src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Fri, 31 May 2013 14:32:44 +0200

author
stefank
date
Fri, 31 May 2013 14:32:44 +0200
changeset 5515
9766f73e770d
parent 5161
10f759898d40
child 6680
78bbf4d43a14
permissions
-rw-r--r--

8022880: False sharing between PSPromotionManager instances
Summary: Pad the PSPromotionManager instances in the manager array.
Reviewed-by: brutisso, jmasa

duke@435 1 /*
tamao@5161 2 * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP
stefank@2314 27
stefank@2325 28 #include "memory/memRegion.hpp"
brutisso@5117 29 #include "oops/oop.hpp"
brutisso@5117 30 #include "utilities/bitMap.hpp"
stefank@2314 31
duke@435 32 class ParMarkBitMapClosure;
brutisso@5117 33 class PSVirtualSpace;
duke@435 34
zgu@3900 35 class ParMarkBitMap: public CHeapObj<mtGC>
duke@435 36 {
duke@435 37 public:
duke@435 38 typedef BitMap::idx_t idx_t;
duke@435 39
duke@435 40 // Values returned by the iterate() methods.
duke@435 41 enum IterationStatus { incomplete, complete, full, would_overflow };
duke@435 42
duke@435 43 inline ParMarkBitMap();
duke@435 44 bool initialize(MemRegion covered_region);
duke@435 45
duke@435 46 // Atomically mark an object as live.
duke@435 47 bool mark_obj(HeapWord* addr, size_t size);
duke@435 48 inline bool mark_obj(oop obj, int size);
duke@435 49
duke@435 50 // Return whether the specified begin or end bit is set.
duke@435 51 inline bool is_obj_beg(idx_t bit) const;
duke@435 52 inline bool is_obj_end(idx_t bit) const;
duke@435 53
duke@435 54 // Traditional interface for testing whether an object is marked or not (these
duke@435 55 // test only the begin bits).
duke@435 56 inline bool is_marked(idx_t bit) const;
duke@435 57 inline bool is_marked(HeapWord* addr) const;
duke@435 58 inline bool is_marked(oop obj) const;
duke@435 59
duke@435 60 inline bool is_unmarked(idx_t bit) const;
duke@435 61 inline bool is_unmarked(HeapWord* addr) const;
duke@435 62 inline bool is_unmarked(oop obj) const;
duke@435 63
duke@435 64 // Convert sizes from bits to HeapWords and back. An object that is n bits
duke@435 65 // long will be bits_to_words(n) words long. An object that is m words long
duke@435 66 // will take up words_to_bits(m) bits in the bitmap.
duke@435 67 inline static size_t bits_to_words(idx_t bits);
duke@435 68 inline static idx_t words_to_bits(size_t words);
duke@435 69
duke@435 70 // Return the size in words of an object given a begin bit and an end bit, or
duke@435 71 // the equivalent beg_addr and end_addr.
duke@435 72 inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
duke@435 73 inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
duke@435 74
duke@435 75 // Return the size in words of the object (a search is done for the end bit).
duke@435 76 inline size_t obj_size(idx_t beg_bit) const;
duke@435 77 inline size_t obj_size(HeapWord* addr) const;
duke@435 78
duke@435 79 // Apply live_closure to each live object that lies completely within the
duke@435 80 // range [live_range_beg, live_range_end). This is used to iterate over the
duke@435 81 // compacted region of the heap. Return values:
duke@435 82 //
duke@435 83 // incomplete The iteration is not complete. The last object that
duke@435 84 // begins in the range does not end in the range;
duke@435 85 // closure->source() is set to the start of that object.
duke@435 86 //
duke@435 87 // complete The iteration is complete. All objects in the range
duke@435 88 // were processed and the closure is not full;
duke@435 89 // closure->source() is set one past the end of the range.
duke@435 90 //
duke@435 91 // full The closure is full; closure->source() is set to one
duke@435 92 // past the end of the last object processed.
duke@435 93 //
duke@435 94 // would_overflow The next object in the range would overflow the closure;
duke@435 95 // closure->source() is set to the start of that object.
duke@435 96 IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 97 idx_t range_beg, idx_t range_end) const;
duke@435 98 inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 99 HeapWord* range_beg,
duke@435 100 HeapWord* range_end) const;
duke@435 101
duke@435 102 // Apply live closure as above and additionally apply dead_closure to all dead
duke@435 103 // space in the range [range_beg, dead_range_end). Note that dead_range_end
duke@435 104 // must be >= range_end. This is used to iterate over the dense prefix.
