src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Wed, 25 Mar 2009 13:10:54 -0700

author
apetrusenko
date
Wed, 25 Mar 2009 13:10:54 -0700
changeset 1112
96b229c54d1e
parent 1082
bd441136a5ce
child 1113
4ac7d97e6101
permissions
-rw-r--r--

6543938: G1: remove the concept of popularity
Reviewed-by: iveresov, tonyp

ysr@777 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
ysr@777 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
ysr@777 20 * CA 95054 USA or visit www.sun.com if you need additional information or
ysr@777 21 * have any questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 #include "incls/_precompiled.incl"
ysr@777 26 #include "incls/_g1CollectedHeap.cpp.incl"
ysr@777 27
ysr@777 28 // turn it on so that the contents of the young list (scan-only /
ysr@777 29 // to-be-collected) are printed at "strategic" points before / during
ysr@777 30 // / after the collection --- this is useful for debugging
ysr@777 31 #define SCAN_ONLY_VERBOSE 0
ysr@777 32 // CURRENT STATUS
ysr@777 33 // This file is under construction. Search for "FIXME".
ysr@777 34
ysr@777 35 // INVARIANTS/NOTES
ysr@777 36 //
ysr@777 37 // All allocation activity covered by the G1CollectedHeap interface is
ysr@777 38 // serialized by acquiring the HeapLock. This happens in
ysr@777 39 // mem_allocate_work, which all such allocation functions call.
ysr@777 40 // (Note that this does not apply to TLAB allocation, which is not part
ysr@777 41 // of this interface: it is done by clients of this interface.)
ysr@777 42
ysr@777 43 // Local to this file.
ysr@777 44
ysr@777 45 class RefineCardTableEntryClosure: public CardTableEntryClosure {
ysr@777 46 SuspendibleThreadSet* _sts;
ysr@777 47 G1RemSet* _g1rs;
ysr@777 48 ConcurrentG1Refine* _cg1r;
ysr@777 49 bool _concurrent;
ysr@777 50 public:
ysr@777 51 RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
ysr@777 52 G1RemSet* g1rs,
ysr@777 53 ConcurrentG1Refine* cg1r) :
ysr@777 54 _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
ysr@777 55 {}
ysr@777 56 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
ysr@777 57 _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
ysr@777 58 if (_concurrent && _sts->should_yield()) {
ysr@777 59 // Caller will actually yield.
ysr@777 60 return false;
ysr@777 61 }
ysr@777 62 // Otherwise, we finished successfully; return true.
ysr@777 63 return true;
ysr@777 64 }
ysr@777 65 void set_concurrent(bool b) { _concurrent = b; }
ysr@777 66 };
ysr@777 67
ysr@777 68
ysr@777 69 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
ysr@777 70 int _calls;
ysr@777 71 G1CollectedHeap* _g1h;
ysr@777 72 CardTableModRefBS* _ctbs;
ysr@777 73 int _histo[256];
ysr@777 74 public:
ysr@777 75 ClearLoggedCardTableEntryClosure() :
ysr@777 76 _calls(0)
ysr@777 77 {
ysr@777 78 _g1h = G1CollectedHeap::heap();
ysr@777 79 _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
ysr@777 80 for (int i = 0; i < 256; i++) _histo[i] = 0;
ysr@777 81 }
ysr@777 82 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
ysr@777 83 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
ysr@777 84 _calls++;
ysr@777 85 unsigned char* ujb = (unsigned char*)card_ptr;
ysr@777 86 int ind = (int)(*ujb);
ysr@777 87 _histo[ind]++;
ysr@777 88 *card_ptr = -1;
ysr@777 89 }
ysr@777 90 return true;
ysr@777 91 }
ysr@777 92 int calls() { return _calls; }
ysr@777 93 void print_histo() {
ysr@777 94 gclog_or_tty->print_cr("Card table value histogram:");
ysr@777 95 for (int i = 0; i < 256; i++) {
ysr@777 96 if (_histo[i] != 0) {
ysr@777 97 gclog_or_tty->print_cr(" %d: %d", i, _histo[i]);
ysr@777 98 }
ysr@777 99 }
ysr@777 100 }
ysr@777 101 };
ysr@777 102
ysr@777 103 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
ysr@777 104 int _calls;
ysr@777 105 G1CollectedHeap* _g1h;
ysr@777 106 CardTableModRefBS* _ctbs;
ysr@777 107 public:
ysr@777 108 RedirtyLoggedCardTableEntryClosure() :
ysr@777 109 _calls(0)
ysr@777 110 {
ysr@777 111 _g1h = G1CollectedHeap::heap();
ysr@777 112 _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
ysr@777 113 }
ysr@777 114 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
ysr@777 115 if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
ysr@777 116 _calls++;
ysr@777 117 *card_ptr = 0;
ysr@777 118 }
ysr@777 119 return true;
ysr@777 120 }
ysr@777 121 int calls() { return _calls; }
ysr@777 122 };
ysr@777 123
iveresov@1051 124 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
iveresov@1051 125 public:
iveresov@1051 126 bool do_card_ptr(jbyte* card_ptr, int worker_i) {
iveresov@1051 127 *card_ptr = CardTableModRefBS::dirty_card_val();
iveresov@1051 128 return true;
iveresov@1051 129 }
iveresov@1051 130 };
iveresov@1051 131
ysr@777 132 YoungList::YoungList(G1CollectedHeap* g1h)
ysr@777 133 : _g1h(g1h), _head(NULL),
ysr@777 134 _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
ysr@777 135 _length(0), _scan_only_length(0),
ysr@777 136 _last_sampled_rs_lengths(0),
apetrusenko@980 137 _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
ysr@777 138 {
ysr@777 139 guarantee( check_list_empty(false), "just making sure..." );
ysr@777 140 }
ysr@777 141
ysr@777 142 void YoungList::push_region(HeapRegion *hr) {
ysr@777 143 assert(!hr->is_young(), "should not already be young");
ysr@777 144 assert(hr->get_next_young_region() == NULL, "cause it should!");
ysr@777 145
ysr@777 146 hr->set_next_young_region(_head);
ysr@777 147 _head = hr;
ysr@777 148
ysr@777 149 hr->set_young();
ysr@777 150 double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
ysr@777 151 ++_length;
ysr@777 152 }
ysr@777 153
ysr@777 154 void YoungList::add_survivor_region(HeapRegion* hr) {
apetrusenko@980 155 assert(hr->is_survivor(), "should be flagged as survivor region");
ysr@777 156 assert(hr->get_next_young_region() == NULL, "cause it should!");
ysr@777 157
ysr@777 158 hr->set_next_young_region(_survivor_head);
ysr@777 159 if (_survivor_head == NULL) {
apetrusenko@980 160 _survivor_tail = hr;
ysr@777 161 }
ysr@777 162 _survivor_head = hr;
ysr@777 163
ysr@777 164 ++_survivor_length;
ysr@777 165 }
ysr@777 166
ysr@777 167 HeapRegion* YoungList::pop_region() {
ysr@777 168 while (_head != NULL) {
ysr@777 169 assert( length() > 0, "list should not be empty" );
ysr@777 170 HeapRegion* ret = _head;
ysr@777 171 _head = ret->get_next_young_region();
ysr@777 172 ret->set_next_young_region(NULL);
ysr@777 173 --_length;
ysr@777 174 assert(ret->is_young(), "region should be very young");
ysr@777 175
ysr@777 176 // Replace 'Survivor' region type with 'Young'. So the region will
ysr@777 177 // be treated as a young region and will not be 'confused' with
ysr@777 178 // newly created survivor regions.
ysr@777 179 if (ret->is_survivor()) {
ysr@777 180 ret->set_young();
ysr@777 181 }
ysr@777 182
ysr@777 183 if (!ret->is_scan_only()) {
ysr@777 184 return ret;
ysr@777 185 }
ysr@777 186
ysr@777 187 // scan-only, we'll add it to the scan-only list
ysr@777 188 if (_scan_only_tail == NULL) {
ysr@777 189 guarantee( _scan_only_head == NULL, "invariant" );
ysr@777 190
ysr@777 191 _scan_only_head = ret;
ysr@777 192 _curr_scan_only = ret;
ysr@777 193 } else {
ysr@777 194 guarantee( _scan_only_head != NULL, "invariant" );
ysr@777 195 _scan_only_tail->set_next_young_region(ret);
ysr@777 196 }
ysr@777 197 guarantee( ret->get_next_young_region() == NULL, "invariant" );
ysr@777 198 _scan_only_tail = ret;
ysr@777 199
ysr@777 200 // no need to be tagged as scan-only any more
ysr@777 201 ret->set_young();
ysr@777 202
ysr@777 203 ++_scan_only_length;
ysr@777 204 }
ysr@777 205 assert( length() == 0, "list should be empty" );
ysr@777 206 return NULL;
ysr@777 207 }
ysr@777 208
ysr@777 209 void YoungList::empty_list(HeapRegion* list) {
ysr@777 210 while (list != NULL) {
ysr@777 211 HeapRegion* next = list->get_next_young_region();
ysr@777 212 list->set_next_young_region(NULL);
ysr@777 213 list->uninstall_surv_rate_group();
ysr@777 214 list->set_not_young();
ysr@777 215 list = next;
ysr@777 216 }
ysr@777 217 }
ysr@777 218
ysr@777 219 void YoungList::empty_list() {
ysr@777 220 assert(check_list_well_formed(), "young list should be well formed");
ysr@777 221
ysr@777 222 empty_list(_head);
ysr@777 223 _head = NULL;
ysr@777 224 _length = 0;
ysr@777 225
ysr@777 226 empty_list(_scan_only_head);
ysr@777 227 _scan_only_head = NULL;
ysr@777 228 _scan_only_tail = NULL;
ysr@777 229 _scan_only_length = 0;
ysr@777 230 _curr_scan_only = NULL;
ysr@777 231
ysr@777 232 empty_list(_survivor_head);
ysr@777 233 _survivor_head = NULL;
apetrusenko@980 234 _survivor_tail = NULL;
ysr@777 235 _survivor_length = 0;
ysr@777 236
ysr@777 237 _last_sampled_rs_lengths = 0;
ysr@777 238
ysr@777 239 assert(check_list_empty(false), "just making sure...");
ysr@777 240 }
ysr@777 241
ysr@777 242 bool YoungList::check_list_well_formed() {
ysr@777 243 bool ret = true;
ysr@777 244
ysr@777 245 size_t length = 0;
ysr@777 246 HeapRegion* curr = _head;
ysr@777 247 HeapRegion* last = NULL;
ysr@777 248 while (curr != NULL) {
ysr@777 249 if (!curr->is_young() || curr->is_scan_only()) {
ysr@777 250 gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
ysr@777 251 "incorrectly tagged (%d, %d)",
ysr@777 252 curr->bottom(), curr->end(),
ysr@777 253 curr->is_young(), curr->is_scan_only());
ysr@777 254 ret = false;
ysr@777 255 }
ysr@777 256 ++length;
ysr@777 257 last = curr;
ysr@777 258 curr = curr->get_next_young_region();
ysr@777 259 }
ysr@777 260 ret = ret && (length == _length);
ysr@777 261
ysr@777 262 if (!ret) {
ysr@777 263 gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
ysr@777 264 gclog_or_tty->print_cr("### list has %d entries, _length is %d",
ysr@777 265 length, _length);
ysr@777 266 }
ysr@777 267
ysr@777 268 bool scan_only_ret = true;
ysr@777 269 length = 0;
ysr@777 270 curr = _scan_only_head;
ysr@777 271 last = NULL;
ysr@777 272 while (curr != NULL) {
ysr@777 273 if (!curr->is_young() || curr->is_scan_only()) {
ysr@777 274 gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
ysr@777 275 "incorrectly tagged (%d, %d)",
ysr@777 276 curr->bottom(), curr->end(),
ysr@777 277 curr->is_young(), curr->is_scan_only());
ysr@777 278 scan_only_ret = false;
ysr@777 279 }
ysr@777 280 ++length;
ysr@777 281 last = curr;
ysr@777 282 curr = curr->get_next_young_region();
ysr@777 283 }
ysr@777 284 scan_only_ret = scan_only_ret && (length == _scan_only_length);
ysr@777 285
ysr@777 286 if ( (last != _scan_only_tail) ||
ysr@777 287 (_scan_only_head == NULL && _scan_only_tail != NULL) ||
ysr@777 288 (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
ysr@777 289 gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
ysr@777 290 scan_only_ret = false;
ysr@777 291 }
ysr@777 292
ysr@777 293 if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
ysr@777 294 gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
ysr@777 295 scan_only_ret = false;
ysr@777 296 }
ysr@777 297
ysr@777 298 if (!scan_only_ret) {
ysr@777 299 gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
ysr@777 300 gclog_or_tty->print_cr("### list has %d entries, _scan_only_length is %d",
ysr@777 301 length, _scan_only_length);
ysr@777 302 }
ysr@777 303
ysr@777 304 return ret && scan_only_ret;
ysr@777 305 }
ysr@777 306
ysr@777 307 bool YoungList::check_list_empty(bool ignore_scan_only_list,
ysr@777 308 bool check_sample) {
ysr@777 309 bool ret = true;
ysr@777 310
ysr@777 311 if (_length != 0) {
ysr@777 312 gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
ysr@777 313 _length);
ysr@777 314 ret = false;
ysr@777 315 }
ysr@777 316 if (check_sample && _last_sampled_rs_lengths != 0) {
ysr@777 317 gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
ysr@777 318 ret = false;
ysr@777 319 }
ysr@777 320 if (_head != NULL) {
ysr@777 321 gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
ysr@777 322 ret = false;
ysr@777 323 }
ysr@777 324 if (!ret) {
ysr@777 325 gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
ysr@777 326 }
ysr@777 327
ysr@777 328 if (ignore_scan_only_list)
ysr@777 329 return ret;
ysr@777 330
ysr@777 331 bool scan_only_ret = true;
ysr@777 332 if (_scan_only_length != 0) {
ysr@777 333 gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
ysr@777 334 _scan_only_length);
ysr@777 335 scan_only_ret = false;
ysr@777 336 }
ysr@777 337 if (_scan_only_head != NULL) {
ysr@777 338 gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
ysr@777 339 scan_only_ret = false;
ysr@777 340 }
ysr@777 341 if (_scan_only_tail != NULL) {
ysr@777 342 gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
ysr@777 343 scan_only_ret = false;
ysr@777 344 }
ysr@777 345 if (!scan_only_ret) {
ysr@777 346 gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
ysr@777 347 }
ysr@777 348
ysr@777 349 return ret && scan_only_ret;
ysr@777 350 }
ysr@777 351
ysr@777 352 void
ysr@777 353 YoungList::rs_length_sampling_init() {
ysr@777 354 _sampled_rs_lengths = 0;
ysr@777 355 _curr = _head;
ysr@777 356 }
ysr@777 357
ysr@777 358 bool
ysr@777 359 YoungList::rs_length_sampling_more() {
ysr@777 360 return _curr != NULL;
ysr@777 361 }
ysr@777 362
ysr@777 363 void
ysr@777 364 YoungList::rs_length_sampling_next() {
ysr@777 365 assert( _curr != NULL, "invariant" );
ysr@777 366 _sampled_rs_lengths += _curr->rem_set()->occupied();
ysr@777 367 _curr = _curr->get_next_young_region();
ysr@777 368 if (_curr == NULL) {
ysr@777 369 _last_sampled_rs_lengths = _sampled_rs_lengths;
ysr@777 370 // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
ysr@777 371 }
ysr@777 372 }
ysr@777 373
ysr@777 374 void
ysr@777 375 YoungList::reset_auxilary_lists() {
ysr@777 376 // We could have just "moved" the scan-only list to the young list.
ysr@777 377 // However, the scan-only list is ordered according to the region
ysr@777 378 // age in descending order, so, by moving one entry at a time, we
ysr@777 379 // ensure that it is recreated in ascending order.
ysr@777 380
ysr@777 381 guarantee( is_empty(), "young list should be empty" );
ysr@777 382 assert(check_list_well_formed(), "young list should be well formed");
ysr@777 383
ysr@777 384 // Add survivor regions to SurvRateGroup.
ysr@777 385 _g1h->g1_policy()->note_start_adding_survivor_regions();
apetrusenko@980 386 _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
ysr@777 387 for (HeapRegion* curr = _survivor_head;
ysr@777 388 curr != NULL;
ysr@777 389 curr = curr->get_next_young_region()) {
ysr@777 390 _g1h->g1_policy()->set_region_survivors(curr);
ysr@777 391 }
ysr@777 392 _g1h->g1_policy()->note_stop_adding_survivor_regions();
ysr@777 393
ysr@777 394 if (_survivor_head != NULL) {
ysr@777 395 _head = _survivor_head;
ysr@777 396 _length = _survivor_length + _scan_only_length;
apetrusenko@980 397 _survivor_tail->set_next_young_region(_scan_only_head);
ysr@777 398 } else {
ysr@777 399 _head = _scan_only_head;
ysr@777 400 _length = _scan_only_length;
ysr@777 401 }
ysr@777 402
ysr@777 403 for (HeapRegion* curr = _scan_only_head;
ysr@777 404 curr != NULL;
ysr@777 405 curr = curr->get_next_young_region()) {
ysr@777 406 curr->recalculate_age_in_surv_rate_group();
ysr@777 407 }
ysr@777 408 _scan_only_head = NULL;
ysr@777 409 _scan_only_tail = NULL;
ysr@777 410 _scan_only_length = 0;
ysr@777 411 _curr_scan_only = NULL;
ysr@777 412
ysr@777 413 _survivor_head = NULL;
apetrusenko@980 414 _survivor_tail = NULL;
ysr@777 415 _survivor_length = 0;
apetrusenko@980 416 _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
ysr@777 417
ysr@777 418 assert(check_list_well_formed(), "young list should be well formed");
ysr@777 419 }
ysr@777 420
ysr@777 421 void YoungList::print() {
ysr@777 422 HeapRegion* lists[] = {_head, _scan_only_head, _survivor_head};
ysr@777 423 const char* names[] = {"YOUNG", "SCAN-ONLY", "SURVIVOR"};
ysr@777 424
ysr@777 425 for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
ysr@777 426 gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
ysr@777 427 HeapRegion *curr = lists[list];
ysr@777 428 if (curr == NULL)
ysr@777 429 gclog_or_tty->print_cr(" empty");
ysr@777 430 while (curr != NULL) {
ysr@777 431 gclog_or_tty->print_cr(" [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
ysr@777 432 "age: %4d, y: %d, s-o: %d, surv: %d",
ysr@777 433 curr->bottom(), curr->end(),
ysr@777 434 curr->top(),
ysr@777 435 curr->prev_top_at_mark_start(),
ysr@777 436 curr->next_top_at_mark_start(),
ysr@777 437 curr->top_at_conc_mark_count(),
ysr@777 438 curr->age_in_surv_rate_group_cond(),
ysr@777 439 curr->is_young(),
ysr@777 440 curr->is_scan_only(),
ysr@777 441 curr->is_survivor());
ysr@777 442 curr = curr->get_next_young_region();
ysr@777 443 }
ysr@777 444 }
ysr@777 445
ysr@777 446 gclog_or_tty->print_cr("");
ysr@777 447 }
ysr@777 448
ysr@777 449 void G1CollectedHeap::stop_conc_gc_threads() {
ysr@777 450 _cg1r->cg1rThread()->stop();
ysr@777 451 _czft->stop();
ysr@777 452 _cmThread->stop();
ysr@777 453 }
ysr@777 454
ysr@777 455
ysr@777 456 void G1CollectedHeap::check_ct_logs_at_safepoint() {
ysr@777 457 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
ysr@777 458 CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
ysr@777 459
ysr@777 460 // Count the dirty cards at the start.
ysr@777 461 CountNonCleanMemRegionClosure count1(this);
ysr@777 462 ct_bs->mod_card_iterate(&count1);
ysr@777 463 int orig_count = count1.n();
ysr@777 464
ysr@777 465 // First clear the logged cards.
ysr@777 466 ClearLoggedCardTableEntryClosure clear;
ysr@777 467 dcqs.set_closure(&clear);
ysr@777 468 dcqs.apply_closure_to_all_completed_buffers();
ysr@777 469 dcqs.iterate_closure_all_threads(false);
ysr@777 470 clear.print_histo();
ysr@777 471
ysr@777 472 // Now ensure that there's no dirty cards.
ysr@777 473 CountNonCleanMemRegionClosure count2(this);
ysr@777 474 ct_bs->mod_card_iterate(&count2);
ysr@777 475 if (count2.n() != 0) {
ysr@777 476 gclog_or_tty->print_cr("Card table has %d entries; %d originally",
ysr@777 477 count2.n(), orig_count);
ysr@777 478 }
ysr@777 479 guarantee(count2.n() == 0, "Card table should be clean.");
ysr@777 480
ysr@777 481 RedirtyLoggedCardTableEntryClosure redirty;
ysr@777 482 JavaThread::dirty_card_queue_set().set_closure(&redirty);
ysr@777 483 dcqs.apply_closure_to_all_completed_buffers();
ysr@777 484 dcqs.iterate_closure_all_threads(false);
ysr@777 485 gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
ysr@777 486 clear.calls(), orig_count);
ysr@777 487 guarantee(redirty.calls() == clear.calls(),
ysr@777 488 "Or else mechanism is broken.");
ysr@777 489
ysr@777 490 CountNonCleanMemRegionClosure count3(this);
ysr@777 491 ct_bs->mod_card_iterate(&count3);
ysr@777 492 if (count3.n() != orig_count) {
ysr@777 493 gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
ysr@777 494 orig_count, count3.n());
ysr@777 495 guarantee(count3.n() >= orig_count, "Should have restored them all.");
ysr@777 496 }
ysr@777 497
ysr@777 498 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
ysr@777 499 }
ysr@777 500
ysr@777 501 // Private class members.
ysr@777 502
ysr@777 503 G1CollectedHeap* G1CollectedHeap::_g1h;
ysr@777 504
ysr@777 505 // Private methods.
ysr@777 506
ysr@777 507 // Finds a HeapRegion that can be used to allocate a given size of block.
ysr@777 508
ysr@777 509
ysr@777 510 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
ysr@777 511 bool do_expand,
ysr@777 512 bool zero_filled) {
ysr@777 513 ConcurrentZFThread::note_region_alloc();
ysr@777 514 HeapRegion* res = alloc_free_region_from_lists(zero_filled);
ysr@777 515 if (res == NULL && do_expand) {
ysr@777 516 expand(word_size * HeapWordSize);
ysr@777 517 res = alloc_free_region_from_lists(zero_filled);
ysr@777 518 assert(res == NULL ||
ysr@777 519 (!res->isHumongous() &&
ysr@777 520 (!zero_filled ||
ysr@777 521 res->zero_fill_state() == HeapRegion::Allocated)),
ysr@777 522 "Alloc Regions must be zero filled (and non-H)");
ysr@777 523 }
ysr@777 524 if (res != NULL && res->is_empty()) _free_regions--;
ysr@777 525 assert(res == NULL ||
ysr@777 526 (!res->isHumongous() &&
ysr@777 527 (!zero_filled ||
ysr@777 528 res->zero_fill_state() == HeapRegion::Allocated)),
ysr@777 529 "Non-young alloc Regions must be zero filled (and non-H)");
ysr@777 530
ysr@777 531 if (G1TraceRegions) {
ysr@777 532 if (res != NULL) {
ysr@777 533 gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
ysr@777 534 "top "PTR_FORMAT,
ysr@777 535 res->hrs_index(), res->bottom(), res->end(), res->top());
ysr@777 536 }
ysr@777 537 }
ysr@777 538
ysr@777 539 return res;
ysr@777 540 }
ysr@777 541
ysr@777 542 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
ysr@777 543 size_t word_size,
ysr@777 544 bool zero_filled) {
ysr@777 545 HeapRegion* alloc_region = NULL;
ysr@777 546 if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
ysr@777 547 alloc_region = newAllocRegion_work(word_size, true, zero_filled);
ysr@777 548 if (purpose == GCAllocForSurvived && alloc_region != NULL) {
apetrusenko@980 549 alloc_region->set_survivor();
ysr@777 550 }
ysr@777 551 ++_gc_alloc_region_counts[purpose];
ysr@777 552 } else {
ysr@777 553 g1_policy()->note_alloc_region_limit_reached(purpose);
ysr@777 554 }
ysr@777 555 return alloc_region;
ysr@777 556 }
ysr@777 557
ysr@777 558 // If could fit into free regions w/o expansion, try.
