149 } else {
aoqi@0 150 // Two destination regions. When copied, the partial object will cross a
aoqi@0 151 // destination region boundary, so a word somewhere within the partial
aoqi@0 152 // object will be the first word copied to the second destination region.
aoqi@0 153 _destination_count = 2;
aoqi@0 154 _dest_region_addr = end_region_addr;
aoqi@0 155 const size_t ofs = pointer_delta(end_region_addr, destination);
aoqi@0 156 assert(ofs < _partial_obj_size, "sanity");
aoqi@0 157 _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
aoqi@0 158 }
aoqi@0 159 }
aoqi@0 160
aoqi@0 161 void SplitInfo::clear()
aoqi@0 162 {
aoqi@0 163 _src_region_idx = 0;
aoqi@0 164 _partial_obj_size = 0;
aoqi@0 165 _destination = NULL;
aoqi@0 166 _destination_count = 0;
aoqi@0 167 _dest_region_addr = NULL;
aoqi@0 168 _first_src_addr = NULL;
aoqi@0 169 assert(!is_valid(), "sanity");
aoqi@0 170 }
aoqi@0 171
aoqi@0 172 #ifdef ASSERT
aoqi@0 173 void SplitInfo::verify_clear()
aoqi@0 174 {
aoqi@0 175 assert(_src_region_idx == 0, "not clear");
aoqi@0 176 assert(_partial_obj_size == 0, "not clear");
aoqi@0 177 assert(_destination == NULL, "not clear");
aoqi@0 178 assert(_destination_count == 0, "not clear");
aoqi@0 179 assert(_dest_region_addr == NULL, "not clear");
aoqi@0 180 assert(_first_src_addr == NULL, "not clear");
aoqi@0 181 }
aoqi@0 182 #endif // #ifdef ASSERT
aoqi@0 183
aoqi@0 184
aoqi@0 185 void PSParallelCompact::print_on_error(outputStream* st) {
aoqi@0 186 _mark_bitmap.print_on_error(st);
aoqi@0 187 }
aoqi@0 188
aoqi@0 189 #ifndef PRODUCT
aoqi@0 190 const char* PSParallelCompact::space_names[] = {
aoqi@0 191 "old ", "eden", "from", "to "
aoqi@0 192 };
aoqi@0 193
aoqi@0 194 void PSParallelCompact::print_region_ranges()
aoqi@0 195 {
aoqi@0 196 tty->print_cr("space bottom top end new_top");
aoqi@0 197 tty->print_cr("------ ---------- ---------- ---------- ----------");
aoqi@0 198
aoqi@0 199 for (unsigned int id = 0; id < last_space_id; ++id) {
aoqi@0 200 const MutableSpace* space = _space_info[id].space();
aoqi@0 201 tty->print_cr("%u %s "
aoqi@0 202 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
aoqi@0 203 SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
aoqi@0 204 id, space_names[id],
aoqi@0 205 summary_data().addr_to_region_idx(space->bottom()),
aoqi@0 206 summary_data().addr_to_region_idx(space->top()),
aoqi@0 207 summary_data().addr_to_region_idx(space->end()),
aoqi@0 208 summary_data().addr_to_region_idx(_space_info[id].new_top()));
aoqi@0 209 }
aoqi@0 210 }
aoqi@0 211
aoqi@0 212 void
aoqi@0 213 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
aoqi@0 214 {
aoqi@0 215 #define REGION_IDX_FORMAT SIZE_FORMAT_W(7)
aoqi@0 216 #define REGION_DATA_FORMAT SIZE_FORMAT_W(5)
aoqi@0 217
aoqi@0 218 ParallelCompactData& sd = PSParallelCompact::summary_data();
aoqi@0 219 size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
aoqi@0 220 tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
aoqi@0 221 REGION_IDX_FORMAT " " PTR_FORMAT " "
aoqi@0 222 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
aoqi@0 223 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
aoqi@0 224 i, c->data_location(), dci, c->destination(),
aoqi@0 225 c->partial_obj_size(), c->live_obj_size(),
aoqi@0 226 c->data_size(), c->source_region(), c->destination_count());
aoqi@0 227
aoqi@0 228 #undef REGION_IDX_FORMAT
aoqi@0 229 #undef REGION_DATA_FORMAT
aoqi@0 230 }
aoqi@0 231
aoqi@0 232 void
aoqi@0 233 print_generic_summary_data(ParallelCompactData& summary_data,
aoqi@0 234 HeapWord* const beg_addr,
aoqi@0 235 HeapWord* const end_addr)
aoqi@0 236 {
aoqi@0 237 size_t total_words = 0;
aoqi@0 238 size_t i = summary_data.addr_to_region_idx(beg_addr);
aoqi@0 239 const size_t last = summary_data.addr_to_region_idx(end_addr);
aoqi@0 240 HeapWord* pdest = 0;
aoqi@0 241
aoqi@0 242 while (i <= last) {
aoqi@0 243 ParallelCompactData::RegionData* c = summary_data.region(i);
aoqi@0 244 if (c->data_size() != 0 || c->destination() != pdest) {
aoqi@0 245 print_generic_summary_region(i, c);
aoqi@0 246 total_words += c->data_size();
aoqi@0 247 pdest = c->destination();
aoqi@0 248 }
aoqi@0 249 ++i;
aoqi@0 250 }
aoqi@0 251
aoqi@0 252 tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
aoqi@0 253 }
aoqi@0 254
aoqi@0 255 void
aoqi@0 256 print_generic_summary_data(ParallelCompactData& summary_data,
aoqi@0 257 SpaceInfo* space_info)
aoqi@0 258 {
aoqi@0 259 for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
aoqi@0 260 const MutableSpace* space = space_info[id].space();
aoqi@0 261 print_generic_summary_data(summary_data, space->bottom(),
aoqi@0 262 MAX2(space->top(), space_info[id].new_top()));
aoqi@0 263 }
aoqi@0 264 }
aoqi@0 265
aoqi@0 266 void
aoqi@0 267 print_initial_summary_region(size_t i,
aoqi@0 268 const ParallelCompactData::RegionData* c,
aoqi@0 269 bool newline = true)
aoqi@0 270 {
aoqi@0 271 tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
aoqi@0 272 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
aoqi@0 273 SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
aoqi@0 274 i, c->destination(),
aoqi@0 275 c->partial_obj_size(), c->live_obj_size(),
aoqi@0 276 c->data_size(), c->source_region(), c->destination_count());
aoqi@0 277 if (newline) tty->cr();
aoqi@0 278 }
aoqi@0 279
aoqi@0 280 void
aoqi@0 281 print_initial_summary_data(ParallelCompactData& summary_data,
aoqi@0 282 const MutableSpace* space) {
aoqi@0 283 if (space->top() == space->bottom()) {
aoqi@0 284 return;
aoqi@0 285 }
aoqi@0 286
aoqi@0 287 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 288 typedef ParallelCompactData::RegionData RegionData;
aoqi@0 289 HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
aoqi@0 290 const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
aoqi@0 291 const RegionData* c = summary_data.region(end_region - 1);
aoqi@0 292 HeapWord* end_addr = c->destination() + c->data_size();
aoqi@0 293 const size_t live_in_space = pointer_delta(end_addr, space->bottom());
aoqi@0 294
aoqi@0 295 // Print (and count) the full regions at the beginning of the space.
aoqi@0 296 size_t full_region_count = 0;
aoqi@0 297 size_t i = summary_data.addr_to_region_idx(space->bottom());
aoqi@0 298 while (i < end_region && summary_data.region(i)->data_size() == region_size) {
aoqi@0 299 print_initial_summary_region(i, summary_data.region(i));
aoqi@0 300 ++full_region_count;
aoqi@0 301 ++i;
aoqi@0 302 }
aoqi@0 303
aoqi@0 304 size_t live_to_right = live_in_space - full_region_count * region_size;
aoqi@0 305
aoqi@0 306 double max_reclaimed_ratio = 0.0;
aoqi@0 307 size_t max_reclaimed_ratio_region = 0;
aoqi@0 308 size_t max_dead_to_right = 0;
aoqi@0 309 size_t max_live_to_right = 0;
aoqi@0 310
aoqi@0 311 // Print the 'reclaimed ratio' for regions while there is something live in
aoqi@0 312 // the region or to the right of it. The remaining regions are empty (and
aoqi@0 313 // uninteresting), and computing the ratio will result in division by 0.
aoqi@0 314 while (i < end_region && live_to_right > 0) {
aoqi@0 315 c = summary_data.region(i);
aoqi@0 316 HeapWord* const region_addr = summary_data.region_to_addr(i);
aoqi@0 317 const size_t used_to_right = pointer_delta(space->top(), region_addr);
aoqi@0 318 const size_t dead_to_right = used_to_right - live_to_right;
aoqi@0 319 const double reclaimed_ratio = double(dead_to_right) / live_to_right;
aoqi@0 320
aoqi@0 321 if (reclaimed_ratio > max_reclaimed_ratio) {
aoqi@0 322 max_reclaimed_ratio = reclaimed_ratio;
aoqi@0 323 max_reclaimed_ratio_region = i;
aoqi@0 324 max_dead_to_right = dead_to_right;
aoqi@0 325 max_live_to_right = live_to_right;
aoqi@0 326 }
aoqi@0 327
aoqi@0 328 print_initial_summary_region(i, c, false);
aoqi@0 329 tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
aoqi@0 330 reclaimed_ratio, dead_to_right, live_to_right);
aoqi@0 331
aoqi@0 332 live_to_right -= c->data_size();
aoqi@0 333 ++i;
aoqi@0 334 }
aoqi@0 335
aoqi@0 336 // Any remaining regions are empty. Print one more if there is one.
aoqi@0 337 if (i < end_region) {
aoqi@0 338 print_initial_summary_region(i, summary_data.region(i));
aoqi@0 339 }
aoqi@0 340
aoqi@0 341 tty->print_cr("max: " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
aoqi@0 342 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
aoqi@0 343 max_reclaimed_ratio_region, max_dead_to_right,
aoqi@0 344 max_live_to_right, max_reclaimed_ratio);
aoqi@0 345 }
aoqi@0 346
aoqi@0 347 void
aoqi@0 348 print_initial_summary_data(ParallelCompactData& summary_data,
aoqi@0 349 SpaceInfo* space_info) {
aoqi@0 350 unsigned int id = PSParallelCompact::old_space_id;
aoqi@0 351 const MutableSpace* space;
aoqi@0 352 do {
aoqi@0 353 space = space_info[id].space();
aoqi@0 354 print_initial_summary_data(summary_data, space);
aoqi@0 355 } while (++id < PSParallelCompact::eden_space_id);
aoqi@0 356
aoqi@0 357 do {
aoqi@0 358 space = space_info[id].space();
aoqi@0 359 print_generic_summary_data(summary_data, space->bottom(), space->top());
aoqi@0 360 } while (++id < PSParallelCompact::last_space_id);
aoqi@0 361 }
aoqi@0 362 #endif // #ifndef PRODUCT
aoqi@0 363
aoqi@0 364 #ifdef ASSERT
aoqi@0 365 size_t add_obj_count;
aoqi@0 366 size_t add_obj_size;
aoqi@0 367 size_t mark_bitmap_count;
aoqi@0 368 size_t mark_bitmap_size;
aoqi@0 369 #endif // #ifdef ASSERT
aoqi@0 370
aoqi@0 371 ParallelCompactData::ParallelCompactData()
aoqi@0 372 {
aoqi@0 373 _region_start = 0;
aoqi@0 374
aoqi@0 375 _region_vspace = 0;
aoqi@0 376 _reserved_byte_size = 0;
aoqi@0 377 _region_data = 0;
aoqi@0 378 _region_count = 0;
aoqi@0 379
aoqi@0 380 _block_vspace = 0;
aoqi@0 381 _block_data = 0;
aoqi@0 382 _block_count = 0;
aoqi@0 383 }
aoqi@0 384
aoqi@0 385 bool ParallelCompactData::initialize(MemRegion covered_region)
aoqi@0 386 {
aoqi@0 387 _region_start = covered_region.start();
aoqi@0 388 const size_t region_size = covered_region.word_size();
aoqi@0 389 DEBUG_ONLY(_region_end = _region_start + region_size;)
aoqi@0 390
aoqi@0 391 assert(region_align_down(_region_start) == _region_start,
aoqi@0 392 "region start not aligned");
aoqi@0 393 assert((region_size & RegionSizeOffsetMask) == 0,
aoqi@0 394 "region size not a multiple of RegionSize");
aoqi@0 395
aoqi@0 396 bool result = initialize_region_data(region_size) && initialize_block_data();
aoqi@0 397 return result;
aoqi@0 398 }
aoqi@0 399
aoqi@0 400 PSVirtualSpace*
aoqi@0 401 ParallelCompactData::create_vspace(size_t count, size_t element_size)
aoqi@0 402 {
aoqi@0 403 const size_t raw_bytes = count * element_size;
aoqi@0 404 const size_t page_sz = os::page_size_for_region(raw_bytes, raw_bytes, 10);
aoqi@0 405 const size_t granularity = os::vm_allocation_granularity();
aoqi@0 406 _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
aoqi@0 407
aoqi@0 408 const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
aoqi@0 409 MAX2(page_sz, granularity);
aoqi@0 410 ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
aoqi@0 411 os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
aoqi@0 412 rs.size());
aoqi@0 413
aoqi@0 414 MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
aoqi@0 415
aoqi@0 416 PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
aoqi@0 417 if (vspace != 0) {
aoqi@0 418 if (vspace->expand_by(_reserved_byte_size)) {
aoqi@0 419 return vspace;
aoqi@0 420 }
aoqi@0 421 delete vspace;
aoqi@0 422 // Release memory reserved in the space.
aoqi@0 423 rs.release();
aoqi@0 424 }
aoqi@0 425
aoqi@0 426 return 0;
aoqi@0 427 }
aoqi@0 428
aoqi@0 429 bool ParallelCompactData::initialize_region_data(size_t region_size)
aoqi@0 430 {
aoqi@0 431 const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
aoqi@0 432 _region_vspace = create_vspace(count, sizeof(RegionData));
aoqi@0 433 if (_region_vspace != 0) {
aoqi@0 434 _region_data = (RegionData*)_region_vspace->reserved_low_addr();
aoqi@0 435 _region_count = count;
aoqi@0 436 return true;
aoqi@0 437 }
aoqi@0 438 return false;
aoqi@0 439 }
aoqi@0 440
aoqi@0 441 bool ParallelCompactData::initialize_block_data()
aoqi@0 442 {
aoqi@0 443 assert(_region_count != 0, "region data must be initialized first");
aoqi@0 444 const size_t count = _region_count << Log2BlocksPerRegion;
aoqi@0 445 _block_vspace = create_vspace(count, sizeof(BlockData));
aoqi@0 446 if (_block_vspace != 0) {
aoqi@0 447 _block_data = (BlockData*)_block_vspace->reserved_low_addr();
aoqi@0 448 _block_count = count;
aoqi@0 449 return true;
aoqi@0 450 }
aoqi@0 451 return false;
aoqi@0 452 }
aoqi@0 453
aoqi@0 454 void ParallelCompactData::clear()
aoqi@0 455 {
aoqi@0 456 memset(_region_data, 0, _region_vspace->committed_size());
aoqi@0 457 memset(_block_data, 0, _block_vspace->committed_size());
aoqi@0 458 }
aoqi@0 459
aoqi@0 460 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
aoqi@0 461 assert(beg_region <= _region_count, "beg_region out of range");
aoqi@0 462 assert(end_region <= _region_count, "end_region out of range");
aoqi@0 463 assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
aoqi@0 464
aoqi@0 465 const size_t region_cnt = end_region - beg_region;
aoqi@0 466 memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
aoqi@0 467
aoqi@0 468 const size_t beg_block = beg_region * BlocksPerRegion;
aoqi@0 469 const size_t block_cnt = region_cnt * BlocksPerRegion;
aoqi@0 470 memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
aoqi@0 471 }
aoqi@0 472
aoqi@0 473 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
aoqi@0 474 {
aoqi@0 475 const RegionData* cur_cp = region(region_idx);
aoqi@0 476 const RegionData* const end_cp = region(region_count() - 1);
aoqi@0 477
aoqi@0 478 HeapWord* result = region_to_addr(region_idx);
aoqi@0 479 if (cur_cp < end_cp) {
aoqi@0 480 do {
aoqi@0 481 result += cur_cp->partial_obj_size();
aoqi@0 482 } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
aoqi@0 483 }
aoqi@0 484 return result;
aoqi@0 485 }
aoqi@0 486
aoqi@0 487 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
aoqi@0 488 {
aoqi@0 489 const size_t obj_ofs = pointer_delta(addr, _region_start);
aoqi@0 490 const size_t beg_region = obj_ofs >> Log2RegionSize;
aoqi@0 491 const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
aoqi@0 492
aoqi@0 493 DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
aoqi@0 494 DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
aoqi@0 495
aoqi@0 496 if (beg_region == end_region) {
aoqi@0 497 // All in one region.
aoqi@0 498 _region_data[beg_region].add_live_obj(len);
fujie@124 499 #ifdef MIPS64
fujie@124 500 if (Use3A2000) OrderAccess::fence();
fujie@124 501 #endif
aoqi@0 502 return;
aoqi@0 503 }
aoqi@0 504
aoqi@0 505 // First region.
aoqi@0 506 const size_t beg_ofs = region_offset(addr);
aoqi@0 507 _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
aoqi@0 508
aoqi@0 509 Klass* klass = ((oop)addr)->klass();
aoqi@0 510 // Middle regions--completely spanned by this object.
aoqi@0 511 for (size_t region = beg_region + 1; region < end_region; ++region) {
aoqi@0 512 _region_data[region].set_partial_obj_size(RegionSize);
aoqi@0 513 _region_data[region].set_partial_obj_addr(addr);
aoqi@0 514 }
aoqi@0 515
aoqi@0 516 // Last region.
aoqi@0 517 const size_t end_ofs = region_offset(addr + len - 1);
aoqi@0 518 _region_data[end_region].set_partial_obj_size(end_ofs + 1);
aoqi@0 519 _region_data[end_region].set_partial_obj_addr(addr);
fujie@124 520 #ifdef MIPS64
fujie@124 521 if (Use3A2000) OrderAccess::fence();
fujie@124 522 #endif
aoqi@0 523 }
aoqi@0 524
aoqi@0 525 void
aoqi@0 526 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
aoqi@0 527 {
aoqi@0 528 assert(region_offset(beg) == 0, "not RegionSize aligned");
aoqi@0 529 assert(region_offset(end) == 0, "not RegionSize aligned");
aoqi@0 530
aoqi@0 531 size_t cur_region = addr_to_region_idx(beg);
aoqi@0 532 const size_t end_region = addr_to_region_idx(end);
aoqi@0 533 HeapWord* addr = beg;
aoqi@0 534 while (cur_region < end_region) {
aoqi@0 535 _region_data[cur_region].set_destination(addr);
aoqi@0 536 _region_data[cur_region].set_destination_count(0);
aoqi@0 537 _region_data[cur_region].set_source_region(cur_region);
aoqi@0 538 _region_data[cur_region].set_data_location(addr);
aoqi@0 539
aoqi@0 540 // Update live_obj_size so the region appears completely full.
aoqi@0 541 size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
aoqi@0 542 _region_data[cur_region].set_live_obj_size(live_size);
aoqi@0 543
aoqi@0 544 ++cur_region;
aoqi@0 545 addr += RegionSize;
aoqi@0 546 }
aoqi@0 547 }
aoqi@0 548
aoqi@0 549 // Find the point at which a space can be split and, if necessary, record the
aoqi@0 550 // split point.
aoqi@0 551 //
aoqi@0 552 // If the current src region (which overflowed the destination space) doesn't
aoqi@0 553 // have a partial object, the split point is at the beginning of the current src
aoqi@0 554 // region (an "easy" split, no extra bookkeeping required).
aoqi@0 555 //
aoqi@0 556 // If the current src region has a partial object, the split point is in the
aoqi@0 557 // region where that partial object starts (call it the split_region). If
aoqi@0 558 // split_region has a partial object, then the split point is just after that
aoqi@0 559 // partial object (a "hard" split where we have to record the split data and
aoqi@0 560 // zero the partial_obj_size field). With a "hard" split, we know that the
aoqi@0 561 // partial_obj ends within split_region because the partial object that caused
aoqi@0 562 // the overflow starts in split_region. If split_region doesn't have a partial
aoqi@0 563 // obj, then the split is at the beginning of split_region (another "easy"
aoqi@0 564 // split).
aoqi@0 565 HeapWord*
aoqi@0 566 ParallelCompactData::summarize_split_space(size_t src_region,
aoqi@0 567 SplitInfo& split_info,
aoqi@0 568 HeapWord* destination,
aoqi@0 569 HeapWord* target_end,
aoqi@0 570 HeapWord** target_next)
aoqi@0 571 {
aoqi@0 572 assert(destination <= target_end, "sanity");
aoqi@0 573 assert(destination + _region_data[src_region].data_size() > target_end,
aoqi@0 574 "region should not fit into target space");
aoqi@0 575 assert(is_region_aligned(target_end), "sanity");
aoqi@0 576
aoqi@0 577 size_t split_region = src_region;
aoqi@0 578 HeapWord* split_destination = destination;
aoqi@0 579 size_t partial_obj_size = _region_data[src_region].partial_obj_size();
aoqi@0 580
aoqi@0 581 if (destination + partial_obj_size > target_end) {
aoqi@0 582 // The split point is just after the partial object (if any) in the
aoqi@0 583 // src_region that contains the start of the object that overflowed the
aoqi@0 584 // destination space.