duke@435 105 //
duke@435 106 // This method assumes that if the first bit in the range (range_beg) is not
duke@435 107 // marked, then dead space begins at that point and the dead_closure is
duke@435 108 // applied. Thus callers must ensure that range_beg is not in the middle of a
duke@435 109 // live object.
duke@435 110 IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 111 ParMarkBitMapClosure* dead_closure,
duke@435 112 idx_t range_beg, idx_t range_end,
duke@435 113 idx_t dead_range_end) const;
duke@435 114 inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
duke@435 115 ParMarkBitMapClosure* dead_closure,
duke@435 116 HeapWord* range_beg,
duke@435 117 HeapWord* range_end,
duke@435 118 HeapWord* dead_range_end) const;
duke@435 119
brutisso@5117 120 // Return the number of live words in the range [beg_addr, end_obj) due to
duke@435 121 // objects that start in the range. If a live object extends onto the range,
duke@435 122 // the caller must detect and account for any live words due to that object.
duke@435 123 // If a live object extends beyond the end of the range, only the words within
brutisso@5117 124 // the range are included in the result. The end of the range must be a live object,
brutisso@5117 125 // which is the case when updating pointers. This allows a branch to be removed
duke@435 126 // from inside the loop.
duke@435 127 size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
duke@435 128
duke@435 129 inline HeapWord* region_start() const;
duke@435 130 inline HeapWord* region_end() const;
duke@435 131 inline size_t region_size() const;
duke@435 132 inline size_t size() const;
duke@435 133
tamao@5161 134 size_t reserved_byte_size() const { return _reserved_byte_size; }
tamao@5161 135
duke@435 136 // Convert a heap address to/from a bit index.
duke@435 137 inline idx_t addr_to_bit(HeapWord* addr) const;
duke@435 138 inline HeapWord* bit_to_addr(idx_t bit) const;
duke@435 139
duke@435 140 // Return the bit index of the first marked object that begins (or ends,
duke@435 141 // respectively) in the range [beg, end). If no object is found, return end.
duke@435 142 inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
duke@435 143 inline idx_t find_obj_end(idx_t beg, idx_t end) const;
duke@435 144
duke@435 145 inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
duke@435 146 inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
duke@435 147
duke@435 148 // Clear a range of bits or the entire bitmap (both begin and end bits are
duke@435 149 // cleared).
duke@435 150 inline void clear_range(idx_t beg, idx_t end);
duke@435 151
duke@435 152 // Return the number of bits required to represent the specified number of
duke@435 153 // HeapWords, or the specified region.
duke@435 154 static inline idx_t bits_required(size_t words);
duke@435 155 static inline idx_t bits_required(MemRegion covered_region);
duke@435 156
stefank@4904 157 void print_on_error(outputStream* st) const {
stefank@4904 158 st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, this);
stefank@4904 159 _beg_bits.print_on_error(st, " Begin Bits: ");
stefank@4904 160 _end_bits.print_on_error(st, " End Bits: ");
stefank@4904 161 }
stefank@4904 162
duke@435 163 #ifdef ASSERT
duke@435 164 void verify_clear() const;
duke@435 165 inline void verify_bit(idx_t bit) const;
duke@435 166 inline void verify_addr(HeapWord* addr) const;
duke@435 167 #endif // #ifdef ASSERT
duke@435 168
duke@435 169 private:
duke@435 170 // Each bit in the bitmap represents one unit of 'object granularity.' Objects
duke@435 171 // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
duke@435 172 // granularity is 2, 64-bit is 1.