ysr@777 559 // Otherwise, if can expand, do so.
ysr@777 560 // Otherwise, if using ex regions might help, try with ex given back.
ysr@777 561 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
ysr@777 562 assert(regions_accounted_for(), "Region leakage!");
ysr@777 563
ysr@777 564 // We can't allocate H regions while cleanupComplete is running, since
ysr@777 565 // some of the regions we find to be empty might not yet be added to the
ysr@777 566 // unclean list. (If we're already at a safepoint, this call is
ysr@777 567 // unnecessary, not to mention wrong.)
ysr@777 568 if (!SafepointSynchronize::is_at_safepoint())
ysr@777 569 wait_for_cleanup_complete();
ysr@777 570
ysr@777 571 size_t num_regions =
ysr@777 572 round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
ysr@777 573
ysr@777 574 // Special case if < one region???
ysr@777 575
ysr@777 576 // Remember the ft size.
ysr@777 577 size_t x_size = expansion_regions();
ysr@777 578
ysr@777 579 HeapWord* res = NULL;
ysr@777 580 bool eliminated_allocated_from_lists = false;
ysr@777 581
ysr@777 582 // Can the allocation potentially fit in the free regions?
ysr@777 583 if (free_regions() >= num_regions) {
ysr@777 584 res = _hrs->obj_allocate(word_size);
ysr@777 585 }
ysr@777 586 if (res == NULL) {
ysr@777 587 // Try expansion.
ysr@777 588 size_t fs = _hrs->free_suffix();
ysr@777 589 if (fs + x_size >= num_regions) {
ysr@777 590 expand((num_regions - fs) * HeapRegion::GrainBytes);
ysr@777 591 res = _hrs->obj_allocate(word_size);
ysr@777 592 assert(res != NULL, "This should have worked.");
ysr@777 593 } else {
ysr@777 594 // Expansion won't help. Are there enough free regions if we get rid
ysr@777 595 // of reservations?
ysr@777 596 size_t avail = free_regions();
ysr@777 597 if (avail >= num_regions) {
ysr@777 598 res = _hrs->obj_allocate(word_size);
ysr@777 599 if (res != NULL) {
ysr@777 600 remove_allocated_regions_from_lists();
ysr@777 601 eliminated_allocated_from_lists = true;
ysr@777 602 }
ysr@777 603 }
ysr@777 604 }
ysr@777 605 }
ysr@777 606 if (res != NULL) {
ysr@777 607 // Increment by the number of regions allocated.
ysr@777 608 // FIXME: Assumes regions all of size GrainBytes.
ysr@777 609 #ifndef PRODUCT
ysr@777 610 mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
ysr@777 611 HeapRegion::GrainWords));
ysr@777 612 #endif
ysr@777 613 if (!eliminated_allocated_from_lists)
ysr@777 614 remove_allocated_regions_from_lists();
ysr@777 615 _summary_bytes_used += word_size * HeapWordSize;
ysr@777 616 _free_regions -= num_regions;
ysr@777 617 _num_humongous_regions += (int) num_regions;
ysr@777 618 }
ysr@777 619 assert(regions_accounted_for(), "Region Leakage");
ysr@777 620 return res;
ysr@777 621 }
ysr@777 622
ysr@777 623 HeapWord*
ysr@777 624 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
ysr@777 625 bool permit_collection_pause) {
ysr@777 626 HeapWord* res = NULL;
ysr@777 627 HeapRegion* allocated_young_region = NULL;
ysr@777 628
ysr@777 629 assert( SafepointSynchronize::is_at_safepoint() ||
ysr@777 630 Heap_lock->owned_by_self(), "pre condition of the call" );
ysr@777 631
ysr@777 632 if (isHumongous(word_size)) {
ysr@777 633 // Allocation of a humongous object can, in a sense, complete a
ysr@777 634 // partial region, if the previous alloc was also humongous, and
ysr@777 635 // caused the test below to succeed.
ysr@777 636 if (permit_collection_pause)
ysr@777 637 do_collection_pause_if_appropriate(word_size);
ysr@777 638 res = humongousObjAllocate(word_size);
ysr@777 639 assert(_cur_alloc_region == NULL
ysr@777 640 || !_cur_alloc_region->isHumongous(),
ysr@777 641 "Prevent a regression of this bug.");
ysr@777 642
ysr@777 643 } else {
iveresov@789 644 // We may have concurrent cleanup working at the time. Wait for it
iveresov@789 645 // to complete. In the future we would probably want to make the
iveresov@789 646 // concurrent cleanup truly concurrent by decoupling it from the
iveresov@789 647 // allocation.
iveresov@789 648 if (!SafepointSynchronize::is_at_safepoint())
iveresov@789 649 wait_for_cleanup_complete();
ysr@777 650 // If we do a collection pause, this will be reset to a non-NULL
ysr@777 651 // value. If we don't, nulling here ensures that we allocate a new
ysr@777 652 // region below.
ysr@777 653 if (_cur_alloc_region != NULL) {
ysr@777 654 // We're finished with the _cur_alloc_region.
ysr@777 655 _summary_bytes_used += _cur_alloc_region->used();
ysr@777 656 _cur_alloc_region = NULL;
ysr@777 657 }
ysr@777 658 assert(_cur_alloc_region == NULL, "Invariant.");
ysr@777 659 // Completion of a heap region is perhaps a good point at which to do
ysr@777 660 // a collection pause.
ysr@777 661 if (permit_collection_pause)
ysr@777 662 do_collection_pause_if_appropriate(word_size);
ysr@777 663 // Make sure we have an allocation region available.
ysr@777 664 if (_cur_alloc_region == NULL) {
ysr@777 665 if (!SafepointSynchronize::is_at_safepoint())
ysr@777 666 wait_for_cleanup_complete();
ysr@777 667 bool next_is_young = should_set_young_locked();
ysr@777 668 // If the next region is not young, make sure it's zero-filled.
ysr@777 669 _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
ysr@777 670 if (_cur_alloc_region != NULL) {
ysr@777 671 _summary_bytes_used -= _cur_alloc_region->used();
ysr@777 672 if (next_is_young) {
ysr@777 673 set_region_short_lived_locked(_cur_alloc_region);
ysr@777 674 allocated_young_region = _cur_alloc_region;
ysr@777 675 }
ysr@777 676 }
ysr@777 677 }
ysr@777 678 assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
ysr@777 679 "Prevent a regression of this bug.");
ysr@777 680
ysr@777 681 // Now retry the allocation.
ysr@777 682 if (_cur_alloc_region != NULL) {
ysr@777 683 res = _cur_alloc_region->allocate(word_size);
ysr@777 684 }
ysr@777 685 }
ysr@777 686
ysr@777 687 // NOTE: fails frequently in PRT
ysr@777 688 assert(regions_accounted_for(), "Region leakage!");
ysr@777 689
ysr@777 690 if (res != NULL) {
ysr@777 691 if (!SafepointSynchronize::is_at_safepoint()) {
ysr@777 692 assert( permit_collection_pause, "invariant" );
ysr@777 693 assert( Heap_lock->owned_by_self(), "invariant" );
ysr@777 694 Heap_lock->unlock();
ysr@777 695 }
ysr@777 696
ysr@777 697 if (allocated_young_region != NULL) {
ysr@777 698 HeapRegion* hr = allocated_young_region;
ysr@777 699 HeapWord* bottom = hr->bottom();
ysr@777 700 HeapWord* end = hr->end();
ysr@777 701 MemRegion mr(bottom, end);
ysr@777 702 ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
ysr@777 703 }
ysr@777 704 }
ysr@777 705
ysr@777 706 assert( SafepointSynchronize::is_at_safepoint() ||
ysr@777 707 (res == NULL && Heap_lock->owned_by_self()) ||
ysr@777 708 (res != NULL && !Heap_lock->owned_by_self()),
ysr@777 709 "post condition of the call" );
ysr@777 710
ysr@777 711 return res;
ysr@777 712 }
ysr@777 713
ysr@777 714 HeapWord*
ysr@777 715 G1CollectedHeap::mem_allocate(size_t word_size,
ysr@777 716 bool is_noref,
ysr@777 717 bool is_tlab,
ysr@777 718 bool* gc_overhead_limit_was_exceeded) {
ysr@777 719 debug_only(check_for_valid_allocation_state());
ysr@777 720 assert(no_gc_in_progress(), "Allocation during gc not allowed");
ysr@777 721 HeapWord* result = NULL;
ysr@777 722
ysr@777 723 // Loop until the allocation is satisified,
ysr@777 724 // or unsatisfied after GC.
ysr@777 725 for (int try_count = 1; /* return or throw */; try_count += 1) {
ysr@777 726 int gc_count_before;
ysr@777 727 {
ysr@777 728 Heap_lock->lock();
ysr@777 729 result = attempt_allocation(word_size);
ysr@777 730 if (result != NULL) {
ysr@777 731 // attempt_allocation should have unlocked the heap lock
ysr@777 732 assert(is_in(result), "result not in heap");
ysr@777 733 return result;
ysr@777 734 }
ysr@777 735 // Read the gc count while the heap lock is held.
ysr@777 736 gc_count_before = SharedHeap::heap()->total_collections();
ysr@777 737 Heap_lock->unlock();
ysr@777 738 }
ysr@777 739
ysr@777 740 // Create the garbage collection operation...
ysr@777 741 VM_G1CollectForAllocation op(word_size,
ysr@777 742 gc_count_before);
ysr@777 743
ysr@777 744 // ...and get the VM thread to execute it.
ysr@777 745 VMThread::execute(&op);
ysr@777 746 if (op.prologue_succeeded()) {
ysr@777 747 result = op.result();
ysr@777 748 assert(result == NULL || is_in(result), "result not in heap");
ysr@777 749 return result;
ysr@777 750 }
ysr@777 751
ysr@777 752 // Give a warning if we seem to be looping forever.
ysr@777 753 if ((QueuedAllocationWarningCount > 0) &&
ysr@777 754 (try_count % QueuedAllocationWarningCount == 0)) {
ysr@777 755 warning("G1CollectedHeap::mem_allocate_work retries %d times",
ysr@777 756 try_count);
ysr@777 757 }
ysr@777 758 }
ysr@777 759 }
ysr@777 760
ysr@777 761 void G1CollectedHeap::abandon_cur_alloc_region() {
ysr@777 762 if (_cur_alloc_region != NULL) {
ysr@777 763 // We're finished with the _cur_alloc_region.
ysr@777 764 if (_cur_alloc_region->is_empty()) {
ysr@777 765 _free_regions++;
ysr@777 766 free_region(_cur_alloc_region);
ysr@777 767 } else {
ysr@777 768 _summary_bytes_used += _cur_alloc_region->used();
ysr@777 769 }
ysr@777 770 _cur_alloc_region = NULL;
ysr@777 771 }
ysr@777 772 }
ysr@777 773
tonyp@1071 774 void G1CollectedHeap::abandon_gc_alloc_regions() {
tonyp@1071 775 // first, make sure that the GC alloc region list is empty (it should!)
tonyp@1071 776 assert(_gc_alloc_region_list == NULL, "invariant");
tonyp@1071 777 release_gc_alloc_regions(true /* totally */);
tonyp@1071 778 }
tonyp@1071 779
ysr@777 780 class PostMCRemSetClearClosure: public HeapRegionClosure {
ysr@777 781 ModRefBarrierSet* _mr_bs;
ysr@777 782 public:
ysr@777 783 PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
ysr@777 784 bool doHeapRegion(HeapRegion* r) {
ysr@777 785 r->reset_gc_time_stamp();
ysr@777 786 if (r->continuesHumongous())
ysr@777 787 return false;
ysr@777 788 HeapRegionRemSet* hrrs = r->rem_set();
ysr@777 789 if (hrrs != NULL) hrrs->clear();
ysr@777 790 // You might think here that we could clear just the cards
ysr@777 791 // corresponding to the used region. But no: if we leave a dirty card
ysr@777 792 // in a region we might allocate into, then it would prevent that card
ysr@777 793 // from being enqueued, and cause it to be missed.
ysr@777 794 // Re: the performance cost: we shouldn't be doing full GC anyway!
ysr@777 795 _mr_bs->clear(MemRegion(r->bottom(), r->end()));
ysr@777 796 return false;
ysr@777 797 }
ysr@777 798 };
ysr@777 799
ysr@777 800
ysr@777 801 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
ysr@777 802 ModRefBarrierSet* _mr_bs;
ysr@777 803 public:
ysr@777 804 PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
ysr@777 805 bool doHeapRegion(HeapRegion* r) {
ysr@777 806 if (r->continuesHumongous()) return false;
ysr@777 807 if (r->used_region().word_size() != 0) {
ysr@777 808 _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
ysr@777 809 }
ysr@777 810 return false;
ysr@777 811 }
ysr@777 812 };
ysr@777 813
apetrusenko@1061 814 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
apetrusenko@1061 815 G1CollectedHeap* _g1h;
apetrusenko@1061 816 UpdateRSOopClosure _cl;
apetrusenko@1061 817 int _worker_i;
apetrusenko@1061 818 public:
apetrusenko@1061 819 RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
apetrusenko@1061 820 _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
apetrusenko@1061 821 _worker_i(worker_i),
apetrusenko@1061 822 _g1h(g1)
apetrusenko@1061 823 { }
apetrusenko@1061 824 bool doHeapRegion(HeapRegion* r) {
apetrusenko@1061 825 if (!r->continuesHumongous()) {
apetrusenko@1061 826 _cl.set_from(r);
apetrusenko@1061 827 r->oop_iterate(&_cl);
apetrusenko@1061 828 }
apetrusenko@1061 829 return false;
apetrusenko@1061 830 }
apetrusenko@1061 831 };
apetrusenko@1061 832
apetrusenko@1061 833 class ParRebuildRSTask: public AbstractGangTask {
apetrusenko@1061 834 G1CollectedHeap* _g1;
apetrusenko@1061 835 public:
apetrusenko@1061 836 ParRebuildRSTask(G1CollectedHeap* g1)
apetrusenko@1061 837 : AbstractGangTask("ParRebuildRSTask"),
apetrusenko@1061 838 _g1(g1)
apetrusenko@1061 839 { }
apetrusenko@1061 840
apetrusenko@1061 841 void work(int i) {
apetrusenko@1061 842 RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
apetrusenko@1061 843 _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
apetrusenko@1061 844 HeapRegion::RebuildRSClaimValue);
apetrusenko@1061 845 }
apetrusenko@1061 846 };
apetrusenko@1061 847
ysr@777 848 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
ysr@777 849 size_t word_size) {
ysr@777 850 ResourceMark rm;
ysr@777 851
ysr@777 852 if (full && DisableExplicitGC) {
ysr@777 853 gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
ysr@777 854 return;
ysr@777 855 }
ysr@777 856
ysr@777 857 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
ysr@777 858 assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
ysr@777 859
ysr@777 860 if (GC_locker::is_active()) {
ysr@777 861 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
ysr@777 862 }
ysr@777 863
ysr@777 864 {
ysr@777 865 IsGCActiveMark x;
ysr@777 866
ysr@777 867 // Timing
ysr@777 868 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
ysr@777 869 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
ysr@777 870 TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
ysr@777 871
ysr@777 872 double start = os::elapsedTime();
ysr@777 873 GCOverheadReporter::recordSTWStart(start);
ysr@777 874 g1_policy()->record_full_collection_start();
ysr@777 875
ysr@777 876 gc_prologue(true);
ysr@777 877 increment_total_collections();
ysr@777 878
ysr@777 879 size_t g1h_prev_used = used();
ysr@777 880 assert(used() == recalculate_used(), "Should be equal");
ysr@777 881
ysr@777 882 if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
ysr@777 883 HandleMark hm; // Discard invalid handles created during verification
ysr@777 884 prepare_for_verify();
ysr@777 885 gclog_or_tty->print(" VerifyBeforeGC:");
ysr@777 886 Universe::verify(true);
ysr@777 887 }
ysr@777 888 assert(regions_accounted_for(), "Region leakage!");
ysr@777 889
ysr@777 890 COMPILER2_PRESENT(DerivedPointerTable::clear());
ysr@777 891
ysr@777 892 // We want to discover references, but not process them yet.
ysr@777 893 // This mode is disabled in
ysr@777 894 // instanceRefKlass::process_discovered_references if the
ysr@777 895 // generation does some collection work, or
ysr@777 896 // instanceRefKlass::enqueue_discovered_references if the
ysr@777 897 // generation returns without doing any work.
ysr@777 898 ref_processor()->disable_discovery();
ysr@777 899 ref_processor()->abandon_partial_discovery();
ysr@777 900 ref_processor()->verify_no_references_recorded();
ysr@777 901
ysr@777 902 // Abandon current iterations of concurrent marking and concurrent
ysr@777 903 // refinement, if any are in progress.
ysr@777 904 concurrent_mark()->abort();
ysr@777 905
ysr@777 906 // Make sure we'll choose a new allocation region afterwards.
ysr@777 907 abandon_cur_alloc_region();
tonyp@1071 908 abandon_gc_alloc_regions();
ysr@777 909 assert(_cur_alloc_region == NULL, "Invariant.");
ysr@777 910 g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
ysr@777 911 tear_down_region_lists();
ysr@777 912 set_used_regions_to_need_zero_fill();
ysr@777 913 if (g1_policy()->in_young_gc_mode()) {
ysr@777 914 empty_young_list();
ysr@777 915 g1_policy()->set_full_young_gcs(true);
ysr@777 916 }
ysr@777 917
ysr@777 918 // Temporarily make reference _discovery_ single threaded (non-MT).
ysr@777 919 ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
ysr@777 920
ysr@777 921 // Temporarily make refs discovery atomic
ysr@777 922 ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
ysr@777 923
ysr@777 924 // Temporarily clear _is_alive_non_header
ysr@777 925 ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
ysr@777 926
ysr@777 927 ref_processor()->enable_discovery();
ysr@892 928 ref_processor()->setup_policy(clear_all_soft_refs);
ysr@777 929
ysr@777 930 // Do collection work
ysr@777 931 {
ysr@777 932 HandleMark hm; // Discard invalid handles created during gc
ysr@777 933 G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
ysr@777 934 }
ysr@777 935 // Because freeing humongous regions may have added some unclean
ysr@777 936 // regions, it is necessary to tear down again before rebuilding.
ysr@777 937 tear_down_region_lists();
ysr@777 938 rebuild_region_lists();
ysr@777 939
ysr@777 940 _summary_bytes_used = recalculate_used();
ysr@777 941
ysr@777 942 ref_processor()->enqueue_discovered_references();
ysr@777 943
ysr@777 944 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
ysr@777 945
ysr@777 946 if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
ysr@777 947 HandleMark hm; // Discard invalid handles created during verification
ysr@777 948 gclog_or_tty->print(" VerifyAfterGC:");
iveresov@1072 949 prepare_for_verify();
ysr@777 950 Universe::verify(false);
ysr@777 951 }
ysr@777 952 NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
ysr@777 953
ysr@777 954 reset_gc_time_stamp();
ysr@777 955 // Since everything potentially moved, we will clear all remembered
apetrusenko@1061 956 // sets, and clear all cards. Later we will rebuild remebered
apetrusenko@1061 957 // sets. We will also reset the GC time stamps of the regions.
ysr@777 958 PostMCRemSetClearClosure rs_clear(mr_bs());
ysr@777 959 heap_region_iterate(&rs_clear);
ysr@777 960
ysr@777 961 // Resize the heap if necessary.
ysr@777 962 resize_if_necessary_after_full_collection(full ? 0 : word_size);
ysr@777 963
ysr@777 964 if (_cg1r->use_cache()) {
ysr@777 965 _cg1r->clear_and_record_card_counts();
ysr@777 966 _cg1r->clear_hot_cache();
ysr@777 967 }
ysr@777 968
apetrusenko@1061 969 // Rebuild remembered sets of all regions.
apetrusenko@1061 970 if (ParallelGCThreads > 0) {
apetrusenko@1061 971 ParRebuildRSTask rebuild_rs_task(this);
apetrusenko@1061 972 assert(check_heap_region_claim_values(
apetrusenko@1061 973 HeapRegion::InitialClaimValue), "sanity check");
apetrusenko@1061 974 set_par_threads(workers()->total_workers());
apetrusenko@1061 975 workers()->run_task(&rebuild_rs_task);
apetrusenko@1061 976 set_par_threads(0);
apetrusenko@1061 977 assert(check_heap_region_claim_values(
apetrusenko@1061 978 HeapRegion::RebuildRSClaimValue), "sanity check");
apetrusenko@1061 979 reset_heap_region_claim_values();
apetrusenko@1061 980 } else {
apetrusenko@1061 981 RebuildRSOutOfRegionClosure rebuild_rs(this);
apetrusenko@1061 982 heap_region_iterate(&rebuild_rs);
apetrusenko@1061 983 }
apetrusenko@1061 984
ysr@777 985 if (PrintGC) {
ysr@777 986 print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
ysr@777 987 }
ysr@777 988
ysr@777 989 if (true) { // FIXME
ysr@777 990 // Ask the permanent generation to adjust size for full collections
ysr@777 991 perm()->compute_new_size();
ysr@777 992 }
ysr@777 993
ysr@777 994 double end = os::elapsedTime();
ysr@777 995 GCOverheadReporter::recordSTWEnd(end);
ysr@777 996 g1_policy()->record_full_collection_end();
ysr@777 997
jmasa@981 998 #ifdef TRACESPINNING
jmasa@981 999 ParallelTaskTerminator::print_termination_counts();
jmasa@981 1000 #endif
jmasa@981 1001
ysr@777 1002 gc_epilogue(true);
ysr@777 1003
ysr@777 1004 // Abandon concurrent refinement. This must happen last: in the
ysr@777 1005 // dirty-card logging system, some cards may be dirty by weak-ref
ysr@777 1006 // processing, and may be enqueued. But the whole card table is
ysr@777 1007 // dirtied, so this should abandon those logs, and set "do_traversal"
ysr@777 1008 // to true.
ysr@777 1009 concurrent_g1_refine()->set_pya_restart();
iveresov@1051 1010 assert(!G1DeferredRSUpdate
iveresov@1051 1011 || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
ysr@777 1012 assert(regions_accounted_for(), "Region leakage!");
ysr@777 1013 }
ysr@777 1014
ysr@777 1015 if (g1_policy()->in_young_gc_mode()) {
ysr@777 1016 _young_list->reset_sampled_info();
ysr@777 1017 assert( check_young_list_empty(false, false),
ysr@777 1018 "young list should be empty at this point");
ysr@777 1019 }
ysr@777 1020 }
ysr@777 1021
ysr@777 1022 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
ysr@777 1023 do_collection(true, clear_all_soft_refs, 0);
ysr@777 1024 }
ysr@777 1025
ysr@777 1026 // This code is mostly copied from TenuredGeneration.
ysr@777 1027 void
ysr@777 1028 G1CollectedHeap::
ysr@777 1029 resize_if_necessary_after_full_collection(size_t word_size) {
ysr@777 1030 assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
ysr@777 1031
ysr@777 1032 // Include the current allocation, if any, and bytes that will be
ysr@777 1033 // pre-allocated to support collections, as "used".
ysr@777 1034 const size_t used_after_gc = used();
ysr@777 1035 const size_t capacity_after_gc = capacity();
ysr@777 1036 const size_t free_after_gc = capacity_after_gc - used_after_gc;
ysr@777 1037
ysr@777 1038 // We don't have floating point command-line arguments
ysr@777 1039 const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
ysr@777 1040 const double maximum_used_percentage = 1.0 - minimum_free_percentage;
ysr@777 1041 const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
ysr@777 1042 const double minimum_used_percentage = 1.0 - maximum_free_percentage;
ysr@777 1043
ysr@777 1044 size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
ysr@777 1045 size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
ysr@777 1046
ysr@777 1047 // Don't shrink less than the initial size.