aoqi@0 585 //
aoqi@0 586 // Find the start of the "overflow" object and set split_region to the
aoqi@0 587 // region containing it.
aoqi@0 588 HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
aoqi@0 589 split_region = addr_to_region_idx(overflow_obj);
aoqi@0 590
aoqi@0 591 // Clear the source_region field of all destination regions whose first word
aoqi@0 592 // came from data after the split point (a non-null source_region field
aoqi@0 593 // implies a region must be filled).
aoqi@0 594 //
aoqi@0 595 // An alternative to the simple loop below: clear during post_compact(),
aoqi@0 596 // which uses memcpy instead of individual stores, and is easy to
aoqi@0 597 // parallelize. (The downside is that it clears the entire RegionData
aoqi@0 598 // object as opposed to just one field.)
aoqi@0 599 //
aoqi@0 600 // post_compact() would have to clear the summary data up to the highest
aoqi@0 601 // address that was written during the summary phase, which would be
aoqi@0 602 //
aoqi@0 603 // max(top, max(new_top, clear_top))
aoqi@0 604 //
aoqi@0 605 // where clear_top is a new field in SpaceInfo. Would have to set clear_top
aoqi@0 606 // to target_end.
aoqi@0 607 const RegionData* const sr = region(split_region);
aoqi@0 608 const size_t beg_idx =
aoqi@0 609 addr_to_region_idx(region_align_up(sr->destination() +
aoqi@0 610 sr->partial_obj_size()));
aoqi@0 611 const size_t end_idx = addr_to_region_idx(target_end);
aoqi@0 612
aoqi@0 613 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 614 gclog_or_tty->print_cr("split: clearing source_region field in ["
aoqi@0 615 SIZE_FORMAT ", " SIZE_FORMAT ")",
aoqi@0 616 beg_idx, end_idx);
aoqi@0 617 }
aoqi@0 618 for (size_t idx = beg_idx; idx < end_idx; ++idx) {
aoqi@0 619 _region_data[idx].set_source_region(0);
aoqi@0 620 }
aoqi@0 621
aoqi@0 622 // Set split_destination and partial_obj_size to reflect the split region.
aoqi@0 623 split_destination = sr->destination();
aoqi@0 624 partial_obj_size = sr->partial_obj_size();
aoqi@0 625 }
aoqi@0 626
aoqi@0 627 // The split is recorded only if a partial object extends onto the region.
aoqi@0 628 if (partial_obj_size != 0) {
aoqi@0 629 _region_data[split_region].set_partial_obj_size(0);
aoqi@0 630 split_info.record(split_region, partial_obj_size, split_destination);
aoqi@0 631 }
aoqi@0 632
aoqi@0 633 // Setup the continuation addresses.
aoqi@0 634 *target_next = split_destination + partial_obj_size;
aoqi@0 635 HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
aoqi@0 636
aoqi@0 637 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 638 const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
aoqi@0 639 gclog_or_tty->print_cr("%s split: src=" PTR_FORMAT " src_c=" SIZE_FORMAT
aoqi@0 640 " pos=" SIZE_FORMAT,
aoqi@0 641 split_type, source_next, split_region,
aoqi@0 642 partial_obj_size);
aoqi@0 643 gclog_or_tty->print_cr("%s split: dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
aoqi@0 644 " tn=" PTR_FORMAT,
aoqi@0 645 split_type, split_destination,
aoqi@0 646 addr_to_region_idx(split_destination),
aoqi@0 647 *target_next);
aoqi@0 648
aoqi@0 649 if (partial_obj_size != 0) {
aoqi@0 650 HeapWord* const po_beg = split_info.destination();
aoqi@0 651 HeapWord* const po_end = po_beg + split_info.partial_obj_size();
aoqi@0 652 gclog_or_tty->print_cr("%s split: "
aoqi@0 653 "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
aoqi@0 654 "po_end=" PTR_FORMAT " " SIZE_FORMAT,
aoqi@0 655 split_type,
aoqi@0 656 po_beg, addr_to_region_idx(po_beg),
aoqi@0 657 po_end, addr_to_region_idx(po_end));
aoqi@0 658 }
aoqi@0 659 }
aoqi@0 660
aoqi@0 661 return source_next;
aoqi@0 662 }
aoqi@0 663
aoqi@0 664 bool ParallelCompactData::summarize(SplitInfo& split_info,
aoqi@0 665 HeapWord* source_beg, HeapWord* source_end,
aoqi@0 666 HeapWord** source_next,
aoqi@0 667 HeapWord* target_beg, HeapWord* target_end,
aoqi@0 668 HeapWord** target_next)
aoqi@0 669 {
aoqi@0 670 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 671 HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
aoqi@0 672 tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
aoqi@0 673 "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
aoqi@0 674 source_beg, source_end, source_next_val,
aoqi@0 675 target_beg, target_end, *target_next);
aoqi@0 676 }
aoqi@0 677
aoqi@0 678 size_t cur_region = addr_to_region_idx(source_beg);
aoqi@0 679 const size_t end_region = addr_to_region_idx(region_align_up(source_end));
aoqi@0 680
aoqi@0 681 HeapWord *dest_addr = target_beg;
aoqi@0 682 while (cur_region < end_region) {
aoqi@0 683 // The destination must be set even if the region has no data.
aoqi@0 684 _region_data[cur_region].set_destination(dest_addr);
aoqi@0 685
aoqi@0 686 size_t words = _region_data[cur_region].data_size();
aoqi@0 687 if (words > 0) {
aoqi@0 688 // If cur_region does not fit entirely into the target space, find a point
aoqi@0 689 // at which the source space can be 'split' so that part is copied to the
aoqi@0 690 // target space and the rest is copied elsewhere.
aoqi@0 691 if (dest_addr + words > target_end) {
aoqi@0 692 assert(source_next != NULL, "source_next is NULL when splitting");
aoqi@0 693 *source_next = summarize_split_space(cur_region, split_info, dest_addr,
aoqi@0 694 target_end, target_next);
aoqi@0 695 return false;
aoqi@0 696 }
aoqi@0 697
aoqi@0 698 // Compute the destination_count for cur_region, and if necessary, update
aoqi@0 699 // source_region for a destination region. The source_region field is
aoqi@0 700 // updated if cur_region is the first (left-most) region to be copied to a
aoqi@0 701 // destination region.
aoqi@0 702 //
aoqi@0 703 // The destination_count calculation is a bit subtle. A region that has
aoqi@0 704 // data that compacts into itself does not count itself as a destination.
aoqi@0 705 // This maintains the invariant that a zero count means the region is
aoqi@0 706 // available and can be claimed and then filled.
aoqi@0 707 uint destination_count = 0;
aoqi@0 708 if (split_info.is_split(cur_region)) {
aoqi@0 709 // The current region has been split: the partial object will be copied
aoqi@0 710 // to one destination space and the remaining data will be copied to
aoqi@0 711 // another destination space. Adjust the initial destination_count and,
aoqi@0 712 // if necessary, set the source_region field if the partial object will
aoqi@0 713 // cross a destination region boundary.
aoqi@0 714 destination_count = split_info.destination_count();
aoqi@0 715 if (destination_count == 2) {
aoqi@0 716 size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
aoqi@0 717 _region_data[dest_idx].set_source_region(cur_region);
aoqi@0 718 }
aoqi@0 719 }
aoqi@0 720
aoqi@0 721 HeapWord* const last_addr = dest_addr + words - 1;
aoqi@0 722 const size_t dest_region_1 = addr_to_region_idx(dest_addr);
aoqi@0 723 const size_t dest_region_2 = addr_to_region_idx(last_addr);
aoqi@0 724
aoqi@0 725 // Initially assume that the destination regions will be the same and
aoqi@0 726 // adjust the value below if necessary. Under this assumption, if
aoqi@0 727 // cur_region == dest_region_2, then cur_region will be compacted
aoqi@0 728 // completely into itself.
aoqi@0 729 destination_count += cur_region == dest_region_2 ? 0 : 1;
aoqi@0 730 if (dest_region_1 != dest_region_2) {
aoqi@0 731 // Destination regions differ; adjust destination_count.
aoqi@0 732 destination_count += 1;
aoqi@0 733 // Data from cur_region will be copied to the start of dest_region_2.
aoqi@0 734 _region_data[dest_region_2].set_source_region(cur_region);
aoqi@0 735 } else if (region_offset(dest_addr) == 0) {
aoqi@0 736 // Data from cur_region will be copied to the start of the destination
aoqi@0 737 // region.
aoqi@0 738 _region_data[dest_region_1].set_source_region(cur_region);
aoqi@0 739 }
aoqi@0 740
aoqi@0 741 _region_data[cur_region].set_destination_count(destination_count);
aoqi@0 742 _region_data[cur_region].set_data_location(region_to_addr(cur_region));
aoqi@0 743 dest_addr += words;
aoqi@0 744 }
aoqi@0 745
aoqi@0 746 ++cur_region;
aoqi@0 747 }
aoqi@0 748
aoqi@0 749 *target_next = dest_addr;
aoqi@0 750 return true;
aoqi@0 751 }
aoqi@0 752
aoqi@0 753 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
aoqi@0 754 assert(addr != NULL, "Should detect NULL oop earlier");
aoqi@0 755 assert(PSParallelCompact::gc_heap()->is_in(addr), "not in heap");
aoqi@0 756 assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
aoqi@0 757
aoqi@0 758 // Region covering the object.
aoqi@0 759 RegionData* const region_ptr = addr_to_region_ptr(addr);
aoqi@0 760 HeapWord* result = region_ptr->destination();
aoqi@0 761
aoqi@0 762 // If the entire Region is live, the new location is region->destination + the
aoqi@0 763 // offset of the object within in the Region.
aoqi@0 764
aoqi@0 765 // Run some performance tests to determine if this special case pays off. It
aoqi@0 766 // is worth it for pointers into the dense prefix. If the optimization to
aoqi@0 767 // avoid pointer updates in regions that only point to the dense prefix is
aoqi@0 768 // ever implemented, this should be revisited.
aoqi@0 769 if (region_ptr->data_size() == RegionSize) {
aoqi@0 770 result += region_offset(addr);
aoqi@0 771 return result;
aoqi@0 772 }
aoqi@0 773
aoqi@0 774 // Otherwise, the new location is region->destination + block offset + the
aoqi@0 775 // number of live words in the Block that are (a) to the left of addr and (b)
aoqi@0 776 // due to objects that start in the Block.
aoqi@0 777
aoqi@0 778 // Fill in the block table if necessary. This is unsynchronized, so multiple
aoqi@0 779 // threads may fill the block table for a region (harmless, since it is
aoqi@0 780 // idempotent).
aoqi@0 781 if (!region_ptr->blocks_filled()) {
aoqi@0 782 PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
aoqi@0 783 region_ptr->set_blocks_filled();
aoqi@0 784 }
aoqi@0 785
aoqi@0 786 HeapWord* const search_start = block_align_down(addr);
aoqi@0 787 const size_t block_offset = addr_to_block_ptr(addr)->offset();
aoqi@0 788
aoqi@0 789 const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
aoqi@0 790 const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
aoqi@0 791 result += block_offset + live;
aoqi@0 792 DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
aoqi@0 793 return result;
aoqi@0 794 }
aoqi@0 795
aoqi@0 796 #ifdef ASSERT
aoqi@0 797 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
aoqi@0 798 {
aoqi@0 799 const size_t* const beg = (const size_t*)vspace->committed_low_addr();
aoqi@0 800 const size_t* const end = (const size_t*)vspace->committed_high_addr();
aoqi@0 801 for (const size_t* p = beg; p < end; ++p) {
aoqi@0 802 assert(*p == 0, "not zero");
aoqi@0 803 }
aoqi@0 804 }
aoqi@0 805
aoqi@0 806 void ParallelCompactData::verify_clear()
aoqi@0 807 {
aoqi@0 808 verify_clear(_region_vspace);
aoqi@0 809 verify_clear(_block_vspace);
aoqi@0 810 }
aoqi@0 811 #endif // #ifdef ASSERT
aoqi@0 812
aoqi@0 813 STWGCTimer PSParallelCompact::_gc_timer;
aoqi@0 814 ParallelOldTracer PSParallelCompact::_gc_tracer;
aoqi@0 815 elapsedTimer PSParallelCompact::_accumulated_time;
aoqi@0 816 unsigned int PSParallelCompact::_total_invocations = 0;
aoqi@0 817 unsigned int PSParallelCompact::_maximum_compaction_gc_num = 0;
aoqi@0 818 jlong PSParallelCompact::_time_of_last_gc = 0;
aoqi@0 819 CollectorCounters* PSParallelCompact::_counters = NULL;
aoqi@0 820 ParMarkBitMap PSParallelCompact::_mark_bitmap;
aoqi@0 821 ParallelCompactData PSParallelCompact::_summary_data;
aoqi@0 822
aoqi@0 823 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
aoqi@0 824
aoqi@0 825 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
aoqi@0 826
aoqi@0 827 void PSParallelCompact::KeepAliveClosure::do_oop(oop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
aoqi@0 828 void PSParallelCompact::KeepAliveClosure::do_oop(narrowOop* p) { PSParallelCompact::KeepAliveClosure::do_oop_work(p); }
aoqi@0 829
aoqi@0 830 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
aoqi@0 831 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
aoqi@0 832
aoqi@0 833 void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p); }
aoqi@0 834 void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p); }
aoqi@0 835
aoqi@0 836 void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
aoqi@0 837
aoqi@0 838 void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) {
aoqi@0 839 mark_and_push(_compaction_manager, p);
aoqi@0 840 }
aoqi@0 841 void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
aoqi@0 842
aoqi@0 843 void PSParallelCompact::FollowKlassClosure::do_klass(Klass* klass) {
aoqi@0 844 klass->oops_do(_mark_and_push_closure);
aoqi@0 845 }
aoqi@0 846 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
aoqi@0 847 klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
aoqi@0 848 }
aoqi@0 849
aoqi@0 850 void PSParallelCompact::post_initialize() {
aoqi@0 851 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 852 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
aoqi@0 853
aoqi@0 854 MemRegion mr = heap->reserved_region();
aoqi@0 855 _ref_processor =
aoqi@0 856 new ReferenceProcessor(mr, // span
aoqi@0 857 ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
aoqi@0 858 (int) ParallelGCThreads, // mt processing degree
aoqi@0 859 true, // mt discovery
aoqi@0 860 (int) ParallelGCThreads, // mt discovery degree
aoqi@0 861 true, // atomic_discovery
aoqi@0 862 &_is_alive_closure); // non-header is alive closure
aoqi@0 863 _counters = new CollectorCounters("PSParallelCompact", 1);
aoqi@0 864
aoqi@0 865 // Initialize static fields in ParCompactionManager.
aoqi@0 866 ParCompactionManager::initialize(mark_bitmap());
aoqi@0 867 }
aoqi@0 868
aoqi@0 869 bool PSParallelCompact::initialize() {
aoqi@0 870 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 871 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
aoqi@0 872 MemRegion mr = heap->reserved_region();
aoqi@0 873
aoqi@0 874 // Was the old gen get allocated successfully?
aoqi@0 875 if (!heap->old_gen()->is_allocated()) {
aoqi@0 876 return false;
aoqi@0 877 }
aoqi@0 878
aoqi@0 879 initialize_space_info();
aoqi@0 880 initialize_dead_wood_limiter();
aoqi@0 881
aoqi@0 882 if (!_mark_bitmap.initialize(mr)) {
aoqi@0 883 vm_shutdown_during_initialization(
aoqi@0 884 err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
aoqi@0 885 "garbage collection for the requested " SIZE_FORMAT "KB heap.",
aoqi@0 886 _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
aoqi@0 887 return false;
aoqi@0 888 }
aoqi@0 889
aoqi@0 890 if (!_summary_data.initialize(mr)) {
aoqi@0 891 vm_shutdown_during_initialization(
aoqi@0 892 err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
aoqi@0 893 "garbage collection for the requested " SIZE_FORMAT "KB heap.",
aoqi@0 894 _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
aoqi@0 895 return false;
aoqi@0 896 }
aoqi@0 897
aoqi@0 898 return true;
aoqi@0 899 }
aoqi@0 900
aoqi@0 901 void PSParallelCompact::initialize_space_info()
aoqi@0 902 {
aoqi@0 903 memset(&_space_info, 0, sizeof(_space_info));
aoqi@0 904
aoqi@0 905 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 906 PSYoungGen* young_gen = heap->young_gen();
aoqi@0 907
aoqi@0 908 _space_info[old_space_id].set_space(heap->old_gen()->object_space());
aoqi@0 909 _space_info[eden_space_id].set_space(young_gen->eden_space());
aoqi@0 910 _space_info[from_space_id].set_space(young_gen->from_space());
aoqi@0 911 _space_info[to_space_id].set_space(young_gen->to_space());
aoqi@0 912
aoqi@0 913 _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
aoqi@0 914 }
aoqi@0 915
aoqi@0 916 void PSParallelCompact::initialize_dead_wood_limiter()
aoqi@0 917 {
aoqi@0 918 const size_t max = 100;
aoqi@0 919 _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
aoqi@0 920 _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
aoqi@0 921 _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
aoqi@0 922 DEBUG_ONLY(_dwl_initialized = true;)
aoqi@0 923 _dwl_adjustment = normal_distribution(1.0);
aoqi@0 924 }
aoqi@0 925
aoqi@0 926 // Simple class for storing info about the heap at the start of GC, to be used
aoqi@0 927 // after GC for comparison/printing.
aoqi@0 928 class PreGCValues {
aoqi@0 929 public:
aoqi@0 930 PreGCValues() { }
aoqi@0 931 PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
aoqi@0 932
aoqi@0 933 void fill(ParallelScavengeHeap* heap) {
aoqi@0 934 _heap_used = heap->used();
aoqi@0 935 _young_gen_used = heap->young_gen()->used_in_bytes();
aoqi@0 936 _old_gen_used = heap->old_gen()->used_in_bytes();
aoqi@0 937 _metadata_used = MetaspaceAux::used_bytes();
aoqi@0 938 };
aoqi@0 939
aoqi@0 940 size_t heap_used() const { return _heap_used; }
aoqi@0 941 size_t young_gen_used() const { return _young_gen_used; }
aoqi@0 942 size_t old_gen_used() const { return _old_gen_used; }
aoqi@0 943 size_t metadata_used() const { return _metadata_used; }
aoqi@0 944
aoqi@0 945 private:
aoqi@0 946 size_t _heap_used;
aoqi@0 947 size_t _young_gen_used;
aoqi@0 948 size_t _old_gen_used;
aoqi@0 949 size_t _metadata_used;
aoqi@0 950 };
aoqi@0 951
aoqi@0 952 void
aoqi@0 953 PSParallelCompact::clear_data_covering_space(SpaceId id)
aoqi@0 954 {
aoqi@0 955 // At this point, top is the value before GC, new_top() is the value that will
aoqi@0 956 // be set at the end of GC. The marking bitmap is cleared to top; nothing
aoqi@0 957 // should be marked above top. The summary data is cleared to the larger of
aoqi@0 958 // top & new_top.
aoqi@0 959 MutableSpace* const space = _space_info[id].space();
aoqi@0 960 HeapWord* const bot = space->bottom();
aoqi@0 961 HeapWord* const top = space->top();
aoqi@0 962 HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
aoqi@0 963
aoqi@0 964 const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
aoqi@0 965 const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
aoqi@0 966 _mark_bitmap.clear_range(beg_bit, end_bit);
aoqi@0 967
aoqi@0 968 const size_t beg_region = _summary_data.addr_to_region_idx(bot);
aoqi@0 969 const size_t end_region =
aoqi@0 970 _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
aoqi@0 971 _summary_data.clear_range(beg_region, end_region);
aoqi@0 972
aoqi@0 973 // Clear the data used to 'split' regions.
aoqi@0 974 SplitInfo& split_info = _space_info[id].split_info();
aoqi@0 975 if (split_info.is_valid()) {
aoqi@0 976 split_info.clear();
aoqi@0 977 }
aoqi@0 978 DEBUG_ONLY(split_info.verify_clear();)
aoqi@0 979 }
aoqi@0 980
aoqi@0 981 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
aoqi@0 982 {
aoqi@0 983 // Update the from & to space pointers in space_info, since they are swapped
aoqi@0 984 // at each young gen gc. Do the update unconditionally (even though a
aoqi@0 985 // promotion failure does not swap spaces) because an unknown number of minor
aoqi@0 986 // collections will have swapped the spaces an unknown number of times.
