src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 435
a61af66fc99e
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
duke@435 2 * Copyright 2004-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // This class keeps statistical information and computes the
duke@435 26 // size of the heap for the concurrent mark sweep collector.
duke@435 27 //
duke@435 28 // Cost for garbage collector include cost for
duke@435 29 // minor collection
duke@435 30 // concurrent collection
duke@435 31 // stop-the-world component
duke@435 32 // concurrent component
duke@435 33 // major compacting collection
duke@435 34 // uses decaying cost
duke@435 35
duke@435 36 // Forward decls
duke@435 37 class elapsedTimer;
duke@435 38
duke@435 39 class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy {
duke@435 40 friend class CMSGCAdaptivePolicyCounters;
duke@435 41 friend class CMSCollector;
duke@435 42 private:
duke@435 43
duke@435 44 // Total number of processors available
duke@435 45 int _processor_count;
duke@435 46 // Number of processors used by the concurrent phases of GC
duke@435 47 // This number is assumed to be the same for all concurrent
duke@435 48 // phases.
duke@435 49 int _concurrent_processor_count;
duke@435 50
duke@435 51 // Time that the mutators run exclusive of a particular
duke@435 52 // phase. For example, the time the mutators run excluding
duke@435 53 // the time during which the cms collector runs concurrently
duke@435 54 // with the mutators.
duke@435 55 // Between end of most recent cms reset and start of initial mark
duke@435 56 // This may be redundant
duke@435 57 double _latest_cms_reset_end_to_initial_mark_start_secs;
duke@435 58 // Between end of the most recent initial mark and start of remark
duke@435 59 double _latest_cms_initial_mark_end_to_remark_start_secs;
duke@435 60 // Between end of most recent collection and start of
duke@435 61 // a concurrent collection
duke@435 62 double _latest_cms_collection_end_to_collection_start_secs;
duke@435 63 // Times of the concurrent phases of the most recent
duke@435 64 // concurrent collection
duke@435 65 double _latest_cms_concurrent_marking_time_secs;
duke@435 66 double _latest_cms_concurrent_precleaning_time_secs;
duke@435 67 double _latest_cms_concurrent_sweeping_time_secs;
duke@435 68 // Between end of most recent STW MSC and start of next STW MSC
duke@435 69 double _latest_cms_msc_end_to_msc_start_time_secs;
duke@435 70 // Between end of most recent MS and start of next MS
duke@435 71 // This does not include any time spent during a concurrent
duke@435 72 // collection.
duke@435 73 double _latest_cms_ms_end_to_ms_start;
duke@435 74 // Between start and end of the initial mark of the most recent
duke@435 75 // concurrent collection.
duke@435 76 double _latest_cms_initial_mark_start_to_end_time_secs;
duke@435 77 // Between start and end of the remark phase of the most recent
duke@435 78 // concurrent collection
duke@435 79 double _latest_cms_remark_start_to_end_time_secs;
duke@435 80 // Between start and end of the most recent MS STW marking phase
duke@435 81 double _latest_cms_ms_marking_start_to_end_time_secs;
duke@435 82
duke@435 83 // Pause time timers
duke@435 84 static elapsedTimer _STW_timer;
duke@435 85 // Concurrent collection timer. Used for total of all concurrent phases
duke@435 86 // during 1 collection cycle.
duke@435 87 static elapsedTimer _concurrent_timer;
duke@435 88
duke@435 89 // When the size of the generation is changed, the size
duke@435 90 // of the change will rounded up or down (depending on the
duke@435 91 // type of change) by this value.
duke@435 92 size_t _generation_alignment;
duke@435 93
duke@435 94 // If this variable is true, the size of the young generation
duke@435 95 // may be changed in order to reduce the pause(s) of the
duke@435 96 // collection of the tenured generation in order to meet the
duke@435 97 // pause time goal. It is common to change the size of the
duke@435 98 // tenured generation in order to meet the pause time goal
duke@435 99 // for the tenured generation. With the CMS collector for
duke@435 100 // the tenured generation, the size of the young generation
duke@435 101 // can have an significant affect on the pause times for collecting the
duke@435 102 // tenured generation.
duke@435 103 // This is a duplicate of a variable in PSAdaptiveSizePolicy. It
duke@435 104 // is duplicated because it is not clear that it is general enough
duke@435 105 // to go into AdaptiveSizePolicy.
duke@435 106 int _change_young_gen_for_maj_pauses;
duke@435 107
duke@435 108 // Variable that is set to true after a collection.