ysr@777 1048 minimum_desired_capacity =
ysr@777 1049 MAX2(minimum_desired_capacity,
ysr@777 1050 collector_policy()->initial_heap_byte_size());
ysr@777 1051 maximum_desired_capacity =
ysr@777 1052 MAX2(maximum_desired_capacity,
ysr@777 1053 collector_policy()->initial_heap_byte_size());
ysr@777 1054
ysr@777 1055 // We are failing here because minimum_desired_capacity is
ysr@777 1056 assert(used_after_gc <= minimum_desired_capacity, "sanity check");
ysr@777 1057 assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
ysr@777 1058
ysr@777 1059 if (PrintGC && Verbose) {
ysr@777 1060 const double free_percentage = ((double)free_after_gc) / capacity();
ysr@777 1061 gclog_or_tty->print_cr("Computing new size after full GC ");
ysr@777 1062 gclog_or_tty->print_cr(" "
ysr@777 1063 " minimum_free_percentage: %6.2f",
ysr@777 1064 minimum_free_percentage);
ysr@777 1065 gclog_or_tty->print_cr(" "
ysr@777 1066 " maximum_free_percentage: %6.2f",
ysr@777 1067 maximum_free_percentage);
ysr@777 1068 gclog_or_tty->print_cr(" "
ysr@777 1069 " capacity: %6.1fK"
ysr@777 1070 " minimum_desired_capacity: %6.1fK"
ysr@777 1071 " maximum_desired_capacity: %6.1fK",
ysr@777 1072 capacity() / (double) K,
ysr@777 1073 minimum_desired_capacity / (double) K,
ysr@777 1074 maximum_desired_capacity / (double) K);
ysr@777 1075 gclog_or_tty->print_cr(" "
ysr@777 1076 " free_after_gc : %6.1fK"
ysr@777 1077 " used_after_gc : %6.1fK",
ysr@777 1078 free_after_gc / (double) K,
ysr@777 1079 used_after_gc / (double) K);
ysr@777 1080 gclog_or_tty->print_cr(" "
ysr@777 1081 " free_percentage: %6.2f",
ysr@777 1082 free_percentage);
ysr@777 1083 }
ysr@777 1084 if (capacity() < minimum_desired_capacity) {
ysr@777 1085 // Don't expand unless it's significant
ysr@777 1086 size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
ysr@777 1087 expand(expand_bytes);
ysr@777 1088 if (PrintGC && Verbose) {
ysr@777 1089 gclog_or_tty->print_cr(" expanding:"
ysr@777 1090 " minimum_desired_capacity: %6.1fK"
ysr@777 1091 " expand_bytes: %6.1fK",
ysr@777 1092 minimum_desired_capacity / (double) K,
ysr@777 1093 expand_bytes / (double) K);
ysr@777 1094 }
ysr@777 1095
ysr@777 1096 // No expansion, now see if we want to shrink
ysr@777 1097 } else if (capacity() > maximum_desired_capacity) {
ysr@777 1098 // Capacity too large, compute shrinking size
ysr@777 1099 size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
ysr@777 1100 shrink(shrink_bytes);
ysr@777 1101 if (PrintGC && Verbose) {
ysr@777 1102 gclog_or_tty->print_cr(" "
ysr@777 1103 " shrinking:"
ysr@777 1104 " initSize: %.1fK"
ysr@777 1105 " maximum_desired_capacity: %.1fK",
ysr@777 1106 collector_policy()->initial_heap_byte_size() / (double) K,
ysr@777 1107 maximum_desired_capacity / (double) K);
ysr@777 1108 gclog_or_tty->print_cr(" "
ysr@777 1109 " shrink_bytes: %.1fK",
ysr@777 1110 shrink_bytes / (double) K);
ysr@777 1111 }
ysr@777 1112 }
ysr@777 1113 }
ysr@777 1114
ysr@777 1115
ysr@777 1116 HeapWord*
ysr@777 1117 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
ysr@777 1118 HeapWord* result = NULL;
ysr@777 1119
ysr@777 1120 // In a G1 heap, we're supposed to keep allocation from failing by
ysr@777 1121 // incremental pauses. Therefore, at least for now, we'll favor
ysr@777 1122 // expansion over collection. (This might change in the future if we can
ysr@777 1123 // do something smarter than full collection to satisfy a failed alloc.)
ysr@777 1124
ysr@777 1125 result = expand_and_allocate(word_size);
ysr@777 1126 if (result != NULL) {
ysr@777 1127 assert(is_in(result), "result not in heap");
ysr@777 1128 return result;
ysr@777 1129 }
ysr@777 1130
ysr@777 1131 // OK, I guess we have to try collection.
ysr@777 1132
ysr@777 1133 do_collection(false, false, word_size);
ysr@777 1134
ysr@777 1135 result = attempt_allocation(word_size, /*permit_collection_pause*/false);
ysr@777 1136
ysr@777 1137 if (result != NULL) {
ysr@777 1138 assert(is_in(result), "result not in heap");
ysr@777 1139 return result;
ysr@777 1140 }
ysr@777 1141
ysr@777 1142 // Try collecting soft references.
ysr@777 1143 do_collection(false, true, word_size);
ysr@777 1144 result = attempt_allocation(word_size, /*permit_collection_pause*/false);
ysr@777 1145 if (result != NULL) {
ysr@777 1146 assert(is_in(result), "result not in heap");
ysr@777 1147 return result;
ysr@777 1148 }
ysr@777 1149
ysr@777 1150 // What else? We might try synchronous finalization later. If the total
ysr@777 1151 // space available is large enough for the allocation, then a more
ysr@777 1152 // complete compaction phase than we've tried so far might be
ysr@777 1153 // appropriate.
ysr@777 1154 return NULL;
ysr@777 1155 }
ysr@777 1156
ysr@777 1157 // Attempting to expand the heap sufficiently
ysr@777 1158 // to support an allocation of the given "word_size". If
ysr@777 1159 // successful, perform the allocation and return the address of the
ysr@777 1160 // allocated block, or else "NULL".
ysr@777 1161
ysr@777 1162 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
ysr@777 1163 size_t expand_bytes = word_size * HeapWordSize;
ysr@777 1164 if (expand_bytes < MinHeapDeltaBytes) {
ysr@777 1165 expand_bytes = MinHeapDeltaBytes;
ysr@777 1166 }
ysr@777 1167 expand(expand_bytes);
ysr@777 1168 assert(regions_accounted_for(), "Region leakage!");
ysr@777 1169 HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
ysr@777 1170 return result;
ysr@777 1171 }
ysr@777 1172
ysr@777 1173 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
ysr@777 1174 size_t pre_used = 0;
ysr@777 1175 size_t cleared_h_regions = 0;
ysr@777 1176 size_t freed_regions = 0;
ysr@777 1177 UncleanRegionList local_list;
ysr@777 1178 free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
ysr@777 1179 freed_regions, &local_list);
ysr@777 1180
ysr@777 1181 finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
ysr@777 1182 &local_list);
ysr@777 1183 return pre_used;
ysr@777 1184 }
ysr@777 1185
ysr@777 1186 void
ysr@777 1187 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
ysr@777 1188 size_t& pre_used,
ysr@777 1189 size_t& cleared_h,
ysr@777 1190 size_t& freed_regions,
ysr@777 1191 UncleanRegionList* list,
ysr@777 1192 bool par) {
ysr@777 1193 assert(!hr->continuesHumongous(), "should have filtered these out");
ysr@777 1194 size_t res = 0;
apetrusenko@1112 1195 if (hr->used() > 0 && hr->garbage_bytes() == hr->used() &&
apetrusenko@1112 1196 !hr->is_young()) {
apetrusenko@1112 1197 if (G1PolicyVerbose > 0)
apetrusenko@1112 1198 gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
apetrusenko@1112 1199 " during cleanup", hr, hr->used());
apetrusenko@1112 1200 free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
ysr@777 1201 }
ysr@777 1202 }
ysr@777 1203
ysr@777 1204 // FIXME: both this and shrink could probably be more efficient by
ysr@777 1205 // doing one "VirtualSpace::expand_by" call rather than several.
ysr@777 1206 void G1CollectedHeap::expand(size_t expand_bytes) {
ysr@777 1207 size_t old_mem_size = _g1_storage.committed_size();
ysr@777 1208 // We expand by a minimum of 1K.
ysr@777 1209 expand_bytes = MAX2(expand_bytes, (size_t)K);
ysr@777 1210 size_t aligned_expand_bytes =
ysr@777 1211 ReservedSpace::page_align_size_up(expand_bytes);
ysr@777 1212 aligned_expand_bytes = align_size_up(aligned_expand_bytes,
ysr@777 1213 HeapRegion::GrainBytes);
ysr@777 1214 expand_bytes = aligned_expand_bytes;
ysr@777 1215 while (expand_bytes > 0) {
ysr@777 1216 HeapWord* base = (HeapWord*)_g1_storage.high();
ysr@777 1217 // Commit more storage.
ysr@777 1218 bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
ysr@777 1219 if (!successful) {
ysr@777 1220 expand_bytes = 0;
ysr@777 1221 } else {
ysr@777 1222 expand_bytes -= HeapRegion::GrainBytes;
ysr@777 1223 // Expand the committed region.
ysr@777 1224 HeapWord* high = (HeapWord*) _g1_storage.high();
ysr@777 1225 _g1_committed.set_end(high);
ysr@777 1226 // Create a new HeapRegion.
ysr@777 1227 MemRegion mr(base, high);
ysr@777 1228 bool is_zeroed = !_g1_max_committed.contains(base);
ysr@777 1229 HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
ysr@777 1230
ysr@777 1231 // Now update max_committed if necessary.
ysr@777 1232 _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
ysr@777 1233
ysr@777 1234 // Add it to the HeapRegionSeq.
ysr@777 1235 _hrs->insert(hr);
ysr@777 1236 // Set the zero-fill state, according to whether it's already
ysr@777 1237 // zeroed.
ysr@777 1238 {
ysr@777 1239 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 1240 if (is_zeroed) {
ysr@777 1241 hr->set_zero_fill_complete();
ysr@777 1242 put_free_region_on_list_locked(hr);
ysr@777 1243 } else {
ysr@777 1244 hr->set_zero_fill_needed();
ysr@777 1245 put_region_on_unclean_list_locked(hr);
ysr@777 1246 }
ysr@777 1247 }
ysr@777 1248 _free_regions++;
ysr@777 1249 // And we used up an expansion region to create it.
ysr@777 1250 _expansion_regions--;
ysr@777 1251 // Tell the cardtable about it.
ysr@777 1252 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
ysr@777 1253 // And the offset table as well.
ysr@777 1254 _bot_shared->resize(_g1_committed.word_size());
ysr@777 1255 }
ysr@777 1256 }
ysr@777 1257 if (Verbose && PrintGC) {
ysr@777 1258 size_t new_mem_size = _g1_storage.committed_size();
ysr@777 1259 gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
ysr@777 1260 old_mem_size/K, aligned_expand_bytes/K,
ysr@777 1261 new_mem_size/K);
ysr@777 1262 }
ysr@777 1263 }
ysr@777 1264
ysr@777 1265 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
ysr@777 1266 {
ysr@777 1267 size_t old_mem_size = _g1_storage.committed_size();
ysr@777 1268 size_t aligned_shrink_bytes =
ysr@777 1269 ReservedSpace::page_align_size_down(shrink_bytes);
ysr@777 1270 aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
ysr@777 1271 HeapRegion::GrainBytes);
ysr@777 1272 size_t num_regions_deleted = 0;
ysr@777 1273 MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
ysr@777 1274
ysr@777 1275 assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
ysr@777 1276 if (mr.byte_size() > 0)
ysr@777 1277 _g1_storage.shrink_by(mr.byte_size());
ysr@777 1278 assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
ysr@777 1279
ysr@777 1280 _g1_committed.set_end(mr.start());
ysr@777 1281 _free_regions -= num_regions_deleted;
ysr@777 1282 _expansion_regions += num_regions_deleted;
ysr@777 1283
ysr@777 1284 // Tell the cardtable about it.
ysr@777 1285 Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
ysr@777 1286
ysr@777 1287 // And the offset table as well.
ysr@777 1288 _bot_shared->resize(_g1_committed.word_size());
ysr@777 1289
ysr@777 1290 HeapRegionRemSet::shrink_heap(n_regions());
ysr@777 1291
ysr@777 1292 if (Verbose && PrintGC) {
ysr@777 1293 size_t new_mem_size = _g1_storage.committed_size();
ysr@777 1294 gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
ysr@777 1295 old_mem_size/K, aligned_shrink_bytes/K,
ysr@777 1296 new_mem_size/K);
ysr@777 1297 }
ysr@777 1298 }
ysr@777 1299
ysr@777 1300 void G1CollectedHeap::shrink(size_t shrink_bytes) {
tonyp@1071 1301 release_gc_alloc_regions(true /* totally */);
ysr@777 1302 tear_down_region_lists(); // We will rebuild them in a moment.
ysr@777 1303 shrink_helper(shrink_bytes);
ysr@777 1304 rebuild_region_lists();
ysr@777 1305 }
ysr@777 1306
ysr@777 1307 // Public methods.
ysr@777 1308
ysr@777 1309 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
ysr@777 1310 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
ysr@777 1311 #endif // _MSC_VER
ysr@777 1312
ysr@777 1313
ysr@777 1314 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
ysr@777 1315 SharedHeap(policy_),
ysr@777 1316 _g1_policy(policy_),
ysr@777 1317 _ref_processor(NULL),
ysr@777 1318 _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
ysr@777 1319 _bot_shared(NULL),
ysr@777 1320 _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
ysr@777 1321 _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
ysr@777 1322 _evac_failure_scan_stack(NULL) ,
ysr@777 1323 _mark_in_progress(false),
ysr@777 1324 _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
ysr@777 1325 _cur_alloc_region(NULL),
ysr@777 1326 _refine_cte_cl(NULL),
ysr@777 1327 _free_region_list(NULL), _free_region_list_size(0),
ysr@777 1328 _free_regions(0),
ysr@777 1329 _full_collection(false),
ysr@777 1330 _unclean_region_list(),
ysr@777 1331 _unclean_regions_coming(false),
ysr@777 1332 _young_list(new YoungList(this)),
ysr@777 1333 _gc_time_stamp(0),
tonyp@961 1334 _surviving_young_words(NULL),
tonyp@961 1335 _in_cset_fast_test(NULL),
tonyp@1071 1336 _in_cset_fast_test_base(NULL) {
ysr@777 1337 _g1h = this; // To catch bugs.
ysr@777 1338 if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
ysr@777 1339 vm_exit_during_initialization("Failed necessary allocation.");
ysr@777 1340 }
ysr@777 1341 int n_queues = MAX2((int)ParallelGCThreads, 1);
ysr@777 1342 _task_queues = new RefToScanQueueSet(n_queues);
ysr@777 1343
ysr@777 1344 int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
ysr@777 1345 assert(n_rem_sets > 0, "Invariant.");
ysr@777 1346
ysr@777 1347 HeapRegionRemSetIterator** iter_arr =
ysr@777 1348 NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
ysr@777 1349 for (int i = 0; i < n_queues; i++) {
ysr@777 1350 iter_arr[i] = new HeapRegionRemSetIterator();
ysr@777 1351 }
ysr@777 1352 _rem_set_iterator = iter_arr;
ysr@777 1353
ysr@777 1354 for (int i = 0; i < n_queues; i++) {
ysr@777 1355 RefToScanQueue* q = new RefToScanQueue();
ysr@777 1356 q->initialize();
ysr@777 1357 _task_queues->register_queue(i, q);
ysr@777 1358 }
ysr@777 1359
ysr@777 1360 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
tonyp@1071 1361 _gc_alloc_regions[ap] = NULL;
tonyp@1071 1362 _gc_alloc_region_counts[ap] = 0;
tonyp@1071 1363 _retained_gc_alloc_regions[ap] = NULL;
tonyp@1071 1364 // by default, we do not retain a GC alloc region for each ap;
tonyp@1071 1365 // we'll override this, when appropriate, below
tonyp@1071 1366 _retain_gc_alloc_region[ap] = false;
tonyp@1071 1367 }
tonyp@1071 1368
tonyp@1071 1369 // We will try to remember the last half-full tenured region we
tonyp@1071 1370 // allocated to at the end of a collection so that we can re-use it
tonyp@1071 1371 // during the next collection.
tonyp@1071 1372 _retain_gc_alloc_region[GCAllocForTenured] = true;
tonyp@1071 1373
ysr@777 1374 guarantee(_task_queues != NULL, "task_queues allocation failure.");
ysr@777 1375 }
ysr@777 1376
ysr@777 1377 jint G1CollectedHeap::initialize() {
ysr@777 1378 os::enable_vtime();
ysr@777 1379
ysr@777 1380 // Necessary to satisfy locking discipline assertions.
ysr@777 1381
ysr@777 1382 MutexLocker x(Heap_lock);
ysr@777 1383
ysr@777 1384 // While there are no constraints in the GC code that HeapWordSize
ysr@777 1385 // be any particular value, there are multiple other areas in the
ysr@777 1386 // system which believe this to be true (e.g. oop->object_size in some
ysr@777 1387 // cases incorrectly returns the size in wordSize units rather than
ysr@777 1388 // HeapWordSize).
ysr@777 1389 guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
ysr@777 1390
ysr@777 1391 size_t init_byte_size = collector_policy()->initial_heap_byte_size();
ysr@777 1392 size_t max_byte_size = collector_policy()->max_heap_byte_size();
ysr@777 1393
ysr@777 1394 // Ensure that the sizes are properly aligned.
ysr@777 1395 Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
ysr@777 1396 Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
ysr@777 1397
ysr@777 1398 // We allocate this in any case, but only do no work if the command line
ysr@777 1399 // param is off.
ysr@777 1400 _cg1r = new ConcurrentG1Refine();
ysr@777 1401
ysr@777 1402 // Reserve the maximum.
ysr@777 1403 PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
ysr@777 1404 // Includes the perm-gen.
kvn@1077 1405
kvn@1077 1406 const size_t total_reserved = max_byte_size + pgs->max_size();
kvn@1077 1407 char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
kvn@1077 1408
ysr@777 1409 ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
ysr@777 1410 HeapRegion::GrainBytes,
kvn@1077 1411 false /*ism*/, addr);
kvn@1077 1412
kvn@1077 1413 if (UseCompressedOops) {
kvn@1077 1414 if (addr != NULL && !heap_rs.is_reserved()) {
kvn@1077 1415 // Failed to reserve at specified address - the requested memory
kvn@1077 1416 // region is taken already, for example, by 'java' launcher.
kvn@1077 1417 // Try again to reserver heap higher.
kvn@1077 1418 addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
kvn@1077 1419 ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
kvn@1077 1420 false /*ism*/, addr);
kvn@1077 1421 if (addr != NULL && !heap_rs0.is_reserved()) {
kvn@1077 1422 // Failed to reserve at specified address again - give up.
kvn@1077 1423 addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
kvn@1077 1424 assert(addr == NULL, "");
kvn@1077 1425 ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
kvn@1077 1426 false /*ism*/, addr);
kvn@1077 1427 heap_rs = heap_rs1;
kvn@1077 1428 } else {
kvn@1077 1429 heap_rs = heap_rs0;
kvn@1077 1430 }
kvn@1077 1431 }
kvn@1077 1432 }
ysr@777 1433
ysr@777 1434 if (!heap_rs.is_reserved()) {
ysr@777 1435 vm_exit_during_initialization("Could not reserve enough space for object heap");
ysr@777 1436 return JNI_ENOMEM;
ysr@777 1437 }
ysr@777 1438
ysr@777 1439 // It is important to do this in a way such that concurrent readers can't
ysr@777 1440 // temporarily think somethings in the heap. (I've actually seen this
ysr@777 1441 // happen in asserts: DLD.)
ysr@777 1442 _reserved.set_word_size(0);
ysr@777 1443 _reserved.set_start((HeapWord*)heap_rs.base());
ysr@777 1444 _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
ysr@777 1445
ysr@777 1446 _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
ysr@777 1447
ysr@777 1448 _num_humongous_regions = 0;
ysr@777 1449
ysr@777 1450 // Create the gen rem set (and barrier set) for the entire reserved region.
ysr@777 1451 _rem_set = collector_policy()->create_rem_set(_reserved, 2);
ysr@777 1452 set_barrier_set(rem_set()->bs());
ysr@777 1453 if (barrier_set()->is_a(BarrierSet::ModRef)) {
ysr@777 1454 _mr_bs = (ModRefBarrierSet*)_barrier_set;
ysr@777 1455 } else {
ysr@777 1456 vm_exit_during_initialization("G1 requires a mod ref bs.");
ysr@777 1457 return JNI_ENOMEM;
ysr@777 1458 }
ysr@777 1459
ysr@777 1460 // Also create a G1 rem set.
ysr@777 1461 if (G1UseHRIntoRS) {
ysr@777 1462 if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
ysr@777 1463 _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
ysr@777 1464 } else {
ysr@777 1465 vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
ysr@777 1466 return JNI_ENOMEM;
ysr@777 1467 }
ysr@777 1468 } else {
ysr@777 1469 _g1_rem_set = new StupidG1RemSet(this);
ysr@777 1470 }
ysr@777 1471
ysr@777 1472 // Carve out the G1 part of the heap.
ysr@777 1473
ysr@777 1474 ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
ysr@777 1475 _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
ysr@777 1476 g1_rs.size()/HeapWordSize);
ysr@777 1477 ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
ysr@777 1478
ysr@777 1479 _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
ysr@777 1480
ysr@777 1481 _g1_storage.initialize(g1_rs, 0);
ysr@777 1482 _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
ysr@777 1483 _g1_max_committed = _g1_committed;
iveresov@828 1484 _hrs = new HeapRegionSeq(_expansion_regions);
ysr@777 1485 guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
ysr@777 1486 guarantee(_cur_alloc_region == NULL, "from constructor");
ysr@777 1487
ysr@777 1488 _bot_shared = new G1BlockOffsetSharedArray(_reserved,
ysr@777 1489 heap_word_size(init_byte_size));
ysr@777 1490
ysr@777 1491 _g1h = this;
ysr@777 1492
ysr@777 1493 // Create the ConcurrentMark data structure and thread.
ysr@777 1494 // (Must do this late, so that "max_regions" is defined.)
ysr@777 1495 _cm = new ConcurrentMark(heap_rs, (int) max_regions());
ysr@777 1496 _cmThread = _cm->cmThread();
ysr@777 1497
ysr@777 1498 // ...and the concurrent zero-fill thread, if necessary.
ysr@777 1499 if (G1ConcZeroFill) {
ysr@777 1500 _czft = new ConcurrentZFThread();
ysr@777 1501 }
ysr@777 1502
ysr@777 1503 // Initialize the from_card cache structure of HeapRegionRemSet.
ysr@777 1504 HeapRegionRemSet::init_heap(max_regions());
ysr@777 1505
apetrusenko@1112 1506 // Now expand into the initial heap size.
apetrusenko@1112 1507 expand(init_byte_size);
ysr@777 1508
ysr@777 1509 // Perform any initialization actions delegated to the policy.
ysr@777 1510 g1_policy()->init();
ysr@777 1511
ysr@777 1512 g1_policy()->note_start_of_mark_thread();
ysr@777 1513
ysr@777 1514 _refine_cte_cl =
ysr@777 1515 new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
ysr@777 1516 g1_rem_set(),
ysr@777 1517 concurrent_g1_refine());
ysr@777 1518 JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
ysr@777 1519
ysr@777 1520 JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
ysr@777 1521 SATB_Q_FL_lock,
ysr@777 1522 0,
ysr@777 1523 Shared_SATB_Q_lock);
ysr@777 1524 if (G1RSBarrierUseQueue) {
ysr@777 1525 JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
ysr@777 1526 DirtyCardQ_FL_lock,
ysr@777 1527 G1DirtyCardQueueMax,
ysr@777 1528 Shared_DirtyCardQ_lock);
ysr@777 1529 }
iveresov@1051 1530 if (G1DeferredRSUpdate) {
iveresov@1051 1531 dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
iveresov@1051 1532 DirtyCardQ_FL_lock,
iveresov@1051 1533 0,
iveresov@1051 1534 Shared_DirtyCardQ_lock,
iveresov@1051 1535 &JavaThread::dirty_card_queue_set());
iveresov@1051 1536 }
ysr@777 1537 // In case we're keeping closure specialization stats, initialize those
ysr@777 1538 // counts and that mechanism.
ysr@777 1539 SpecializationStats::clear();
ysr@777 1540
ysr@777 1541 _gc_alloc_region_list = NULL;
ysr@777 1542
ysr@777 1543 // Do later initialization work for concurrent refinement.
ysr@777 1544 _cg1r->init();
ysr@777 1545
ysr@777 1546 const char* group_names[] = { "CR", "ZF", "CM", "CL" };
ysr@777 1547 GCOverheadReporter::initGCOverheadReporter(4, group_names);
ysr@777 1548
ysr@777 1549 return JNI_OK;
ysr@777 1550 }
ysr@777 1551
ysr@777 1552 void G1CollectedHeap::ref_processing_init() {
ysr@777 1553 SharedHeap::ref_processing_init();
ysr@777 1554 MemRegion mr = reserved_region();
ysr@777 1555 _ref_processor = ReferenceProcessor::create_ref_processor(
ysr@777 1556 mr, // span
ysr@777 1557 false, // Reference discovery is not atomic
ysr@777 1558 // (though it shouldn't matter here.)