aoqi@0 987 GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer);
aoqi@0 988 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 989 _space_info[from_space_id].set_space(heap->young_gen()->from_space());
aoqi@0 990 _space_info[to_space_id].set_space(heap->young_gen()->to_space());
aoqi@0 991
aoqi@0 992 pre_gc_values->fill(heap);
aoqi@0 993
aoqi@0 994 DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
aoqi@0 995 DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
aoqi@0 996
aoqi@0 997 // Increment the invocation count
aoqi@0 998 heap->increment_total_collections(true);
aoqi@0 999
aoqi@0 1000 // We need to track unique mark sweep invocations as well.
aoqi@0 1001 _total_invocations++;
aoqi@0 1002
aoqi@0 1003 heap->print_heap_before_gc();
aoqi@0 1004 heap->trace_heap_before_gc(&_gc_tracer);
aoqi@0 1005
aoqi@0 1006 // Fill in TLABs
aoqi@0 1007 heap->accumulate_statistics_all_tlabs();
aoqi@0 1008 heap->ensure_parsability(true); // retire TLABs
aoqi@0 1009
aoqi@0 1010 if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
aoqi@0 1011 HandleMark hm; // Discard invalid handles created during verification
aoqi@0 1012 Universe::verify(" VerifyBeforeGC:");
aoqi@0 1013 }
aoqi@0 1014
aoqi@0 1015 // Verify object start arrays
aoqi@0 1016 if (VerifyObjectStartArray &&
aoqi@0 1017 VerifyBeforeGC) {
aoqi@0 1018 heap->old_gen()->verify_object_start_array();
aoqi@0 1019 }
aoqi@0 1020
aoqi@0 1021 DEBUG_ONLY(mark_bitmap()->verify_clear();)
aoqi@0 1022 DEBUG_ONLY(summary_data().verify_clear();)
aoqi@0 1023
aoqi@0 1024 // Have worker threads release resources the next time they run a task.
aoqi@0 1025 gc_task_manager()->release_all_resources();
aoqi@0 1026 }
aoqi@0 1027
aoqi@0 1028 void PSParallelCompact::post_compact()
aoqi@0 1029 {
aoqi@0 1030 GCTraceTime tm("post compact", print_phases(), true, &_gc_timer);
aoqi@0 1031
aoqi@0 1032 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
aoqi@0 1033 // Clear the marking bitmap, summary data and split info.
aoqi@0 1034 clear_data_covering_space(SpaceId(id));
aoqi@0 1035 // Update top(). Must be done after clearing the bitmap and summary data.
aoqi@0 1036 _space_info[id].publish_new_top();
aoqi@0 1037 }
aoqi@0 1038
aoqi@0 1039 MutableSpace* const eden_space = _space_info[eden_space_id].space();
aoqi@0 1040 MutableSpace* const from_space = _space_info[from_space_id].space();
aoqi@0 1041 MutableSpace* const to_space = _space_info[to_space_id].space();
aoqi@0 1042
aoqi@0 1043 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 1044 bool eden_empty = eden_space->is_empty();
aoqi@0 1045 if (!eden_empty) {
aoqi@0 1046 eden_empty = absorb_live_data_from_eden(heap->size_policy(),
aoqi@0 1047 heap->young_gen(), heap->old_gen());
aoqi@0 1048 }
aoqi@0 1049
aoqi@0 1050 // Update heap occupancy information which is used as input to the soft ref
aoqi@0 1051 // clearing policy at the next gc.
aoqi@0 1052 Universe::update_heap_info_at_gc();
aoqi@0 1053
aoqi@0 1054 bool young_gen_empty = eden_empty && from_space->is_empty() &&
aoqi@0 1055 to_space->is_empty();
aoqi@0 1056
aoqi@0 1057 BarrierSet* bs = heap->barrier_set();
aoqi@0 1058 if (bs->is_a(BarrierSet::ModRef)) {
aoqi@0 1059 ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
aoqi@0 1060 MemRegion old_mr = heap->old_gen()->reserved();
aoqi@0 1061
aoqi@0 1062 if (young_gen_empty) {
aoqi@0 1063 modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
aoqi@0 1064 } else {
aoqi@0 1065 modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
aoqi@0 1066 }
aoqi@0 1067 }
aoqi@0 1068
aoqi@0 1069 // Delete metaspaces for unloaded class loaders and clean up loader_data graph
aoqi@0 1070 ClassLoaderDataGraph::purge();
aoqi@0 1071 MetaspaceAux::verify_metrics();
aoqi@0 1072
aoqi@0 1073 Threads::gc_epilogue();
aoqi@0 1074 CodeCache::gc_epilogue();
aoqi@0 1075 JvmtiExport::gc_epilogue();
aoqi@0 1076
aoqi@0 1077 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
aoqi@0 1078
aoqi@0 1079 ref_processor()->enqueue_discovered_references(NULL);
aoqi@0 1080
aoqi@0 1081 if (ZapUnusedHeapArea) {
aoqi@0 1082 heap->gen_mangle_unused_area();
aoqi@0 1083 }
aoqi@0 1084
aoqi@0 1085 // Update time of last GC
aoqi@0 1086 reset_millis_since_last_gc();
aoqi@0 1087 }
aoqi@0 1088
aoqi@0 1089 HeapWord*
aoqi@0 1090 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
aoqi@0 1091 bool maximum_compaction)
aoqi@0 1092 {
aoqi@0 1093 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 1094 const ParallelCompactData& sd = summary_data();
aoqi@0 1095
aoqi@0 1096 const MutableSpace* const space = _space_info[id].space();
aoqi@0 1097 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
aoqi@0 1098 const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
aoqi@0 1099 const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
aoqi@0 1100
aoqi@0 1101 // Skip full regions at the beginning of the space--they are necessarily part
aoqi@0 1102 // of the dense prefix.
aoqi@0 1103 size_t full_count = 0;
aoqi@0 1104 const RegionData* cp;
aoqi@0 1105 for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
aoqi@0 1106 ++full_count;
aoqi@0 1107 }
aoqi@0 1108
aoqi@0 1109 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
aoqi@0 1110 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
aoqi@0 1111 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
aoqi@0 1112 if (maximum_compaction || cp == end_cp || interval_ended) {
aoqi@0 1113 _maximum_compaction_gc_num = total_invocations();
aoqi@0 1114 return sd.region_to_addr(cp);
aoqi@0 1115 }
aoqi@0 1116
aoqi@0 1117 HeapWord* const new_top = _space_info[id].new_top();
aoqi@0 1118 const size_t space_live = pointer_delta(new_top, space->bottom());
aoqi@0 1119 const size_t space_used = space->used_in_words();
aoqi@0 1120 const size_t space_capacity = space->capacity_in_words();
aoqi@0 1121
aoqi@0 1122 const double cur_density = double(space_live) / space_capacity;
aoqi@0 1123 const double deadwood_density =
aoqi@0 1124 (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
aoqi@0 1125 const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
aoqi@0 1126
aoqi@0 1127 if (TraceParallelOldGCDensePrefix) {
aoqi@0 1128 tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
aoqi@0 1129 cur_density, deadwood_density, deadwood_goal);
aoqi@0 1130 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
aoqi@0 1131 "space_cap=" SIZE_FORMAT,
aoqi@0 1132 space_live, space_used,
aoqi@0 1133 space_capacity);
aoqi@0 1134 }
aoqi@0 1135
aoqi@0 1136 // XXX - Use binary search?
aoqi@0 1137 HeapWord* dense_prefix = sd.region_to_addr(cp);
aoqi@0 1138 const RegionData* full_cp = cp;
aoqi@0 1139 const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
aoqi@0 1140 while (cp < end_cp) {
aoqi@0 1141 HeapWord* region_destination = cp->destination();
aoqi@0 1142 const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
aoqi@0 1143 if (TraceParallelOldGCDensePrefix && Verbose) {
aoqi@0 1144 tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
aoqi@0 1145 "dp=" SIZE_FORMAT_W(8) " " "cdw=" SIZE_FORMAT_W(8),
aoqi@0 1146 sd.region(cp), region_destination,
aoqi@0 1147 dense_prefix, cur_deadwood);
aoqi@0 1148 }
aoqi@0 1149
aoqi@0 1150 if (cur_deadwood >= deadwood_goal) {
aoqi@0 1151 // Found the region that has the correct amount of deadwood to the left.
aoqi@0 1152 // This typically occurs after crossing a fairly sparse set of regions, so
aoqi@0 1153 // iterate backwards over those sparse regions, looking for the region
aoqi@0 1154 // that has the lowest density of live objects 'to the right.'
aoqi@0 1155 size_t space_to_left = sd.region(cp) * region_size;
aoqi@0 1156 size_t live_to_left = space_to_left - cur_deadwood;
aoqi@0 1157 size_t space_to_right = space_capacity - space_to_left;
aoqi@0 1158 size_t live_to_right = space_live - live_to_left;
aoqi@0 1159 double density_to_right = double(live_to_right) / space_to_right;
aoqi@0 1160 while (cp > full_cp) {
aoqi@0 1161 --cp;
aoqi@0 1162 const size_t prev_region_live_to_right = live_to_right -
aoqi@0 1163 cp->data_size();
aoqi@0 1164 const size_t prev_region_space_to_right = space_to_right + region_size;
aoqi@0 1165 double prev_region_density_to_right =
aoqi@0 1166 double(prev_region_live_to_right) / prev_region_space_to_right;
aoqi@0 1167 if (density_to_right <= prev_region_density_to_right) {
aoqi@0 1168 return dense_prefix;
aoqi@0 1169 }
aoqi@0 1170 if (TraceParallelOldGCDensePrefix && Verbose) {
aoqi@0 1171 tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
aoqi@0 1172 "pc_d2r=%10.8f", sd.region(cp), density_to_right,
aoqi@0 1173 prev_region_density_to_right);
aoqi@0 1174 }
aoqi@0 1175 dense_prefix -= region_size;
aoqi@0 1176 live_to_right = prev_region_live_to_right;
aoqi@0 1177 space_to_right = prev_region_space_to_right;
aoqi@0 1178 density_to_right = prev_region_density_to_right;
aoqi@0 1179 }
aoqi@0 1180 return dense_prefix;
aoqi@0 1181 }
aoqi@0 1182
aoqi@0 1183 dense_prefix += region_size;
aoqi@0 1184 ++cp;
aoqi@0 1185 }
aoqi@0 1186
aoqi@0 1187 return dense_prefix;
aoqi@0 1188 }
aoqi@0 1189
aoqi@0 1190 #ifndef PRODUCT
aoqi@0 1191 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
aoqi@0 1192 const SpaceId id,
aoqi@0 1193 const bool maximum_compaction,
aoqi@0 1194 HeapWord* const addr)
aoqi@0 1195 {
aoqi@0 1196 const size_t region_idx = summary_data().addr_to_region_idx(addr);
aoqi@0 1197 RegionData* const cp = summary_data().region(region_idx);
aoqi@0 1198 const MutableSpace* const space = _space_info[id].space();
aoqi@0 1199 HeapWord* const new_top = _space_info[id].new_top();
aoqi@0 1200
aoqi@0 1201 const size_t space_live = pointer_delta(new_top, space->bottom());
aoqi@0 1202 const size_t dead_to_left = pointer_delta(addr, cp->destination());
aoqi@0 1203 const size_t space_cap = space->capacity_in_words();
aoqi@0 1204 const double dead_to_left_pct = double(dead_to_left) / space_cap;
aoqi@0 1205 const size_t live_to_right = new_top - cp->destination();
aoqi@0 1206 const size_t dead_to_right = space->top() - addr - live_to_right;
aoqi@0 1207
aoqi@0 1208 tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
aoqi@0 1209 "spl=" SIZE_FORMAT " "
aoqi@0 1210 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
aoqi@0 1211 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
aoqi@0 1212 " ratio=%10.8f",
aoqi@0 1213 algorithm, addr, region_idx,
aoqi@0 1214 space_live,
aoqi@0 1215 dead_to_left, dead_to_left_pct,
aoqi@0 1216 dead_to_right, live_to_right,
aoqi@0 1217 double(dead_to_right) / live_to_right);
aoqi@0 1218 }
aoqi@0 1219 #endif // #ifndef PRODUCT
aoqi@0 1220
aoqi@0 1221 // Return a fraction indicating how much of the generation can be treated as
aoqi@0 1222 // "dead wood" (i.e., not reclaimed). The function uses a normal distribution
aoqi@0 1223 // based on the density of live objects in the generation to determine a limit,
aoqi@0 1224 // which is then adjusted so the return value is min_percent when the density is
aoqi@0 1225 // 1.
aoqi@0 1226 //
aoqi@0 1227 // The following table shows some return values for a different values of the
aoqi@0 1228 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
aoqi@0 1229 // min_percent is 1.
aoqi@0 1230 //
aoqi@0 1231 // fraction allowed as dead wood
aoqi@0 1232 // -----------------------------------------------------------------
aoqi@0 1233 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
aoqi@0 1234 // ------- ---------- ---------- ---------- ---------- ---------- ----------
aoqi@0 1235 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
aoqi@0 1236 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
aoqi@0 1237 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
aoqi@0 1238 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
aoqi@0 1239 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
aoqi@0 1240 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
aoqi@0 1241 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
aoqi@0 1242 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
aoqi@0 1243 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
aoqi@0 1244 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
aoqi@0 1245 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
aoqi@0 1246 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
aoqi@0 1247 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
aoqi@0 1248 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
aoqi@0 1249 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
aoqi@0 1250 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
aoqi@0 1251 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
aoqi@0 1252 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
aoqi@0 1253 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
aoqi@0 1254 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
aoqi@0 1255 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
aoqi@0 1256
aoqi@0 1257 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
aoqi@0 1258 {
aoqi@0 1259 assert(_dwl_initialized, "uninitialized");
aoqi@0 1260
aoqi@0 1261 // The raw limit is the value of the normal distribution at x = density.
aoqi@0 1262 const double raw_limit = normal_distribution(density);
aoqi@0 1263
aoqi@0 1264 // Adjust the raw limit so it becomes the minimum when the density is 1.
aoqi@0 1265 //
aoqi@0 1266 // First subtract the adjustment value (which is simply the precomputed value
aoqi@0 1267 // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
aoqi@0 1268 // Then add the minimum value, so the minimum is returned when the density is
aoqi@0 1269 // 1. Finally, prevent negative values, which occur when the mean is not 0.5.
aoqi@0 1270 const double min = double(min_percent) / 100.0;
aoqi@0 1271 const double limit = raw_limit - _dwl_adjustment + min;
aoqi@0 1272 return MAX2(limit, 0.0);
aoqi@0 1273 }
aoqi@0 1274
aoqi@0 1275 ParallelCompactData::RegionData*
aoqi@0 1276 PSParallelCompact::first_dead_space_region(const RegionData* beg,
aoqi@0 1277 const RegionData* end)
aoqi@0 1278 {
aoqi@0 1279 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 1280 ParallelCompactData& sd = summary_data();
aoqi@0 1281 size_t left = sd.region(beg);
aoqi@0 1282 size_t right = end > beg ? sd.region(end) - 1 : left;
aoqi@0 1283
aoqi@0 1284 // Binary search.
aoqi@0 1285 while (left < right) {
aoqi@0 1286 // Equivalent to (left + right) / 2, but does not overflow.
aoqi@0 1287 const size_t middle = left + (right - left) / 2;
aoqi@0 1288 RegionData* const middle_ptr = sd.region(middle);
aoqi@0 1289 HeapWord* const dest = middle_ptr->destination();
aoqi@0 1290 HeapWord* const addr = sd.region_to_addr(middle);
aoqi@0 1291 assert(dest != NULL, "sanity");
aoqi@0 1292 assert(dest <= addr, "must move left");
aoqi@0 1293
aoqi@0 1294 if (middle > left && dest < addr) {
aoqi@0 1295 right = middle - 1;
aoqi@0 1296 } else if (middle < right && middle_ptr->data_size() == region_size) {
aoqi@0 1297 left = middle + 1;
aoqi@0 1298 } else {
aoqi@0 1299 return middle_ptr;
aoqi@0 1300 }
aoqi@0 1301 }
aoqi@0 1302 return sd.region(left);
aoqi@0 1303 }
aoqi@0 1304
aoqi@0 1305 ParallelCompactData::RegionData*
aoqi@0 1306 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
aoqi@0 1307 const RegionData* end,
aoqi@0 1308 size_t dead_words)
aoqi@0 1309 {
aoqi@0 1310 ParallelCompactData& sd = summary_data();
aoqi@0 1311 size_t left = sd.region(beg);
aoqi@0 1312 size_t right = end > beg ? sd.region(end) - 1 : left;
aoqi@0 1313
aoqi@0 1314 // Binary search.
aoqi@0 1315 while (left < right) {
aoqi@0 1316 // Equivalent to (left + right) / 2, but does not overflow.
aoqi@0 1317 const size_t middle = left + (right - left) / 2;
aoqi@0 1318 RegionData* const middle_ptr = sd.region(middle);
aoqi@0 1319 HeapWord* const dest = middle_ptr->destination();
aoqi@0 1320 HeapWord* const addr = sd.region_to_addr(middle);
aoqi@0 1321 assert(dest != NULL, "sanity");
aoqi@0 1322 assert(dest <= addr, "must move left");
aoqi@0 1323
aoqi@0 1324 const size_t dead_to_left = pointer_delta(addr, dest);
aoqi@0 1325 if (middle > left && dead_to_left > dead_words) {
aoqi@0 1326 right = middle - 1;
aoqi@0 1327 } else if (middle < right && dead_to_left < dead_words) {
aoqi@0 1328 left = middle + 1;
aoqi@0 1329 } else {
aoqi@0 1330 return middle_ptr;
aoqi@0 1331 }
aoqi@0 1332 }
aoqi@0 1333 return sd.region(left);
aoqi@0 1334 }
aoqi@0 1335
aoqi@0 1336 // The result is valid during the summary phase, after the initial summarization
aoqi@0 1337 // of each space into itself, and before final summarization.
aoqi@0 1338 inline double
aoqi@0 1339 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
aoqi@0 1340 HeapWord* const bottom,
aoqi@0 1341 HeapWord* const top,
aoqi@0 1342 HeapWord* const new_top)
aoqi@0 1343 {
aoqi@0 1344 ParallelCompactData& sd = summary_data();
aoqi@0 1345
aoqi@0 1346 assert(cp != NULL, "sanity");
aoqi@0 1347 assert(bottom != NULL, "sanity");
aoqi@0 1348 assert(top != NULL, "sanity");
aoqi@0 1349 assert(new_top != NULL, "sanity");
aoqi@0 1350 assert(top >= new_top, "summary data problem?");
aoqi@0 1351 assert(new_top > bottom, "space is empty; should not be here");
aoqi@0 1352 assert(new_top >= cp->destination(), "sanity");
aoqi@0 1353 assert(top >= sd.region_to_addr(cp), "sanity");
aoqi@0 1354
aoqi@0 1355 HeapWord* const destination = cp->destination();
aoqi@0 1356 const size_t dense_prefix_live = pointer_delta(destination, bottom);
aoqi@0 1357 const size_t compacted_region_live = pointer_delta(new_top, destination);
aoqi@0 1358 const size_t compacted_region_used = pointer_delta(top,
aoqi@0 1359 sd.region_to_addr(cp));
aoqi@0 1360 const size_t reclaimable = compacted_region_used - compacted_region_live;
aoqi@0 1361
aoqi@0 1362 const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
aoqi@0 1363 return double(reclaimable) / divisor;
aoqi@0 1364 }
aoqi@0 1365
aoqi@0 1366 // Return the address of the end of the dense prefix, a.k.a. the start of the
aoqi@0 1367 // compacted region. The address is always on a region boundary.
aoqi@0 1368 //
aoqi@0 1369 // Completely full regions at the left are skipped, since no compaction can
aoqi@0 1370 // occur in those regions. Then the maximum amount of dead wood to allow is
aoqi@0 1371 // computed, based on the density (amount live / capacity) of the generation;
aoqi@0 1372 // the region with approximately that amount of dead space to the left is
aoqi@0 1373 // identified as the limit region. Regions between the last completely full
aoqi@0 1374 // region and the limit region are scanned and the one that has the best
aoqi@0 1375 // (maximum) reclaimed_ratio() is selected.
aoqi@0 1376 HeapWord*
aoqi@0 1377 PSParallelCompact::compute_dense_prefix(const SpaceId id,
aoqi@0 1378 bool maximum_compaction)
aoqi@0 1379 {
aoqi@0 1380 if (ParallelOldGCSplitALot) {
aoqi@0 1381 if (_space_info[id].dense_prefix() != _space_info[id].space()->bottom()) {
aoqi@0 1382 // The value was chosen to provoke splitting a young gen space; use it.
aoqi@0 1383 return _space_info[id].dense_prefix();
aoqi@0 1384 }
aoqi@0 1385 }
aoqi@0 1386
aoqi@0 1387 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 1388 const ParallelCompactData& sd = summary_data();
aoqi@0 1389
aoqi@0 1390 const MutableSpace* const space = _space_info[id].space();
aoqi@0 1391 HeapWord* const top = space->top();
aoqi@0 1392 HeapWord* const top_aligned_up = sd.region_align_up(top);
aoqi@0 1393 HeapWord* const new_top = _space_info[id].new_top();
aoqi@0 1394 HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
aoqi@0 1395 HeapWord* const bottom = space->bottom();
aoqi@0 1396 const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
aoqi@0 1397 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
aoqi@0 1398 const RegionData* const new_top_cp =
aoqi@0 1399 sd.addr_to_region_ptr(new_top_aligned_up);
aoqi@0 1400
aoqi@0 1401 // Skip full regions at the beginning of the space--they are necessarily part
aoqi@0 1402 // of the dense prefix.