duke@435 173 static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
jcoomes@1243 174 static inline int obj_granularity_shift() { return LogMinObjAlignment; }
duke@435 175
duke@435 176 HeapWord* _region_start;
duke@435 177 size_t _region_size;
duke@435 178 BitMap _beg_bits;
duke@435 179 BitMap _end_bits;
duke@435 180 PSVirtualSpace* _virtual_space;
tamao@5161 181 size_t _reserved_byte_size;
duke@435 182 };
duke@435 183
duke@435 184 inline ParMarkBitMap::ParMarkBitMap():
tamao@5161 185 _beg_bits(), _end_bits(), _region_start(NULL), _region_size(0), _virtual_space(NULL), _reserved_byte_size(0)
brutisso@5117 186 { }
duke@435 187
duke@435 188 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
duke@435 189 {
duke@435 190 _beg_bits.clear_range(beg, end);
duke@435 191 _end_bits.clear_range(beg, end);
duke@435 192 }
duke@435 193
duke@435 194 inline ParMarkBitMap::idx_t
duke@435 195 ParMarkBitMap::bits_required(size_t words)
duke@435 196 {
duke@435 197 // Need two bits (one begin bit, one end bit) for each unit of 'object
duke@435 198 // granularity' in the heap.
duke@435 199 return words_to_bits(words * 2);
duke@435 200 }
duke@435 201
duke@435 202 inline ParMarkBitMap::idx_t
duke@435 203 ParMarkBitMap::bits_required(MemRegion covered_region)
duke@435 204 {
duke@435 205 return bits_required(covered_region.word_size());
duke@435 206 }
duke@435 207
duke@435 208 inline HeapWord*
duke@435 209 ParMarkBitMap::region_start() const
duke@435 210 {
duke@435 211 return _region_start;
duke@435 212 }
duke@435 213
duke@435 214 inline HeapWord*
duke@435 215 ParMarkBitMap::region_end() const
duke@435 216 {
duke@435 217 return region_start() + region_size();
duke@435 218 }
duke@435 219
duke@435 220 inline size_t
duke@435 221 ParMarkBitMap::region_size() const
duke@435 222 {
duke@435 223 return _region_size;
duke@435 224 }
duke@435 225
duke@435 226 inline size_t
duke@435 227 ParMarkBitMap::size() const
duke@435 228 {
duke@435 229 return _beg_bits.size();
duke@435 230 }
duke@435 231
duke@435 232 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
duke@435 233 {
duke@435 234 return _beg_bits.at(bit);
duke@435 235 }
duke@435 236
duke@435 237 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
duke@435 238 {
duke@435 239 return _end_bits.at(bit);
duke@435 240 }
duke@435 241
duke@435 242 inline bool ParMarkBitMap::is_marked(idx_t bit) const
duke@435 243 {
duke@435 244 return is_obj_beg(bit);
duke@435 245 }
duke@435 246
duke@435 247 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
duke@435 248 {
duke@435 249 return is_marked(addr_to_bit(addr));
duke@435 250 }
duke@435 251
duke@435 252 inline bool ParMarkBitMap::is_marked(oop obj) const
duke@435 253 {
duke@435 254 return is_marked((HeapWord*)obj);
duke@435 255 }
duke@435 256
duke@435 257 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
duke@435 258 {
duke@435 259 return !is_marked(bit);
duke@435 260 }
duke@435 261
duke@435 262 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
duke@435 263 {
duke@435 264 return !is_marked(addr);
duke@435 265 }
duke@435 266
duke@435 267 inline bool ParMarkBitMap::is_unmarked(oop obj) const
duke@435 268 {
duke@435 269 return !is_marked(obj);
duke@435 270 }
duke@435 271
duke@435 272 inline size_t
duke@435 273 ParMarkBitMap::bits_to_words(idx_t bits)
duke@435 274 {
jcoomes@1243 275 return bits << obj_granularity_shift();
duke@435 276 }
duke@435 277
duke@435 278 inline ParMarkBitMap::idx_t
duke@435 279 ParMarkBitMap::words_to_bits(size_t words)
duke@435 280 {
jcoomes@1243 281 return words >> obj_granularity_shift();
duke@435 282 }
duke@435 283
duke@435 284 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
duke@435 285 {
duke@435 286 DEBUG_ONLY(verify_bit(beg_bit);)
duke@435 287 DEBUG_ONLY(verify_bit(end_bit);)
duke@435 288 return bits_to_words(end_bit - beg_bit + 1);
duke@435 289 }
duke@435 290
duke@435 291 inline size_t
duke@435 292 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
duke@435 293 {
duke@435 294 DEBUG_ONLY(verify_addr(beg_addr);)
duke@435 295 DEBUG_ONLY(verify_addr(end_addr);)
duke@435 296 return pointer_delta(end_addr, beg_addr) + obj_granularity();
duke@435 297 }
duke@435 298