ysr@777 1559 true, // mt_discovery
ysr@777 1560 NULL, // is alive closure: need to fill this in for efficiency
ysr@777 1561 ParallelGCThreads,
ysr@777 1562 ParallelRefProcEnabled,
ysr@777 1563 true); // Setting next fields of discovered
ysr@777 1564 // lists requires a barrier.
ysr@777 1565 }
ysr@777 1566
ysr@777 1567 size_t G1CollectedHeap::capacity() const {
ysr@777 1568 return _g1_committed.byte_size();
ysr@777 1569 }
ysr@777 1570
ysr@777 1571 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
ysr@777 1572 int worker_i) {
ysr@777 1573 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
ysr@777 1574 int n_completed_buffers = 0;
ysr@777 1575 while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
ysr@777 1576 n_completed_buffers++;
ysr@777 1577 }
ysr@777 1578 g1_policy()->record_update_rs_processed_buffers(worker_i,
ysr@777 1579 (double) n_completed_buffers);
ysr@777 1580 dcqs.clear_n_completed_buffers();
ysr@777 1581 // Finish up the queue...
ysr@777 1582 if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
ysr@777 1583 g1_rem_set());
ysr@777 1584 assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
ysr@777 1585 }
ysr@777 1586
ysr@777 1587
ysr@777 1588 // Computes the sum of the storage used by the various regions.
ysr@777 1589
ysr@777 1590 size_t G1CollectedHeap::used() const {
ysr@777 1591 assert(Heap_lock->owner() != NULL,
ysr@777 1592 "Should be owned on this thread's behalf.");
ysr@777 1593 size_t result = _summary_bytes_used;
ysr@777 1594 if (_cur_alloc_region != NULL)
ysr@777 1595 result += _cur_alloc_region->used();
ysr@777 1596 return result;
ysr@777 1597 }
ysr@777 1598
ysr@777 1599 class SumUsedClosure: public HeapRegionClosure {
ysr@777 1600 size_t _used;
ysr@777 1601 public:
ysr@777 1602 SumUsedClosure() : _used(0) {}
ysr@777 1603 bool doHeapRegion(HeapRegion* r) {
ysr@777 1604 if (!r->continuesHumongous()) {
ysr@777 1605 _used += r->used();
ysr@777 1606 }
ysr@777 1607 return false;
ysr@777 1608 }
ysr@777 1609 size_t result() { return _used; }
ysr@777 1610 };
ysr@777 1611
ysr@777 1612 size_t G1CollectedHeap::recalculate_used() const {
ysr@777 1613 SumUsedClosure blk;
ysr@777 1614 _hrs->iterate(&blk);
ysr@777 1615 return blk.result();
ysr@777 1616 }
ysr@777 1617
ysr@777 1618 #ifndef PRODUCT
ysr@777 1619 class SumUsedRegionsClosure: public HeapRegionClosure {
ysr@777 1620 size_t _num;
ysr@777 1621 public:
apetrusenko@1112 1622 SumUsedRegionsClosure() : _num(0) {}
ysr@777 1623 bool doHeapRegion(HeapRegion* r) {
ysr@777 1624 if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
ysr@777 1625 _num += 1;
ysr@777 1626 }
ysr@777 1627 return false;
ysr@777 1628 }
ysr@777 1629 size_t result() { return _num; }
ysr@777 1630 };
ysr@777 1631
ysr@777 1632 size_t G1CollectedHeap::recalculate_used_regions() const {
ysr@777 1633 SumUsedRegionsClosure blk;
ysr@777 1634 _hrs->iterate(&blk);
ysr@777 1635 return blk.result();
ysr@777 1636 }
ysr@777 1637 #endif // PRODUCT
ysr@777 1638
ysr@777 1639 size_t G1CollectedHeap::unsafe_max_alloc() {
ysr@777 1640 if (_free_regions > 0) return HeapRegion::GrainBytes;
ysr@777 1641 // otherwise, is there space in the current allocation region?
ysr@777 1642
ysr@777 1643 // We need to store the current allocation region in a local variable
ysr@777 1644 // here. The problem is that this method doesn't take any locks and
ysr@777 1645 // there may be other threads which overwrite the current allocation
ysr@777 1646 // region field. attempt_allocation(), for example, sets it to NULL
ysr@777 1647 // and this can happen *after* the NULL check here but before the call
ysr@777 1648 // to free(), resulting in a SIGSEGV. Note that this doesn't appear
ysr@777 1649 // to be a problem in the optimized build, since the two loads of the
ysr@777 1650 // current allocation region field are optimized away.
ysr@777 1651 HeapRegion* car = _cur_alloc_region;
ysr@777 1652
ysr@777 1653 // FIXME: should iterate over all regions?
ysr@777 1654 if (car == NULL) {
ysr@777 1655 return 0;
ysr@777 1656 }
ysr@777 1657 return car->free();
ysr@777 1658 }
ysr@777 1659
ysr@777 1660 void G1CollectedHeap::collect(GCCause::Cause cause) {
ysr@777 1661 // The caller doesn't have the Heap_lock
ysr@777 1662 assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
ysr@777 1663 MutexLocker ml(Heap_lock);
ysr@777 1664 collect_locked(cause);
ysr@777 1665 }
ysr@777 1666
ysr@777 1667 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
ysr@777 1668 assert(Thread::current()->is_VM_thread(), "Precondition#1");
ysr@777 1669 assert(Heap_lock->is_locked(), "Precondition#2");
ysr@777 1670 GCCauseSetter gcs(this, cause);
ysr@777 1671 switch (cause) {
ysr@777 1672 case GCCause::_heap_inspection:
ysr@777 1673 case GCCause::_heap_dump: {
ysr@777 1674 HandleMark hm;
ysr@777 1675 do_full_collection(false); // don't clear all soft refs
ysr@777 1676 break;
ysr@777 1677 }
ysr@777 1678 default: // XXX FIX ME
ysr@777 1679 ShouldNotReachHere(); // Unexpected use of this function
ysr@777 1680 }
ysr@777 1681 }
ysr@777 1682
ysr@777 1683
ysr@777 1684 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
ysr@777 1685 // Don't want to do a GC until cleanup is completed.
ysr@777 1686 wait_for_cleanup_complete();
ysr@777 1687
ysr@777 1688 // Read the GC count while holding the Heap_lock
ysr@777 1689 int gc_count_before = SharedHeap::heap()->total_collections();
ysr@777 1690 {
ysr@777 1691 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
ysr@777 1692 VM_G1CollectFull op(gc_count_before, cause);
ysr@777 1693 VMThread::execute(&op);
ysr@777 1694 }
ysr@777 1695 }
ysr@777 1696
ysr@777 1697 bool G1CollectedHeap::is_in(const void* p) const {
ysr@777 1698 if (_g1_committed.contains(p)) {
ysr@777 1699 HeapRegion* hr = _hrs->addr_to_region(p);
ysr@777 1700 return hr->is_in(p);
ysr@777 1701 } else {
ysr@777 1702 return _perm_gen->as_gen()->is_in(p);
ysr@777 1703 }
ysr@777 1704 }
ysr@777 1705
ysr@777 1706 // Iteration functions.
ysr@777 1707
ysr@777 1708 // Iterates an OopClosure over all ref-containing fields of objects
ysr@777 1709 // within a HeapRegion.
ysr@777 1710
ysr@777 1711 class IterateOopClosureRegionClosure: public HeapRegionClosure {
ysr@777 1712 MemRegion _mr;
ysr@777 1713 OopClosure* _cl;
ysr@777 1714 public:
ysr@777 1715 IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
ysr@777 1716 : _mr(mr), _cl(cl) {}
ysr@777 1717 bool doHeapRegion(HeapRegion* r) {
ysr@777 1718 if (! r->continuesHumongous()) {
ysr@777 1719 r->oop_iterate(_cl);
ysr@777 1720 }
ysr@777 1721 return false;
ysr@777 1722 }
ysr@777 1723 };
ysr@777 1724
ysr@777 1725 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
ysr@777 1726 IterateOopClosureRegionClosure blk(_g1_committed, cl);
ysr@777 1727 _hrs->iterate(&blk);
ysr@777 1728 }
ysr@777 1729
ysr@777 1730 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
ysr@777 1731 IterateOopClosureRegionClosure blk(mr, cl);
ysr@777 1732 _hrs->iterate(&blk);
ysr@777 1733 }
ysr@777 1734
ysr@777 1735 // Iterates an ObjectClosure over all objects within a HeapRegion.
ysr@777 1736
ysr@777 1737 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
ysr@777 1738 ObjectClosure* _cl;
ysr@777 1739 public:
ysr@777 1740 IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
ysr@777 1741 bool doHeapRegion(HeapRegion* r) {
ysr@777 1742 if (! r->continuesHumongous()) {
ysr@777 1743 r->object_iterate(_cl);
ysr@777 1744 }
ysr@777 1745 return false;
ysr@777 1746 }
ysr@777 1747 };
ysr@777 1748
ysr@777 1749 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
ysr@777 1750 IterateObjectClosureRegionClosure blk(cl);
ysr@777 1751 _hrs->iterate(&blk);
ysr@777 1752 }
ysr@777 1753
ysr@777 1754 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
ysr@777 1755 // FIXME: is this right?
ysr@777 1756 guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
ysr@777 1757 }
ysr@777 1758
ysr@777 1759 // Calls a SpaceClosure on a HeapRegion.
ysr@777 1760
ysr@777 1761 class SpaceClosureRegionClosure: public HeapRegionClosure {
ysr@777 1762 SpaceClosure* _cl;
ysr@777 1763 public:
ysr@777 1764 SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
ysr@777 1765 bool doHeapRegion(HeapRegion* r) {
ysr@777 1766 _cl->do_space(r);
ysr@777 1767 return false;
ysr@777 1768 }
ysr@777 1769 };
ysr@777 1770
ysr@777 1771 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
ysr@777 1772 SpaceClosureRegionClosure blk(cl);
ysr@777 1773 _hrs->iterate(&blk);
ysr@777 1774 }
ysr@777 1775
ysr@777 1776 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
ysr@777 1777 _hrs->iterate(cl);
ysr@777 1778 }
ysr@777 1779
ysr@777 1780 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
ysr@777 1781 HeapRegionClosure* cl) {
ysr@777 1782 _hrs->iterate_from(r, cl);
ysr@777 1783 }
ysr@777 1784
ysr@777 1785 void
ysr@777 1786 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
ysr@777 1787 _hrs->iterate_from(idx, cl);
ysr@777 1788 }
ysr@777 1789
ysr@777 1790 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
ysr@777 1791
ysr@777 1792 void
ysr@777 1793 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
ysr@777 1794 int worker,
ysr@777 1795 jint claim_value) {
tonyp@790 1796 const size_t regions = n_regions();
tonyp@790 1797 const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
tonyp@790 1798 // try to spread out the starting points of the workers
tonyp@790 1799 const size_t start_index = regions / worker_num * (size_t) worker;
tonyp@790 1800
tonyp@790 1801 // each worker will actually look at all regions
tonyp@790 1802 for (size_t count = 0; count < regions; ++count) {
tonyp@790 1803 const size_t index = (start_index + count) % regions;
tonyp@790 1804 assert(0 <= index && index < regions, "sanity");
tonyp@790 1805 HeapRegion* r = region_at(index);
tonyp@790 1806 // we'll ignore "continues humongous" regions (we'll process them
tonyp@790 1807 // when we come across their corresponding "start humongous"
tonyp@790 1808 // region) and regions already claimed
tonyp@790 1809 if (r->claim_value() == claim_value || r->continuesHumongous()) {
tonyp@790 1810 continue;
tonyp@790 1811 }
tonyp@790 1812 // OK, try to claim it
ysr@777 1813 if (r->claimHeapRegion(claim_value)) {
tonyp@790 1814 // success!
tonyp@790 1815 assert(!r->continuesHumongous(), "sanity");
tonyp@790 1816 if (r->startsHumongous()) {
tonyp@790 1817 // If the region is "starts humongous" we'll iterate over its
tonyp@790 1818 // "continues humongous" first; in fact we'll do them
tonyp@790 1819 // first. The order is important. In on case, calling the
tonyp@790 1820 // closure on the "starts humongous" region might de-allocate
tonyp@790 1821 // and clear all its "continues humongous" regions and, as a
tonyp@790 1822 // result, we might end up processing them twice. So, we'll do
tonyp@790 1823 // them first (notice: most closures will ignore them anyway) and
tonyp@790 1824 // then we'll do the "starts humongous" region.
tonyp@790 1825 for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
tonyp@790 1826 HeapRegion* chr = region_at(ch_index);
tonyp@790 1827
tonyp@790 1828 // if the region has already been claimed or it's not
tonyp@790 1829 // "continues humongous" we're done
tonyp@790 1830 if (chr->claim_value() == claim_value ||
tonyp@790 1831 !chr->continuesHumongous()) {
tonyp@790 1832 break;
tonyp@790 1833 }
tonyp@790 1834
tonyp@790 1835 // Noone should have claimed it directly. We can given
tonyp@790 1836 // that we claimed its "starts humongous" region.
tonyp@790 1837 assert(chr->claim_value() != claim_value, "sanity");
tonyp@790 1838 assert(chr->humongous_start_region() == r, "sanity");
tonyp@790 1839
tonyp@790 1840 if (chr->claimHeapRegion(claim_value)) {
tonyp@790 1841 // we should always be able to claim it; noone else should
tonyp@790 1842 // be trying to claim this region
tonyp@790 1843
tonyp@790 1844 bool res2 = cl->doHeapRegion(chr);
tonyp@790 1845 assert(!res2, "Should not abort");
tonyp@790 1846
tonyp@790 1847 // Right now, this holds (i.e., no closure that actually
tonyp@790 1848 // does something with "continues humongous" regions
tonyp@790 1849 // clears them). We might have to weaken it in the future,
tonyp@790 1850 // but let's leave these two asserts here for extra safety.
tonyp@790 1851 assert(chr->continuesHumongous(), "should still be the case");
tonyp@790 1852 assert(chr->humongous_start_region() == r, "sanity");
tonyp@790 1853 } else {
tonyp@790 1854 guarantee(false, "we should not reach here");
tonyp@790 1855 }
tonyp@790 1856 }
tonyp@790 1857 }
tonyp@790 1858
tonyp@790 1859 assert(!r->continuesHumongous(), "sanity");
tonyp@790 1860 bool res = cl->doHeapRegion(r);
tonyp@790 1861 assert(!res, "Should not abort");
tonyp@790 1862 }
tonyp@790 1863 }
tonyp@790 1864 }
tonyp@790 1865
tonyp@825 1866 class ResetClaimValuesClosure: public HeapRegionClosure {
tonyp@825 1867 public:
tonyp@825 1868 bool doHeapRegion(HeapRegion* r) {
tonyp@825 1869 r->set_claim_value(HeapRegion::InitialClaimValue);
tonyp@825 1870 return false;
tonyp@825 1871 }
tonyp@825 1872 };
tonyp@825 1873
tonyp@825 1874 void
tonyp@825 1875 G1CollectedHeap::reset_heap_region_claim_values() {
tonyp@825 1876 ResetClaimValuesClosure blk;
tonyp@825 1877 heap_region_iterate(&blk);
tonyp@825 1878 }
tonyp@825 1879
tonyp@790 1880 #ifdef ASSERT
tonyp@790 1881 // This checks whether all regions in the heap have the correct claim
tonyp@790 1882 // value. I also piggy-backed on this a check to ensure that the
tonyp@790 1883 // humongous_start_region() information on "continues humongous"
tonyp@790 1884 // regions is correct.
tonyp@790 1885
tonyp@790 1886 class CheckClaimValuesClosure : public HeapRegionClosure {
tonyp@790 1887 private:
tonyp@790 1888 jint _claim_value;
tonyp@790 1889 size_t _failures;
tonyp@790 1890 HeapRegion* _sh_region;
tonyp@790 1891 public:
tonyp@790 1892 CheckClaimValuesClosure(jint claim_value) :
tonyp@790 1893 _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
tonyp@790 1894 bool doHeapRegion(HeapRegion* r) {
tonyp@790 1895 if (r->claim_value() != _claim_value) {
tonyp@790 1896 gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
tonyp@790 1897 "claim value = %d, should be %d",
tonyp@790 1898 r->bottom(), r->end(), r->claim_value(),
tonyp@790 1899 _claim_value);
tonyp@790 1900 ++_failures;
tonyp@790 1901 }
tonyp@790 1902 if (!r->isHumongous()) {
tonyp@790 1903 _sh_region = NULL;
tonyp@790 1904 } else if (r->startsHumongous()) {
tonyp@790 1905 _sh_region = r;
tonyp@790 1906 } else if (r->continuesHumongous()) {
tonyp@790 1907 if (r->humongous_start_region() != _sh_region) {
tonyp@790 1908 gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
tonyp@790 1909 "HS = "PTR_FORMAT", should be "PTR_FORMAT,
tonyp@790 1910 r->bottom(), r->end(),
tonyp@790 1911 r->humongous_start_region(),
tonyp@790 1912 _sh_region);
tonyp@790 1913 ++_failures;
ysr@777 1914 }
ysr@777 1915 }
tonyp@790 1916 return false;
tonyp@790 1917 }
tonyp@790 1918 size_t failures() {
tonyp@790 1919 return _failures;
tonyp@790 1920 }
tonyp@790 1921 };
tonyp@790 1922
tonyp@790 1923 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
tonyp@790 1924 CheckClaimValuesClosure cl(claim_value);
tonyp@790 1925 heap_region_iterate(&cl);
tonyp@790 1926 return cl.failures() == 0;
tonyp@790 1927 }
tonyp@790 1928 #endif // ASSERT
ysr@777 1929
ysr@777 1930 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
ysr@777 1931 HeapRegion* r = g1_policy()->collection_set();
ysr@777 1932 while (r != NULL) {
ysr@777 1933 HeapRegion* next = r->next_in_collection_set();
ysr@777 1934 if (cl->doHeapRegion(r)) {
ysr@777 1935 cl->incomplete();
ysr@777 1936 return;
ysr@777 1937 }
ysr@777 1938 r = next;
ysr@777 1939 }
ysr@777 1940 }
ysr@777 1941
ysr@777 1942 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
ysr@777 1943 HeapRegionClosure *cl) {
ysr@777 1944 assert(r->in_collection_set(),
ysr@777 1945 "Start region must be a member of the collection set.");
ysr@777 1946 HeapRegion* cur = r;
ysr@777 1947 while (cur != NULL) {
ysr@777 1948 HeapRegion* next = cur->next_in_collection_set();
ysr@777 1949 if (cl->doHeapRegion(cur) && false) {
ysr@777 1950 cl->incomplete();
ysr@777 1951 return;
ysr@777 1952 }
ysr@777 1953 cur = next;
ysr@777 1954 }
ysr@777 1955 cur = g1_policy()->collection_set();
ysr@777 1956 while (cur != r) {
ysr@777 1957 HeapRegion* next = cur->next_in_collection_set();
ysr@777 1958 if (cl->doHeapRegion(cur) && false) {
ysr@777 1959 cl->incomplete();
ysr@777 1960 return;
ysr@777 1961 }
ysr@777 1962 cur = next;
ysr@777 1963 }
ysr@777 1964 }
ysr@777 1965
ysr@777 1966 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
ysr@777 1967 return _hrs->length() > 0 ? _hrs->at(0) : NULL;
ysr@777 1968 }
ysr@777 1969
ysr@777 1970
ysr@777 1971 Space* G1CollectedHeap::space_containing(const void* addr) const {
ysr@777 1972 Space* res = heap_region_containing(addr);
ysr@777 1973 if (res == NULL)
ysr@777 1974 res = perm_gen()->space_containing(addr);
ysr@777 1975 return res;
ysr@777 1976 }
ysr@777 1977
ysr@777 1978 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
ysr@777 1979 Space* sp = space_containing(addr);
ysr@777 1980 if (sp != NULL) {
ysr@777 1981 return sp->block_start(addr);
ysr@777 1982 }
ysr@777 1983 return NULL;
ysr@777 1984 }
ysr@777 1985
ysr@777 1986 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
ysr@777 1987 Space* sp = space_containing(addr);
ysr@777 1988 assert(sp != NULL, "block_size of address outside of heap");
ysr@777 1989 return sp->block_size(addr);
ysr@777 1990 }
ysr@777 1991
ysr@777 1992 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
ysr@777 1993 Space* sp = space_containing(addr);
ysr@777 1994 return sp->block_is_obj(addr);
ysr@777 1995 }
ysr@777 1996
ysr@777 1997 bool G1CollectedHeap::supports_tlab_allocation() const {
ysr@777 1998 return true;
ysr@777 1999 }
ysr@777 2000
ysr@777 2001 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
ysr@777 2002 return HeapRegion::GrainBytes;
ysr@777 2003 }
ysr@777 2004
ysr@777 2005 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
ysr@777 2006 // Return the remaining space in the cur alloc region, but not less than
ysr@777 2007 // the min TLAB size.
ysr@777 2008 // Also, no more than half the region size, since we can't allow tlabs to
ysr@777 2009 // grow big enough to accomodate humongous objects.
ysr@777 2010
ysr@777 2011 // We need to story it locally, since it might change between when we
ysr@777 2012 // test for NULL and when we use it later.