aoqi@0 1403 const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
aoqi@0 1404 assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
aoqi@0 1405 space->is_empty(), "no dead space allowed to the left");
aoqi@0 1406 assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
aoqi@0 1407 "region must have dead space");
aoqi@0 1408
aoqi@0 1409 // The gc number is saved whenever a maximum compaction is done, and used to
aoqi@0 1410 // determine when the maximum compaction interval has expired. This avoids
aoqi@0 1411 // successive max compactions for different reasons.
aoqi@0 1412 assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
aoqi@0 1413 const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
aoqi@0 1414 const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
aoqi@0 1415 total_invocations() == HeapFirstMaximumCompactionCount;
aoqi@0 1416 if (maximum_compaction || full_cp == top_cp || interval_ended) {
aoqi@0 1417 _maximum_compaction_gc_num = total_invocations();
aoqi@0 1418 return sd.region_to_addr(full_cp);
aoqi@0 1419 }
aoqi@0 1420
aoqi@0 1421 const size_t space_live = pointer_delta(new_top, bottom);
aoqi@0 1422 const size_t space_used = space->used_in_words();
aoqi@0 1423 const size_t space_capacity = space->capacity_in_words();
aoqi@0 1424
aoqi@0 1425 const double density = double(space_live) / double(space_capacity);
aoqi@0 1426 const size_t min_percent_free = MarkSweepDeadRatio;
aoqi@0 1427 const double limiter = dead_wood_limiter(density, min_percent_free);
aoqi@0 1428 const size_t dead_wood_max = space_used - space_live;
aoqi@0 1429 const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
aoqi@0 1430 dead_wood_max);
aoqi@0 1431
aoqi@0 1432 if (TraceParallelOldGCDensePrefix) {
aoqi@0 1433 tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
aoqi@0 1434 "space_cap=" SIZE_FORMAT,
aoqi@0 1435 space_live, space_used,
aoqi@0 1436 space_capacity);
aoqi@0 1437 tty->print_cr("dead_wood_limiter(%6.4f, %d)=%6.4f "
aoqi@0 1438 "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
aoqi@0 1439 density, min_percent_free, limiter,
aoqi@0 1440 dead_wood_max, dead_wood_limit);
aoqi@0 1441 }
aoqi@0 1442
aoqi@0 1443 // Locate the region with the desired amount of dead space to the left.
aoqi@0 1444 const RegionData* const limit_cp =
aoqi@0 1445 dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
aoqi@0 1446
aoqi@0 1447 // Scan from the first region with dead space to the limit region and find the
aoqi@0 1448 // one with the best (largest) reclaimed ratio.
aoqi@0 1449 double best_ratio = 0.0;
aoqi@0 1450 const RegionData* best_cp = full_cp;
aoqi@0 1451 for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
aoqi@0 1452 double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
aoqi@0 1453 if (tmp_ratio > best_ratio) {
aoqi@0 1454 best_cp = cp;
aoqi@0 1455 best_ratio = tmp_ratio;
aoqi@0 1456 }
aoqi@0 1457 }
aoqi@0 1458
aoqi@0 1459 #if 0
aoqi@0 1460 // Something to consider: if the region with the best ratio is 'close to' the
aoqi@0 1461 // first region w/free space, choose the first region with free space
aoqi@0 1462 // ("first-free"). The first-free region is usually near the start of the
aoqi@0 1463 // heap, which means we are copying most of the heap already, so copy a bit
aoqi@0 1464 // more to get complete compaction.
aoqi@0 1465 if (pointer_delta(best_cp, full_cp, sizeof(RegionData)) < 4) {
aoqi@0 1466 _maximum_compaction_gc_num = total_invocations();
aoqi@0 1467 best_cp = full_cp;
aoqi@0 1468 }
aoqi@0 1469 #endif // #if 0
aoqi@0 1470
aoqi@0 1471 return sd.region_to_addr(best_cp);
aoqi@0 1472 }
aoqi@0 1473
aoqi@0 1474 #ifndef PRODUCT
aoqi@0 1475 void
aoqi@0 1476 PSParallelCompact::fill_with_live_objects(SpaceId id, HeapWord* const start,
aoqi@0 1477 size_t words)
aoqi@0 1478 {
aoqi@0 1479 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 1480 tty->print_cr("fill_with_live_objects [" PTR_FORMAT " " PTR_FORMAT ") "
aoqi@0 1481 SIZE_FORMAT, start, start + words, words);
aoqi@0 1482 }
aoqi@0 1483
aoqi@0 1484 ObjectStartArray* const start_array = _space_info[id].start_array();
aoqi@0 1485 CollectedHeap::fill_with_objects(start, words);
aoqi@0 1486 for (HeapWord* p = start; p < start + words; p += oop(p)->size()) {
aoqi@0 1487 _mark_bitmap.mark_obj(p, words);
aoqi@0 1488 _summary_data.add_obj(p, words);
aoqi@0 1489 start_array->allocate_block(p);
aoqi@0 1490 }
aoqi@0 1491 }
aoqi@0 1492
aoqi@0 1493 void
aoqi@0 1494 PSParallelCompact::summarize_new_objects(SpaceId id, HeapWord* start)
aoqi@0 1495 {
aoqi@0 1496 ParallelCompactData& sd = summary_data();
aoqi@0 1497 MutableSpace* space = _space_info[id].space();
aoqi@0 1498
aoqi@0 1499 // Find the source and destination start addresses.
aoqi@0 1500 HeapWord* const src_addr = sd.region_align_down(start);
aoqi@0 1501 HeapWord* dst_addr;
aoqi@0 1502 if (src_addr < start) {
aoqi@0 1503 dst_addr = sd.addr_to_region_ptr(src_addr)->destination();
aoqi@0 1504 } else if (src_addr > space->bottom()) {
aoqi@0 1505 // The start (the original top() value) is aligned to a region boundary so
aoqi@0 1506 // the associated region does not have a destination. Compute the
aoqi@0 1507 // destination from the previous region.
aoqi@0 1508 RegionData* const cp = sd.addr_to_region_ptr(src_addr) - 1;
aoqi@0 1509 dst_addr = cp->destination() + cp->data_size();
aoqi@0 1510 } else {
aoqi@0 1511 // Filling the entire space.
aoqi@0 1512 dst_addr = space->bottom();
aoqi@0 1513 }
aoqi@0 1514 assert(dst_addr != NULL, "sanity");
aoqi@0 1515
aoqi@0 1516 // Update the summary data.
aoqi@0 1517 bool result = _summary_data.summarize(_space_info[id].split_info(),
aoqi@0 1518 src_addr, space->top(), NULL,
aoqi@0 1519 dst_addr, space->end(),
aoqi@0 1520 _space_info[id].new_top_addr());
aoqi@0 1521 assert(result, "should not fail: bad filler object size");
aoqi@0 1522 }
aoqi@0 1523
aoqi@0 1524 void
aoqi@0 1525 PSParallelCompact::provoke_split_fill_survivor(SpaceId id)
aoqi@0 1526 {
aoqi@0 1527 if (total_invocations() % (ParallelOldGCSplitInterval * 3) != 0) {
aoqi@0 1528 return;
aoqi@0 1529 }
aoqi@0 1530
aoqi@0 1531 MutableSpace* const space = _space_info[id].space();
aoqi@0 1532 if (space->is_empty()) {
aoqi@0 1533 HeapWord* b = space->bottom();
aoqi@0 1534 HeapWord* t = b + space->capacity_in_words() / 2;
aoqi@0 1535 space->set_top(t);
aoqi@0 1536 if (ZapUnusedHeapArea) {
aoqi@0 1537 space->set_top_for_allocations();
aoqi@0 1538 }
aoqi@0 1539
aoqi@0 1540 size_t min_size = CollectedHeap::min_fill_size();
aoqi@0 1541 size_t obj_len = min_size;
aoqi@0 1542 while (b + obj_len <= t) {
aoqi@0 1543 CollectedHeap::fill_with_object(b, obj_len);
aoqi@0 1544 mark_bitmap()->mark_obj(b, obj_len);
aoqi@0 1545 summary_data().add_obj(b, obj_len);
aoqi@0 1546 b += obj_len;
aoqi@0 1547 obj_len = (obj_len & (min_size*3)) + min_size; // 8 16 24 32 8 16 24 32 ...
aoqi@0 1548 }
aoqi@0 1549 if (b < t) {
aoqi@0 1550 // The loop didn't completely fill to t (top); adjust top downward.
aoqi@0 1551 space->set_top(b);
aoqi@0 1552 if (ZapUnusedHeapArea) {
aoqi@0 1553 space->set_top_for_allocations();
aoqi@0 1554 }
aoqi@0 1555 }
aoqi@0 1556
aoqi@0 1557 HeapWord** nta = _space_info[id].new_top_addr();
aoqi@0 1558 bool result = summary_data().summarize(_space_info[id].split_info(),
aoqi@0 1559 space->bottom(), space->top(), NULL,
aoqi@0 1560 space->bottom(), space->end(), nta);
aoqi@0 1561 assert(result, "space must fit into itself");
aoqi@0 1562 }
aoqi@0 1563 }
aoqi@0 1564
aoqi@0 1565 void
aoqi@0 1566 PSParallelCompact::provoke_split(bool & max_compaction)
aoqi@0 1567 {
aoqi@0 1568 if (total_invocations() % ParallelOldGCSplitInterval != 0) {
aoqi@0 1569 return;
aoqi@0 1570 }
aoqi@0 1571
aoqi@0 1572 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 1573 ParallelCompactData& sd = summary_data();
aoqi@0 1574
aoqi@0 1575 MutableSpace* const eden_space = _space_info[eden_space_id].space();
aoqi@0 1576 MutableSpace* const from_space = _space_info[from_space_id].space();
aoqi@0 1577 const size_t eden_live = pointer_delta(eden_space->top(),
aoqi@0 1578 _space_info[eden_space_id].new_top());
aoqi@0 1579 const size_t from_live = pointer_delta(from_space->top(),
aoqi@0 1580 _space_info[from_space_id].new_top());
aoqi@0 1581
aoqi@0 1582 const size_t min_fill_size = CollectedHeap::min_fill_size();
aoqi@0 1583 const size_t eden_free = pointer_delta(eden_space->end(), eden_space->top());
aoqi@0 1584 const size_t eden_fillable = eden_free >= min_fill_size ? eden_free : 0;
aoqi@0 1585 const size_t from_free = pointer_delta(from_space->end(), from_space->top());
aoqi@0 1586 const size_t from_fillable = from_free >= min_fill_size ? from_free : 0;
aoqi@0 1587
aoqi@0 1588 // Choose the space to split; need at least 2 regions live (or fillable).
aoqi@0 1589 SpaceId id;
aoqi@0 1590 MutableSpace* space;
aoqi@0 1591 size_t live_words;
aoqi@0 1592 size_t fill_words;
aoqi@0 1593 if (eden_live + eden_fillable >= region_size * 2) {
aoqi@0 1594 id = eden_space_id;
aoqi@0 1595 space = eden_space;
aoqi@0 1596 live_words = eden_live;
aoqi@0 1597 fill_words = eden_fillable;
aoqi@0 1598 } else if (from_live + from_fillable >= region_size * 2) {
aoqi@0 1599 id = from_space_id;
aoqi@0 1600 space = from_space;
aoqi@0 1601 live_words = from_live;
aoqi@0 1602 fill_words = from_fillable;
aoqi@0 1603 } else {
aoqi@0 1604 return; // Give up.
aoqi@0 1605 }
aoqi@0 1606 assert(fill_words == 0 || fill_words >= min_fill_size, "sanity");
aoqi@0 1607
aoqi@0 1608 if (live_words < region_size * 2) {
aoqi@0 1609 // Fill from top() to end() w/live objects of mixed sizes.
aoqi@0 1610 HeapWord* const fill_start = space->top();
aoqi@0 1611 live_words += fill_words;
aoqi@0 1612
aoqi@0 1613 space->set_top(fill_start + fill_words);
aoqi@0 1614 if (ZapUnusedHeapArea) {
aoqi@0 1615 space->set_top_for_allocations();
aoqi@0 1616 }
aoqi@0 1617
aoqi@0 1618 HeapWord* cur_addr = fill_start;
aoqi@0 1619 while (fill_words > 0) {
aoqi@0 1620 const size_t r = (size_t)os::random() % (region_size / 2) + min_fill_size;
aoqi@0 1621 size_t cur_size = MIN2(align_object_size_(r), fill_words);
aoqi@0 1622 if (fill_words - cur_size < min_fill_size) {
aoqi@0 1623 cur_size = fill_words; // Avoid leaving a fragment too small to fill.
aoqi@0 1624 }
aoqi@0 1625
aoqi@0 1626 CollectedHeap::fill_with_object(cur_addr, cur_size);
aoqi@0 1627 mark_bitmap()->mark_obj(cur_addr, cur_size);
aoqi@0 1628 sd.add_obj(cur_addr, cur_size);
aoqi@0 1629
aoqi@0 1630 cur_addr += cur_size;
aoqi@0 1631 fill_words -= cur_size;
aoqi@0 1632 }
aoqi@0 1633
aoqi@0 1634 summarize_new_objects(id, fill_start);
aoqi@0 1635 }
aoqi@0 1636
aoqi@0 1637 max_compaction = false;
aoqi@0 1638
aoqi@0 1639 // Manipulate the old gen so that it has room for about half of the live data
aoqi@0 1640 // in the target young gen space (live_words / 2).
aoqi@0 1641 id = old_space_id;
aoqi@0 1642 space = _space_info[id].space();
aoqi@0 1643 const size_t free_at_end = space->free_in_words();
aoqi@0 1644 const size_t free_target = align_object_size(live_words / 2);
aoqi@0 1645 const size_t dead = pointer_delta(space->top(), _space_info[id].new_top());
aoqi@0 1646
aoqi@0 1647 if (free_at_end >= free_target + min_fill_size) {
aoqi@0 1648 // Fill space above top() and set the dense prefix so everything survives.
aoqi@0 1649 HeapWord* const fill_start = space->top();
aoqi@0 1650 const size_t fill_size = free_at_end - free_target;
aoqi@0 1651 space->set_top(space->top() + fill_size);
aoqi@0 1652 if (ZapUnusedHeapArea) {
aoqi@0 1653 space->set_top_for_allocations();
aoqi@0 1654 }
aoqi@0 1655 fill_with_live_objects(id, fill_start, fill_size);
aoqi@0 1656 summarize_new_objects(id, fill_start);
aoqi@0 1657 _space_info[id].set_dense_prefix(sd.region_align_down(space->top()));
aoqi@0 1658 } else if (dead + free_at_end > free_target) {
aoqi@0 1659 // Find a dense prefix that makes the right amount of space available.
aoqi@0 1660 HeapWord* cur = sd.region_align_down(space->top());
aoqi@0 1661 HeapWord* cur_destination = sd.addr_to_region_ptr(cur)->destination();
aoqi@0 1662 size_t dead_to_right = pointer_delta(space->end(), cur_destination);
aoqi@0 1663 while (dead_to_right < free_target) {
aoqi@0 1664 cur -= region_size;
aoqi@0 1665 cur_destination = sd.addr_to_region_ptr(cur)->destination();
aoqi@0 1666 dead_to_right = pointer_delta(space->end(), cur_destination);
aoqi@0 1667 }
aoqi@0 1668 _space_info[id].set_dense_prefix(cur);
aoqi@0 1669 }
aoqi@0 1670 }
aoqi@0 1671 #endif // #ifndef PRODUCT
aoqi@0 1672
aoqi@0 1673 void PSParallelCompact::summarize_spaces_quick()
aoqi@0 1674 {
aoqi@0 1675 for (unsigned int i = 0; i < last_space_id; ++i) {
aoqi@0 1676 const MutableSpace* space = _space_info[i].space();
aoqi@0 1677 HeapWord** nta = _space_info[i].new_top_addr();
aoqi@0 1678 bool result = _summary_data.summarize(_space_info[i].split_info(),
aoqi@0 1679 space->bottom(), space->top(), NULL,
aoqi@0 1680 space->bottom(), space->end(), nta);
aoqi@0 1681 assert(result, "space must fit into itself");
aoqi@0 1682 _space_info[i].set_dense_prefix(space->bottom());
aoqi@0 1683 }
aoqi@0 1684
aoqi@0 1685 #ifndef PRODUCT
aoqi@0 1686 if (ParallelOldGCSplitALot) {
aoqi@0 1687 provoke_split_fill_survivor(to_space_id);
aoqi@0 1688 }
aoqi@0 1689 #endif // #ifndef PRODUCT
aoqi@0 1690 }
aoqi@0 1691
aoqi@0 1692 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
aoqi@0 1693 {
aoqi@0 1694 HeapWord* const dense_prefix_end = dense_prefix(id);
aoqi@0 1695 const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
aoqi@0 1696 const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
aoqi@0 1697 if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
aoqi@0 1698 // Only enough dead space is filled so that any remaining dead space to the
aoqi@0 1699 // left is larger than the minimum filler object. (The remainder is filled
aoqi@0 1700 // during the copy/update phase.)
aoqi@0 1701 //
aoqi@0 1702 // The size of the dead space to the right of the boundary is not a
aoqi@0 1703 // concern, since compaction will be able to use whatever space is
aoqi@0 1704 // available.
aoqi@0 1705 //
aoqi@0 1706 // Here '||' is the boundary, 'x' represents a don't care bit and a box
aoqi@0 1707 // surrounds the space to be filled with an object.
aoqi@0 1708 //
aoqi@0 1709 // In the 32-bit VM, each bit represents two 32-bit words:
aoqi@0 1710 // +---+
aoqi@0 1711 // a) beg_bits: ... x x x | 0 | || 0 x x ...
aoqi@0 1712 // end_bits: ... x x x | 0 | || 0 x x ...
aoqi@0 1713 // +---+
aoqi@0 1714 //
aoqi@0 1715 // In the 64-bit VM, each bit represents one 64-bit word:
aoqi@0 1716 // +------------+
aoqi@0 1717 // b) beg_bits: ... x x x | 0 || 0 | x x ...
aoqi@0 1718 // end_bits: ... x x 1 | 0 || 0 | x x ...
aoqi@0 1719 // +------------+
aoqi@0 1720 // +-------+
aoqi@0 1721 // c) beg_bits: ... x x | 0 0 | || 0 x x ...
aoqi@0 1722 // end_bits: ... x 1 | 0 0 | || 0 x x ...
aoqi@0 1723 // +-------+
aoqi@0 1724 // +-----------+
aoqi@0 1725 // d) beg_bits: ... x | 0 0 0 | || 0 x x ...
aoqi@0 1726 // end_bits: ... 1 | 0 0 0 | || 0 x x ...
aoqi@0 1727 // +-----------+
aoqi@0 1728 // +-------+
aoqi@0 1729 // e) beg_bits: ... 0 0 | 0 0 | || 0 x x ...
aoqi@0 1730 // end_bits: ... 0 0 | 0 0 | || 0 x x ...
aoqi@0 1731 // +-------+
aoqi@0 1732
aoqi@0 1733 // Initially assume case a, c or e will apply.
aoqi@0 1734 size_t obj_len = CollectedHeap::min_fill_size();
aoqi@0 1735 HeapWord* obj_beg = dense_prefix_end - obj_len;
aoqi@0 1736
aoqi@0 1737 #ifdef _LP64
aoqi@0 1738 if (MinObjAlignment > 1) { // object alignment > heap word size
aoqi@0 1739 // Cases a, c or e.
aoqi@0 1740 } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
aoqi@0 1741 // Case b above.
aoqi@0 1742 obj_beg = dense_prefix_end - 1;
aoqi@0 1743 } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
aoqi@0 1744 _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
aoqi@0 1745 // Case d above.
aoqi@0 1746 obj_beg = dense_prefix_end - 3;
aoqi@0 1747 obj_len = 3;
aoqi@0 1748 }
aoqi@0 1749 #endif // #ifdef _LP64
aoqi@0 1750
aoqi@0 1751 CollectedHeap::fill_with_object(obj_beg, obj_len);
aoqi@0 1752 _mark_bitmap.mark_obj(obj_beg, obj_len);
aoqi@0 1753 _summary_data.add_obj(obj_beg, obj_len);
aoqi@0 1754 assert(start_array(id) != NULL, "sanity");
aoqi@0 1755 start_array(id)->allocate_block(obj_beg);
aoqi@0 1756 }
aoqi@0 1757 }
aoqi@0 1758
aoqi@0 1759 void
aoqi@0 1760 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
aoqi@0 1761 {
aoqi@0 1762 RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
aoqi@0 1763 HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
aoqi@0 1764 RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
aoqi@0 1765 for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
aoqi@0 1766 cur->set_source_region(0);
aoqi@0 1767 }
aoqi@0 1768 }
aoqi@0 1769
aoqi@0 1770 void
aoqi@0 1771 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
aoqi@0 1772 {
aoqi@0 1773 assert(id < last_space_id, "id out of range");
aoqi@0 1774 assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom() ||
aoqi@0 1775 ParallelOldGCSplitALot && id == old_space_id,
aoqi@0 1776 "should have been reset in summarize_spaces_quick()");
aoqi@0 1777
aoqi@0 1778 const MutableSpace* space = _space_info[id].space();
aoqi@0 1779 if (_space_info[id].new_top() != space->bottom()) {
aoqi@0 1780 HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
aoqi@0 1781 _space_info[id].set_dense_prefix(dense_prefix_end);
aoqi@0 1782
aoqi@0 1783 #ifndef PRODUCT
aoqi@0 1784 if (TraceParallelOldGCDensePrefix) {
aoqi@0 1785 print_dense_prefix_stats("ratio", id, maximum_compaction,
aoqi@0 1786 dense_prefix_end);
aoqi@0 1787 HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
aoqi@0 1788 print_dense_prefix_stats("density", id, maximum_compaction, addr);
aoqi@0 1789 }
aoqi@0 1790 #endif // #ifndef PRODUCT
aoqi@0 1791
aoqi@0 1792 // Recompute the summary data, taking into account the dense prefix. If
aoqi@0 1793 // every last byte will be reclaimed, then the existing summary data which
aoqi@0 1794 // compacts everything can be left in place.