duke@435 109 bool _first_after_collection;
duke@435 110
duke@435 111 // Fraction of collections that are of each type
duke@435 112 double concurrent_fraction() const;
duke@435 113 double STW_msc_fraction() const;
duke@435 114 double STW_ms_fraction() const;
duke@435 115
duke@435 116 // This call cannot be put into the epilogue as long as some
duke@435 117 // of the counters can be set during concurrent phases.
duke@435 118 virtual void clear_generation_free_space_flags();
duke@435 119
duke@435 120 void set_first_after_collection() { _first_after_collection = true; }
duke@435 121
duke@435 122 protected:
duke@435 123 // Average of the sum of the concurrent times for
duke@435 124 // one collection in seconds.
duke@435 125 AdaptiveWeightedAverage* _avg_concurrent_time;
duke@435 126 // Average time between concurrent collections in seconds.
duke@435 127 AdaptiveWeightedAverage* _avg_concurrent_interval;
duke@435 128 // Average cost of the concurrent part of a collection
duke@435 129 // in seconds.
duke@435 130 AdaptiveWeightedAverage* _avg_concurrent_gc_cost;
duke@435 131
duke@435 132 // Average of the initial pause of a concurrent collection in seconds.
duke@435 133 AdaptivePaddedAverage* _avg_initial_pause;
duke@435 134 // Average of the remark pause of a concurrent collection in seconds.
duke@435 135 AdaptivePaddedAverage* _avg_remark_pause;
duke@435 136
duke@435 137 // Average of the stop-the-world (STW) (initial mark + remark)
duke@435 138 // times in seconds for concurrent collections.
duke@435 139 AdaptiveWeightedAverage* _avg_cms_STW_time;
duke@435 140 // Average of the STW collection cost for concurrent collections.
duke@435 141 AdaptiveWeightedAverage* _avg_cms_STW_gc_cost;
duke@435 142
duke@435 143 // Average of the bytes free at the start of the sweep.
duke@435 144 AdaptiveWeightedAverage* _avg_cms_free_at_sweep;
duke@435 145 // Average of the bytes free at the end of the collection.
duke@435 146 AdaptiveWeightedAverage* _avg_cms_free;
duke@435 147 // Average of the bytes promoted between cms collections.
duke@435 148 AdaptiveWeightedAverage* _avg_cms_promo;
duke@435 149
duke@435 150 // stop-the-world (STW) mark-sweep-compact
duke@435 151 // Average of the pause time in seconds for STW mark-sweep-compact
duke@435 152 // collections.
duke@435 153 AdaptiveWeightedAverage* _avg_msc_pause;
duke@435 154 // Average of the interval in seconds between STW mark-sweep-compact
duke@435 155 // collections.
duke@435 156 AdaptiveWeightedAverage* _avg_msc_interval;
duke@435 157 // Average of the collection costs for STW mark-sweep-compact
duke@435 158 // collections.
duke@435 159 AdaptiveWeightedAverage* _avg_msc_gc_cost;
duke@435 160
duke@435 161 // Averages for mark-sweep collections.
duke@435 162 // The collection may have started as a background collection
duke@435 163 // that completes in a stop-the-world (STW) collection.
duke@435 164 // Average of the pause time in seconds for mark-sweep
duke@435 165 // collections.
duke@435 166 AdaptiveWeightedAverage* _avg_ms_pause;
duke@435 167 // Average of the interval in seconds between mark-sweep
duke@435 168 // collections.
duke@435 169 AdaptiveWeightedAverage* _avg_ms_interval;
duke@435 170 // Average of the collection costs for mark-sweep
duke@435 171 // collections.
duke@435 172 AdaptiveWeightedAverage* _avg_ms_gc_cost;
duke@435 173
duke@435 174 // These variables contain a linear fit of
duke@435 175 // a generation size as the independent variable
duke@435 176 // and a pause time as the dependent variable.
duke@435 177 // For example _remark_pause_old_estimator
duke@435 178 // is a fit of the old generation size as the
duke@435 179 // independent variable and the remark pause
duke@435 180 // as the dependent variable.