duke@435 299 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
duke@435 300 {
ysr@777 301 const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
duke@435 302 assert(is_marked(beg_bit), "obj not marked");
duke@435 303 assert(end_bit < size(), "end bit missing");
duke@435 304 return obj_size(beg_bit, end_bit);
duke@435 305 }
duke@435 306
duke@435 307 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
duke@435 308 {
duke@435 309 return obj_size(addr_to_bit(addr));
duke@435 310 }
duke@435 311
duke@435 312 inline ParMarkBitMap::IterationStatus
duke@435 313 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
duke@435 314 HeapWord* range_beg,
duke@435 315 HeapWord* range_end) const
duke@435 316 {
duke@435 317 return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
duke@435 318 }
duke@435 319
duke@435 320 inline ParMarkBitMap::IterationStatus
duke@435 321 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
duke@435 322 ParMarkBitMapClosure* dead_closure,
duke@435 323 HeapWord* range_beg,
duke@435 324 HeapWord* range_end,
duke@435 325 HeapWord* dead_range_end) const
duke@435 326 {
duke@435 327 return iterate(live_closure, dead_closure,
duke@435 328 addr_to_bit(range_beg), addr_to_bit(range_end),
duke@435 329 addr_to_bit(dead_range_end));
duke@435 330 }
duke@435 331
duke@435 332 inline bool
duke@435 333 ParMarkBitMap::mark_obj(oop obj, int size)
duke@435 334 {
duke@435 335 return mark_obj((HeapWord*)obj, (size_t)size);
duke@435 336 }
duke@435 337
duke@435 338 inline BitMap::idx_t
duke@435 339 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
duke@435 340 {
duke@435 341 DEBUG_ONLY(verify_addr(addr);)
duke@435 342 return words_to_bits(pointer_delta(addr, region_start()));
duke@435 343 }
duke@435 344
duke@435 345 inline HeapWord*
duke@435 346 ParMarkBitMap::bit_to_addr(idx_t bit) const
duke@435 347 {
duke@435 348 DEBUG_ONLY(verify_bit(bit);)
duke@435 349 return region_start() + bits_to_words(bit);
duke@435 350 }
duke@435 351
duke@435 352 inline ParMarkBitMap::idx_t
duke@435 353 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
duke@435 354 {
ysr@777 355 return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
duke@435 356 }
duke@435 357
duke@435 358 inline ParMarkBitMap::idx_t
duke@435 359 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
duke@435 360 {
ysr@777 361 return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
duke@435 362 }
duke@435 363
duke@435 364 inline HeapWord*
duke@435 365 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
duke@435 366 {
duke@435 367 const idx_t beg_bit = addr_to_bit(beg);
duke@435 368 const idx_t end_bit = addr_to_bit(end);
duke@435 369 const idx_t search_end = BitMap::word_align_up(end_bit);
duke@435 370 const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
duke@435 371 return bit_to_addr(res_bit);
duke@435 372 }
duke@435 373
duke@435 374 inline HeapWord*
duke@435 375 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
duke@435 376 {
duke@435 377 const idx_t beg_bit = addr_to_bit(beg);
duke@435 378 const idx_t end_bit = addr_to_bit(end);
duke@435 379 const idx_t search_end = BitMap::word_align_up(end_bit);
duke@435 380 const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
duke@435 381 return bit_to_addr(res_bit);
duke@435 382 }
duke@435 383
duke@435 384 #ifdef ASSERT
duke@435 385 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
duke@435 386 // Allow one past the last valid bit; useful for loop bounds.
duke@435 387 assert(bit <= _beg_bits.size(), "bit out of range");
duke@435 388 }
duke@435 389
duke@435 390 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
duke@435 391 // Allow one past the last valid address; useful for loop bounds.
brutisso@5117 392 assert(addr >= region_start(),
brutisso@5117 393 err_msg("addr too small, addr: " PTR_FORMAT " region start: " PTR_FORMAT, addr, region_start()));
brutisso@5117 394 assert(addr <= region_end(),
brutisso@5117 395 err_msg("addr too big, addr: " PTR_FORMAT " region end: " PTR_FORMAT, addr, region_end()));
duke@435 396 }
duke@435 397 #endif // #ifdef ASSERT
stefank@2314 398
stefank@2314 399 #endif // SHARE_VM_GC_IMPLEMENTATION_PARALLELSCAVENGE_PARMARKBITMAP_HPP

mercurial