aoqi@0 1795 if (!maximum_compaction && dense_prefix_end != space->bottom()) {
aoqi@0 1796 // If dead space crosses the dense prefix boundary, it is (at least
aoqi@0 1797 // partially) filled with a dummy object, marked live and added to the
aoqi@0 1798 // summary data. This simplifies the copy/update phase and must be done
aoqi@0 1799 // before the final locations of objects are determined, to prevent
aoqi@0 1800 // leaving a fragment of dead space that is too small to fill.
aoqi@0 1801 fill_dense_prefix_end(id);
aoqi@0 1802
aoqi@0 1803 // Compute the destination of each Region, and thus each object.
aoqi@0 1804 _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
aoqi@0 1805 _summary_data.summarize(_space_info[id].split_info(),
aoqi@0 1806 dense_prefix_end, space->top(), NULL,
aoqi@0 1807 dense_prefix_end, space->end(),
aoqi@0 1808 _space_info[id].new_top_addr());
aoqi@0 1809 }
aoqi@0 1810 }
aoqi@0 1811
aoqi@0 1812 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 1813 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 1814 HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
aoqi@0 1815 const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
aoqi@0 1816 const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
aoqi@0 1817 HeapWord* const new_top = _space_info[id].new_top();
aoqi@0 1818 const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
aoqi@0 1819 const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
aoqi@0 1820 tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
aoqi@0 1821 "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
aoqi@0 1822 "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
aoqi@0 1823 id, space->capacity_in_words(), dense_prefix_end,
aoqi@0 1824 dp_region, dp_words / region_size,
aoqi@0 1825 cr_words / region_size, new_top);
aoqi@0 1826 }
aoqi@0 1827 }
aoqi@0 1828
aoqi@0 1829 #ifndef PRODUCT
aoqi@0 1830 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
aoqi@0 1831 HeapWord* dst_beg, HeapWord* dst_end,
aoqi@0 1832 SpaceId src_space_id,
aoqi@0 1833 HeapWord* src_beg, HeapWord* src_end)
aoqi@0 1834 {
aoqi@0 1835 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 1836 tty->print_cr("summarizing %d [%s] into %d [%s]: "
aoqi@0 1837 "src=" PTR_FORMAT "-" PTR_FORMAT " "
aoqi@0 1838 SIZE_FORMAT "-" SIZE_FORMAT " "
aoqi@0 1839 "dst=" PTR_FORMAT "-" PTR_FORMAT " "
aoqi@0 1840 SIZE_FORMAT "-" SIZE_FORMAT,
aoqi@0 1841 src_space_id, space_names[src_space_id],
aoqi@0 1842 dst_space_id, space_names[dst_space_id],
aoqi@0 1843 src_beg, src_end,
aoqi@0 1844 _summary_data.addr_to_region_idx(src_beg),
aoqi@0 1845 _summary_data.addr_to_region_idx(src_end),
aoqi@0 1846 dst_beg, dst_end,
aoqi@0 1847 _summary_data.addr_to_region_idx(dst_beg),
aoqi@0 1848 _summary_data.addr_to_region_idx(dst_end));
aoqi@0 1849 }
aoqi@0 1850 }
aoqi@0 1851 #endif // #ifndef PRODUCT
aoqi@0 1852
aoqi@0 1853 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
aoqi@0 1854 bool maximum_compaction)
aoqi@0 1855 {
aoqi@0 1856 GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer);
aoqi@0 1857 // trace("2");
aoqi@0 1858
aoqi@0 1859 #ifdef ASSERT
aoqi@0 1860 if (TraceParallelOldGCMarkingPhase) {
aoqi@0 1861 tty->print_cr("add_obj_count=" SIZE_FORMAT " "
aoqi@0 1862 "add_obj_bytes=" SIZE_FORMAT,
aoqi@0 1863 add_obj_count, add_obj_size * HeapWordSize);
aoqi@0 1864 tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
aoqi@0 1865 "mark_bitmap_bytes=" SIZE_FORMAT,
aoqi@0 1866 mark_bitmap_count, mark_bitmap_size * HeapWordSize);
aoqi@0 1867 }
aoqi@0 1868 #endif // #ifdef ASSERT
aoqi@0 1869
aoqi@0 1870 // Quick summarization of each space into itself, to see how much is live.
aoqi@0 1871 summarize_spaces_quick();
aoqi@0 1872
aoqi@0 1873 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 1874 tty->print_cr("summary_phase: after summarizing each space to self");
aoqi@0 1875 Universe::print();
aoqi@0 1876 NOT_PRODUCT(print_region_ranges());
aoqi@0 1877 if (Verbose) {
aoqi@0 1878 NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
aoqi@0 1879 }
aoqi@0 1880 }
aoqi@0 1881
aoqi@0 1882 // The amount of live data that will end up in old space (assuming it fits).
aoqi@0 1883 size_t old_space_total_live = 0;
aoqi@0 1884 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
aoqi@0 1885 old_space_total_live += pointer_delta(_space_info[id].new_top(),
aoqi@0 1886 _space_info[id].space()->bottom());
aoqi@0 1887 }
aoqi@0 1888
aoqi@0 1889 MutableSpace* const old_space = _space_info[old_space_id].space();
aoqi@0 1890 const size_t old_capacity = old_space->capacity_in_words();
aoqi@0 1891 if (old_space_total_live > old_capacity) {
aoqi@0 1892 // XXX - should also try to expand
aoqi@0 1893 maximum_compaction = true;
aoqi@0 1894 }
aoqi@0 1895 #ifndef PRODUCT
aoqi@0 1896 if (ParallelOldGCSplitALot && old_space_total_live < old_capacity) {
aoqi@0 1897 provoke_split(maximum_compaction);
aoqi@0 1898 }
aoqi@0 1899 #endif // #ifndef PRODUCT
aoqi@0 1900
aoqi@0 1901 // Old generations.
aoqi@0 1902 summarize_space(old_space_id, maximum_compaction);
aoqi@0 1903
aoqi@0 1904 // Summarize the remaining spaces in the young gen. The initial target space
aoqi@0 1905 // is the old gen. If a space does not fit entirely into the target, then the
aoqi@0 1906 // remainder is compacted into the space itself and that space becomes the new
aoqi@0 1907 // target.
aoqi@0 1908 SpaceId dst_space_id = old_space_id;
aoqi@0 1909 HeapWord* dst_space_end = old_space->end();
aoqi@0 1910 HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
aoqi@0 1911 for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
aoqi@0 1912 const MutableSpace* space = _space_info[id].space();
aoqi@0 1913 const size_t live = pointer_delta(_space_info[id].new_top(),
aoqi@0 1914 space->bottom());
aoqi@0 1915 const size_t available = pointer_delta(dst_space_end, *new_top_addr);
aoqi@0 1916
aoqi@0 1917 NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
aoqi@0 1918 SpaceId(id), space->bottom(), space->top());)
aoqi@0 1919 if (live > 0 && live <= available) {
aoqi@0 1920 // All the live data will fit.
aoqi@0 1921 bool done = _summary_data.summarize(_space_info[id].split_info(),
aoqi@0 1922 space->bottom(), space->top(),
aoqi@0 1923 NULL,
aoqi@0 1924 *new_top_addr, dst_space_end,
aoqi@0 1925 new_top_addr);
aoqi@0 1926 assert(done, "space must fit into old gen");
aoqi@0 1927
aoqi@0 1928 // Reset the new_top value for the space.
aoqi@0 1929 _space_info[id].set_new_top(space->bottom());
aoqi@0 1930 } else if (live > 0) {
aoqi@0 1931 // Attempt to fit part of the source space into the target space.
aoqi@0 1932 HeapWord* next_src_addr = NULL;
aoqi@0 1933 bool done = _summary_data.summarize(_space_info[id].split_info(),
aoqi@0 1934 space->bottom(), space->top(),
aoqi@0 1935 &next_src_addr,
aoqi@0 1936 *new_top_addr, dst_space_end,
aoqi@0 1937 new_top_addr);
aoqi@0 1938 assert(!done, "space should not fit into old gen");
aoqi@0 1939 assert(next_src_addr != NULL, "sanity");
aoqi@0 1940
aoqi@0 1941 // The source space becomes the new target, so the remainder is compacted
aoqi@0 1942 // within the space itself.
aoqi@0 1943 dst_space_id = SpaceId(id);
aoqi@0 1944 dst_space_end = space->end();
aoqi@0 1945 new_top_addr = _space_info[id].new_top_addr();
aoqi@0 1946 NOT_PRODUCT(summary_phase_msg(dst_space_id,
aoqi@0 1947 space->bottom(), dst_space_end,
aoqi@0 1948 SpaceId(id), next_src_addr, space->top());)
aoqi@0 1949 done = _summary_data.summarize(_space_info[id].split_info(),
aoqi@0 1950 next_src_addr, space->top(),
aoqi@0 1951 NULL,
aoqi@0 1952 space->bottom(), dst_space_end,
aoqi@0 1953 new_top_addr);
aoqi@0 1954 assert(done, "space must fit when compacted into itself");
aoqi@0 1955 assert(*new_top_addr <= space->top(), "usage should not grow");
aoqi@0 1956 }
aoqi@0 1957 }
aoqi@0 1958
aoqi@0 1959 if (TraceParallelOldGCSummaryPhase) {
aoqi@0 1960 tty->print_cr("summary_phase: after final summarization");
aoqi@0 1961 Universe::print();
aoqi@0 1962 NOT_PRODUCT(print_region_ranges());
aoqi@0 1963 if (Verbose) {
aoqi@0 1964 NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
aoqi@0 1965 }
aoqi@0 1966 }
aoqi@0 1967 }
aoqi@0 1968
aoqi@0 1969 // This method should contain all heap-specific policy for invoking a full
aoqi@0 1970 // collection. invoke_no_policy() will only attempt to compact the heap; it
aoqi@0 1971 // will do nothing further. If we need to bail out for policy reasons, scavenge
aoqi@0 1972 // before full gc, or any other specialized behavior, it needs to be added here.
aoqi@0 1973 //
aoqi@0 1974 // Note that this method should only be called from the vm_thread while at a
aoqi@0 1975 // safepoint.
aoqi@0 1976 //
aoqi@0 1977 // Note that the all_soft_refs_clear flag in the collector policy
aoqi@0 1978 // may be true because this method can be called without intervening
aoqi@0 1979 // activity. For example when the heap space is tight and full measure
aoqi@0 1980 // are being taken to free space.
aoqi@0 1981 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
aoqi@0 1982 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
aoqi@0 1983 assert(Thread::current() == (Thread*)VMThread::vm_thread(),
aoqi@0 1984 "should be in vm thread");
aoqi@0 1985
aoqi@0 1986 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 1987 GCCause::Cause gc_cause = heap->gc_cause();
aoqi@0 1988 assert(!heap->is_gc_active(), "not reentrant");
aoqi@0 1989
aoqi@0 1990 PSAdaptiveSizePolicy* policy = heap->size_policy();
aoqi@0 1991 IsGCActiveMark mark;
aoqi@0 1992
aoqi@0 1993 if (ScavengeBeforeFullGC) {
aoqi@0 1994 PSScavenge::invoke_no_policy();
aoqi@0 1995 }
aoqi@0 1996
aoqi@0 1997 const bool clear_all_soft_refs =
aoqi@0 1998 heap->collector_policy()->should_clear_all_soft_refs();
aoqi@0 1999
aoqi@0 2000 PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
aoqi@0 2001 maximum_heap_compaction);
aoqi@0 2002 }
aoqi@0 2003
aoqi@0 2004 // This method contains no policy. You should probably
aoqi@0 2005 // be calling invoke() instead.
aoqi@0 2006 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
aoqi@0 2007 assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
aoqi@0 2008 assert(ref_processor() != NULL, "Sanity");
aoqi@0 2009
aoqi@0 2010 if (GC_locker::check_active_before_gc()) {
aoqi@0 2011 return false;
aoqi@0 2012 }
aoqi@0 2013
aoqi@0 2014 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 2015
aoqi@0 2016 _gc_timer.register_gc_start();
aoqi@0 2017 _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
aoqi@0 2018
aoqi@0 2019 TimeStamp marking_start;
aoqi@0 2020 TimeStamp compaction_start;
aoqi@0 2021 TimeStamp collection_exit;
aoqi@0 2022
aoqi@0 2023 GCCause::Cause gc_cause = heap->gc_cause();
aoqi@0 2024 PSYoungGen* young_gen = heap->young_gen();
aoqi@0 2025 PSOldGen* old_gen = heap->old_gen();
aoqi@0 2026 PSAdaptiveSizePolicy* size_policy = heap->size_policy();
aoqi@0 2027
aoqi@0 2028 // The scope of casr should end after code that can change
aoqi@0 2029 // CollectorPolicy::_should_clear_all_soft_refs.
aoqi@0 2030 ClearedAllSoftRefs casr(maximum_heap_compaction,
aoqi@0 2031 heap->collector_policy());
aoqi@0 2032
aoqi@0 2033 if (ZapUnusedHeapArea) {
aoqi@0 2034 // Save information needed to minimize mangling
aoqi@0 2035 heap->record_gen_tops_before_GC();
aoqi@0 2036 }
aoqi@0 2037
aoqi@0 2038 heap->pre_full_gc_dump(&_gc_timer);
aoqi@0 2039
aoqi@0 2040 _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
aoqi@0 2041
aoqi@0 2042 // Make sure data structures are sane, make the heap parsable, and do other
aoqi@0 2043 // miscellaneous bookkeeping.
aoqi@0 2044 PreGCValues pre_gc_values;
aoqi@0 2045 pre_compact(&pre_gc_values);
aoqi@0 2046
aoqi@0 2047 // Get the compaction manager reserved for the VM thread.
aoqi@0 2048 ParCompactionManager* const vmthread_cm =
aoqi@0 2049 ParCompactionManager::manager_array(gc_task_manager()->workers());
aoqi@0 2050
aoqi@0 2051 // Place after pre_compact() where the number of invocations is incremented.
aoqi@0 2052 AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
aoqi@0 2053
aoqi@0 2054 {
aoqi@0 2055 ResourceMark rm;
aoqi@0 2056 HandleMark hm;
aoqi@0 2057
aoqi@0 2058 // Set the number of GC threads to be used in this collection
aoqi@0 2059 gc_task_manager()->set_active_gang();
aoqi@0 2060 gc_task_manager()->task_idle_workers();
aoqi@0 2061 heap->set_par_threads(gc_task_manager()->active_workers());
aoqi@0 2062
aoqi@0 2063 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
aoqi@0 2064 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
aoqi@0 2065 GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
aoqi@0 2066 TraceCollectorStats tcs(counters());
aoqi@0 2067 TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
aoqi@0 2068
aoqi@0 2069 if (TraceGen1Time) accumulated_time()->start();
aoqi@0 2070
aoqi@0 2071 // Let the size policy know we're starting
aoqi@0 2072 size_policy->major_collection_begin();
aoqi@0 2073
aoqi@0 2074 CodeCache::gc_prologue();
aoqi@0 2075 Threads::gc_prologue();
aoqi@0 2076
aoqi@0 2077 COMPILER2_PRESENT(DerivedPointerTable::clear());
aoqi@0 2078
aoqi@0 2079 ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
aoqi@0 2080 ref_processor()->setup_policy(maximum_heap_compaction);
aoqi@0 2081
aoqi@0 2082 bool marked_for_unloading = false;
aoqi@0 2083
aoqi@0 2084 marking_start.update();
aoqi@0 2085 marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
aoqi@0 2086
aoqi@0 2087 bool max_on_system_gc = UseMaximumCompactionOnSystemGC
aoqi@0 2088 && gc_cause == GCCause::_java_lang_system_gc;
aoqi@0 2089 summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
aoqi@0 2090
aoqi@0 2091 COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
aoqi@0 2092 COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
aoqi@0 2093
aoqi@0 2094 // adjust_roots() updates Universe::_intArrayKlassObj which is
aoqi@0 2095 // needed by the compaction for filling holes in the dense prefix.
aoqi@0 2096 adjust_roots();
aoqi@0 2097
aoqi@0 2098 compaction_start.update();
aoqi@0 2099 compact();
aoqi@0 2100
aoqi@0 2101 // Reset the mark bitmap, summary data, and do other bookkeeping. Must be
aoqi@0 2102 // done before resizing.
aoqi@0 2103 post_compact();
aoqi@0 2104
aoqi@0 2105 // Let the size policy know we're done
aoqi@0 2106 size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
aoqi@0 2107
aoqi@25 2108 if (UseAdaptiveSizePolicy) {
aoqi@0 2109 if (PrintAdaptiveSizePolicy) {
aoqi@0 2110 gclog_or_tty->print("AdaptiveSizeStart: ");
aoqi@0 2111 gclog_or_tty->stamp();
aoqi@0 2112 gclog_or_tty->print_cr(" collection: %d ",
aoqi@0 2113 heap->total_collections());
aoqi@0 2114 if (Verbose) {
aoqi@0 2115 gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d",
aoqi@0 2116 old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
aoqi@0 2117 }
aoqi@0 2118 }
aoqi@0 2119
aoqi@0 2120 // Don't check if the size_policy is ready here. Let
aoqi@0 2121 // the size_policy check that internally.
aoqi@0 2122 if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
aoqi@0 2123 ((gc_cause != GCCause::_java_lang_system_gc) ||
aoqi@0 2124 UseAdaptiveSizePolicyWithSystemGC)) {
aoqi@0 2125 // Calculate optimal free space amounts
aoqi@0 2126 assert(young_gen->max_size() >
aoqi@0 2127 young_gen->from_space()->capacity_in_bytes() +
aoqi@0 2128 young_gen->to_space()->capacity_in_bytes(),
aoqi@0 2129 "Sizes of space in young gen are out-of-bounds");
aoqi@0 2130
aoqi@0 2131 size_t young_live = young_gen->used_in_bytes();
aoqi@0 2132 size_t eden_live = young_gen->eden_space()->used_in_bytes();
aoqi@0 2133 size_t old_live = old_gen->used_in_bytes();
aoqi@0 2134 size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
aoqi@0 2135 size_t max_old_gen_size = old_gen->max_gen_size();
aoqi@0 2136 size_t max_eden_size = young_gen->max_size() -
aoqi@0 2137 young_gen->from_space()->capacity_in_bytes() -
aoqi@0 2138 young_gen->to_space()->capacity_in_bytes();
aoqi@0 2139
aoqi@0 2140 // Used for diagnostics
aoqi@0 2141 size_policy->clear_generation_free_space_flags();
aoqi@0 2142
aoqi@0 2143 size_policy->compute_generations_free_space(young_live,
aoqi@0 2144 eden_live,
aoqi@0 2145 old_live,
aoqi@0 2146 cur_eden,
aoqi@0 2147 max_old_gen_size,
aoqi@0 2148 max_eden_size,
aoqi@0 2149 true /* full gc*/);
aoqi@0 2150
aoqi@0 2151 size_policy->check_gc_overhead_limit(young_live,
aoqi@0 2152 eden_live,
aoqi@0 2153 max_old_gen_size,
aoqi@0 2154 max_eden_size,
aoqi@0 2155 true /* full gc*/,
aoqi@0 2156 gc_cause,
aoqi@0 2157 heap->collector_policy());
aoqi@0 2158
aoqi@0 2159 size_policy->decay_supplemental_growth(true /* full gc*/);
aoqi@0 2160
aoqi@0 2161 heap->resize_old_gen(
aoqi@0 2162 size_policy->calculated_old_free_size_in_bytes());
aoqi@0 2163
aoqi@0 2164 // Don't resize the young generation at an major collection. A
aoqi@0 2165 // desired young generation size may have been calculated but
aoqi@0 2166 // resizing the young generation complicates the code because the
aoqi@0 2167 // resizing of the old generation may have moved the boundary
aoqi@0 2168 // between the young generation and the old generation. Let the
aoqi@0 2169 // young generation resizing happen at the minor collections.