duke@435 181 // remark pause time vs. cms gen size
duke@435 182 LinearLeastSquareFit* _remark_pause_old_estimator;
duke@435 183 // initial pause time vs. cms gen size
duke@435 184 LinearLeastSquareFit* _initial_pause_old_estimator;
duke@435 185 // remark pause time vs. young gen size
duke@435 186 LinearLeastSquareFit* _remark_pause_young_estimator;
duke@435 187 // initial pause time vs. young gen size
duke@435 188 LinearLeastSquareFit* _initial_pause_young_estimator;
duke@435 189
duke@435 190 // Accessors
duke@435 191 int processor_count() const { return _processor_count; }
duke@435 192 int concurrent_processor_count() const { return _concurrent_processor_count; }
duke@435 193
duke@435 194 AdaptiveWeightedAverage* avg_concurrent_time() const {
duke@435 195 return _avg_concurrent_time;
duke@435 196 }
duke@435 197
duke@435 198 AdaptiveWeightedAverage* avg_concurrent_interval() const {
duke@435 199 return _avg_concurrent_interval;
duke@435 200 }
duke@435 201
duke@435 202 AdaptiveWeightedAverage* avg_concurrent_gc_cost() const {
duke@435 203 return _avg_concurrent_gc_cost;
duke@435 204 }
duke@435 205
duke@435 206 AdaptiveWeightedAverage* avg_cms_STW_time() const {
duke@435 207 return _avg_cms_STW_time;
duke@435 208 }
duke@435 209
duke@435 210 AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const {
duke@435 211 return _avg_cms_STW_gc_cost;
duke@435 212 }
duke@435 213
duke@435 214 AdaptivePaddedAverage* avg_initial_pause() const {
duke@435 215 return _avg_initial_pause;
duke@435 216 }
duke@435 217
duke@435 218 AdaptivePaddedAverage* avg_remark_pause() const {
duke@435 219 return _avg_remark_pause;
duke@435 220 }
duke@435 221
duke@435 222 AdaptiveWeightedAverage* avg_cms_free() const {
duke@435 223 return _avg_cms_free;
duke@435 224 }
duke@435 225
duke@435 226 AdaptiveWeightedAverage* avg_cms_free_at_sweep() const {
duke@435 227 return _avg_cms_free_at_sweep;
duke@435 228 }
duke@435 229
duke@435 230 AdaptiveWeightedAverage* avg_msc_pause() const {
duke@435 231 return _avg_msc_pause;
duke@435 232 }
duke@435 233
duke@435 234 AdaptiveWeightedAverage* avg_msc_interval() const {
duke@435 235 return _avg_msc_interval;
duke@435 236 }
duke@435 237
duke@435 238 AdaptiveWeightedAverage* avg_msc_gc_cost() const {
duke@435 239 return _avg_msc_gc_cost;
duke@435 240 }
duke@435 241
duke@435 242 AdaptiveWeightedAverage* avg_ms_pause() const {
duke@435 243 return _avg_ms_pause;
duke@435 244 }
duke@435 245
duke@435 246 AdaptiveWeightedAverage* avg_ms_interval() const {
duke@435 247 return _avg_ms_interval;
duke@435 248 }
duke@435 249
duke@435 250 AdaptiveWeightedAverage* avg_ms_gc_cost() const {
duke@435 251 return _avg_ms_gc_cost;
duke@435 252 }
duke@435 253
duke@435 254 LinearLeastSquareFit* remark_pause_old_estimator() {
duke@435 255 return _remark_pause_old_estimator;
duke@435 256 }
duke@435 257 LinearLeastSquareFit* initial_pause_old_estimator() {
duke@435 258 return _initial_pause_old_estimator;
duke@435 259 }
duke@435 260 LinearLeastSquareFit* remark_pause_young_estimator() {
duke@435 261 return _remark_pause_young_estimator;
duke@435 262 }
duke@435 263 LinearLeastSquareFit* initial_pause_young_estimator() {
duke@435 264 return _initial_pause_young_estimator;
duke@435 265 }
duke@435 266
duke@435 267 // These *slope() methods return the slope
duke@435 268 // m for the linear fit of an independent
duke@435 269 // variable vs. a dependent variable. For
duke@435 270 // example
duke@435 271 // remark_pause = m * old_generation_size + c
duke@435 272 // These may be used to determine if an
duke@435 273 // adjustment should be made to achieve a goal.
duke@435 274 // For example, if remark_pause_old_slope() is
duke@435 275 // positive, a reduction of the old generation
duke@435 276 // size has on average resulted in the reduction
duke@435 277 // of the remark pause.