ysr@777 2013 ContiguousSpace* cur_alloc_space = _cur_alloc_region;
ysr@777 2014 if (cur_alloc_space == NULL) {
ysr@777 2015 return HeapRegion::GrainBytes/2;
ysr@777 2016 } else {
ysr@777 2017 return MAX2(MIN2(cur_alloc_space->free(),
ysr@777 2018 (size_t)(HeapRegion::GrainBytes/2)),
ysr@777 2019 (size_t)MinTLABSize);
ysr@777 2020 }
ysr@777 2021 }
ysr@777 2022
ysr@777 2023 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
ysr@777 2024 bool dummy;
ysr@777 2025 return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
ysr@777 2026 }
ysr@777 2027
ysr@777 2028 bool G1CollectedHeap::allocs_are_zero_filled() {
ysr@777 2029 return false;
ysr@777 2030 }
ysr@777 2031
ysr@777 2032 size_t G1CollectedHeap::large_typearray_limit() {
ysr@777 2033 // FIXME
ysr@777 2034 return HeapRegion::GrainBytes/HeapWordSize;
ysr@777 2035 }
ysr@777 2036
ysr@777 2037 size_t G1CollectedHeap::max_capacity() const {
ysr@777 2038 return _g1_committed.byte_size();
ysr@777 2039 }
ysr@777 2040
ysr@777 2041 jlong G1CollectedHeap::millis_since_last_gc() {
ysr@777 2042 // assert(false, "NYI");
ysr@777 2043 return 0;
ysr@777 2044 }
ysr@777 2045
ysr@777 2046
ysr@777 2047 void G1CollectedHeap::prepare_for_verify() {
ysr@777 2048 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
ysr@777 2049 ensure_parsability(false);
ysr@777 2050 }
ysr@777 2051 g1_rem_set()->prepare_for_verify();
ysr@777 2052 }
ysr@777 2053
ysr@777 2054 class VerifyLivenessOopClosure: public OopClosure {
ysr@777 2055 G1CollectedHeap* g1h;
ysr@777 2056 public:
ysr@777 2057 VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
ysr@777 2058 g1h = _g1h;
ysr@777 2059 }
ysr@777 2060 void do_oop(narrowOop *p) {
ysr@777 2061 guarantee(false, "NYI");
ysr@777 2062 }
ysr@777 2063 void do_oop(oop *p) {
ysr@777 2064 oop obj = *p;
ysr@777 2065 assert(obj == NULL || !g1h->is_obj_dead(obj),
ysr@777 2066 "Dead object referenced by a not dead object");
ysr@777 2067 }
ysr@777 2068 };
ysr@777 2069
ysr@777 2070 class VerifyObjsInRegionClosure: public ObjectClosure {
ysr@777 2071 G1CollectedHeap* _g1h;
ysr@777 2072 size_t _live_bytes;
ysr@777 2073 HeapRegion *_hr;
ysr@777 2074 public:
ysr@777 2075 VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
ysr@777 2076 _g1h = G1CollectedHeap::heap();
ysr@777 2077 }
ysr@777 2078 void do_object(oop o) {
ysr@777 2079 VerifyLivenessOopClosure isLive(_g1h);
ysr@777 2080 assert(o != NULL, "Huh?");
ysr@777 2081 if (!_g1h->is_obj_dead(o)) {
ysr@777 2082 o->oop_iterate(&isLive);
ysr@777 2083 if (!_hr->obj_allocated_since_prev_marking(o))
ysr@777 2084 _live_bytes += (o->size() * HeapWordSize);
ysr@777 2085 }
ysr@777 2086 }
ysr@777 2087 size_t live_bytes() { return _live_bytes; }
ysr@777 2088 };
ysr@777 2089
ysr@777 2090 class PrintObjsInRegionClosure : public ObjectClosure {
ysr@777 2091 HeapRegion *_hr;
ysr@777 2092 G1CollectedHeap *_g1;
ysr@777 2093 public:
ysr@777 2094 PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
ysr@777 2095 _g1 = G1CollectedHeap::heap();
ysr@777 2096 };
ysr@777 2097
ysr@777 2098 void do_object(oop o) {
ysr@777 2099 if (o != NULL) {
ysr@777 2100 HeapWord *start = (HeapWord *) o;
ysr@777 2101 size_t word_sz = o->size();
ysr@777 2102 gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
ysr@777 2103 " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
ysr@777 2104 (void*) o, word_sz,
ysr@777 2105 _g1->isMarkedPrev(o),
ysr@777 2106 _g1->isMarkedNext(o),
ysr@777 2107 _hr->obj_allocated_since_prev_marking(o));
ysr@777 2108 HeapWord *end = start + word_sz;
ysr@777 2109 HeapWord *cur;
ysr@777 2110 int *val;
ysr@777 2111 for (cur = start; cur < end; cur++) {
ysr@777 2112 val = (int *) cur;
ysr@777 2113 gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
ysr@777 2114 }
ysr@777 2115 }
ysr@777 2116 }
ysr@777 2117 };
ysr@777 2118
ysr@777 2119 class VerifyRegionClosure: public HeapRegionClosure {
ysr@777 2120 public:
ysr@777 2121 bool _allow_dirty;
tonyp@825 2122 bool _par;
tonyp@825 2123 VerifyRegionClosure(bool allow_dirty, bool par = false)
tonyp@825 2124 : _allow_dirty(allow_dirty), _par(par) {}
ysr@777 2125 bool doHeapRegion(HeapRegion* r) {
tonyp@825 2126 guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
tonyp@825 2127 "Should be unclaimed at verify points.");
iveresov@1072 2128 if (!r->continuesHumongous()) {
ysr@777 2129 VerifyObjsInRegionClosure not_dead_yet_cl(r);
ysr@777 2130 r->verify(_allow_dirty);
ysr@777 2131 r->object_iterate(&not_dead_yet_cl);
ysr@777 2132 guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
ysr@777 2133 "More live objects than counted in last complete marking.");
ysr@777 2134 }
ysr@777 2135 return false;
ysr@777 2136 }
ysr@777 2137 };
ysr@777 2138
ysr@777 2139 class VerifyRootsClosure: public OopsInGenClosure {
ysr@777 2140 private:
ysr@777 2141 G1CollectedHeap* _g1h;
ysr@777 2142 bool _failures;
ysr@777 2143
ysr@777 2144 public:
ysr@777 2145 VerifyRootsClosure() :
ysr@777 2146 _g1h(G1CollectedHeap::heap()), _failures(false) { }
ysr@777 2147
ysr@777 2148 bool failures() { return _failures; }
ysr@777 2149
ysr@777 2150 void do_oop(narrowOop* p) {
ysr@777 2151 guarantee(false, "NYI");
ysr@777 2152 }
ysr@777 2153
ysr@777 2154 void do_oop(oop* p) {
ysr@777 2155 oop obj = *p;
ysr@777 2156 if (obj != NULL) {
ysr@777 2157 if (_g1h->is_obj_dead(obj)) {
ysr@777 2158 gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
ysr@777 2159 "points to dead obj "PTR_FORMAT, p, (void*) obj);
ysr@777 2160 obj->print_on(gclog_or_tty);
ysr@777 2161 _failures = true;
ysr@777 2162 }
ysr@777 2163 }
ysr@777 2164 }
ysr@777 2165 };
ysr@777 2166
tonyp@825 2167 // This is the task used for parallel heap verification.
tonyp@825 2168
tonyp@825 2169 class G1ParVerifyTask: public AbstractGangTask {
tonyp@825 2170 private:
tonyp@825 2171 G1CollectedHeap* _g1h;
tonyp@825 2172 bool _allow_dirty;
tonyp@825 2173
tonyp@825 2174 public:
tonyp@825 2175 G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
tonyp@825 2176 AbstractGangTask("Parallel verify task"),
tonyp@825 2177 _g1h(g1h), _allow_dirty(allow_dirty) { }
tonyp@825 2178
tonyp@825 2179 void work(int worker_i) {
iveresov@1072 2180 HandleMark hm;
tonyp@825 2181 VerifyRegionClosure blk(_allow_dirty, true);
tonyp@825 2182 _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
tonyp@825 2183 HeapRegion::ParVerifyClaimValue);
tonyp@825 2184 }
tonyp@825 2185 };
tonyp@825 2186
ysr@777 2187 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
ysr@777 2188 if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
ysr@777 2189 if (!silent) { gclog_or_tty->print("roots "); }
ysr@777 2190 VerifyRootsClosure rootsCl;
ysr@777 2191 process_strong_roots(false,
ysr@777 2192 SharedHeap::SO_AllClasses,
ysr@777 2193 &rootsCl,
ysr@777 2194 &rootsCl);
ysr@777 2195 rem_set()->invalidate(perm_gen()->used_region(), false);
ysr@777 2196 if (!silent) { gclog_or_tty->print("heapRegions "); }
tonyp@825 2197 if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
tonyp@825 2198 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@825 2199 "sanity check");
tonyp@825 2200
tonyp@825 2201 G1ParVerifyTask task(this, allow_dirty);
tonyp@825 2202 int n_workers = workers()->total_workers();
tonyp@825 2203 set_par_threads(n_workers);
tonyp@825 2204 workers()->run_task(&task);
tonyp@825 2205 set_par_threads(0);
tonyp@825 2206
tonyp@825 2207 assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
tonyp@825 2208 "sanity check");
tonyp@825 2209
tonyp@825 2210 reset_heap_region_claim_values();
tonyp@825 2211
tonyp@825 2212 assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
tonyp@825 2213 "sanity check");
tonyp@825 2214 } else {
tonyp@825 2215 VerifyRegionClosure blk(allow_dirty);
tonyp@825 2216 _hrs->iterate(&blk);
tonyp@825 2217 }
ysr@777 2218 if (!silent) gclog_or_tty->print("remset ");
ysr@777 2219 rem_set()->verify();
ysr@777 2220 guarantee(!rootsCl.failures(), "should not have had failures");
ysr@777 2221 } else {
ysr@777 2222 if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
ysr@777 2223 }
ysr@777 2224 }
ysr@777 2225
ysr@777 2226 class PrintRegionClosure: public HeapRegionClosure {
ysr@777 2227 outputStream* _st;
ysr@777 2228 public:
ysr@777 2229 PrintRegionClosure(outputStream* st) : _st(st) {}
ysr@777 2230 bool doHeapRegion(HeapRegion* r) {
ysr@777 2231 r->print_on(_st);
ysr@777 2232 return false;
ysr@777 2233 }
ysr@777 2234 };
ysr@777 2235
ysr@777 2236 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
ysr@777 2237
ysr@777 2238 void G1CollectedHeap::print_on(outputStream* st) const {
ysr@777 2239 PrintRegionClosure blk(st);
ysr@777 2240 _hrs->iterate(&blk);
ysr@777 2241 }
ysr@777 2242
ysr@777 2243 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
ysr@777 2244 if (ParallelGCThreads > 0) {
ysr@777 2245 workers()->print_worker_threads();
ysr@777 2246 }
ysr@777 2247 st->print("\"G1 concurrent mark GC Thread\" ");
ysr@777 2248 _cmThread->print();
ysr@777 2249 st->cr();
ysr@777 2250 st->print("\"G1 concurrent refinement GC Thread\" ");
ysr@777 2251 _cg1r->cg1rThread()->print_on(st);
ysr@777 2252 st->cr();
ysr@777 2253 st->print("\"G1 zero-fill GC Thread\" ");
ysr@777 2254 _czft->print_on(st);
ysr@777 2255 st->cr();
ysr@777 2256 }
ysr@777 2257
ysr@777 2258 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
ysr@777 2259 if (ParallelGCThreads > 0) {
ysr@777 2260 workers()->threads_do(tc);
ysr@777 2261 }
ysr@777 2262 tc->do_thread(_cmThread);
ysr@777 2263 tc->do_thread(_cg1r->cg1rThread());
ysr@777 2264 tc->do_thread(_czft);
ysr@777 2265 }
ysr@777 2266
ysr@777 2267 void G1CollectedHeap::print_tracing_info() const {
ysr@777 2268 concurrent_g1_refine()->print_final_card_counts();
ysr@777 2269
ysr@777 2270 // We'll overload this to mean "trace GC pause statistics."
ysr@777 2271 if (TraceGen0Time || TraceGen1Time) {
ysr@777 2272 // The "G1CollectorPolicy" is keeping track of these stats, so delegate
ysr@777 2273 // to that.
ysr@777 2274 g1_policy()->print_tracing_info();
ysr@777 2275 }
ysr@777 2276 if (SummarizeG1RSStats) {
ysr@777 2277 g1_rem_set()->print_summary_info();
ysr@777 2278 }
ysr@777 2279 if (SummarizeG1ConcMark) {
ysr@777 2280 concurrent_mark()->print_summary_info();
ysr@777 2281 }
ysr@777 2282 if (SummarizeG1ZFStats) {
ysr@777 2283 ConcurrentZFThread::print_summary_info();
ysr@777 2284 }
ysr@777 2285 g1_policy()->print_yg_surv_rate_info();
ysr@777 2286
ysr@777 2287 GCOverheadReporter::printGCOverhead();
ysr@777 2288
ysr@777 2289 SpecializationStats::print();
ysr@777 2290 }
ysr@777 2291
ysr@777 2292
ysr@777 2293 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
ysr@777 2294 HeapRegion* hr = heap_region_containing(addr);
ysr@777 2295 if (hr == NULL) {
ysr@777 2296 return 0;
ysr@777 2297 } else {
ysr@777 2298 return 1;
ysr@777 2299 }
ysr@777 2300 }
ysr@777 2301
ysr@777 2302 G1CollectedHeap* G1CollectedHeap::heap() {
ysr@777 2303 assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
ysr@777 2304 "not a garbage-first heap");
ysr@777 2305 return _g1h;
ysr@777 2306 }
ysr@777 2307
ysr@777 2308 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
ysr@777 2309 if (PrintHeapAtGC){
ysr@777 2310 gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
ysr@777 2311 Universe::print();
ysr@777 2312 }
ysr@777 2313 assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
ysr@777 2314 // Call allocation profiler
ysr@777 2315 AllocationProfiler::iterate_since_last_gc();
ysr@777 2316 // Fill TLAB's and such
ysr@777 2317 ensure_parsability(true);
ysr@777 2318 }
ysr@777 2319
ysr@777 2320 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
ysr@777 2321 // FIXME: what is this about?
ysr@777 2322 // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
ysr@777 2323 // is set.
ysr@777 2324 COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
ysr@777 2325 "derived pointer present"));
ysr@777 2326
ysr@777 2327 if (PrintHeapAtGC){
ysr@777 2328 gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
ysr@777 2329 Universe::print();
ysr@777 2330 gclog_or_tty->print("} ");
ysr@777 2331 }
ysr@777 2332 }
ysr@777 2333
ysr@777 2334 void G1CollectedHeap::do_collection_pause() {
ysr@777 2335 // Read the GC count while holding the Heap_lock
ysr@777 2336 // we need to do this _before_ wait_for_cleanup_complete(), to
ysr@777 2337 // ensure that we do not give up the heap lock and potentially
ysr@777 2338 // pick up the wrong count
ysr@777 2339 int gc_count_before = SharedHeap::heap()->total_collections();
ysr@777 2340
ysr@777 2341 // Don't want to do a GC pause while cleanup is being completed!
ysr@777 2342 wait_for_cleanup_complete();
ysr@777 2343
ysr@777 2344 g1_policy()->record_stop_world_start();
ysr@777 2345 {
ysr@777 2346 MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
ysr@777 2347 VM_G1IncCollectionPause op(gc_count_before);
ysr@777 2348 VMThread::execute(&op);
ysr@777 2349 }
ysr@777 2350 }
ysr@777 2351
ysr@777 2352 void
ysr@777 2353 G1CollectedHeap::doConcurrentMark() {
ysr@777 2354 if (G1ConcMark) {
ysr@777 2355 MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
ysr@777 2356 if (!_cmThread->in_progress()) {
ysr@777 2357 _cmThread->set_started();
ysr@777 2358 CGC_lock->notify();
ysr@777 2359 }
ysr@777 2360 }
ysr@777 2361 }
ysr@777 2362
ysr@777 2363 class VerifyMarkedObjsClosure: public ObjectClosure {
ysr@777 2364 G1CollectedHeap* _g1h;
ysr@777 2365 public:
ysr@777 2366 VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
ysr@777 2367 void do_object(oop obj) {
ysr@777 2368 assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
ysr@777 2369 "markandsweep mark should agree with concurrent deadness");
ysr@777 2370 }
ysr@777 2371 };
ysr@777 2372
ysr@777 2373 void
ysr@777 2374 G1CollectedHeap::checkConcurrentMark() {
ysr@777 2375 VerifyMarkedObjsClosure verifycl(this);
ysr@777 2376 // MutexLockerEx x(getMarkBitMapLock(),
ysr@777 2377 // Mutex::_no_safepoint_check_flag);
ysr@777 2378 object_iterate(&verifycl);
ysr@777 2379 }
ysr@777 2380
ysr@777 2381 void G1CollectedHeap::do_sync_mark() {
ysr@777 2382 _cm->checkpointRootsInitial();
ysr@777 2383 _cm->markFromRoots();
ysr@777 2384 _cm->checkpointRootsFinal(false);
ysr@777 2385 }
ysr@777 2386
ysr@777 2387 // <NEW PREDICTION>
ysr@777 2388
ysr@777 2389 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
ysr@777 2390 bool young) {
ysr@777 2391 return _g1_policy->predict_region_elapsed_time_ms(hr, young);
ysr@777 2392 }
ysr@777 2393
ysr@777 2394 void G1CollectedHeap::check_if_region_is_too_expensive(double
ysr@777 2395 predicted_time_ms) {
ysr@777 2396 _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
ysr@777 2397 }
ysr@777 2398
ysr@777 2399 size_t G1CollectedHeap::pending_card_num() {
ysr@777 2400 size_t extra_cards = 0;
ysr@777 2401 JavaThread *curr = Threads::first();
ysr@777 2402 while (curr != NULL) {
ysr@777 2403 DirtyCardQueue& dcq = curr->dirty_card_queue();
ysr@777 2404 extra_cards += dcq.size();
ysr@777 2405 curr = curr->next();
ysr@777 2406 }
ysr@777 2407 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
ysr@777 2408 size_t buffer_size = dcqs.buffer_size();
ysr@777 2409 size_t buffer_num = dcqs.completed_buffers_num();
ysr@777 2410 return buffer_size * buffer_num + extra_cards;
ysr@777 2411 }
ysr@777 2412
ysr@777 2413 size_t G1CollectedHeap::max_pending_card_num() {
ysr@777 2414 DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
ysr@777 2415 size_t buffer_size = dcqs.buffer_size();
ysr@777 2416 size_t buffer_num = dcqs.completed_buffers_num();
ysr@777 2417 int thread_num = Threads::number_of_threads();
ysr@777 2418 return (buffer_num + thread_num) * buffer_size;
ysr@777 2419 }
ysr@777 2420
ysr@777 2421 size_t G1CollectedHeap::cards_scanned() {
ysr@777 2422 HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
ysr@777 2423 return g1_rset->cardsScanned();
ysr@777 2424 }
ysr@777 2425
ysr@777 2426 void
ysr@777 2427 G1CollectedHeap::setup_surviving_young_words() {
ysr@777 2428 guarantee( _surviving_young_words == NULL, "pre-condition" );
ysr@777 2429 size_t array_length = g1_policy()->young_cset_length();
ysr@777 2430 _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
ysr@777 2431 if (_surviving_young_words == NULL) {
ysr@777 2432 vm_exit_out_of_memory(sizeof(size_t) * array_length,
ysr@777 2433 "Not enough space for young surv words summary.");
ysr@777 2434 }
ysr@777 2435 memset(_surviving_young_words, 0, array_length * sizeof(size_t));
ysr@777 2436 for (size_t i = 0; i < array_length; ++i) {
ysr@777 2437 guarantee( _surviving_young_words[i] == 0, "invariant" );
ysr@777 2438 }
ysr@777 2439 }
ysr@777 2440
ysr@777 2441 void
ysr@777 2442 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
ysr@777 2443 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 2444 size_t array_length = g1_policy()->young_cset_length();
ysr@777 2445 for (size_t i = 0; i < array_length; ++i)
ysr@777 2446 _surviving_young_words[i] += surv_young_words[i];
ysr@777 2447 }
ysr@777 2448
ysr@777 2449 void
ysr@777 2450 G1CollectedHeap::cleanup_surviving_young_words() {
ysr@777 2451 guarantee( _surviving_young_words != NULL, "pre-condition" );
ysr@777 2452 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
ysr@777 2453 _surviving_young_words = NULL;
ysr@777 2454 }
ysr@777 2455
ysr@777 2456 // </NEW PREDICTION>
ysr@777 2457
ysr@777 2458 void
apetrusenko@1112 2459 G1CollectedHeap::do_collection_pause_at_safepoint() {
ysr@777 2460 char verbose_str[128];
ysr@777 2461 sprintf(verbose_str, "GC pause ");
apetrusenko@1112 2462 if (g1_policy()->in_young_gc_mode()) {
ysr@777 2463 if (g1_policy()->full_young_gcs())
ysr@777 2464 strcat(verbose_str, "(young)");
ysr@777 2465 else
ysr@777 2466 strcat(verbose_str, "(partial)");
ysr@777 2467 }
ysr@777 2468 if (g1_policy()->should_initiate_conc_mark())
ysr@777 2469 strcat(verbose_str, " (initial-mark)");
ysr@777 2470
apetrusenko@1112 2471 GCCauseSetter x(this, GCCause::_g1_inc_collection_pause);
ysr@777 2472
ysr@777 2473 // if PrintGCDetails is on, we'll print long statistics information
ysr@777 2474 // in the collector policy code, so let's not print this as the output
ysr@777 2475 // is messy if we do.
ysr@777 2476 gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
ysr@777 2477 TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
ysr@777 2478 TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
ysr@777 2479
ysr@777 2480 ResourceMark rm;
ysr@777 2481 assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
ysr@777 2482 assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
ysr@777 2483 guarantee(!is_gc_active(), "collection is not reentrant");
ysr@777 2484 assert(regions_accounted_for(), "Region leakage!");
iveresov@788 2485
iveresov@788 2486 increment_gc_time_stamp();
ysr@777 2487
ysr@777 2488 if (g1_policy()->in_young_gc_mode()) {
ysr@777 2489 assert(check_young_list_well_formed(),
ysr@777 2490 "young list should be well formed");
ysr@777 2491 }
ysr@777 2492
ysr@777 2493 if (GC_locker::is_active()) {
ysr@777 2494 return; // GC is disabled (e.g. JNI GetXXXCritical operation)
ysr@777 2495 }
ysr@777 2496
ysr@777 2497 bool abandoned = false;
ysr@777 2498 { // Call to jvmpi::post_class_unload_events must occur outside of active GC
ysr@777 2499 IsGCActiveMark x;
ysr@777 2500
ysr@777 2501 gc_prologue(false);
ysr@777 2502 increment_total_collections();
ysr@777 2503
ysr@777 2504 #if G1_REM_SET_LOGGING
ysr@777 2505 gclog_or_tty->print_cr("\nJust chose CS, heap:");
ysr@777 2506 print();
ysr@777 2507 #endif
ysr@777 2508
ysr@777 2509 if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
ysr@777 2510 HandleMark hm; // Discard invalid handles created during verification
ysr@777 2511 prepare_for_verify();
ysr@777 2512 gclog_or_tty->print(" VerifyBeforeGC:");
ysr@777 2513 Universe::verify(false);
ysr@777 2514 }
ysr@777 2515
ysr@777 2516 COMPILER2_PRESENT(DerivedPointerTable::clear());
ysr@777 2517
ysr@888 2518 // We want to turn off ref discovery, if necessary, and turn it back on
ysr@777 2519 // on again later if we do.
ysr@777 2520 bool was_enabled = ref_processor()->discovery_enabled();
ysr@777 2521 if (was_enabled) ref_processor()->disable_discovery();
ysr@777 2522
ysr@777 2523 // Forget the current alloc region (we might even choose it to be part
ysr@777 2524 // of the collection set!).
ysr@777 2525 abandon_cur_alloc_region();
ysr@777 2526
ysr@777 2527 // The elapsed time induced by the start time below deliberately elides
ysr@777 2528 // the possible verification above.
ysr@777 2529 double start_time_sec = os::elapsedTime();
ysr@777 2530 GCOverheadReporter::recordSTWStart(start_time_sec);
ysr@777 2531 size_t start_used_bytes = used();
ysr@777 2532 if (!G1ConcMark) {
ysr@777 2533 do_sync_mark();
ysr@777 2534 }
ysr@777 2535
ysr@777 2536 g1_policy()->record_collection_pause_start(start_time_sec,
ysr@777 2537 start_used_bytes);
ysr@777 2538
tonyp@961 2539 guarantee(_in_cset_fast_test == NULL, "invariant");
tonyp@961 2540 guarantee(_in_cset_fast_test_base == NULL, "invariant");
tonyp@1053 2541 _in_cset_fast_test_length = max_regions();
tonyp@961 2542 _in_cset_fast_test_base =
tonyp@961 2543 NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
tonyp@961 2544 memset(_in_cset_fast_test_base, false,
tonyp@961 2545 _in_cset_fast_test_length * sizeof(bool));
tonyp@961 2546 // We're biasing _in_cset_fast_test to avoid subtracting the
tonyp@961 2547 // beginning of the heap every time we want to index; basically
tonyp@961 2548 // it's the same with what we do with the card table.
tonyp@961 2549 _in_cset_fast_test = _in_cset_fast_test_base -
tonyp@961 2550 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
tonyp@961 2551
ysr@777 2552 #if SCAN_ONLY_VERBOSE
ysr@777 2553 _young_list->print();
ysr@777 2554 #endif // SCAN_ONLY_VERBOSE
ysr@777 2555
ysr@777 2556 if (g1_policy()->should_initiate_conc_mark()) {
ysr@777 2557 concurrent_mark()->checkpointRootsInitialPre();
ysr@777 2558 }
ysr@777 2559 save_marks();
ysr@777 2560
twisti@1040 2561 // We must do this before any possible evacuation that should propagate
apetrusenko@1112 2562 // marks.
ysr@777 2563 if (mark_in_progress()) {
ysr@777 2564 double start_time_sec = os::elapsedTime();
ysr@777 2565
ysr@777 2566 _cm->drainAllSATBBuffers();
ysr@777 2567 double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
ysr@777 2568 g1_policy()->record_satb_drain_time(finish_mark_ms);
ysr@777 2569
ysr@777 2570 }
ysr@777 2571 // Record the number of elements currently on the mark stack, so we
ysr@777 2572 // only iterate over these. (Since evacuation may add to the mark
ysr@777 2573 // stack, doing more exposes race conditions.) If no mark is in
ysr@777 2574 // progress, this will be zero.
ysr@777 2575 _cm->set_oops_do_bound();
ysr@777 2576
ysr@777 2577 assert(regions_accounted_for(), "Region leakage.");
ysr@777 2578
ysr@777 2579 if (mark_in_progress())
ysr@777 2580 concurrent_mark()->newCSet();
ysr@777 2581
ysr@777 2582 // Now choose the CS.