aoqi@0 2170 }
aoqi@0 2171 if (PrintAdaptiveSizePolicy) {
aoqi@0 2172 gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
aoqi@0 2173 heap->total_collections());
aoqi@0 2174 }
aoqi@0 2175 }
aoqi@0 2176
aoqi@0 2177 if (UsePerfData) {
aoqi@0 2178 PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
aoqi@0 2179 counters->update_counters();
aoqi@0 2180 counters->update_old_capacity(old_gen->capacity_in_bytes());
aoqi@0 2181 counters->update_young_capacity(young_gen->capacity_in_bytes());
aoqi@0 2182 }
aoqi@0 2183
aoqi@0 2184 heap->resize_all_tlabs();
aoqi@0 2185
aoqi@0 2186 // Resize the metaspace capactiy after a collection
aoqi@0 2187 MetaspaceGC::compute_new_size();
aoqi@0 2188
aoqi@0 2189 if (TraceGen1Time) accumulated_time()->stop();
aoqi@0 2190
aoqi@0 2191 if (PrintGC) {
aoqi@0 2192 if (PrintGCDetails) {
aoqi@0 2193 // No GC timestamp here. This is after GC so it would be confusing.
aoqi@0 2194 young_gen->print_used_change(pre_gc_values.young_gen_used());
aoqi@0 2195 old_gen->print_used_change(pre_gc_values.old_gen_used());
aoqi@0 2196 heap->print_heap_change(pre_gc_values.heap_used());
aoqi@0 2197 MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
aoqi@0 2198 } else {
aoqi@0 2199 heap->print_heap_change(pre_gc_values.heap_used());
aoqi@0 2200 }
aoqi@0 2201 }
aoqi@0 2202
aoqi@0 2203 // Track memory usage and detect low memory
aoqi@0 2204 MemoryService::track_memory_usage();
aoqi@0 2205 heap->update_counters();
aoqi@0 2206 gc_task_manager()->release_idle_workers();
aoqi@0 2207 }
aoqi@0 2208
aoqi@0 2209 #ifdef ASSERT
aoqi@0 2210 for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
aoqi@0 2211 ParCompactionManager* const cm =
aoqi@0 2212 ParCompactionManager::manager_array(int(i));
aoqi@0 2213 assert(cm->marking_stack()->is_empty(), "should be empty");
aoqi@0 2214 assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
aoqi@0 2215 }
aoqi@0 2216 #endif // ASSERT
aoqi@0 2217
aoqi@0 2218 if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
aoqi@0 2219 HandleMark hm; // Discard invalid handles created during verification
aoqi@0 2220 Universe::verify(" VerifyAfterGC:");
aoqi@0 2221 }
aoqi@0 2222
aoqi@0 2223 // Re-verify object start arrays
aoqi@0 2224 if (VerifyObjectStartArray &&
aoqi@0 2225 VerifyAfterGC) {
aoqi@0 2226 old_gen->verify_object_start_array();
aoqi@0 2227 }
aoqi@0 2228
aoqi@0 2229 if (ZapUnusedHeapArea) {
aoqi@0 2230 old_gen->object_space()->check_mangled_unused_area_complete();
aoqi@0 2231 }
aoqi@0 2232
aoqi@0 2233 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
aoqi@0 2234
aoqi@0 2235 collection_exit.update();
aoqi@0 2236
aoqi@0 2237 heap->print_heap_after_gc();
aoqi@0 2238 heap->trace_heap_after_gc(&_gc_tracer);
aoqi@0 2239
aoqi@0 2240 if (PrintGCTaskTimeStamps) {
aoqi@0 2241 gclog_or_tty->print_cr("VM-Thread " INT64_FORMAT " " INT64_FORMAT " "
aoqi@0 2242 INT64_FORMAT,
aoqi@0 2243 marking_start.ticks(), compaction_start.ticks(),
aoqi@0 2244 collection_exit.ticks());
aoqi@0 2245 gc_task_manager()->print_task_time_stamps();
aoqi@0 2246 }
aoqi@0 2247
aoqi@0 2248 heap->post_full_gc_dump(&_gc_timer);
aoqi@0 2249
aoqi@0 2250 #ifdef TRACESPINNING
aoqi@0 2251 ParallelTaskTerminator::print_termination_counts();
aoqi@0 2252 #endif
aoqi@0 2253
aoqi@0 2254 _gc_timer.register_gc_end();
aoqi@0 2255
aoqi@0 2256 _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
aoqi@0 2257 _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
aoqi@0 2258
aoqi@0 2259 return true;
aoqi@0 2260 }
aoqi@0 2261
aoqi@0 2262 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
aoqi@0 2263 PSYoungGen* young_gen,
aoqi@0 2264 PSOldGen* old_gen) {
aoqi@0 2265 MutableSpace* const eden_space = young_gen->eden_space();
aoqi@0 2266 assert(!eden_space->is_empty(), "eden must be non-empty");
aoqi@0 2267 assert(young_gen->virtual_space()->alignment() ==
aoqi@0 2268 old_gen->virtual_space()->alignment(), "alignments do not match");
aoqi@0 2269
aoqi@0 2270 if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
aoqi@0 2271 return false;
aoqi@0 2272 }
aoqi@0 2273
aoqi@0 2274 // Both generations must be completely committed.
aoqi@0 2275 if (young_gen->virtual_space()->uncommitted_size() != 0) {
aoqi@0 2276 return false;
aoqi@0 2277 }
aoqi@0 2278 if (old_gen->virtual_space()->uncommitted_size() != 0) {
aoqi@0 2279 return false;
aoqi@0 2280 }
aoqi@0 2281
aoqi@0 2282 // Figure out how much to take from eden. Include the average amount promoted
aoqi@0 2283 // in the total; otherwise the next young gen GC will simply bail out to a
aoqi@0 2284 // full GC.
aoqi@0 2285 const size_t alignment = old_gen->virtual_space()->alignment();
aoqi@0 2286 const size_t eden_used = eden_space->used_in_bytes();
aoqi@0 2287 const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
aoqi@0 2288 const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
aoqi@0 2289 const size_t eden_capacity = eden_space->capacity_in_bytes();
aoqi@0 2290
aoqi@0 2291 if (absorb_size >= eden_capacity) {
aoqi@0 2292 return false; // Must leave some space in eden.
aoqi@0 2293 }
aoqi@0 2294
aoqi@0 2295 const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
aoqi@0 2296 if (new_young_size < young_gen->min_gen_size()) {
aoqi@0 2297 return false; // Respect young gen minimum size.
aoqi@0 2298 }
aoqi@0 2299
aoqi@0 2300 if (TraceAdaptiveGCBoundary && Verbose) {
aoqi@0 2301 gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
aoqi@0 2302 "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
aoqi@0 2303 "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
aoqi@0 2304 "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
aoqi@0 2305 absorb_size / K,
aoqi@0 2306 eden_capacity / K, (eden_capacity - absorb_size) / K,
aoqi@0 2307 young_gen->from_space()->used_in_bytes() / K,
aoqi@0 2308 young_gen->to_space()->used_in_bytes() / K,
aoqi@0 2309 young_gen->capacity_in_bytes() / K, new_young_size / K);
aoqi@0 2310 }
aoqi@0 2311
aoqi@0 2312 // Fill the unused part of the old gen.
aoqi@0 2313 MutableSpace* const old_space = old_gen->object_space();
aoqi@0 2314 HeapWord* const unused_start = old_space->top();
aoqi@0 2315 size_t const unused_words = pointer_delta(old_space->end(), unused_start);
aoqi@0 2316
aoqi@0 2317 if (unused_words > 0) {
aoqi@0 2318 if (unused_words < CollectedHeap::min_fill_size()) {
aoqi@0 2319 return false; // If the old gen cannot be filled, must give up.
aoqi@0 2320 }
aoqi@0 2321 CollectedHeap::fill_with_objects(unused_start, unused_words);
aoqi@0 2322 }
aoqi@0 2323
aoqi@0 2324 // Take the live data from eden and set both top and end in the old gen to
aoqi@0 2325 // eden top. (Need to set end because reset_after_change() mangles the region
aoqi@0 2326 // from end to virtual_space->high() in debug builds).
aoqi@0 2327 HeapWord* const new_top = eden_space->top();
aoqi@0 2328 old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
aoqi@0 2329 absorb_size);
aoqi@0 2330 young_gen->reset_after_change();
aoqi@0 2331 old_space->set_top(new_top);
aoqi@0 2332 old_space->set_end(new_top);
aoqi@0 2333 old_gen->reset_after_change();
aoqi@0 2334
aoqi@0 2335 // Update the object start array for the filler object and the data from eden.
aoqi@0 2336 ObjectStartArray* const start_array = old_gen->start_array();
aoqi@0 2337 for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
aoqi@0 2338 start_array->allocate_block(p);
aoqi@0 2339 }
aoqi@0 2340
aoqi@0 2341 // Could update the promoted average here, but it is not typically updated at
aoqi@0 2342 // full GCs and the value to use is unclear. Something like
aoqi@0 2343 //
aoqi@0 2344 // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
aoqi@0 2345
aoqi@0 2346 size_policy->set_bytes_absorbed_from_eden(absorb_size);
aoqi@0 2347 return true;
aoqi@0 2348 }
aoqi@0 2349
aoqi@0 2350 GCTaskManager* const PSParallelCompact::gc_task_manager() {
aoqi@0 2351 assert(ParallelScavengeHeap::gc_task_manager() != NULL,
aoqi@0 2352 "shouldn't return NULL");
aoqi@0 2353 return ParallelScavengeHeap::gc_task_manager();
aoqi@0 2354 }
aoqi@0 2355
aoqi@0 2356 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
aoqi@0 2357 bool maximum_heap_compaction,
aoqi@0 2358 ParallelOldTracer *gc_tracer) {
aoqi@0 2359 // Recursively traverse all live objects and mark them
aoqi@0 2360 GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer);
aoqi@0 2361
aoqi@0 2362 ParallelScavengeHeap* heap = gc_heap();
aoqi@0 2363 uint parallel_gc_threads = heap->gc_task_manager()->workers();
aoqi@0 2364 uint active_gc_threads = heap->gc_task_manager()->active_workers();
aoqi@0 2365 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
aoqi@0 2366 ParallelTaskTerminator terminator(active_gc_threads, qset);
aoqi@0 2367
aoqi@0 2368 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
aoqi@0 2369 PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
aoqi@0 2370
aoqi@0 2371 // Need new claim bits before marking starts.
aoqi@0 2372 ClassLoaderDataGraph::clear_claimed_marks();
aoqi@0 2373
aoqi@0 2374 {
aoqi@0 2375 GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer);
aoqi@0 2376
aoqi@0 2377 ParallelScavengeHeap::ParStrongRootsScope psrs;
aoqi@0 2378
aoqi@0 2379 GCTaskQueue* q = GCTaskQueue::create();
aoqi@0 2380
aoqi@0 2381 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
aoqi@0 2382 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
aoqi@0 2383 // We scan the thread roots in parallel
aoqi@0 2384 Threads::create_thread_roots_marking_tasks(q);
aoqi@0 2385 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
aoqi@0 2386 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
aoqi@0 2387 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
aoqi@0 2388 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
aoqi@0 2389 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
aoqi@0 2390 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
aoqi@0 2391 q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
aoqi@0 2392
aoqi@0 2393 if (active_gc_threads > 1) {
aoqi@0 2394 for (uint j = 0; j < active_gc_threads; j++) {
aoqi@0 2395 q->enqueue(new StealMarkingTask(&terminator));
aoqi@0 2396 }
aoqi@0 2397 }
aoqi@0 2398
aoqi@0 2399 gc_task_manager()->execute_and_wait(q);
aoqi@0 2400 }
aoqi@0 2401
aoqi@0 2402 // Process reference objects found during marking
aoqi@0 2403 {
aoqi@0 2404 GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer);
aoqi@0 2405
aoqi@0 2406 ReferenceProcessorStats stats;
aoqi@0 2407 if (ref_processor()->processing_is_mt()) {
aoqi@0 2408 RefProcTaskExecutor task_executor;
aoqi@0 2409 stats = ref_processor()->process_discovered_references(
aoqi@0 2410 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
aoqi@0 2411 &task_executor, &_gc_timer);
aoqi@0 2412 } else {
aoqi@0 2413 stats = ref_processor()->process_discovered_references(
aoqi@0 2414 is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
aoqi@0 2415 &_gc_timer);
aoqi@0 2416 }
aoqi@0 2417
aoqi@0 2418 gc_tracer->report_gc_reference_stats(stats);
aoqi@0 2419 }
aoqi@0 2420
aoqi@0 2421 GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer);
aoqi@0 2422
aoqi@0 2423 // This is the point where the entire marking should have completed.
aoqi@0 2424 assert(cm->marking_stacks_empty(), "Marking should have completed");
aoqi@0 2425
aoqi@0 2426 // Follow system dictionary roots and unload classes.
aoqi@0 2427 bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
aoqi@0 2428
aoqi@0 2429 // Unload nmethods.
aoqi@0 2430 CodeCache::do_unloading(is_alive_closure(), purged_class);
aoqi@0 2431
aoqi@0 2432 // Prune dead klasses from subklass/sibling/implementor lists.
aoqi@0 2433 Klass::clean_weak_klass_links(is_alive_closure());
aoqi@0 2434
aoqi@0 2435 // Delete entries for dead interned strings.
aoqi@0 2436 StringTable::unlink(is_alive_closure());
aoqi@0 2437
aoqi@0 2438 // Clean up unreferenced symbols in symbol table.
aoqi@0 2439 SymbolTable::unlink();
aoqi@0 2440 _gc_tracer.report_object_count_after_gc(is_alive_closure());
aoqi@0 2441 }
aoqi@0 2442
aoqi@0 2443 void PSParallelCompact::follow_class_loader(ParCompactionManager* cm,
aoqi@0 2444 ClassLoaderData* cld) {
aoqi@0 2445 PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
aoqi@0 2446 PSParallelCompact::FollowKlassClosure follow_klass_closure(&mark_and_push_closure);
aoqi@0 2447
aoqi@0 2448 cld->oops_do(&mark_and_push_closure, &follow_klass_closure, true);
aoqi@0 2449 }
aoqi@0 2450
aoqi@0 2451 // This should be moved to the shared markSweep code!
aoqi@0 2452 class PSAlwaysTrueClosure: public BoolObjectClosure {
aoqi@0 2453 public:
aoqi@0 2454 bool do_object_b(oop p) { return true; }
aoqi@0 2455 };
aoqi@0 2456 static PSAlwaysTrueClosure always_true;
aoqi@0 2457
aoqi@0 2458 void PSParallelCompact::adjust_roots() {
aoqi@0 2459 // Adjust the pointers to reflect the new locations
aoqi@0 2460 GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer);
aoqi@0 2461
aoqi@0 2462 // Need new claim bits when tracing through and adjusting pointers.
aoqi@0 2463 ClassLoaderDataGraph::clear_claimed_marks();
aoqi@0 2464
aoqi@0 2465 // General strong roots.
aoqi@0 2466 Universe::oops_do(adjust_pointer_closure());
aoqi@0 2467 JNIHandles::oops_do(adjust_pointer_closure()); // Global (strong) JNI handles
aoqi@0 2468 CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
aoqi@0 2469 Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
aoqi@0 2470 ObjectSynchronizer::oops_do(adjust_pointer_closure());
aoqi@0 2471 FlatProfiler::oops_do(adjust_pointer_closure());
aoqi@0 2472 Management::oops_do(adjust_pointer_closure());
aoqi@0 2473 JvmtiExport::oops_do(adjust_pointer_closure());
aoqi@0 2474 // SO_AllClasses
aoqi@0 2475 SystemDictionary::oops_do(adjust_pointer_closure());
aoqi@0 2476 ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
aoqi@0 2477
aoqi@0 2478 // Now adjust pointers in remaining weak roots. (All of which should
aoqi@0 2479 // have been cleared if they pointed to non-surviving objects.)
aoqi@0 2480 // Global (weak) JNI handles
aoqi@0 2481 JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
aoqi@0 2482
aoqi@0 2483 CodeCache::oops_do(adjust_pointer_closure());
aoqi@0 2484 StringTable::oops_do(adjust_pointer_closure());
aoqi@0 2485 ref_processor()->weak_oops_do(adjust_pointer_closure());
aoqi@0 2486 // Roots were visited so references into the young gen in roots
aoqi@0 2487 // may have been scanned. Process them also.
aoqi@0 2488 // Should the reference processor have a span that excludes
aoqi@0 2489 // young gen objects?
aoqi@0 2490 PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
aoqi@0 2491 }
aoqi@0 2492
aoqi@0 2493 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
aoqi@0 2494 uint parallel_gc_threads)
aoqi@0 2495 {
aoqi@0 2496 GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer);
aoqi@0 2497
aoqi@0 2498 // Find the threads that are active
aoqi@0 2499 unsigned int which = 0;
aoqi@0 2500
aoqi@0 2501 const uint task_count = MAX2(parallel_gc_threads, 1U);
aoqi@0 2502 for (uint j = 0; j < task_count; j++) {
aoqi@0 2503 q->enqueue(new DrainStacksCompactionTask(j));
aoqi@0 2504 ParCompactionManager::verify_region_list_empty(j);
aoqi@0 2505 // Set the region stacks variables to "no" region stack values
aoqi@0 2506 // so that they will be recognized and needing a region stack
aoqi@0 2507 // in the stealing tasks if they do not get one by executing
aoqi@0 2508 // a draining stack.
aoqi@0 2509 ParCompactionManager* cm = ParCompactionManager::manager_array(j);
aoqi@0 2510 cm->set_region_stack(NULL);
aoqi@0 2511 cm->set_region_stack_index((uint)max_uintx);
aoqi@0 2512 }
aoqi@0 2513 ParCompactionManager::reset_recycled_stack_index();
aoqi@0 2514
aoqi@0 2515 // Find all regions that are available (can be filled immediately) and
aoqi@0 2516 // distribute them to the thread stacks. The iteration is done in reverse
aoqi@0 2517 // order (high to low) so the regions will be removed in ascending order.
aoqi@0 2518
aoqi@0 2519 const ParallelCompactData& sd = PSParallelCompact::summary_data();
aoqi@0 2520
aoqi@0 2521 size_t fillable_regions = 0; // A count for diagnostic purposes.
aoqi@0 2522 // A region index which corresponds to the tasks created above.
aoqi@0 2523 // "which" must be 0 <= which < task_count
aoqi@0 2524
aoqi@0 2525 which = 0;
aoqi@0 2526 // id + 1 is used to test termination so unsigned can
aoqi@0 2527 // be used with an old_space_id == 0.
aoqi@0 2528 for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
aoqi@0 2529 SpaceInfo* const space_info = _space_info + id;
aoqi@0 2530 MutableSpace* const space = space_info->space();
aoqi@0 2531 HeapWord* const new_top = space_info->new_top();
aoqi@0 2532
aoqi@0 2533 const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
aoqi@0 2534 const size_t end_region =
aoqi@0 2535 sd.addr_to_region_idx(sd.region_align_up(new_top));
aoqi@0 2536
aoqi@0 2537 for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
aoqi@0 2538 if (sd.region(cur)->claim_unsafe()) {
aoqi@0 2539 ParCompactionManager::region_list_push(which, cur);
aoqi@0 2540
aoqi@0 2541 if (TraceParallelOldGCCompactionPhase && Verbose) {
aoqi@0 2542 const size_t count_mod_8 = fillable_regions & 7;
aoqi@0 2543 if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
aoqi@0 2544 gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
aoqi@0 2545 if (count_mod_8 == 7) gclog_or_tty->cr();
aoqi@0 2546 }
aoqi@0 2547
aoqi@0 2548 NOT_PRODUCT(++fillable_regions;)
aoqi@0 2549
aoqi@0 2550 // Assign regions to tasks in round-robin fashion.
aoqi@0 2551 if (++which == task_count) {
aoqi@0 2552 assert(which <= parallel_gc_threads,
aoqi@0 2553 "Inconsistent number of workers");
aoqi@0 2554 which = 0;
aoqi@0 2555 }
aoqi@0 2556 }
aoqi@0 2557 }
aoqi@0 2558 }
aoqi@0 2559
aoqi@0 2560 if (TraceParallelOldGCCompactionPhase) {
aoqi@0 2561 if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
aoqi@0 2562 gclog_or_tty->print_cr("%u initially fillable regions", fillable_regions);
aoqi@0 2563 }
aoqi@0 2564 }
aoqi@0 2565
aoqi@0 2566 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
aoqi@0 2567
aoqi@0 2568 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
aoqi@0 2569 uint parallel_gc_threads) {
aoqi@0 2570 GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer);
aoqi@0 2571
aoqi@0 2572 ParallelCompactData& sd = PSParallelCompact::summary_data();
aoqi@0 2573
aoqi@0 2574 // Iterate over all the spaces adding tasks for updating
aoqi@0 2575 // regions in the dense prefix. Assume that 1 gc thread
aoqi@0 2576 // will work on opening the gaps and the remaining gc threads
aoqi@0 2577 // will work on the dense prefix.
aoqi@0 2578 unsigned int space_id;
aoqi@0 2579 for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
aoqi@0 2580 HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
aoqi@0 2581 const MutableSpace* const space = _space_info[space_id].space();
aoqi@0 2582
aoqi@0 2583 if (dense_prefix_end == space->bottom()) {
aoqi@0 2584 // There is no dense prefix for this space.