duke@435 278 float remark_pause_old_slope() {
duke@435 279 return _remark_pause_old_estimator->slope();
duke@435 280 }
duke@435 281
duke@435 282 float initial_pause_old_slope() {
duke@435 283 return _initial_pause_old_estimator->slope();
duke@435 284 }
duke@435 285
duke@435 286 float remark_pause_young_slope() {
duke@435 287 return _remark_pause_young_estimator->slope();
duke@435 288 }
duke@435 289
duke@435 290 float initial_pause_young_slope() {
duke@435 291 return _initial_pause_young_estimator->slope();
duke@435 292 }
duke@435 293
duke@435 294 // Update estimators
duke@435 295 void update_minor_pause_old_estimator(double minor_pause_in_ms);
duke@435 296
duke@435 297 // Fraction of processors used by the concurrent phases.
duke@435 298 double concurrent_processor_fraction();
duke@435 299
duke@435 300 // Returns the total times for the concurrent part of the
duke@435 301 // latest collection in seconds.
duke@435 302 double concurrent_collection_time();
duke@435 303
duke@435 304 // Return the total times for the concurrent part of the
duke@435 305 // latest collection in seconds where the times of the various
duke@435 306 // concurrent phases are scaled by the processor fraction used
duke@435 307 // during the phase.
duke@435 308 double scaled_concurrent_collection_time();
duke@435 309
duke@435 310 // Dimensionless concurrent GC cost for all the concurrent phases.
duke@435 311 double concurrent_collection_cost(double interval_in_seconds);
duke@435 312
duke@435 313 // Dimensionless GC cost
duke@435 314 double collection_cost(double pause_in_seconds, double interval_in_seconds);
duke@435 315
duke@435 316 virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; }
duke@435 317
duke@435 318 virtual double time_since_major_gc() const;
duke@435 319
duke@435 320 // This returns the maximum average for the concurrent, ms, and
duke@435 321 // msc collections. This is meant to be used for the calculation
duke@435 322 // of the decayed major gc cost and is not in general the
duke@435 323 // average of all the different types of major collections.
duke@435 324 virtual double major_gc_interval_average_for_decay() const;
duke@435 325
duke@435 326 public:
duke@435 327 CMSAdaptiveSizePolicy(size_t init_eden_size,
duke@435 328 size_t init_promo_size,
duke@435 329 size_t init_survivor_size,
duke@435 330 double max_gc_minor_pause_sec,
duke@435 331 double max_gc_pause_sec,
duke@435 332 uint gc_cost_ratio);
duke@435 333
duke@435 334 // The timers for the stop-the-world phases measure a total
duke@435 335 // stop-the-world time. The timer is started and stopped
duke@435 336 // for each phase but is only reset after the final checkpoint.
duke@435 337 void checkpoint_roots_initial_begin();
duke@435 338 void checkpoint_roots_initial_end(GCCause::Cause gc_cause);
duke@435 339 void checkpoint_roots_final_begin();
duke@435 340 void checkpoint_roots_final_end(GCCause::Cause gc_cause);
duke@435 341
duke@435 342 // Methods for gathering information about the
duke@435 343 // concurrent marking phase of the collection.
duke@435 344 // Records the mutator times and
duke@435 345 // resets the concurrent timer.
duke@435 346 void concurrent_marking_begin();
duke@435 347 // Resets concurrent phase timer in the begin methods and
duke@435 348 // saves the time for a phase in the end methods.
duke@435 349 void concurrent_marking_end();
duke@435 350 void concurrent_sweeping_begin();
duke@435 351 void concurrent_sweeping_end();
duke@435 352 // Similar to the above (e.g., concurrent_marking_end()) and
duke@435 353 // is used for both the precleaning an abortable precleaing
duke@435 354 // phases.
duke@435 355 void concurrent_precleaning_begin();
duke@435 356 void concurrent_precleaning_end();
duke@435 357 // Stops the concurrent phases time. Gathers
duke@435 358 // information and resets the timer.
duke@435 359 void concurrent_phases_end(GCCause::Cause gc_cause,
duke@435 360 size_t cur_eden,
duke@435 361 size_t cur_promo);
duke@435 362
duke@435 363 // Methods for gather information about STW Mark-Sweep-Compact
duke@435 364 void msc_collection_begin();
duke@435 365 void msc_collection_end(GCCause::Cause gc_cause);
duke@435 366
duke@435 367 // Methods for gather information about Mark-Sweep done
duke@435 368 // in the foreground.
duke@435 369 void ms_collection_begin();
duke@435 370 void ms_collection_end(GCCause::Cause gc_cause);
duke@435 371
duke@435 372 // Cost for a mark-sweep tenured gen collection done in the foreground
duke@435 373 double ms_gc_cost() const {
duke@435 374 return MAX2(0.0F, _avg_ms_gc_cost->average());
duke@435 375 }
duke@435 376
duke@435 377 // Cost of collecting the tenured generation. Includes
duke@435 378 // concurrent collection and STW collection costs
duke@435 379 double cms_gc_cost() const;
duke@435 380
duke@435 381 // Cost of STW mark-sweep-compact tenured gen collection.