apetrusenko@1112 2583 g1_policy()->choose_collection_set();
apetrusenko@1112 2584
ysr@777 2585 // We may abandon a pause if we find no region that will fit in the MMU
ysr@777 2586 // pause.
apetrusenko@1112 2587 bool abandoned = (g1_policy()->collection_set() == NULL);
ysr@777 2588
ysr@777 2589 // Nothing to do if we were unable to choose a collection set.
ysr@777 2590 if (!abandoned) {
ysr@777 2591 #if G1_REM_SET_LOGGING
ysr@777 2592 gclog_or_tty->print_cr("\nAfter pause, heap:");
ysr@777 2593 print();
ysr@777 2594 #endif
ysr@777 2595
ysr@777 2596 setup_surviving_young_words();
ysr@777 2597
ysr@777 2598 // Set up the gc allocation regions.
ysr@777 2599 get_gc_alloc_regions();
ysr@777 2600
ysr@777 2601 // Actually do the work...
ysr@777 2602 evacuate_collection_set();
ysr@777 2603 free_collection_set(g1_policy()->collection_set());
ysr@777 2604 g1_policy()->clear_collection_set();
ysr@777 2605
tonyp@961 2606 FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
tonyp@961 2607 // this is more for peace of mind; we're nulling them here and
tonyp@961 2608 // we're expecting them to be null at the beginning of the next GC
tonyp@961 2609 _in_cset_fast_test = NULL;
tonyp@961 2610 _in_cset_fast_test_base = NULL;
tonyp@961 2611
tonyp@1071 2612 release_gc_alloc_regions(false /* totally */);
ysr@777 2613
ysr@777 2614 cleanup_surviving_young_words();
ysr@777 2615
ysr@777 2616 if (g1_policy()->in_young_gc_mode()) {
ysr@777 2617 _young_list->reset_sampled_info();
ysr@777 2618 assert(check_young_list_empty(true),
ysr@777 2619 "young list should be empty");
ysr@777 2620
ysr@777 2621 #if SCAN_ONLY_VERBOSE
ysr@777 2622 _young_list->print();
ysr@777 2623 #endif // SCAN_ONLY_VERBOSE
ysr@777 2624
apetrusenko@980 2625 g1_policy()->record_survivor_regions(_young_list->survivor_length(),
apetrusenko@980 2626 _young_list->first_survivor_region(),
apetrusenko@980 2627 _young_list->last_survivor_region());
ysr@777 2628 _young_list->reset_auxilary_lists();
ysr@777 2629 }
ysr@777 2630 } else {
ysr@777 2631 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
ysr@777 2632 }
ysr@777 2633
ysr@777 2634 if (evacuation_failed()) {
ysr@777 2635 _summary_bytes_used = recalculate_used();
ysr@777 2636 } else {
ysr@777 2637 // The "used" of the the collection set have already been subtracted
ysr@777 2638 // when they were freed. Add in the bytes evacuated.
ysr@777 2639 _summary_bytes_used += g1_policy()->bytes_in_to_space();
ysr@777 2640 }
ysr@777 2641
ysr@777 2642 if (g1_policy()->in_young_gc_mode() &&
ysr@777 2643 g1_policy()->should_initiate_conc_mark()) {
ysr@777 2644 concurrent_mark()->checkpointRootsInitialPost();
ysr@777 2645 set_marking_started();
ysr@777 2646 doConcurrentMark();
ysr@777 2647 }
ysr@777 2648
ysr@777 2649 #if SCAN_ONLY_VERBOSE
ysr@777 2650 _young_list->print();
ysr@777 2651 #endif // SCAN_ONLY_VERBOSE
ysr@777 2652
ysr@777 2653 double end_time_sec = os::elapsedTime();
tonyp@1030 2654 double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
tonyp@1030 2655 g1_policy()->record_pause_time_ms(pause_time_ms);
ysr@777 2656 GCOverheadReporter::recordSTWEnd(end_time_sec);
apetrusenko@1112 2657 g1_policy()->record_collection_pause_end(abandoned);
ysr@777 2658
ysr@777 2659 assert(regions_accounted_for(), "Region leakage.");
ysr@777 2660
ysr@777 2661 if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
ysr@777 2662 HandleMark hm; // Discard invalid handles created during verification
ysr@777 2663 gclog_or_tty->print(" VerifyAfterGC:");
iveresov@1072 2664 prepare_for_verify();
ysr@777 2665 Universe::verify(false);
ysr@777 2666 }
ysr@777 2667
ysr@777 2668 if (was_enabled) ref_processor()->enable_discovery();
ysr@777 2669
ysr@777 2670 {
ysr@777 2671 size_t expand_bytes = g1_policy()->expansion_amount();
ysr@777 2672 if (expand_bytes > 0) {
ysr@777 2673 size_t bytes_before = capacity();
ysr@777 2674 expand(expand_bytes);
ysr@777 2675 }
ysr@777 2676 }
ysr@777 2677
jmasa@981 2678 if (mark_in_progress()) {
ysr@777 2679 concurrent_mark()->update_g1_committed();
jmasa@981 2680 }
jmasa@981 2681
jmasa@981 2682 #ifdef TRACESPINNING
jmasa@981 2683 ParallelTaskTerminator::print_termination_counts();
jmasa@981 2684 #endif
ysr@777 2685
ysr@777 2686 gc_epilogue(false);
ysr@777 2687 }
ysr@777 2688
ysr@777 2689 assert(verify_region_lists(), "Bad region lists.");
ysr@777 2690
ysr@777 2691 if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
ysr@777 2692 gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
ysr@777 2693 print_tracing_info();
ysr@777 2694 vm_exit(-1);
ysr@777 2695 }
ysr@777 2696 }
ysr@777 2697
ysr@777 2698 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
ysr@777 2699 assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
tonyp@1071 2700 // make sure we don't call set_gc_alloc_region() multiple times on
tonyp@1071 2701 // the same region
tonyp@1071 2702 assert(r == NULL || !r->is_gc_alloc_region(),
tonyp@1071 2703 "shouldn't already be a GC alloc region");
ysr@777 2704 HeapWord* original_top = NULL;
ysr@777 2705 if (r != NULL)
ysr@777 2706 original_top = r->top();
ysr@777 2707
ysr@777 2708 // We will want to record the used space in r as being there before gc.
ysr@777 2709 // One we install it as a GC alloc region it's eligible for allocation.
ysr@777 2710 // So record it now and use it later.
ysr@777 2711 size_t r_used = 0;
ysr@777 2712 if (r != NULL) {
ysr@777 2713 r_used = r->used();
ysr@777 2714
ysr@777 2715 if (ParallelGCThreads > 0) {
ysr@777 2716 // need to take the lock to guard against two threads calling
ysr@777 2717 // get_gc_alloc_region concurrently (very unlikely but...)
ysr@777 2718 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
ysr@777 2719 r->save_marks();
ysr@777 2720 }
ysr@777 2721 }
ysr@777 2722 HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
ysr@777 2723 _gc_alloc_regions[purpose] = r;
ysr@777 2724 if (old_alloc_region != NULL) {
ysr@777 2725 // Replace aliases too.
ysr@777 2726 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
ysr@777 2727 if (_gc_alloc_regions[ap] == old_alloc_region) {
ysr@777 2728 _gc_alloc_regions[ap] = r;
ysr@777 2729 }
ysr@777 2730 }
ysr@777 2731 }
ysr@777 2732 if (r != NULL) {
ysr@777 2733 push_gc_alloc_region(r);
ysr@777 2734 if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
ysr@777 2735 // We are using a region as a GC alloc region after it has been used
ysr@777 2736 // as a mutator allocation region during the current marking cycle.
ysr@777 2737 // The mutator-allocated objects are currently implicitly marked, but
ysr@777 2738 // when we move hr->next_top_at_mark_start() forward at the the end
ysr@777 2739 // of the GC pause, they won't be. We therefore mark all objects in
ysr@777 2740 // the "gap". We do this object-by-object, since marking densely
ysr@777 2741 // does not currently work right with marking bitmap iteration. This
ysr@777 2742 // means we rely on TLAB filling at the start of pauses, and no
ysr@777 2743 // "resuscitation" of filled TLAB's. If we want to do this, we need
ysr@777 2744 // to fix the marking bitmap iteration.
ysr@777 2745 HeapWord* curhw = r->next_top_at_mark_start();
ysr@777 2746 HeapWord* t = original_top;
ysr@777 2747
ysr@777 2748 while (curhw < t) {
ysr@777 2749 oop cur = (oop)curhw;
ysr@777 2750 // We'll assume parallel for generality. This is rare code.
ysr@777 2751 concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
ysr@777 2752 curhw = curhw + cur->size();
ysr@777 2753 }
ysr@777 2754 assert(curhw == t, "Should have parsed correctly.");
ysr@777 2755 }
ysr@777 2756 if (G1PolicyVerbose > 1) {
ysr@777 2757 gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
ysr@777 2758 "for survivors:", r->bottom(), original_top, r->end());
ysr@777 2759 r->print();
ysr@777 2760 }
ysr@777 2761 g1_policy()->record_before_bytes(r_used);
ysr@777 2762 }
ysr@777 2763 }
ysr@777 2764
ysr@777 2765 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
ysr@777 2766 assert(Thread::current()->is_VM_thread() ||
ysr@777 2767 par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
ysr@777 2768 assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
ysr@777 2769 "Precondition.");
ysr@777 2770 hr->set_is_gc_alloc_region(true);
ysr@777 2771 hr->set_next_gc_alloc_region(_gc_alloc_region_list);
ysr@777 2772 _gc_alloc_region_list = hr;
ysr@777 2773 }
ysr@777 2774
ysr@777 2775 #ifdef G1_DEBUG
ysr@777 2776 class FindGCAllocRegion: public HeapRegionClosure {
ysr@777 2777 public:
ysr@777 2778 bool doHeapRegion(HeapRegion* r) {
ysr@777 2779 if (r->is_gc_alloc_region()) {
ysr@777 2780 gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
ysr@777 2781 r->hrs_index(), r->bottom());
ysr@777 2782 }
ysr@777 2783 return false;
ysr@777 2784 }
ysr@777 2785 };
ysr@777 2786 #endif // G1_DEBUG
ysr@777 2787
ysr@777 2788 void G1CollectedHeap::forget_alloc_region_list() {
ysr@777 2789 assert(Thread::current()->is_VM_thread(), "Precondition");
ysr@777 2790 while (_gc_alloc_region_list != NULL) {
ysr@777 2791 HeapRegion* r = _gc_alloc_region_list;
ysr@777 2792 assert(r->is_gc_alloc_region(), "Invariant.");
iveresov@1072 2793 // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
iveresov@1072 2794 // newly allocated data in order to be able to apply deferred updates
iveresov@1072 2795 // before the GC is done for verification purposes (i.e to allow
iveresov@1072 2796 // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
iveresov@1072 2797 // collection.
iveresov@1072 2798 r->ContiguousSpace::set_saved_mark();
ysr@777 2799 _gc_alloc_region_list = r->next_gc_alloc_region();
ysr@777 2800 r->set_next_gc_alloc_region(NULL);
ysr@777 2801 r->set_is_gc_alloc_region(false);
apetrusenko@980 2802 if (r->is_survivor()) {
apetrusenko@980 2803 if (r->is_empty()) {
apetrusenko@980 2804 r->set_not_young();
apetrusenko@980 2805 } else {
apetrusenko@980 2806 _young_list->add_survivor_region(r);
apetrusenko@980 2807 }
apetrusenko@980 2808 }
ysr@777 2809 if (r->is_empty()) {
ysr@777 2810 ++_free_regions;
ysr@777 2811 }
ysr@777 2812 }
ysr@777 2813 #ifdef G1_DEBUG
ysr@777 2814 FindGCAllocRegion fa;
ysr@777 2815 heap_region_iterate(&fa);
ysr@777 2816 #endif // G1_DEBUG
ysr@777 2817 }
ysr@777 2818
ysr@777 2819
ysr@777 2820 bool G1CollectedHeap::check_gc_alloc_regions() {
ysr@777 2821 // TODO: allocation regions check
ysr@777 2822 return true;
ysr@777 2823 }
ysr@777 2824
ysr@777 2825 void G1CollectedHeap::get_gc_alloc_regions() {
tonyp@1071 2826 // First, let's check that the GC alloc region list is empty (it should)
tonyp@1071 2827 assert(_gc_alloc_region_list == NULL, "invariant");
tonyp@1071 2828
ysr@777 2829 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
tonyp@1071 2830 assert(_gc_alloc_regions[ap] == NULL, "invariant");
tonyp@1071 2831
ysr@777 2832 // Create new GC alloc regions.
tonyp@1071 2833 HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
tonyp@1071 2834 _retained_gc_alloc_regions[ap] = NULL;
tonyp@1071 2835
tonyp@1071 2836 if (alloc_region != NULL) {
tonyp@1071 2837 assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
tonyp@1071 2838
tonyp@1071 2839 // let's make sure that the GC alloc region is not tagged as such
tonyp@1071 2840 // outside a GC operation
tonyp@1071 2841 assert(!alloc_region->is_gc_alloc_region(), "sanity");
tonyp@1071 2842
tonyp@1071 2843 if (alloc_region->in_collection_set() ||
tonyp@1071 2844 alloc_region->top() == alloc_region->end() ||
tonyp@1071 2845 alloc_region->top() == alloc_region->bottom()) {
tonyp@1071 2846 // we will discard the current GC alloc region if it's in the
tonyp@1071 2847 // collection set (it can happen!), if it's already full (no
tonyp@1071 2848 // point in using it), or if it's empty (this means that it
tonyp@1071 2849 // was emptied during a cleanup and it should be on the free
tonyp@1071 2850 // list now).
tonyp@1071 2851
tonyp@1071 2852 alloc_region = NULL;
tonyp@1071 2853 }
tonyp@1071 2854 }
tonyp@1071 2855
tonyp@1071 2856 if (alloc_region == NULL) {
tonyp@1071 2857 // we will get a new GC alloc region
ysr@777 2858 alloc_region = newAllocRegionWithExpansion(ap, 0);
ysr@777 2859 }
tonyp@1071 2860
ysr@777 2861 if (alloc_region != NULL) {
tonyp@1071 2862 assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
ysr@777 2863 set_gc_alloc_region(ap, alloc_region);
ysr@777 2864 }
tonyp@1071 2865
tonyp@1071 2866 assert(_gc_alloc_regions[ap] == NULL ||
tonyp@1071 2867 _gc_alloc_regions[ap]->is_gc_alloc_region(),
tonyp@1071 2868 "the GC alloc region should be tagged as such");
tonyp@1071 2869 assert(_gc_alloc_regions[ap] == NULL ||
tonyp@1071 2870 _gc_alloc_regions[ap] == _gc_alloc_region_list,
tonyp@1071 2871 "the GC alloc region should be the same as the GC alloc list head");
ysr@777 2872 }
ysr@777 2873 // Set alternative regions for allocation purposes that have reached
tonyp@1071 2874 // their limit.
ysr@777 2875 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
ysr@777 2876 GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
ysr@777 2877 if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
ysr@777 2878 _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
ysr@777 2879 }
ysr@777 2880 }
ysr@777 2881 assert(check_gc_alloc_regions(), "alloc regions messed up");
ysr@777 2882 }
ysr@777 2883
tonyp@1071 2884 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
ysr@777 2885 // We keep a separate list of all regions that have been alloc regions in
tonyp@1071 2886 // the current collection pause. Forget that now. This method will
tonyp@1071 2887 // untag the GC alloc regions and tear down the GC alloc region
tonyp@1071 2888 // list. It's desirable that no regions are tagged as GC alloc
tonyp@1071 2889 // outside GCs.
ysr@777 2890 forget_alloc_region_list();
ysr@777 2891
ysr@777 2892 // The current alloc regions contain objs that have survived
ysr@777 2893 // collection. Make them no longer GC alloc regions.
ysr@777 2894 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
ysr@777 2895 HeapRegion* r = _gc_alloc_regions[ap];
tonyp@1071 2896 _retained_gc_alloc_regions[ap] = NULL;
tonyp@1071 2897
tonyp@1071 2898 if (r != NULL) {
tonyp@1071 2899 // we retain nothing on _gc_alloc_regions between GCs
tonyp@1071 2900 set_gc_alloc_region(ap, NULL);
tonyp@1071 2901 _gc_alloc_region_counts[ap] = 0;
tonyp@1071 2902
tonyp@1071 2903 if (r->is_empty()) {
tonyp@1071 2904 // we didn't actually allocate anything in it; let's just put
tonyp@1071 2905 // it on the free list
ysr@777 2906 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 2907 r->set_zero_fill_complete();
ysr@777 2908 put_free_region_on_list_locked(r);
tonyp@1071 2909 } else if (_retain_gc_alloc_region[ap] && !totally) {
tonyp@1071 2910 // retain it so that we can use it at the beginning of the next GC
tonyp@1071 2911 _retained_gc_alloc_regions[ap] = r;
ysr@777 2912 }
ysr@777 2913 }
tonyp@1071 2914 }
tonyp@1071 2915 }
tonyp@1071 2916
tonyp@1071 2917 #ifndef PRODUCT
tonyp@1071 2918 // Useful for debugging
tonyp@1071 2919
tonyp@1071 2920 void G1CollectedHeap::print_gc_alloc_regions() {
tonyp@1071 2921 gclog_or_tty->print_cr("GC alloc regions");
tonyp@1071 2922 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
tonyp@1071 2923 HeapRegion* r = _gc_alloc_regions[ap];
tonyp@1071 2924 if (r == NULL) {
tonyp@1071 2925 gclog_or_tty->print_cr(" %2d : "PTR_FORMAT, ap, NULL);
tonyp@1071 2926 } else {
tonyp@1071 2927 gclog_or_tty->print_cr(" %2d : "PTR_FORMAT" "SIZE_FORMAT,
tonyp@1071 2928 ap, r->bottom(), r->used());
tonyp@1071 2929 }
tonyp@1071 2930 }
tonyp@1071 2931 }
tonyp@1071 2932 #endif // PRODUCT
ysr@777 2933
ysr@777 2934 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
ysr@777 2935 _drain_in_progress = false;
ysr@777 2936 set_evac_failure_closure(cl);
ysr@777 2937 _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
ysr@777 2938 }
ysr@777 2939
ysr@777 2940 void G1CollectedHeap::finalize_for_evac_failure() {
ysr@777 2941 assert(_evac_failure_scan_stack != NULL &&
ysr@777 2942 _evac_failure_scan_stack->length() == 0,
ysr@777 2943 "Postcondition");
ysr@777 2944 assert(!_drain_in_progress, "Postcondition");
ysr@777 2945 // Don't have to delete, since the scan stack is a resource object.
ysr@777 2946 _evac_failure_scan_stack = NULL;
ysr@777 2947 }
ysr@777 2948
ysr@777 2949
ysr@777 2950
ysr@777 2951 // *** Sequential G1 Evacuation
ysr@777 2952
ysr@777 2953 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
ysr@777 2954 HeapRegion* alloc_region = _gc_alloc_regions[purpose];
ysr@777 2955 // let the caller handle alloc failure
ysr@777 2956 if (alloc_region == NULL) return NULL;
ysr@777 2957 assert(isHumongous(word_size) || !alloc_region->isHumongous(),
ysr@777 2958 "Either the object is humongous or the region isn't");
ysr@777 2959 HeapWord* block = alloc_region->allocate(word_size);
ysr@777 2960 if (block == NULL) {
ysr@777 2961 block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
ysr@777 2962 }
ysr@777 2963 return block;
ysr@777 2964 }
ysr@777 2965
ysr@777 2966 class G1IsAliveClosure: public BoolObjectClosure {
ysr@777 2967 G1CollectedHeap* _g1;
ysr@777 2968 public:
ysr@777 2969 G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
ysr@777 2970 void do_object(oop p) { assert(false, "Do not call."); }
ysr@777 2971 bool do_object_b(oop p) {
ysr@777 2972 // It is reachable if it is outside the collection set, or is inside
ysr@777 2973 // and forwarded.
ysr@777 2974
ysr@777 2975 #ifdef G1_DEBUG
ysr@777 2976 gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
ysr@777 2977 (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
ysr@777 2978 !_g1->obj_in_cs(p) || p->is_forwarded());
ysr@777 2979 #endif // G1_DEBUG
ysr@777 2980
ysr@777 2981 return !_g1->obj_in_cs(p) || p->is_forwarded();
ysr@777 2982 }
ysr@777 2983 };
ysr@777 2984
ysr@777 2985 class G1KeepAliveClosure: public OopClosure {
ysr@777 2986 G1CollectedHeap* _g1;
ysr@777 2987 public:
ysr@777 2988 G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
ysr@777 2989 void do_oop(narrowOop* p) {
ysr@777 2990 guarantee(false, "NYI");
ysr@777 2991 }
ysr@777 2992 void do_oop(oop* p) {
ysr@777 2993 oop obj = *p;
ysr@777 2994 #ifdef G1_DEBUG
ysr@777 2995 if (PrintGC && Verbose) {
ysr@777 2996 gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
ysr@777 2997 p, (void*) obj, (void*) *p);
ysr@777 2998 }
ysr@777 2999 #endif // G1_DEBUG
ysr@777 3000
ysr@777 3001 if (_g1->obj_in_cs(obj)) {
ysr@777 3002 assert( obj->is_forwarded(), "invariant" );
ysr@777 3003 *p = obj->forwardee();
ysr@777 3004
ysr@777 3005 #ifdef G1_DEBUG
ysr@777 3006 gclog_or_tty->print_cr(" in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
ysr@777 3007 (void*) obj, (void*) *p);
ysr@777 3008 #endif // G1_DEBUG
ysr@777 3009 }
ysr@777 3010 }
ysr@777 3011 };
ysr@777 3012
iveresov@1051 3013 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
ysr@777 3014 private:
ysr@777 3015 G1CollectedHeap* _g1;
ysr@777 3016 G1RemSet* _g1_rem_set;
ysr@777 3017 public:
iveresov@1051 3018 UpdateRSetImmediate(G1CollectedHeap* g1) :
iveresov@1051 3019 _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
ysr@777 3020
ysr@777 3021 void do_oop(narrowOop* p) {
ysr@777 3022 guarantee(false, "NYI");
ysr@777 3023 }
ysr@777 3024 void do_oop(oop* p) {
ysr@777 3025 assert(_from->is_in_reserved(p), "paranoia");
iveresov@1051 3026 if (*p != NULL && !_from->is_survivor()) {
iveresov@1051 3027 _g1_rem_set->par_write_ref(_from, p, 0);
ysr@777 3028 }
ysr@777 3029 }
ysr@777 3030 };
ysr@777 3031
iveresov@1051 3032 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
iveresov@1051 3033 private:
iveresov@1051 3034 G1CollectedHeap* _g1;
iveresov@1051 3035 DirtyCardQueue *_dcq;
iveresov@1051 3036 CardTableModRefBS* _ct_bs;
iveresov@1051 3037
iveresov@1051 3038 public:
iveresov@1051 3039 UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
iveresov@1051 3040 _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
iveresov@1051 3041
iveresov@1051 3042 void do_oop(narrowOop* p) {
iveresov@1051 3043 guarantee(false, "NYI");
iveresov@1051 3044 }
iveresov@1051 3045 void do_oop(oop* p) {
iveresov@1051 3046 assert(_from->is_in_reserved(p), "paranoia");
iveresov@1051 3047 if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
iveresov@1051 3048 size_t card_index = _ct_bs->index_for(p);
iveresov@1051 3049 if (_ct_bs->mark_card_deferred(card_index)) {
iveresov@1051 3050 _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
iveresov@1051 3051 }
iveresov@1051 3052 }
iveresov@1051 3053 }
iveresov@1051 3054 };
iveresov@1051 3055
iveresov@1051 3056
iveresov@1051 3057
ysr@777 3058 class RemoveSelfPointerClosure: public ObjectClosure {
ysr@777 3059 private:
ysr@777 3060 G1CollectedHeap* _g1;
ysr@777 3061 ConcurrentMark* _cm;
ysr@777 3062 HeapRegion* _hr;
ysr@777 3063 size_t _prev_marked_bytes;
ysr@777 3064 size_t _next_marked_bytes;
iveresov@1051 3065 OopsInHeapRegionClosure *_cl;
ysr@777 3066 public:
iveresov@1051 3067 RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
iveresov@1051 3068 _g1(g1), _cm(_g1->concurrent_mark()), _prev_marked_bytes(0),
iveresov@1051 3069 _next_marked_bytes(0), _cl(cl) {}
ysr@777 3070
ysr@777 3071 size_t prev_marked_bytes() { return _prev_marked_bytes; }
ysr@777 3072 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 3073
iveresov@787 3074 // The original idea here was to coalesce evacuated and dead objects.