aoqi@0 2585 continue;
aoqi@0 2586 }
aoqi@0 2587
aoqi@0 2588 // The dense prefix is before this region.
aoqi@0 2589 size_t region_index_end_dense_prefix =
aoqi@0 2590 sd.addr_to_region_idx(dense_prefix_end);
aoqi@0 2591 RegionData* const dense_prefix_cp =
aoqi@0 2592 sd.region(region_index_end_dense_prefix);
aoqi@0 2593 assert(dense_prefix_end == space->end() ||
aoqi@0 2594 dense_prefix_cp->available() ||
aoqi@0 2595 dense_prefix_cp->claimed(),
aoqi@0 2596 "The region after the dense prefix should always be ready to fill");
aoqi@0 2597
aoqi@0 2598 size_t region_index_start = sd.addr_to_region_idx(space->bottom());
aoqi@0 2599
aoqi@0 2600 // Is there dense prefix work?
aoqi@0 2601 size_t total_dense_prefix_regions =
aoqi@0 2602 region_index_end_dense_prefix - region_index_start;
aoqi@0 2603 // How many regions of the dense prefix should be given to
aoqi@0 2604 // each thread?
aoqi@0 2605 if (total_dense_prefix_regions > 0) {
aoqi@0 2606 uint tasks_for_dense_prefix = 1;
aoqi@0 2607 if (total_dense_prefix_regions <=
aoqi@0 2608 (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
aoqi@0 2609 // Don't over partition. This assumes that
aoqi@0 2610 // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
aoqi@0 2611 // so there are not many regions to process.
aoqi@0 2612 tasks_for_dense_prefix = parallel_gc_threads;
aoqi@0 2613 } else {
aoqi@0 2614 // Over partition
aoqi@0 2615 tasks_for_dense_prefix = parallel_gc_threads *
aoqi@0 2616 PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
aoqi@0 2617 }
aoqi@0 2618 size_t regions_per_thread = total_dense_prefix_regions /
aoqi@0 2619 tasks_for_dense_prefix;
aoqi@0 2620 // Give each thread at least 1 region.
aoqi@0 2621 if (regions_per_thread == 0) {
aoqi@0 2622 regions_per_thread = 1;
aoqi@0 2623 }
aoqi@0 2624
aoqi@0 2625 for (uint k = 0; k < tasks_for_dense_prefix; k++) {
aoqi@0 2626 if (region_index_start >= region_index_end_dense_prefix) {
aoqi@0 2627 break;
aoqi@0 2628 }
aoqi@0 2629 // region_index_end is not processed
aoqi@0 2630 size_t region_index_end = MIN2(region_index_start + regions_per_thread,
aoqi@0 2631 region_index_end_dense_prefix);
aoqi@0 2632 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
aoqi@0 2633 region_index_start,
aoqi@0 2634 region_index_end));
aoqi@0 2635 region_index_start = region_index_end;
aoqi@0 2636 }
aoqi@0 2637 }
aoqi@0 2638 // This gets any part of the dense prefix that did not
aoqi@0 2639 // fit evenly.
aoqi@0 2640 if (region_index_start < region_index_end_dense_prefix) {
aoqi@0 2641 q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
aoqi@0 2642 region_index_start,
aoqi@0 2643 region_index_end_dense_prefix));
aoqi@0 2644 }
aoqi@0 2645 }
aoqi@0 2646 }
aoqi@0 2647
aoqi@0 2648 void PSParallelCompact::enqueue_region_stealing_tasks(
aoqi@0 2649 GCTaskQueue* q,
aoqi@0 2650 ParallelTaskTerminator* terminator_ptr,
aoqi@0 2651 uint parallel_gc_threads) {
aoqi@0 2652 GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer);
aoqi@0 2653
aoqi@0 2654 // Once a thread has drained it's stack, it should try to steal regions from
aoqi@0 2655 // other threads.
aoqi@0 2656 if (parallel_gc_threads > 1) {
aoqi@0 2657 for (uint j = 0; j < parallel_gc_threads; j++) {
aoqi@0 2658 q->enqueue(new StealRegionCompactionTask(terminator_ptr));
aoqi@0 2659 }
aoqi@0 2660 }
aoqi@0 2661 }
aoqi@0 2662
aoqi@0 2663 #ifdef ASSERT
aoqi@0 2664 // Write a histogram of the number of times the block table was filled for a
aoqi@0 2665 // region.
aoqi@0 2666 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
aoqi@0 2667 {
aoqi@0 2668 if (!TraceParallelOldGCCompactionPhase) return;
aoqi@0 2669
aoqi@0 2670 typedef ParallelCompactData::RegionData rd_t;
aoqi@0 2671 ParallelCompactData& sd = summary_data();
aoqi@0 2672
aoqi@0 2673 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
aoqi@0 2674 MutableSpace* const spc = _space_info[id].space();
aoqi@0 2675 if (spc->bottom() != spc->top()) {
aoqi@0 2676 const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
aoqi@0 2677 HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
aoqi@0 2678 const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
aoqi@0 2679
aoqi@0 2680 size_t histo[5] = { 0, 0, 0, 0, 0 };
aoqi@0 2681 const size_t histo_len = sizeof(histo) / sizeof(size_t);
aoqi@0 2682 const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
aoqi@0 2683
aoqi@0 2684 for (const rd_t* cur = beg; cur < end; ++cur) {
aoqi@0 2685 ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
aoqi@0 2686 }
aoqi@0 2687 out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
aoqi@0 2688 for (size_t i = 0; i < histo_len; ++i) {
aoqi@0 2689 out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
aoqi@0 2690 histo[i], 100.0 * histo[i] / region_cnt);
aoqi@0 2691 }
aoqi@0 2692 out->cr();
aoqi@0 2693 }
aoqi@0 2694 }
aoqi@0 2695 }
aoqi@0 2696 #endif // #ifdef ASSERT
aoqi@0 2697
aoqi@0 2698 void PSParallelCompact::compact() {
aoqi@0 2699 // trace("5");
aoqi@0 2700 GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer);
aoqi@0 2701
aoqi@0 2702 ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
aoqi@0 2703 assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
aoqi@0 2704 PSOldGen* old_gen = heap->old_gen();
aoqi@0 2705 old_gen->start_array()->reset();
aoqi@0 2706 uint parallel_gc_threads = heap->gc_task_manager()->workers();
aoqi@0 2707 uint active_gc_threads = heap->gc_task_manager()->active_workers();
aoqi@0 2708 TaskQueueSetSuper* qset = ParCompactionManager::region_array();
aoqi@0 2709 ParallelTaskTerminator terminator(active_gc_threads, qset);
aoqi@0 2710
aoqi@0 2711 GCTaskQueue* q = GCTaskQueue::create();
aoqi@0 2712 enqueue_region_draining_tasks(q, active_gc_threads);
aoqi@0 2713 enqueue_dense_prefix_tasks(q, active_gc_threads);
aoqi@0 2714 enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
aoqi@0 2715
aoqi@0 2716 {
aoqi@0 2717 GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer);
aoqi@0 2718
aoqi@0 2719 gc_task_manager()->execute_and_wait(q);
aoqi@0 2720
aoqi@0 2721 #ifdef ASSERT
aoqi@0 2722 // Verify that all regions have been processed before the deferred updates.
aoqi@0 2723 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
aoqi@0 2724 verify_complete(SpaceId(id));
aoqi@0 2725 }
aoqi@0 2726 #endif
aoqi@0 2727 }
aoqi@0 2728
aoqi@0 2729 {
aoqi@0 2730 // Update the deferred objects, if any. Any compaction manager can be used.
aoqi@0 2731 GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer);
aoqi@0 2732 ParCompactionManager* cm = ParCompactionManager::manager_array(0);
aoqi@0 2733 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
aoqi@0 2734 update_deferred_objects(cm, SpaceId(id));
aoqi@0 2735 }
aoqi@0 2736 }
aoqi@0 2737
aoqi@0 2738 DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
aoqi@0 2739 }
aoqi@0 2740
aoqi@0 2741 #ifdef ASSERT
aoqi@0 2742 void PSParallelCompact::verify_complete(SpaceId space_id) {
aoqi@0 2743 // All Regions between space bottom() to new_top() should be marked as filled
aoqi@0 2744 // and all Regions between new_top() and top() should be available (i.e.,
aoqi@0 2745 // should have been emptied).
aoqi@0 2746 ParallelCompactData& sd = summary_data();
aoqi@0 2747 SpaceInfo si = _space_info[space_id];
aoqi@0 2748 HeapWord* new_top_addr = sd.region_align_up(si.new_top());
aoqi@0 2749 HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
aoqi@0 2750 const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
aoqi@0 2751 const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
aoqi@0 2752 const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
aoqi@0 2753
aoqi@0 2754 bool issued_a_warning = false;
aoqi@0 2755
aoqi@0 2756 size_t cur_region;
aoqi@0 2757 for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
aoqi@0 2758 const RegionData* const c = sd.region(cur_region);
aoqi@0 2759 if (!c->completed()) {
aoqi@0 2760 warning("region " SIZE_FORMAT " not filled: "
aoqi@0 2761 "destination_count=" SIZE_FORMAT,
aoqi@0 2762 cur_region, c->destination_count());
aoqi@0 2763 issued_a_warning = true;
aoqi@0 2764 }
aoqi@0 2765 }
aoqi@0 2766
aoqi@0 2767 for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
aoqi@0 2768 const RegionData* const c = sd.region(cur_region);
aoqi@0 2769 if (!c->available()) {
aoqi@0 2770 warning("region " SIZE_FORMAT " not empty: "
aoqi@0 2771 "destination_count=" SIZE_FORMAT,
aoqi@0 2772 cur_region, c->destination_count());
aoqi@0 2773 issued_a_warning = true;
aoqi@0 2774 }
aoqi@0 2775 }
aoqi@0 2776
aoqi@0 2777 if (issued_a_warning) {
aoqi@0 2778 print_region_ranges();
aoqi@0 2779 }
aoqi@0 2780 }
aoqi@0 2781 #endif // #ifdef ASSERT
aoqi@0 2782
aoqi@0 2783 // Update interior oops in the ranges of regions [beg_region, end_region).
aoqi@0 2784 void
aoqi@0 2785 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
aoqi@0 2786 SpaceId space_id,
aoqi@0 2787 size_t beg_region,
aoqi@0 2788 size_t end_region) {
aoqi@0 2789 ParallelCompactData& sd = summary_data();
aoqi@0 2790 ParMarkBitMap* const mbm = mark_bitmap();
aoqi@0 2791
aoqi@0 2792 HeapWord* beg_addr = sd.region_to_addr(beg_region);
aoqi@0 2793 HeapWord* const end_addr = sd.region_to_addr(end_region);
aoqi@0 2794 assert(beg_region <= end_region, "bad region range");
aoqi@0 2795 assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
aoqi@0 2796
aoqi@0 2797 #ifdef ASSERT
aoqi@0 2798 // Claim the regions to avoid triggering an assert when they are marked as
aoqi@0 2799 // filled.
aoqi@0 2800 for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
aoqi@0 2801 assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
aoqi@0 2802 }
aoqi@0 2803 #endif // #ifdef ASSERT
aoqi@0 2804
aoqi@0 2805 if (beg_addr != space(space_id)->bottom()) {
aoqi@0 2806 // Find the first live object or block of dead space that *starts* in this
aoqi@0 2807 // range of regions. If a partial object crosses onto the region, skip it;
aoqi@0 2808 // it will be marked for 'deferred update' when the object head is
aoqi@0 2809 // processed. If dead space crosses onto the region, it is also skipped; it
aoqi@0 2810 // will be filled when the prior region is processed. If neither of those
aoqi@0 2811 // apply, the first word in the region is the start of a live object or dead
aoqi@0 2812 // space.
aoqi@0 2813 assert(beg_addr > space(space_id)->bottom(), "sanity");
aoqi@0 2814 const RegionData* const cp = sd.region(beg_region);
aoqi@0 2815 if (cp->partial_obj_size() != 0) {
aoqi@0 2816 beg_addr = sd.partial_obj_end(beg_region);
aoqi@0 2817 } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
aoqi@0 2818 beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
aoqi@0 2819 }
aoqi@0 2820 }
aoqi@0 2821
aoqi@0 2822 if (beg_addr < end_addr) {
aoqi@0 2823 // A live object or block of dead space starts in this range of Regions.
aoqi@0 2824 HeapWord* const dense_prefix_end = dense_prefix(space_id);
aoqi@0 2825
aoqi@0 2826 // Create closures and iterate.
aoqi@0 2827 UpdateOnlyClosure update_closure(mbm, cm, space_id);
aoqi@0 2828 FillClosure fill_closure(cm, space_id);
aoqi@0 2829 ParMarkBitMap::IterationStatus status;
aoqi@0 2830 status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
aoqi@0 2831 dense_prefix_end);
aoqi@0 2832 if (status == ParMarkBitMap::incomplete) {
aoqi@0 2833 update_closure.do_addr(update_closure.source());
aoqi@0 2834 }
aoqi@0 2835 }
aoqi@0 2836
aoqi@0 2837 // Mark the regions as filled.
aoqi@0 2838 RegionData* const beg_cp = sd.region(beg_region);
aoqi@0 2839 RegionData* const end_cp = sd.region(end_region);
aoqi@0 2840 for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
aoqi@0 2841 cp->set_completed();
aoqi@0 2842 }
aoqi@0 2843 }
aoqi@0 2844
aoqi@0 2845 // Return the SpaceId for the space containing addr. If addr is not in the
aoqi@0 2846 // heap, last_space_id is returned. In debug mode it expects the address to be
aoqi@0 2847 // in the heap and asserts such.
aoqi@0 2848 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
aoqi@0 2849 assert(Universe::heap()->is_in_reserved(addr), "addr not in the heap");
aoqi@0 2850
aoqi@0 2851 for (unsigned int id = old_space_id; id < last_space_id; ++id) {
aoqi@0 2852 if (_space_info[id].space()->contains(addr)) {
aoqi@0 2853 return SpaceId(id);
aoqi@0 2854 }
aoqi@0 2855 }
aoqi@0 2856
aoqi@0 2857 assert(false, "no space contains the addr");
aoqi@0 2858 return last_space_id;
aoqi@0 2859 }
aoqi@0 2860
aoqi@0 2861 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
aoqi@0 2862 SpaceId id) {
aoqi@0 2863 assert(id < last_space_id, "bad space id");
aoqi@0 2864
aoqi@0 2865 ParallelCompactData& sd = summary_data();
aoqi@0 2866 const SpaceInfo* const space_info = _space_info + id;
aoqi@0 2867 ObjectStartArray* const start_array = space_info->start_array();
aoqi@0 2868
aoqi@0 2869 const MutableSpace* const space = space_info->space();
aoqi@0 2870 assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
aoqi@0 2871 HeapWord* const beg_addr = space_info->dense_prefix();
aoqi@0 2872 HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
aoqi@0 2873
aoqi@0 2874 const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
aoqi@0 2875 const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
aoqi@0 2876 const RegionData* cur_region;
aoqi@0 2877 for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
aoqi@0 2878 HeapWord* const addr = cur_region->deferred_obj_addr();
aoqi@0 2879 if (addr != NULL) {
aoqi@0 2880 if (start_array != NULL) {
aoqi@0 2881 start_array->allocate_block(addr);
aoqi@0 2882 }
aoqi@0 2883 oop(addr)->update_contents(cm);
aoqi@0 2884 assert(oop(addr)->is_oop_or_null(), "should be an oop now");
aoqi@0 2885 }
aoqi@0 2886 }
aoqi@0 2887 }
aoqi@0 2888
aoqi@0 2889 // Skip over count live words starting from beg, and return the address of the
aoqi@0 2890 // next live word. Unless marked, the word corresponding to beg is assumed to
aoqi@0 2891 // be dead. Callers must either ensure beg does not correspond to the middle of
aoqi@0 2892 // an object, or account for those live words in some other way. Callers must
aoqi@0 2893 // also ensure that there are enough live words in the range [beg, end) to skip.
aoqi@0 2894 HeapWord*
aoqi@0 2895 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
aoqi@0 2896 {
aoqi@0 2897 assert(count > 0, "sanity");
aoqi@0 2898
aoqi@0 2899 ParMarkBitMap* m = mark_bitmap();
aoqi@0 2900 idx_t bits_to_skip = m->words_to_bits(count);
aoqi@0 2901 idx_t cur_beg = m->addr_to_bit(beg);
aoqi@0 2902 const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
aoqi@0 2903
aoqi@0 2904 do {
aoqi@0 2905 cur_beg = m->find_obj_beg(cur_beg, search_end);
aoqi@0 2906 idx_t cur_end = m->find_obj_end(cur_beg, search_end);
aoqi@0 2907 const size_t obj_bits = cur_end - cur_beg + 1;
aoqi@0 2908 if (obj_bits > bits_to_skip) {
aoqi@0 2909 return m->bit_to_addr(cur_beg + bits_to_skip);
aoqi@0 2910 }
aoqi@0 2911 bits_to_skip -= obj_bits;
aoqi@0 2912 cur_beg = cur_end + 1;
aoqi@0 2913 } while (bits_to_skip > 0);
aoqi@0 2914
aoqi@0 2915 // Skipping the desired number of words landed just past the end of an object.
aoqi@0 2916 // Find the start of the next object.
aoqi@0 2917 cur_beg = m->find_obj_beg(cur_beg, search_end);
aoqi@0 2918 assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
aoqi@0 2919 return m->bit_to_addr(cur_beg);
aoqi@0 2920 }
aoqi@0 2921
aoqi@0 2922 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
aoqi@0 2923 SpaceId src_space_id,
aoqi@0 2924 size_t src_region_idx)
aoqi@0 2925 {
aoqi@0 2926 assert(summary_data().is_region_aligned(dest_addr), "not aligned");
aoqi@0 2927
aoqi@0 2928 const SplitInfo& split_info = _space_info[src_space_id].split_info();
aoqi@0 2929 if (split_info.dest_region_addr() == dest_addr) {
aoqi@0 2930 // The partial object ending at the split point contains the first word to
aoqi@0 2931 // be copied to dest_addr.
aoqi@0 2932 return split_info.first_src_addr();
aoqi@0 2933 }
aoqi@0 2934
aoqi@0 2935 const ParallelCompactData& sd = summary_data();
aoqi@0 2936 ParMarkBitMap* const bitmap = mark_bitmap();
aoqi@0 2937 const size_t RegionSize = ParallelCompactData::RegionSize;
aoqi@0 2938
aoqi@0 2939 assert(sd.is_region_aligned(dest_addr), "not aligned");
aoqi@0 2940 const RegionData* const src_region_ptr = sd.region(src_region_idx);
aoqi@0 2941 const size_t partial_obj_size = src_region_ptr->partial_obj_size();
aoqi@0 2942 HeapWord* const src_region_destination = src_region_ptr->destination();
aoqi@0 2943
aoqi@0 2944 assert(dest_addr >= src_region_destination, "wrong src region");
aoqi@0 2945 assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
aoqi@0 2946
aoqi@0 2947 HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
aoqi@0 2948 HeapWord* const src_region_end = src_region_beg + RegionSize;
aoqi@0 2949
aoqi@0 2950 HeapWord* addr = src_region_beg;
aoqi@0 2951 if (dest_addr == src_region_destination) {
aoqi@0 2952 // Return the first live word in the source region.
aoqi@0 2953 if (partial_obj_size == 0) {
aoqi@0 2954 addr = bitmap->find_obj_beg(addr, src_region_end);
aoqi@0 2955 assert(addr < src_region_end, "no objects start in src region");
aoqi@0 2956 }
aoqi@0 2957 return addr;
aoqi@0 2958 }
aoqi@0 2959
aoqi@0 2960 // Must skip some live data.
aoqi@0 2961 size_t words_to_skip = dest_addr - src_region_destination;
aoqi@0 2962 assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
aoqi@0 2963
aoqi@0 2964 if (partial_obj_size >= words_to_skip) {
aoqi@0 2965 // All the live words to skip are part of the partial object.
aoqi@0 2966 addr += words_to_skip;
aoqi@0 2967 if (partial_obj_size == words_to_skip) {
aoqi@0 2968 // Find the first live word past the partial object.
aoqi@0 2969 addr = bitmap->find_obj_beg(addr, src_region_end);
aoqi@0 2970 assert(addr < src_region_end, "wrong src region");
aoqi@0 2971 }
aoqi@0 2972 return addr;
aoqi@0 2973 }
aoqi@0 2974
aoqi@0 2975 // Skip over the partial object (if any).
aoqi@0 2976 if (partial_obj_size != 0) {
aoqi@0 2977 words_to_skip -= partial_obj_size;
aoqi@0 2978 addr += partial_obj_size;
aoqi@0 2979 }
aoqi@0 2980
aoqi@0 2981 // Skip over live words due to objects that start in the region.