duke@435 382 double msc_gc_cost() const {
duke@435 383 return MAX2(0.0F, _avg_msc_gc_cost->average());
duke@435 384 }
duke@435 385
duke@435 386 //
duke@435 387 double compacting_gc_cost() const {
duke@435 388 double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost());
duke@435 389 assert(result >= 0.0, "Both minor and major costs are non-negative");
duke@435 390 return result;
duke@435 391 }
duke@435 392
duke@435 393 // Restarts the concurrent phases timer.
duke@435 394 void concurrent_phases_resume();
duke@435 395
twisti@1040 396 // Time beginning and end of the marking phase for
duke@435 397 // a synchronous MS collection. A MS collection
duke@435 398 // that finishes in the foreground can have started
duke@435 399 // in the background. These methods capture the
duke@435 400 // completion of the marking (after the initial
duke@435 401 // marking) that is done in the foreground.
duke@435 402 void ms_collection_marking_begin();
duke@435 403 void ms_collection_marking_end(GCCause::Cause gc_cause);
duke@435 404
duke@435 405 static elapsedTimer* concurrent_timer_ptr() {
duke@435 406 return &_concurrent_timer;
duke@435 407 }
duke@435 408
duke@435 409 AdaptiveWeightedAverage* avg_cms_promo() const {
duke@435 410 return _avg_cms_promo;
duke@435 411 }
duke@435 412
duke@435 413 int change_young_gen_for_maj_pauses() {
duke@435 414 return _change_young_gen_for_maj_pauses;
duke@435 415 }
duke@435 416 void set_change_young_gen_for_maj_pauses(int v) {
duke@435 417 _change_young_gen_for_maj_pauses = v;
duke@435 418 }
duke@435 419
duke@435 420 void clear_internal_time_intervals();
duke@435 421
duke@435 422
duke@435 423 // Either calculated_promo_size_in_bytes() or promo_size()
duke@435 424 // should be deleted.
duke@435 425 size_t promo_size() { return _promo_size; }
duke@435 426 void set_promo_size(size_t v) { _promo_size = v; }
duke@435 427
duke@435 428 // Cost of GC for all types of collections.
duke@435 429 virtual double gc_cost() const;
duke@435 430
duke@435 431 size_t generation_alignment() { return _generation_alignment; }
duke@435 432
duke@435 433 virtual void compute_young_generation_free_space(size_t cur_eden,
duke@435 434 size_t max_eden_size);
duke@435 435 // Calculates new survivor space size; returns a new tenuring threshold
duke@435 436 // value. Stores new survivor size in _survivor_size.
duke@435 437 virtual int compute_survivor_space_size_and_threshold(
duke@435 438 bool is_survivor_overflow,
duke@435 439 int tenuring_threshold,
duke@435 440 size_t survivor_limit);
duke@435 441
duke@435 442 virtual void compute_tenured_generation_free_space(size_t cur_tenured_free,
duke@435 443 size_t max_tenured_available,
duke@435 444 size_t cur_eden);
duke@435 445
duke@435 446 size_t eden_decrement_aligned_down(size_t cur_eden);
duke@435 447 size_t eden_increment_aligned_up(size_t cur_eden);
duke@435 448
duke@435 449 size_t adjust_eden_for_pause_time(size_t cur_eden);
duke@435 450 size_t adjust_eden_for_throughput(size_t cur_eden);
duke@435 451 size_t adjust_eden_for_footprint(size_t cur_eden);
duke@435 452
duke@435 453 size_t promo_decrement_aligned_down(size_t cur_promo);
duke@435 454 size_t promo_increment_aligned_up(size_t cur_promo);
duke@435 455
duke@435 456 size_t adjust_promo_for_pause_time(size_t cur_promo);
duke@435 457 size_t adjust_promo_for_throughput(size_t cur_promo);
duke@435 458 size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden);
duke@435 459
duke@435 460 // Scale down the input size by the ratio of the cost to collect the
duke@435 461 // generation to the total GC cost.
duke@435 462 size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost);
duke@435 463
duke@435 464 // Return the value and clear it.
duke@435 465 bool get_and_clear_first_after_collection();
duke@435 466
duke@435 467 // Printing support
duke@435 468 virtual bool print_adaptive_size_policy_on(outputStream* st) const;
duke@435 469 };

mercurial