iveresov@787 3075 // However that caused complications with the block offset table (BOT).
iveresov@787 3076 // In particular if there were two TLABs, one of them partially refined.
iveresov@787 3077 // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
iveresov@787 3078 // The BOT entries of the unrefined part of TLAB_2 point to the start
iveresov@787 3079 // of TLAB_2. If the last object of the TLAB_1 and the first object
iveresov@787 3080 // of TLAB_2 are coalesced, then the cards of the unrefined part
iveresov@787 3081 // would point into middle of the filler object.
iveresov@787 3082 //
iveresov@787 3083 // The current approach is to not coalesce and leave the BOT contents intact.
iveresov@787 3084 void do_object(oop obj) {
iveresov@787 3085 if (obj->is_forwarded() && obj->forwardee() == obj) {
iveresov@787 3086 // The object failed to move.
iveresov@787 3087 assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
iveresov@787 3088 _cm->markPrev(obj);
iveresov@787 3089 assert(_cm->isPrevMarked(obj), "Should be marked!");
iveresov@787 3090 _prev_marked_bytes += (obj->size() * HeapWordSize);
iveresov@787 3091 if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
iveresov@787 3092 _cm->markAndGrayObjectIfNecessary(obj);
iveresov@787 3093 }
iveresov@787 3094 obj->set_mark(markOopDesc::prototype());
iveresov@787 3095 // While we were processing RSet buffers during the
iveresov@787 3096 // collection, we actually didn't scan any cards on the
iveresov@787 3097 // collection set, since we didn't want to update remebered
iveresov@787 3098 // sets with entries that point into the collection set, given
iveresov@787 3099 // that live objects fromthe collection set are about to move
iveresov@787 3100 // and such entries will be stale very soon. This change also
iveresov@787 3101 // dealt with a reliability issue which involved scanning a
iveresov@787 3102 // card in the collection set and coming across an array that
iveresov@787 3103 // was being chunked and looking malformed. The problem is
iveresov@787 3104 // that, if evacuation fails, we might have remembered set
iveresov@787 3105 // entries missing given that we skipped cards on the
iveresov@787 3106 // collection set. So, we'll recreate such entries now.
iveresov@1051 3107 obj->oop_iterate(_cl);
iveresov@787 3108 assert(_cm->isPrevMarked(obj), "Should be marked!");
iveresov@787 3109 } else {
iveresov@787 3110 // The object has been either evacuated or is dead. Fill it with a
iveresov@787 3111 // dummy object.
iveresov@787 3112 MemRegion mr((HeapWord*)obj, obj->size());
jcoomes@916 3113 CollectedHeap::fill_with_object(mr);
ysr@777 3114 _cm->clearRangeBothMaps(mr);
ysr@777 3115 }
ysr@777 3116 }
ysr@777 3117 };
ysr@777 3118
ysr@777 3119 void G1CollectedHeap::remove_self_forwarding_pointers() {
iveresov@1051 3120 UpdateRSetImmediate immediate_update(_g1h);
iveresov@1051 3121 DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
iveresov@1051 3122 UpdateRSetDeferred deferred_update(_g1h, &dcq);
iveresov@1051 3123 OopsInHeapRegionClosure *cl;
iveresov@1051 3124 if (G1DeferredRSUpdate) {
iveresov@1051 3125 cl = &deferred_update;
iveresov@1051 3126 } else {
iveresov@1051 3127 cl = &immediate_update;
iveresov@1051 3128 }
ysr@777 3129 HeapRegion* cur = g1_policy()->collection_set();
ysr@777 3130 while (cur != NULL) {
ysr@777 3131 assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
ysr@777 3132
iveresov@1051 3133 RemoveSelfPointerClosure rspc(_g1h, cl);
ysr@777 3134 if (cur->evacuation_failed()) {
ysr@777 3135 assert(cur->in_collection_set(), "bad CS");
iveresov@1051 3136 cl->set_region(cur);
ysr@777 3137 cur->object_iterate(&rspc);
ysr@777 3138
ysr@777 3139 // A number of manipulations to make the TAMS be the current top,
ysr@777 3140 // and the marked bytes be the ones observed in the iteration.
ysr@777 3141 if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
ysr@777 3142 // The comments below are the postconditions achieved by the
ysr@777 3143 // calls. Note especially the last such condition, which says that
ysr@777 3144 // the count of marked bytes has been properly restored.
ysr@777 3145 cur->note_start_of_marking(false);
ysr@777 3146 // _next_top_at_mark_start == top, _next_marked_bytes == 0
ysr@777 3147 cur->add_to_marked_bytes(rspc.prev_marked_bytes());
ysr@777 3148 // _next_marked_bytes == prev_marked_bytes.
ysr@777 3149 cur->note_end_of_marking();
ysr@777 3150 // _prev_top_at_mark_start == top(),
ysr@777 3151 // _prev_marked_bytes == prev_marked_bytes
ysr@777 3152 }
ysr@777 3153 // If there is no mark in progress, we modified the _next variables
ysr@777 3154 // above needlessly, but harmlessly.
ysr@777 3155 if (_g1h->mark_in_progress()) {
ysr@777 3156 cur->note_start_of_marking(false);
ysr@777 3157 // _next_top_at_mark_start == top, _next_marked_bytes == 0
ysr@777 3158 // _next_marked_bytes == next_marked_bytes.
ysr@777 3159 }
ysr@777 3160
ysr@777 3161 // Now make sure the region has the right index in the sorted array.
ysr@777 3162 g1_policy()->note_change_in_marked_bytes(cur);
ysr@777 3163 }
ysr@777 3164 cur = cur->next_in_collection_set();
ysr@777 3165 }
ysr@777 3166 assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
ysr@777 3167
ysr@777 3168 // Now restore saved marks, if any.
ysr@777 3169 if (_objs_with_preserved_marks != NULL) {
ysr@777 3170 assert(_preserved_marks_of_objs != NULL, "Both or none.");
ysr@777 3171 assert(_objs_with_preserved_marks->length() ==
ysr@777 3172 _preserved_marks_of_objs->length(), "Both or none.");
ysr@777 3173 guarantee(_objs_with_preserved_marks->length() ==
ysr@777 3174 _preserved_marks_of_objs->length(), "Both or none.");
ysr@777 3175 for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
ysr@777 3176 oop obj = _objs_with_preserved_marks->at(i);
ysr@777 3177 markOop m = _preserved_marks_of_objs->at(i);
ysr@777 3178 obj->set_mark(m);
ysr@777 3179 }
ysr@777 3180 // Delete the preserved marks growable arrays (allocated on the C heap).
ysr@777 3181 delete _objs_with_preserved_marks;
ysr@777 3182 delete _preserved_marks_of_objs;
ysr@777 3183 _objs_with_preserved_marks = NULL;
ysr@777 3184 _preserved_marks_of_objs = NULL;
ysr@777 3185 }
ysr@777 3186 }
ysr@777 3187
ysr@777 3188 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
ysr@777 3189 _evac_failure_scan_stack->push(obj);
ysr@777 3190 }
ysr@777 3191
ysr@777 3192 void G1CollectedHeap::drain_evac_failure_scan_stack() {
ysr@777 3193 assert(_evac_failure_scan_stack != NULL, "precondition");
ysr@777 3194
ysr@777 3195 while (_evac_failure_scan_stack->length() > 0) {
ysr@777 3196 oop obj = _evac_failure_scan_stack->pop();
ysr@777 3197 _evac_failure_closure->set_region(heap_region_containing(obj));
ysr@777 3198 obj->oop_iterate_backwards(_evac_failure_closure);
ysr@777 3199 }
ysr@777 3200 }
ysr@777 3201
ysr@777 3202 void G1CollectedHeap::handle_evacuation_failure(oop old) {
ysr@777 3203 markOop m = old->mark();
ysr@777 3204 // forward to self
ysr@777 3205 assert(!old->is_forwarded(), "precondition");
ysr@777 3206
ysr@777 3207 old->forward_to(old);
ysr@777 3208 handle_evacuation_failure_common(old, m);
ysr@777 3209 }
ysr@777 3210
ysr@777 3211 oop
ysr@777 3212 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
ysr@777 3213 oop old) {
ysr@777 3214 markOop m = old->mark();
ysr@777 3215 oop forward_ptr = old->forward_to_atomic(old);
ysr@777 3216 if (forward_ptr == NULL) {
ysr@777 3217 // Forward-to-self succeeded.
ysr@777 3218 if (_evac_failure_closure != cl) {
ysr@777 3219 MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
ysr@777 3220 assert(!_drain_in_progress,
ysr@777 3221 "Should only be true while someone holds the lock.");
ysr@777 3222 // Set the global evac-failure closure to the current thread's.
ysr@777 3223 assert(_evac_failure_closure == NULL, "Or locking has failed.");
ysr@777 3224 set_evac_failure_closure(cl);
ysr@777 3225 // Now do the common part.
ysr@777 3226 handle_evacuation_failure_common(old, m);
ysr@777 3227 // Reset to NULL.
ysr@777 3228 set_evac_failure_closure(NULL);
ysr@777 3229 } else {
ysr@777 3230 // The lock is already held, and this is recursive.
ysr@777 3231 assert(_drain_in_progress, "This should only be the recursive case.");
ysr@777 3232 handle_evacuation_failure_common(old, m);
ysr@777 3233 }
ysr@777 3234 return old;
ysr@777 3235 } else {
ysr@777 3236 // Someone else had a place to copy it.
ysr@777 3237 return forward_ptr;
ysr@777 3238 }
ysr@777 3239 }
ysr@777 3240
ysr@777 3241 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
ysr@777 3242 set_evacuation_failed(true);
ysr@777 3243
ysr@777 3244 preserve_mark_if_necessary(old, m);
ysr@777 3245
ysr@777 3246 HeapRegion* r = heap_region_containing(old);
ysr@777 3247 if (!r->evacuation_failed()) {
ysr@777 3248 r->set_evacuation_failed(true);
ysr@777 3249 if (G1TraceRegions) {
ysr@777 3250 gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
ysr@777 3251 "["PTR_FORMAT","PTR_FORMAT")\n",
ysr@777 3252 r, r->bottom(), r->end());
ysr@777 3253 }
ysr@777 3254 }
ysr@777 3255
ysr@777 3256 push_on_evac_failure_scan_stack(old);
ysr@777 3257
ysr@777 3258 if (!_drain_in_progress) {
ysr@777 3259 // prevent recursion in copy_to_survivor_space()
ysr@777 3260 _drain_in_progress = true;
ysr@777 3261 drain_evac_failure_scan_stack();
ysr@777 3262 _drain_in_progress = false;
ysr@777 3263 }
ysr@777 3264 }
ysr@777 3265
ysr@777 3266 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
ysr@777 3267 if (m != markOopDesc::prototype()) {
ysr@777 3268 if (_objs_with_preserved_marks == NULL) {
ysr@777 3269 assert(_preserved_marks_of_objs == NULL, "Both or none.");
ysr@777 3270 _objs_with_preserved_marks =
ysr@777 3271 new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
ysr@777 3272 _preserved_marks_of_objs =
ysr@777 3273 new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
ysr@777 3274 }
ysr@777 3275 _objs_with_preserved_marks->push(obj);
ysr@777 3276 _preserved_marks_of_objs->push(m);
ysr@777 3277 }
ysr@777 3278 }
ysr@777 3279
ysr@777 3280 // *** Parallel G1 Evacuation
ysr@777 3281
ysr@777 3282 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
ysr@777 3283 size_t word_size) {
ysr@777 3284 HeapRegion* alloc_region = _gc_alloc_regions[purpose];
ysr@777 3285 // let the caller handle alloc failure
ysr@777 3286 if (alloc_region == NULL) return NULL;
ysr@777 3287
ysr@777 3288 HeapWord* block = alloc_region->par_allocate(word_size);
ysr@777 3289 if (block == NULL) {
ysr@777 3290 MutexLockerEx x(par_alloc_during_gc_lock(),
ysr@777 3291 Mutex::_no_safepoint_check_flag);
ysr@777 3292 block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
ysr@777 3293 }
ysr@777 3294 return block;
ysr@777 3295 }
ysr@777 3296
apetrusenko@980 3297 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
apetrusenko@980 3298 bool par) {
apetrusenko@980 3299 // Another thread might have obtained alloc_region for the given
apetrusenko@980 3300 // purpose, and might be attempting to allocate in it, and might
apetrusenko@980 3301 // succeed. Therefore, we can't do the "finalization" stuff on the
apetrusenko@980 3302 // region below until we're sure the last allocation has happened.
apetrusenko@980 3303 // We ensure this by allocating the remaining space with a garbage
apetrusenko@980 3304 // object.
apetrusenko@980 3305 if (par) par_allocate_remaining_space(alloc_region);
apetrusenko@980 3306 // Now we can do the post-GC stuff on the region.
apetrusenko@980 3307 alloc_region->note_end_of_copying();
apetrusenko@980 3308 g1_policy()->record_after_bytes(alloc_region->used());
apetrusenko@980 3309 }
apetrusenko@980 3310
ysr@777 3311 HeapWord*
ysr@777 3312 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 3313 HeapRegion* alloc_region,
ysr@777 3314 bool par,
ysr@777 3315 size_t word_size) {
ysr@777 3316 HeapWord* block = NULL;
ysr@777 3317 // In the parallel case, a previous thread to obtain the lock may have
ysr@777 3318 // already assigned a new gc_alloc_region.
ysr@777 3319 if (alloc_region != _gc_alloc_regions[purpose]) {
ysr@777 3320 assert(par, "But should only happen in parallel case.");
ysr@777 3321 alloc_region = _gc_alloc_regions[purpose];
ysr@777 3322 if (alloc_region == NULL) return NULL;
ysr@777 3323 block = alloc_region->par_allocate(word_size);
ysr@777 3324 if (block != NULL) return block;
ysr@777 3325 // Otherwise, continue; this new region is empty, too.
ysr@777 3326 }
ysr@777 3327 assert(alloc_region != NULL, "We better have an allocation region");
apetrusenko@980 3328 retire_alloc_region(alloc_region, par);
ysr@777 3329
ysr@777 3330 if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
ysr@777 3331 // Cannot allocate more regions for the given purpose.
ysr@777 3332 GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
ysr@777 3333 // Is there an alternative?
ysr@777 3334 if (purpose != alt_purpose) {
ysr@777 3335 HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
ysr@777 3336 // Has not the alternative region been aliased?
apetrusenko@980 3337 if (alloc_region != alt_region && alt_region != NULL) {
ysr@777 3338 // Try to allocate in the alternative region.
ysr@777 3339 if (par) {
ysr@777 3340 block = alt_region->par_allocate(word_size);
ysr@777 3341 } else {
ysr@777 3342 block = alt_region->allocate(word_size);
ysr@777 3343 }
ysr@777 3344 // Make an alias.
ysr@777 3345 _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
apetrusenko@980 3346 if (block != NULL) {
apetrusenko@980 3347 return block;
apetrusenko@980 3348 }
apetrusenko@980 3349 retire_alloc_region(alt_region, par);
ysr@777 3350 }
ysr@777 3351 // Both the allocation region and the alternative one are full
ysr@777 3352 // and aliased, replace them with a new allocation region.
ysr@777 3353 purpose = alt_purpose;
ysr@777 3354 } else {
ysr@777 3355 set_gc_alloc_region(purpose, NULL);
ysr@777 3356 return NULL;
ysr@777 3357 }
ysr@777 3358 }
ysr@777 3359
ysr@777 3360 // Now allocate a new region for allocation.
ysr@777 3361 alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
ysr@777 3362
ysr@777 3363 // let the caller handle alloc failure
ysr@777 3364 if (alloc_region != NULL) {
ysr@777 3365
ysr@777 3366 assert(check_gc_alloc_regions(), "alloc regions messed up");
ysr@777 3367 assert(alloc_region->saved_mark_at_top(),
ysr@777 3368 "Mark should have been saved already.");
ysr@777 3369 // We used to assert that the region was zero-filled here, but no
ysr@777 3370 // longer.
ysr@777 3371
ysr@777 3372 // This must be done last: once it's installed, other regions may
ysr@777 3373 // allocate in it (without holding the lock.)
ysr@777 3374 set_gc_alloc_region(purpose, alloc_region);
ysr@777 3375
ysr@777 3376 if (par) {
ysr@777 3377 block = alloc_region->par_allocate(word_size);
ysr@777 3378 } else {
ysr@777 3379 block = alloc_region->allocate(word_size);
ysr@777 3380 }
ysr@777 3381 // Caller handles alloc failure.
ysr@777 3382 } else {
ysr@777 3383 // This sets other apis using the same old alloc region to NULL, also.
ysr@777 3384 set_gc_alloc_region(purpose, NULL);
ysr@777 3385 }
ysr@777 3386 return block; // May be NULL.
ysr@777 3387 }
ysr@777 3388
ysr@777 3389 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
ysr@777 3390 HeapWord* block = NULL;
ysr@777 3391 size_t free_words;
ysr@777 3392 do {
ysr@777 3393 free_words = r->free()/HeapWordSize;
ysr@777 3394 // If there's too little space, no one can allocate, so we're done.
ysr@777 3395 if (free_words < (size_t)oopDesc::header_size()) return;
ysr@777 3396 // Otherwise, try to claim it.
ysr@777 3397 block = r->par_allocate(free_words);
ysr@777 3398 } while (block == NULL);
jcoomes@916 3399 fill_with_object(block, free_words);
ysr@777 3400 }
ysr@777 3401
ysr@777 3402 #define use_local_bitmaps 1
ysr@777 3403 #define verify_local_bitmaps 0
ysr@777 3404
ysr@777 3405 #ifndef PRODUCT
ysr@777 3406
ysr@777 3407 class GCLabBitMap;
ysr@777 3408 class GCLabBitMapClosure: public BitMapClosure {
ysr@777 3409 private:
ysr@777 3410 ConcurrentMark* _cm;
ysr@777 3411 GCLabBitMap* _bitmap;
ysr@777 3412
ysr@777 3413 public:
ysr@777 3414 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@777 3415 GCLabBitMap* bitmap) {
ysr@777 3416 _cm = cm;
ysr@777 3417 _bitmap = bitmap;
ysr@777 3418 }
ysr@777 3419
ysr@777 3420 virtual bool do_bit(size_t offset);
ysr@777 3421 };
ysr@777 3422
ysr@777 3423 #endif // PRODUCT
ysr@777 3424
ysr@777 3425 #define oop_buffer_length 256
ysr@777 3426
ysr@777 3427 class GCLabBitMap: public BitMap {
ysr@777 3428 private:
ysr@777 3429 ConcurrentMark* _cm;
ysr@777 3430
ysr@777 3431 int _shifter;
ysr@777 3432 size_t _bitmap_word_covers_words;
ysr@777 3433
ysr@777 3434 // beginning of the heap
ysr@777 3435 HeapWord* _heap_start;
ysr@777 3436
ysr@777 3437 // this is the actual start of the GCLab
ysr@777 3438 HeapWord* _real_start_word;
ysr@777 3439
ysr@777 3440 // this is the actual end of the GCLab
ysr@777 3441 HeapWord* _real_end_word;
ysr@777 3442
ysr@777 3443 // this is the first word, possibly located before the actual start
ysr@777 3444 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@777 3445 HeapWord* _start_word;
ysr@777 3446
ysr@777 3447 // size of a GCLab in words
ysr@777 3448 size_t _gclab_word_size;
ysr@777 3449
ysr@777 3450 static int shifter() {
ysr@777 3451 return MinObjAlignment - 1;
ysr@777 3452 }
ysr@777 3453
ysr@777 3454 // how many heap words does a single bitmap word corresponds to?
ysr@777 3455 static size_t bitmap_word_covers_words() {
ysr@777 3456 return BitsPerWord << shifter();
ysr@777 3457 }
ysr@777 3458
ysr@777 3459 static size_t gclab_word_size() {
ysr@777 3460 return ParallelGCG1AllocBufferSize / HeapWordSize;
ysr@777 3461 }
ysr@777 3462
ysr@777 3463 static size_t bitmap_size_in_bits() {
ysr@777 3464 size_t bits_in_bitmap = gclab_word_size() >> shifter();
ysr@777 3465 // We are going to ensure that the beginning of a word in this
ysr@777 3466 // bitmap also corresponds to the beginning of a word in the
ysr@777 3467 // global marking bitmap. To handle the case where a GCLab
ysr@777 3468 // starts from the middle of the bitmap, we need to add enough
ysr@777 3469 // space (i.e. up to a bitmap word) to ensure that we have
ysr@777 3470 // enough bits in the bitmap.