aoqi@0 2982 addr = skip_live_words(addr, src_region_end, words_to_skip);
aoqi@0 2983 assert(addr < src_region_end, "wrong src region");
aoqi@0 2984 return addr;
aoqi@0 2985 }
aoqi@0 2986
aoqi@0 2987 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
aoqi@0 2988 SpaceId src_space_id,
aoqi@0 2989 size_t beg_region,
aoqi@0 2990 HeapWord* end_addr)
aoqi@0 2991 {
aoqi@0 2992 ParallelCompactData& sd = summary_data();
aoqi@0 2993
aoqi@0 2994 #ifdef ASSERT
aoqi@0 2995 MutableSpace* const src_space = _space_info[src_space_id].space();
aoqi@0 2996 HeapWord* const beg_addr = sd.region_to_addr(beg_region);
aoqi@0 2997 assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
aoqi@0 2998 "src_space_id does not match beg_addr");
aoqi@0 2999 assert(src_space->contains(end_addr) || end_addr == src_space->end(),
aoqi@0 3000 "src_space_id does not match end_addr");
aoqi@0 3001 #endif // #ifdef ASSERT
aoqi@0 3002
aoqi@0 3003 RegionData* const beg = sd.region(beg_region);
aoqi@0 3004 RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
aoqi@0 3005
aoqi@0 3006 // Regions up to new_top() are enqueued if they become available.
aoqi@0 3007 HeapWord* const new_top = _space_info[src_space_id].new_top();
aoqi@0 3008 RegionData* const enqueue_end =
aoqi@0 3009 sd.addr_to_region_ptr(sd.region_align_up(new_top));
aoqi@0 3010
aoqi@0 3011 for (RegionData* cur = beg; cur < end; ++cur) {
aoqi@0 3012 assert(cur->data_size() > 0, "region must have live data");
aoqi@0 3013 cur->decrement_destination_count();
aoqi@0 3014 if (cur < enqueue_end && cur->available() && cur->claim()) {
aoqi@0 3015 cm->push_region(sd.region(cur));
aoqi@0 3016 }
aoqi@0 3017 }
aoqi@0 3018 }
aoqi@0 3019
aoqi@0 3020 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
aoqi@0 3021 SpaceId& src_space_id,
aoqi@0 3022 HeapWord*& src_space_top,
aoqi@0 3023 HeapWord* end_addr)
aoqi@0 3024 {
aoqi@0 3025 typedef ParallelCompactData::RegionData RegionData;
aoqi@0 3026
aoqi@0 3027 ParallelCompactData& sd = PSParallelCompact::summary_data();
aoqi@0 3028 const size_t region_size = ParallelCompactData::RegionSize;
aoqi@0 3029
aoqi@0 3030 size_t src_region_idx = 0;
aoqi@0 3031
aoqi@0 3032 // Skip empty regions (if any) up to the top of the space.
aoqi@0 3033 HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
aoqi@0 3034 RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
aoqi@0 3035 HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
aoqi@0 3036 const RegionData* const top_region_ptr =
aoqi@0 3037 sd.addr_to_region_ptr(top_aligned_up);
aoqi@0 3038 while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
aoqi@0 3039 ++src_region_ptr;
aoqi@0 3040 }
aoqi@0 3041
aoqi@0 3042 if (src_region_ptr < top_region_ptr) {
aoqi@0 3043 // The next source region is in the current space. Update src_region_idx
aoqi@0 3044 // and the source address to match src_region_ptr.
aoqi@0 3045 src_region_idx = sd.region(src_region_ptr);
aoqi@0 3046 HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
aoqi@0 3047 if (src_region_addr > closure.source()) {
aoqi@0 3048 closure.set_source(src_region_addr);
aoqi@0 3049 }
aoqi@0 3050 return src_region_idx;
aoqi@0 3051 }
aoqi@0 3052
aoqi@0 3053 // Switch to a new source space and find the first non-empty region.
aoqi@0 3054 unsigned int space_id = src_space_id + 1;
aoqi@0 3055 assert(space_id < last_space_id, "not enough spaces");
aoqi@0 3056
aoqi@0 3057 HeapWord* const destination = closure.destination();
aoqi@0 3058
aoqi@0 3059 do {
aoqi@0 3060 MutableSpace* space = _space_info[space_id].space();
aoqi@0 3061 HeapWord* const bottom = space->bottom();
aoqi@0 3062 const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
aoqi@0 3063
aoqi@0 3064 // Iterate over the spaces that do not compact into themselves.
aoqi@0 3065 if (bottom_cp->destination() != bottom) {
aoqi@0 3066 HeapWord* const top_aligned_up = sd.region_align_up(space->top());
aoqi@0 3067 const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
aoqi@0 3068
aoqi@0 3069 for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
aoqi@0 3070 if (src_cp->live_obj_size() > 0) {
aoqi@0 3071 // Found it.
aoqi@0 3072 assert(src_cp->destination() == destination,
aoqi@0 3073 "first live obj in the space must match the destination");
aoqi@0 3074 assert(src_cp->partial_obj_size() == 0,
aoqi@0 3075 "a space cannot begin with a partial obj");
aoqi@0 3076
aoqi@0 3077 src_space_id = SpaceId(space_id);
aoqi@0 3078 src_space_top = space->top();
aoqi@0 3079 const size_t src_region_idx = sd.region(src_cp);
aoqi@0 3080 closure.set_source(sd.region_to_addr(src_region_idx));
aoqi@0 3081 return src_region_idx;
aoqi@0 3082 } else {
aoqi@0 3083 assert(src_cp->data_size() == 0, "sanity");
aoqi@0 3084 }
aoqi@0 3085 }
aoqi@0 3086 }
aoqi@0 3087 } while (++space_id < last_space_id);
aoqi@0 3088
aoqi@0 3089 assert(false, "no source region was found");
aoqi@0 3090 return 0;
aoqi@0 3091 }
aoqi@0 3092
aoqi@0 3093 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
aoqi@0 3094 {
aoqi@0 3095 typedef ParMarkBitMap::IterationStatus IterationStatus;
aoqi@0 3096 const size_t RegionSize = ParallelCompactData::RegionSize;
aoqi@0 3097 ParMarkBitMap* const bitmap = mark_bitmap();
aoqi@0 3098 ParallelCompactData& sd = summary_data();
aoqi@0 3099 RegionData* const region_ptr = sd.region(region_idx);
aoqi@0 3100
aoqi@0 3101 // Get the items needed to construct the closure.
aoqi@0 3102 HeapWord* dest_addr = sd.region_to_addr(region_idx);
aoqi@0 3103 SpaceId dest_space_id = space_id(dest_addr);
aoqi@0 3104 ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
aoqi@0 3105 HeapWord* new_top = _space_info[dest_space_id].new_top();
aoqi@0 3106 assert(dest_addr < new_top, "sanity");
aoqi@0 3107 const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
aoqi@0 3108
aoqi@0 3109 // Get the source region and related info.
aoqi@0 3110 size_t src_region_idx = region_ptr->source_region();
aoqi@0 3111 SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
aoqi@0 3112 HeapWord* src_space_top = _space_info[src_space_id].space()->top();
aoqi@0 3113
aoqi@0 3114 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
aoqi@0 3115 closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
aoqi@0 3116
aoqi@0 3117 // Adjust src_region_idx to prepare for decrementing destination counts (the
aoqi@0 3118 // destination count is not decremented when a region is copied to itself).
aoqi@0 3119 if (src_region_idx == region_idx) {
aoqi@0 3120 src_region_idx += 1;
aoqi@0 3121 }
aoqi@0 3122
aoqi@0 3123 if (bitmap->is_unmarked(closure.source())) {
aoqi@0 3124 // The first source word is in the middle of an object; copy the remainder
aoqi@0 3125 // of the object or as much as will fit. The fact that pointer updates were
aoqi@0 3126 // deferred will be noted when the object header is processed.
aoqi@0 3127 HeapWord* const old_src_addr = closure.source();
aoqi@0 3128 closure.copy_partial_obj();
aoqi@0 3129 if (closure.is_full()) {
aoqi@0 3130 decrement_destination_counts(cm, src_space_id, src_region_idx,
aoqi@0 3131 closure.source());
aoqi@0 3132 region_ptr->set_deferred_obj_addr(NULL);
aoqi@0 3133 region_ptr->set_completed();
aoqi@0 3134 return;
aoqi@0 3135 }
aoqi@0 3136
aoqi@0 3137 HeapWord* const end_addr = sd.region_align_down(closure.source());
aoqi@0 3138 if (sd.region_align_down(old_src_addr) != end_addr) {
aoqi@0 3139 // The partial object was copied from more than one source region.
aoqi@0 3140 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
aoqi@0 3141
aoqi@0 3142 // Move to the next source region, possibly switching spaces as well. All
aoqi@0 3143 // args except end_addr may be modified.
aoqi@0 3144 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
aoqi@0 3145 end_addr);
aoqi@0 3146 }
aoqi@0 3147 }
aoqi@0 3148
aoqi@0 3149 do {
aoqi@0 3150 HeapWord* const cur_addr = closure.source();
aoqi@0 3151 HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
aoqi@0 3152 src_space_top);
aoqi@0 3153 IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
aoqi@0 3154
aoqi@0 3155 if (status == ParMarkBitMap::incomplete) {
aoqi@0 3156 // The last obj that starts in the source region does not end in the
aoqi@0 3157 // region.
aoqi@0 3158 assert(closure.source() < end_addr, "sanity");
aoqi@0 3159 HeapWord* const obj_beg = closure.source();
aoqi@0 3160 HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
aoqi@0 3161 src_space_top);
aoqi@0 3162 HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
aoqi@0 3163 if (obj_end < range_end) {
aoqi@0 3164 // The end was found; the entire object will fit.
aoqi@0 3165 status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
aoqi@0 3166 assert(status != ParMarkBitMap::would_overflow, "sanity");
aoqi@0 3167 } else {
aoqi@0 3168 // The end was not found; the object will not fit.
aoqi@0 3169 assert(range_end < src_space_top, "obj cannot cross space boundary");
aoqi@0 3170 status = ParMarkBitMap::would_overflow;
aoqi@0 3171 }
aoqi@0 3172 }
aoqi@0 3173
aoqi@0 3174 if (status == ParMarkBitMap::would_overflow) {
aoqi@0 3175 // The last object did not fit. Note that interior oop updates were
aoqi@0 3176 // deferred, then copy enough of the object to fill the region.
aoqi@0 3177 region_ptr->set_deferred_obj_addr(closure.destination());
aoqi@0 3178 status = closure.copy_until_full(); // copies from closure.source()
aoqi@0 3179
aoqi@0 3180 decrement_destination_counts(cm, src_space_id, src_region_idx,
aoqi@0 3181 closure.source());
aoqi@0 3182 region_ptr->set_completed();
aoqi@0 3183 return;
aoqi@0 3184 }
aoqi@0 3185
aoqi@0 3186 if (status == ParMarkBitMap::full) {
aoqi@0 3187 decrement_destination_counts(cm, src_space_id, src_region_idx,
aoqi@0 3188 closure.source());
aoqi@0 3189 region_ptr->set_deferred_obj_addr(NULL);
aoqi@0 3190 region_ptr->set_completed();
aoqi@0 3191 return;
aoqi@0 3192 }
aoqi@0 3193
aoqi@0 3194 decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
aoqi@0 3195
aoqi@0 3196 // Move to the next source region, possibly switching spaces as well. All
aoqi@0 3197 // args except end_addr may be modified.
aoqi@0 3198 src_region_idx = next_src_region(closure, src_space_id, src_space_top,
aoqi@0 3199 end_addr);
aoqi@0 3200 } while (true);
aoqi@0 3201 }
aoqi@0 3202
aoqi@0 3203 void PSParallelCompact::fill_blocks(size_t region_idx)
aoqi@0 3204 {
aoqi@0 3205 // Fill in the block table elements for the specified region. Each block
aoqi@0 3206 // table element holds the number of live words in the region that are to the
aoqi@0 3207 // left of the first object that starts in the block. Thus only blocks in
aoqi@0 3208 // which an object starts need to be filled.
aoqi@0 3209 //
aoqi@0 3210 // The algorithm scans the section of the bitmap that corresponds to the
aoqi@0 3211 // region, keeping a running total of the live words. When an object start is
aoqi@0 3212 // found, if it's the first to start in the block that contains it, the
aoqi@0 3213 // current total is written to the block table element.
aoqi@0 3214 const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
aoqi@0 3215 const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
aoqi@0 3216 const size_t RegionSize = ParallelCompactData::RegionSize;
aoqi@0 3217
aoqi@0 3218 ParallelCompactData& sd = summary_data();
aoqi@0 3219 const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
aoqi@0 3220 if (partial_obj_size >= RegionSize) {
aoqi@0 3221 return; // No objects start in this region.
aoqi@0 3222 }
aoqi@0 3223
aoqi@0 3224 // Ensure the first loop iteration decides that the block has changed.
aoqi@0 3225 size_t cur_block = sd.block_count();
aoqi@0 3226
aoqi@0 3227 const ParMarkBitMap* const bitmap = mark_bitmap();
aoqi@0 3228
aoqi@0 3229 const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
aoqi@0 3230 assert((size_t)1 << Log2BitsPerBlock ==
aoqi@0 3231 bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
aoqi@0 3232
aoqi@0 3233 size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
aoqi@0 3234 const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
aoqi@0 3235 size_t live_bits = bitmap->words_to_bits(partial_obj_size);
aoqi@0 3236 beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
aoqi@0 3237 while (beg_bit < range_end) {
aoqi@0 3238 const size_t new_block = beg_bit >> Log2BitsPerBlock;
aoqi@0 3239 if (new_block != cur_block) {
aoqi@0 3240 cur_block = new_block;
Jin@34 3241 #ifdef MIPS64
Jin@34 3242 /* 2016/5/4 Jin: On 3A2000-B, when multiple threads write to
Jin@34 3243 the same memory location without explict synchronization,
Jin@34 3244 sync is required for access correctness. */
fujie@121 3245 if (Use3A2000) OrderAccess::fence();
Jin@34 3246 #endif
fujie@106 3247 sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
fujie@116 3248 #ifdef MIPS64
fujie@121 3249 if (Use3A2000) OrderAccess::fence();
fujie@116 3250 #endif
aoqi@0 3251 }
aoqi@0 3252
aoqi@0 3253 const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
aoqi@0 3254 if (end_bit < range_end - 1) {
aoqi@0 3255 live_bits += end_bit - beg_bit + 1;
aoqi@0 3256 beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
aoqi@0 3257 } else {
aoqi@0 3258 return;
aoqi@0 3259 }
aoqi@0 3260 }
aoqi@0 3261 }
aoqi@0 3262
aoqi@0 3263 void
aoqi@0 3264 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
aoqi@0 3265 const MutableSpace* sp = space(space_id);
aoqi@0 3266 if (sp->is_empty()) {
aoqi@0 3267 return;
aoqi@0 3268 }
aoqi@0 3269
aoqi@0 3270 ParallelCompactData& sd = PSParallelCompact::summary_data();
aoqi@0 3271 ParMarkBitMap* const bitmap = mark_bitmap();
aoqi@0 3272 HeapWord* const dp_addr = dense_prefix(space_id);
aoqi@0 3273 HeapWord* beg_addr = sp->bottom();
aoqi@0 3274 HeapWord* end_addr = sp->top();
aoqi@0 3275
aoqi@0 3276 assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
aoqi@0 3277
aoqi@0 3278 const size_t beg_region = sd.addr_to_region_idx(beg_addr);
aoqi@0 3279 const size_t dp_region = sd.addr_to_region_idx(dp_addr);
aoqi@0 3280 if (beg_region < dp_region) {
aoqi@0 3281 update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
aoqi@0 3282 }
aoqi@0 3283
aoqi@0 3284 // The destination of the first live object that starts in the region is one
aoqi@0 3285 // past the end of the partial object entering the region (if any).
aoqi@0 3286 HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
aoqi@0 3287 HeapWord* const new_top = _space_info[space_id].new_top();
aoqi@0 3288 assert(new_top >= dest_addr, "bad new_top value");
aoqi@0 3289 const size_t words = pointer_delta(new_top, dest_addr);
aoqi@0 3290
aoqi@0 3291 if (words > 0) {
aoqi@0 3292 ObjectStartArray* start_array = _space_info[space_id].start_array();
aoqi@0 3293 MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
aoqi@0 3294
aoqi@0 3295 ParMarkBitMap::IterationStatus status;
aoqi@0 3296 status = bitmap->iterate(&closure, dest_addr, end_addr);
aoqi@0 3297 assert(status == ParMarkBitMap::full, "iteration not complete");
aoqi@0 3298 assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
aoqi@0 3299 "live objects skipped because closure is full");
aoqi@0 3300 }
aoqi@0 3301 }
aoqi@0 3302
aoqi@0 3303 jlong PSParallelCompact::millis_since_last_gc() {
aoqi@0 3304 // We need a monotonically non-deccreasing time in ms but
aoqi@0 3305 // os::javaTimeMillis() does not guarantee monotonicity.
aoqi@0 3306 jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
aoqi@0 3307 jlong ret_val = now - _time_of_last_gc;
aoqi@0 3308 // XXX See note in genCollectedHeap::millis_since_last_gc().
aoqi@0 3309 if (ret_val < 0) {
aoqi@0 3310 NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
aoqi@0 3311 return 0;
aoqi@0 3312 }
aoqi@0 3313 return ret_val;
aoqi@0 3314 }
aoqi@0 3315
aoqi@0 3316 void PSParallelCompact::reset_millis_since_last_gc() {
aoqi@0 3317 // We need a monotonically non-deccreasing time in ms but
aoqi@0 3318 // os::javaTimeMillis() does not guarantee monotonicity.
aoqi@0 3319 _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
aoqi@0 3320 }
aoqi@0 3321
aoqi@0 3322 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
aoqi@0 3323 {
aoqi@0 3324 if (source() != destination()) {
aoqi@0 3325 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
aoqi@0 3326 Copy::aligned_conjoint_words(source(), destination(), words_remaining());
aoqi@0 3327 }
aoqi@0 3328 update_state(words_remaining());
aoqi@0 3329 assert(is_full(), "sanity");
aoqi@0 3330 return ParMarkBitMap::full;
aoqi@0 3331 }
aoqi@0 3332
aoqi@0 3333 void MoveAndUpdateClosure::copy_partial_obj()
aoqi@0 3334 {
aoqi@0 3335 size_t words = words_remaining();
aoqi@0 3336
aoqi@0 3337 HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
aoqi@0 3338 HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
aoqi@0 3339 if (end_addr < range_end) {
aoqi@0 3340 words = bitmap()->obj_size(source(), end_addr);
aoqi@0 3341 }
aoqi@0 3342
aoqi@0 3343 // This test is necessary; if omitted, the pointer updates to a partial object
aoqi@0 3344 // that crosses the dense prefix boundary could be overwritten.
aoqi@0 3345 if (source() != destination()) {
aoqi@0 3346 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
aoqi@0 3347 Copy::aligned_conjoint_words(source(), destination(), words);
aoqi@0 3348 }
aoqi@0 3349 update_state(words);
aoqi@0 3350 }
aoqi@0 3351
aoqi@0 3352 ParMarkBitMapClosure::IterationStatus
aoqi@0 3353 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
aoqi@0 3354 assert(destination() != NULL, "sanity");
aoqi@0 3355 assert(bitmap()->obj_size(addr) == words, "bad size");
aoqi@0 3356
aoqi@0 3357 _source = addr;
aoqi@0 3358 assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
aoqi@0 3359 destination(), "wrong destination");
aoqi@0 3360
aoqi@0 3361 if (words > words_remaining()) {
aoqi@0 3362 return ParMarkBitMap::would_overflow;
aoqi@0 3363 }
aoqi@0 3364
aoqi@0 3365 // The start_array must be updated even if the object is not moving.
aoqi@0 3366 if (_start_array != NULL) {
aoqi@0 3367 _start_array->allocate_block(destination());
aoqi@0 3368 }
aoqi@0 3369
aoqi@0 3370 if (destination() != source()) {
aoqi@0 3371 DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
aoqi@0 3372 Copy::aligned_conjoint_words(source(), destination(), words);
aoqi@0 3373 }
aoqi@0 3374
aoqi@0 3375 oop moved_oop = (oop) destination();
aoqi@0 3376 moved_oop->update_contents(compaction_manager());
aoqi@0 3377 assert(moved_oop->is_oop_or_null(), "Object should be whole at this point");
aoqi@0 3378
aoqi@0 3379 update_state(words);
aoqi@0 3380 assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
aoqi@0 3381 return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
aoqi@0 3382 }
aoqi@0 3383
aoqi@0 3384 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
aoqi@0 3385 ParCompactionManager* cm,
aoqi@0 3386 PSParallelCompact::SpaceId space_id) :
aoqi@0 3387 ParMarkBitMapClosure(mbm, cm),
aoqi@0 3388 _space_id(space_id),
aoqi@0 3389 _start_array(PSParallelCompact::start_array(space_id))
aoqi@0 3390 {
aoqi@0 3391 }
aoqi@0 3392
aoqi@0 3393 // Updates the references in the object to their new values.
aoqi@0 3394 ParMarkBitMapClosure::IterationStatus
aoqi@0 3395 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
aoqi@0 3396 do_addr(addr);
aoqi@0 3397 return ParMarkBitMap::incomplete;
aoqi@0 3398 }

mercurial