ysr@777 3471 return bits_in_bitmap + BitsPerWord - 1;
ysr@777 3472 }
ysr@777 3473 public:
ysr@777 3474 GCLabBitMap(HeapWord* heap_start)
ysr@777 3475 : BitMap(bitmap_size_in_bits()),
ysr@777 3476 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@777 3477 _shifter(shifter()),
ysr@777 3478 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@777 3479 _heap_start(heap_start),
ysr@777 3480 _gclab_word_size(gclab_word_size()),
ysr@777 3481 _real_start_word(NULL),
ysr@777 3482 _real_end_word(NULL),
ysr@777 3483 _start_word(NULL)
ysr@777 3484 {
ysr@777 3485 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@777 3486 "just making sure");
ysr@777 3487 }
ysr@777 3488
ysr@777 3489 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@777 3490 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@777 3491 assert(offset < size(), "offset should be within bounds");
ysr@777 3492 return offset;
ysr@777 3493 }
ysr@777 3494
ysr@777 3495 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@777 3496 HeapWord* addr = _start_word + (offset << _shifter);
ysr@777 3497 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@777 3498 return addr;
ysr@777 3499 }
ysr@777 3500
ysr@777 3501 bool fields_well_formed() {
ysr@777 3502 bool ret1 = (_real_start_word == NULL) &&
ysr@777 3503 (_real_end_word == NULL) &&
ysr@777 3504 (_start_word == NULL);
ysr@777 3505 if (ret1)
ysr@777 3506 return true;
ysr@777 3507
ysr@777 3508 bool ret2 = _real_start_word >= _start_word &&
ysr@777 3509 _start_word < _real_end_word &&
ysr@777 3510 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@777 3511 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@777 3512 > _real_end_word;
ysr@777 3513 return ret2;
ysr@777 3514 }
ysr@777 3515
ysr@777 3516 inline bool mark(HeapWord* addr) {
ysr@777 3517 guarantee(use_local_bitmaps, "invariant");
ysr@777 3518 assert(fields_well_formed(), "invariant");
ysr@777 3519
ysr@777 3520 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@777 3521 assert(!isMarked(addr), "should not have already been marked");
ysr@777 3522
ysr@777 3523 // first mark it on the bitmap
ysr@777 3524 at_put(heapWordToOffset(addr), true);
ysr@777 3525
ysr@777 3526 return true;
ysr@777 3527 } else {
ysr@777 3528 return false;
ysr@777 3529 }
ysr@777 3530 }
ysr@777 3531
ysr@777 3532 inline bool isMarked(HeapWord* addr) {
ysr@777 3533 guarantee(use_local_bitmaps, "invariant");
ysr@777 3534 assert(fields_well_formed(), "invariant");
ysr@777 3535
ysr@777 3536 return at(heapWordToOffset(addr));
ysr@777 3537 }
ysr@777 3538
ysr@777 3539 void set_buffer(HeapWord* start) {
ysr@777 3540 guarantee(use_local_bitmaps, "invariant");
ysr@777 3541 clear();
ysr@777 3542
ysr@777 3543 assert(start != NULL, "invariant");
ysr@777 3544 _real_start_word = start;
ysr@777 3545 _real_end_word = start + _gclab_word_size;
ysr@777 3546
ysr@777 3547 size_t diff =
ysr@777 3548 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@777 3549 _start_word = start - diff;
ysr@777 3550
ysr@777 3551 assert(fields_well_formed(), "invariant");
ysr@777 3552 }
ysr@777 3553
ysr@777 3554 #ifndef PRODUCT
ysr@777 3555 void verify() {
ysr@777 3556 // verify that the marks have been propagated
ysr@777 3557 GCLabBitMapClosure cl(_cm, this);
ysr@777 3558 iterate(&cl);
ysr@777 3559 }
ysr@777 3560 #endif // PRODUCT
ysr@777 3561
ysr@777 3562 void retire() {
ysr@777 3563 guarantee(use_local_bitmaps, "invariant");
ysr@777 3564 assert(fields_well_formed(), "invariant");
ysr@777 3565
ysr@777 3566 if (_start_word != NULL) {
ysr@777 3567 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@777 3568
ysr@777 3569 // this means that the bitmap was set up for the GCLab
ysr@777 3570 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@777 3571
ysr@777 3572 mark_bitmap->mostly_disjoint_range_union(this,
ysr@777 3573 0, // always start from the start of the bitmap
ysr@777 3574 _start_word,
ysr@777 3575 size_in_words());
ysr@777 3576 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@777 3577
ysr@777 3578 #ifndef PRODUCT
ysr@777 3579 if (use_local_bitmaps && verify_local_bitmaps)
ysr@777 3580 verify();
ysr@777 3581 #endif // PRODUCT
ysr@777 3582 } else {
ysr@777 3583 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@777 3584 }
ysr@777 3585 }
ysr@777 3586
ysr@777 3587 static size_t bitmap_size_in_words() {
ysr@777 3588 return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
ysr@777 3589 }
ysr@777 3590 };
ysr@777 3591
ysr@777 3592 #ifndef PRODUCT
ysr@777 3593
ysr@777 3594 bool GCLabBitMapClosure::do_bit(size_t offset) {
ysr@777 3595 HeapWord* addr = _bitmap->offsetToHeapWord(offset);
ysr@777 3596 guarantee(_cm->isMarked(oop(addr)), "it should be!");
ysr@777 3597 return true;
ysr@777 3598 }
ysr@777 3599
ysr@777 3600 #endif // PRODUCT
ysr@777 3601
ysr@777 3602 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@777 3603 private:
ysr@777 3604 bool _retired;
ysr@777 3605 bool _during_marking;
ysr@777 3606 GCLabBitMap _bitmap;
ysr@777 3607
ysr@777 3608 public:
ysr@777 3609 G1ParGCAllocBuffer() :
ysr@777 3610 ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
ysr@777 3611 _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
ysr@777 3612 _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
ysr@777 3613 _retired(false)
ysr@777 3614 { }
ysr@777 3615
ysr@777 3616 inline bool mark(HeapWord* addr) {
ysr@777 3617 guarantee(use_local_bitmaps, "invariant");
ysr@777 3618 assert(_during_marking, "invariant");
ysr@777 3619 return _bitmap.mark(addr);
ysr@777 3620 }
ysr@777 3621
ysr@777 3622 inline void set_buf(HeapWord* buf) {
ysr@777 3623 if (use_local_bitmaps && _during_marking)
ysr@777 3624 _bitmap.set_buffer(buf);
ysr@777 3625 ParGCAllocBuffer::set_buf(buf);
ysr@777 3626 _retired = false;
ysr@777 3627 }
ysr@777 3628
ysr@777 3629 inline void retire(bool end_of_gc, bool retain) {
ysr@777 3630 if (_retired)
ysr@777 3631 return;
ysr@777 3632 if (use_local_bitmaps && _during_marking) {
ysr@777 3633 _bitmap.retire();
ysr@777 3634 }
ysr@777 3635 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@777 3636 _retired = true;
ysr@777 3637 }
ysr@777 3638 };
ysr@777 3639
ysr@777 3640
ysr@777 3641 class G1ParScanThreadState : public StackObj {
ysr@777 3642 protected:
ysr@777 3643 G1CollectedHeap* _g1h;
ysr@777 3644 RefToScanQueue* _refs;
iveresov@1051 3645 DirtyCardQueue _dcq;
iveresov@1051 3646 CardTableModRefBS* _ct_bs;
iveresov@1051 3647 G1RemSet* _g1_rem;
ysr@777 3648
ysr@777 3649 typedef GrowableArray<oop*> OverflowQueue;
ysr@777 3650 OverflowQueue* _overflowed_refs;
ysr@777 3651
ysr@777 3652 G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
apetrusenko@980 3653 ageTable _age_table;
ysr@777 3654
ysr@777 3655 size_t _alloc_buffer_waste;
ysr@777 3656 size_t _undo_waste;
ysr@777 3657
ysr@777 3658 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@777 3659 G1ParScanHeapEvacClosure* _evac_cl;
ysr@777 3660 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@777 3661
ysr@777 3662 int _hash_seed;
ysr@777 3663 int _queue_num;
ysr@777 3664
ysr@777 3665 int _term_attempts;
ysr@777 3666 #if G1_DETAILED_STATS
ysr@777 3667 int _pushes, _pops, _steals, _steal_attempts;
ysr@777 3668 int _overflow_pushes;
ysr@777 3669 #endif
ysr@777 3670
ysr@777 3671 double _start;
ysr@777 3672 double _start_strong_roots;
ysr@777 3673 double _strong_roots_time;
ysr@777 3674 double _start_term;
ysr@777 3675 double _term_time;
ysr@777 3676
ysr@777 3677 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@777 3678 // surviving words. base is what we get back from the malloc call
ysr@777 3679 size_t* _surviving_young_words_base;
ysr@777 3680 // this points into the array, as we use the first few entries for padding
ysr@777 3681 size_t* _surviving_young_words;
ysr@777 3682
ysr@777 3683 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
ysr@777 3684
ysr@777 3685 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@777 3686
ysr@777 3687 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@777 3688
iveresov@1051 3689 DirtyCardQueue& dirty_card_queue() { return _dcq; }
iveresov@1051 3690 CardTableModRefBS* ctbs() { return _ct_bs; }
iveresov@1051 3691
iveresov@1051 3692 void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
iveresov@1072 3693 if (!from->is_survivor()) {
iveresov@1072 3694 _g1_rem->par_write_ref(from, p, tid);
iveresov@1072 3695 }
iveresov@1051 3696 }
iveresov@1051 3697
iveresov@1051 3698 void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
iveresov@1051 3699 // If the new value of the field points to the same region or
iveresov@1051 3700 // is the to-space, we don't need to include it in the Rset updates.
iveresov@1051 3701 if (!from->is_in_reserved(*p) && !from->is_survivor()) {
iveresov@1051 3702 size_t card_index = ctbs()->index_for(p);
iveresov@1051 3703 // If the card hasn't been added to the buffer, do it.
iveresov@1051 3704 if (ctbs()->mark_card_deferred(card_index)) {
iveresov@1051 3705 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
iveresov@1051 3706 }
iveresov@1051 3707 }
iveresov@1051 3708 }
iveresov@1051 3709
ysr@777 3710 public:
ysr@777 3711 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
ysr@777 3712 : _g1h(g1h),
ysr@777 3713 _refs(g1h->task_queue(queue_num)),
iveresov@1051 3714 _dcq(&g1h->dirty_card_queue_set()),
iveresov@1051 3715 _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
iveresov@1051 3716 _g1_rem(g1h->g1_rem_set()),
ysr@777 3717 _hash_seed(17), _queue_num(queue_num),
ysr@777 3718 _term_attempts(0),
apetrusenko@980 3719 _age_table(false),
ysr@777 3720 #if G1_DETAILED_STATS
ysr@777 3721 _pushes(0), _pops(0), _steals(0),
ysr@777 3722 _steal_attempts(0), _overflow_pushes(0),
ysr@777 3723 #endif
ysr@777 3724 _strong_roots_time(0), _term_time(0),
ysr@777 3725 _alloc_buffer_waste(0), _undo_waste(0)
ysr@777 3726 {
ysr@777 3727 // we allocate G1YoungSurvRateNumRegions plus one entries, since
ysr@777 3728 // we "sacrifice" entry 0 to keep track of surviving bytes for
ysr@777 3729 // non-young regions (where the age is -1)
ysr@777 3730 // We also add a few elements at the beginning and at the end in
ysr@777 3731 // an attempt to eliminate cache contention
ysr@777 3732 size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
ysr@777 3733 size_t array_length = PADDING_ELEM_NUM +
ysr@777 3734 real_length +
ysr@777 3735 PADDING_ELEM_NUM;
ysr@777 3736 _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
ysr@777 3737 if (_surviving_young_words_base == NULL)
ysr@777 3738 vm_exit_out_of_memory(array_length * sizeof(size_t),
ysr@777 3739 "Not enough space for young surv histo.");
ysr@777 3740 _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
ysr@777 3741 memset(_surviving_young_words, 0, real_length * sizeof(size_t));
ysr@777 3742
ysr@777 3743 _overflowed_refs = new OverflowQueue(10);
ysr@777 3744
ysr@777 3745 _start = os::elapsedTime();
ysr@777 3746 }
ysr@777 3747
ysr@777 3748 ~G1ParScanThreadState() {
ysr@777 3749 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@777 3750 }
ysr@777 3751
ysr@777 3752 RefToScanQueue* refs() { return _refs; }
ysr@777 3753 OverflowQueue* overflowed_refs() { return _overflowed_refs; }
apetrusenko@980 3754 ageTable* age_table() { return &_age_table; }
apetrusenko@980 3755
apetrusenko@980 3756 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
ysr@777 3757 return &_alloc_buffers[purpose];
ysr@777 3758 }
ysr@777 3759
ysr@777 3760 size_t alloc_buffer_waste() { return _alloc_buffer_waste; }
ysr@777 3761 size_t undo_waste() { return _undo_waste; }
ysr@777 3762
ysr@777 3763 void push_on_queue(oop* ref) {
tonyp@961 3764 assert(ref != NULL, "invariant");
tonyp@961 3765 assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
tonyp@961 3766
ysr@777 3767 if (!refs()->push(ref)) {
ysr@777 3768 overflowed_refs()->push(ref);
ysr@777 3769 IF_G1_DETAILED_STATS(note_overflow_push());
ysr@777 3770 } else {
ysr@777 3771 IF_G1_DETAILED_STATS(note_push());
ysr@777 3772 }
ysr@777 3773 }
ysr@777 3774
ysr@777 3775 void pop_from_queue(oop*& ref) {
ysr@777 3776 if (!refs()->pop_local(ref)) {
ysr@777 3777 ref = NULL;
ysr@777 3778 } else {
tonyp@961 3779 assert(ref != NULL, "invariant");
tonyp@961 3780 assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
tonyp@961 3781 "invariant");
tonyp@961 3782
ysr@777 3783 IF_G1_DETAILED_STATS(note_pop());
ysr@777 3784 }
ysr@777 3785 }
ysr@777 3786
ysr@777 3787 void pop_from_overflow_queue(oop*& ref) {
ysr@777 3788 ref = overflowed_refs()->pop();
ysr@777 3789 }
ysr@777 3790
ysr@777 3791 int refs_to_scan() { return refs()->size(); }
ysr@777 3792 int overflowed_refs_to_scan() { return overflowed_refs()->length(); }
ysr@777 3793
iveresov@1051 3794 void update_rs(HeapRegion* from, oop* p, int tid) {
iveresov@1051 3795 if (G1DeferredRSUpdate) {
iveresov@1051 3796 deferred_rs_update(from, p, tid);
iveresov@1051 3797 } else {
iveresov@1051 3798 immediate_rs_update(from, p, tid);
iveresov@1051 3799 }
iveresov@1051 3800 }
iveresov@1051 3801
ysr@777 3802 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@777 3803
ysr@777 3804 HeapWord* obj = NULL;
ysr@777 3805 if (word_sz * 100 <
ysr@777 3806 (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
ysr@777 3807 ParallelGCBufferWastePct) {
ysr@777 3808 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
ysr@777 3809 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@777 3810 alloc_buf->retire(false, false);
ysr@777 3811
ysr@777 3812 HeapWord* buf =
ysr@777 3813 _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
ysr@777 3814 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@777 3815 // Otherwise.
ysr@777 3816 alloc_buf->set_buf(buf);
ysr@777 3817
ysr@777 3818 obj = alloc_buf->allocate(word_sz);
ysr@777 3819 assert(obj != NULL, "buffer was definitely big enough...");
tonyp@961 3820 } else {
ysr@777 3821 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@777 3822 }
ysr@777 3823 return obj;
ysr@777 3824 }
ysr@777 3825
ysr@777 3826 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@777 3827 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@777 3828 if (obj != NULL) return obj;
ysr@777 3829 return allocate_slow(purpose, word_sz);
ysr@777 3830 }
ysr@777 3831
ysr@777 3832 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@777 3833 if (alloc_buffer(purpose)->contains(obj)) {
ysr@777 3834 guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@777 3835 "should contain whole object");
ysr@777 3836 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
jcoomes@916 3837 } else {
jcoomes@916 3838 CollectedHeap::fill_with_object(obj, word_sz);
ysr@777 3839 add_to_undo_waste(word_sz);
ysr@777 3840 }
ysr@777 3841 }
ysr@777 3842
ysr@777 3843 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@777 3844 _evac_failure_cl = evac_failure_cl;
ysr@777 3845 }
ysr@777 3846 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@777 3847 return _evac_failure_cl;
ysr@777 3848 }
ysr@777 3849
ysr@777 3850 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@777 3851 _evac_cl = evac_cl;
ysr@777 3852 }
ysr@777 3853
ysr@777 3854 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@777 3855 _partial_scan_cl = partial_scan_cl;
ysr@777 3856 }
ysr@777 3857
ysr@777 3858 int* hash_seed() { return &_hash_seed; }
ysr@777 3859 int queue_num() { return _queue_num; }
ysr@777 3860
ysr@777 3861 int term_attempts() { return _term_attempts; }
ysr@777 3862 void note_term_attempt() { _term_attempts++; }
ysr@777 3863
ysr@777 3864 #if G1_DETAILED_STATS
ysr@777 3865 int pushes() { return _pushes; }
ysr@777 3866 int pops() { return _pops; }
ysr@777 3867 int steals() { return _steals; }
ysr@777 3868 int steal_attempts() { return _steal_attempts; }
ysr@777 3869 int overflow_pushes() { return _overflow_pushes; }
ysr@777 3870
ysr@777 3871 void note_push() { _pushes++; }
ysr@777 3872 void note_pop() { _pops++; }
ysr@777 3873 void note_steal() { _steals++; }
ysr@777 3874 void note_steal_attempt() { _steal_attempts++; }
ysr@777 3875 void note_overflow_push() { _overflow_pushes++; }
ysr@777 3876 #endif
ysr@777 3877
ysr@777 3878 void start_strong_roots() {
ysr@777 3879 _start_strong_roots = os::elapsedTime();
ysr@777 3880 }
ysr@777 3881 void end_strong_roots() {
ysr@777 3882 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@777 3883 }
ysr@777 3884 double strong_roots_time() { return _strong_roots_time; }
ysr@777 3885
ysr@777 3886 void start_term_time() {
ysr@777 3887 note_term_attempt();
ysr@777 3888 _start_term = os::elapsedTime();
ysr@777 3889 }
ysr@777 3890 void end_term_time() {
ysr@777 3891 _term_time += (os::elapsedTime() - _start_term);
ysr@777 3892 }
ysr@777 3893 double term_time() { return _term_time; }
ysr@777 3894
ysr@777 3895 double elapsed() {
ysr@777 3896 return os::elapsedTime() - _start;
ysr@777 3897 }
ysr@777 3898
ysr@777 3899 size_t* surviving_young_words() {
ysr@777 3900 // We add on to hide entry 0 which accumulates surviving words for
ysr@777 3901 // age -1 regions (i.e. non-young ones)
ysr@777 3902 return _surviving_young_words;
ysr@777 3903 }
ysr@777 3904
ysr@777 3905 void retire_alloc_buffers() {
ysr@777 3906 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
ysr@777 3907 size_t waste = _alloc_buffers[ap].words_remaining();
ysr@777 3908 add_to_alloc_buffer_waste(waste);
ysr@777 3909 _alloc_buffers[ap].retire(true, false);
ysr@777 3910 }
ysr@777 3911 }
ysr@777 3912
tonyp@961 3913 private:
tonyp@961 3914 void deal_with_reference(oop* ref_to_scan) {
tonyp@961 3915 if (has_partial_array_mask(ref_to_scan)) {
tonyp@961 3916 _partial_scan_cl->do_oop_nv(ref_to_scan);
tonyp@961 3917 } else {
tonyp@961 3918 // Note: we can use "raw" versions of "region_containing" because
tonyp@961 3919 // "obj_to_scan" is definitely in the heap, and is not in a
tonyp@961 3920 // humongous region.
tonyp@961 3921 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
tonyp@961 3922 _evac_cl->set_region(r);
tonyp@961 3923 _evac_cl->do_oop_nv(ref_to_scan);
tonyp@961 3924 }
tonyp@961 3925 }
tonyp@961 3926
tonyp@961 3927 public:
ysr@777 3928 void trim_queue() {
tonyp@961 3929 // I've replicated the loop twice, first to drain the overflow
tonyp@961 3930 // queue, second to drain the task queue. This is better than
tonyp@961 3931 // having a single loop, which checks both conditions and, inside
tonyp@961 3932 // it, either pops the overflow queue or the task queue, as each
tonyp@961 3933 // loop is tighter. Also, the decision to drain the overflow queue
tonyp@961 3934 // first is not arbitrary, as the overflow queue is not visible
tonyp@961 3935 // to the other workers, whereas the task queue is. So, we want to
tonyp@961 3936 // drain the "invisible" entries first, while allowing the other
tonyp@961 3937 // workers to potentially steal the "visible" entries.
tonyp@961 3938
ysr@777 3939 while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
tonyp@961 3940 while (overflowed_refs_to_scan() > 0) {
tonyp@961 3941 oop *ref_to_scan = NULL;
tonyp@961 3942 pop_from_overflow_queue(ref_to_scan);
tonyp@961 3943 assert(ref_to_scan != NULL, "invariant");
tonyp@961 3944 // We shouldn't have pushed it on the queue if it was not
tonyp@961 3945 // pointing into the CSet.
tonyp@961 3946 assert(ref_to_scan != NULL, "sanity");
tonyp@961 3947 assert(has_partial_array_mask(ref_to_scan) ||
tonyp@961 3948 _g1h->obj_in_cs(*ref_to_scan), "sanity");
tonyp@961 3949
tonyp@961 3950 deal_with_reference(ref_to_scan);
tonyp@961 3951 }
tonyp@961 3952
tonyp@961 3953 while (refs_to_scan() > 0) {
tonyp@961 3954 oop *ref_to_scan = NULL;
ysr@777 3955 pop_from_queue(ref_to_scan);
tonyp@961 3956
tonyp@961 3957 if (ref_to_scan != NULL) {
tonyp@961 3958 // We shouldn't have pushed it on the queue if it was not
tonyp@961 3959 // pointing into the CSet.
tonyp@961 3960 assert(has_partial_array_mask(ref_to_scan) ||
tonyp@961 3961 _g1h->obj_in_cs(*ref_to_scan), "sanity");
tonyp@961 3962
tonyp@961 3963 deal_with_reference(ref_to_scan);
ysr@777 3964 }
ysr@777 3965 }
ysr@777 3966 }
ysr@777 3967 }
ysr@777 3968 };
ysr@777 3969
ysr@777 3970 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
ysr@777 3971 _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
ysr@777 3972 _par_scan_state(par_scan_state) { }
ysr@777 3973
ysr@777 3974 // This closure is applied to the fields of the objects that have just been copied.
ysr@777 3975 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
ysr@777 3976 void G1ParScanClosure::do_oop_nv(oop* p) {
ysr@777 3977 oop obj = *p;
tonyp@961 3978
ysr@777 3979 if (obj != NULL) {
tonyp@961 3980 if (_g1->in_cset_fast_test(obj)) {
tonyp@961 3981 // We're not going to even bother checking whether the object is
tonyp@961 3982 // already forwarded or not, as this usually causes an immediate
tonyp@961 3983 // stall. We'll try to prefetch the object (for write, given that
tonyp@961 3984 // we might need to install the forwarding reference) and we'll
tonyp@961 3985 // get back to it when pop it from the queue
tonyp@961 3986 Prefetch::write(obj->mark_addr(), 0);
tonyp@961 3987 Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
tonyp@961 3988
tonyp@961 3989 // slightly paranoid test; I'm trying to catch potential
tonyp@961 3990 // problems before we go into push_on_queue to know where the
tonyp@961 3991 // problem is coming from
tonyp@961 3992 assert(obj == *p, "the value of *p should not have changed");
tonyp@961 3993 _par_scan_state->push_on_queue(p);
tonyp@961 3994 } else {
iveresov@1051 3995 _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
ysr@777 3996 }
ysr@777 3997 }
ysr@777 3998 }
ysr@777 3999
ysr@777 4000 void G1ParCopyHelper::mark_forwardee(oop* p) {
ysr@777 4001 // This is called _after_ do_oop_work has been called, hence after
ysr@777 4002 // the object has been relocated to its new location and *p points
ysr@777 4003 // to its new location.
ysr@777 4004
ysr@777 4005 oop thisOop = *p;
ysr@777 4006 if (thisOop != NULL) {
ysr@777 4007 assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
ysr@777 4008 "shouldn't still be in the CSet if evacuation didn't fail.");
ysr@777 4009 HeapWord* addr = (HeapWord*)thisOop;
ysr@777 4010 if (_g1->is_in_g1_reserved(addr))
ysr@777 4011 _cm->grayRoot(oop(addr));
ysr@777 4012 }
ysr@777 4013 }
ysr@777 4014
ysr@777 4015 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
ysr@777 4016 size_t word_sz = old->size();
ysr@777 4017 HeapRegion* from_region = _g1->heap_region_containing_raw(old);
ysr@777 4018 // +1 to make the -1 indexes valid...
ysr@777 4019 int young_index = from_region->young_index_in_cset()+1;
ysr@777 4020 assert( (from_region->is_young() && young_index > 0) ||
ysr@777 4021 (!from_region->is_young() && young_index == 0), "invariant" );
ysr@777 4022 G1CollectorPolicy* g1p = _g1->g1_policy();
ysr@777 4023 markOop m = old->mark();
apetrusenko@980 4024 int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
apetrusenko@980 4025 : m->age();
apetrusenko@980 4026 GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
ysr@777 4027 word_sz);
ysr@777 4028 HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
ysr@777 4029 oop obj = oop(obj_ptr);
ysr@777 4030
ysr@777 4031 if (obj_ptr == NULL) {
ysr@777 4032 // This will either forward-to-self, or detect that someone else has
ysr@777 4033 // installed a forwarding pointer.
ysr@777 4034 OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
ysr@777 4035 return _g1->handle_evacuation_failure_par(cl, old);
ysr@777 4036 }
ysr@777 4037
tonyp@961 4038 // We're going to allocate linearly, so might as well prefetch ahead.
tonyp@961 4039 Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
tonyp@961 4040
ysr@777 4041 oop forward_ptr = old->forward_to_atomic(obj);
ysr@777 4042 if (forward_ptr == NULL) {
ysr@777 4043 Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
tonyp@961 4044 if (g1p->track_object_age(alloc_purpose)) {
tonyp@961 4045 // We could simply do obj->incr_age(). However, this causes a
tonyp@961 4046 // performance issue. obj->incr_age() will first check whether
tonyp@961 4047 // the object has a displaced mark by checking its mark word;
tonyp@961 4048 // getting the mark word from the new location of the object
tonyp@961 4049 // stalls. So, given that we already have the mark word and we
tonyp@961 4050 // are about to install it anyway, it's better to increase the
tonyp@961 4051 // age on the mark word, when the object does not have a
tonyp@961 4052 // displaced mark word. We're not expecting many objects to have
tonyp@961 4053 // a displaced marked word, so that case is not optimized
tonyp@961 4054 // further (it could be...) and we simply call obj->incr_age().
tonyp@961 4055
tonyp@961 4056 if (m->has_displaced_mark_helper()) {
tonyp@961 4057 // in this case, we have to install the mark word first,
tonyp@961 4058 // otherwise obj looks to be forwarded (the old mark word,
tonyp@961 4059 // which contains the forward pointer, was copied)
tonyp@961 4060 obj->set_mark(m);
tonyp@961 4061 obj->incr_age();
tonyp@961 4062 } else {
tonyp@961 4063 m = m->incr_age();
apetrusenko@980 4064 obj->set_mark(m);
tonyp@961 4065 }
apetrusenko@980 4066 _par_scan_state->age_table()->add(obj, word_sz);
apetrusenko@980 4067 } else {
apetrusenko@980 4068 obj->set_mark(m);
tonyp@961 4069 }
tonyp@961 4070
ysr@777 4071 // preserve "next" mark bit
ysr@777 4072 if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
ysr@777 4073 if (!use_local_bitmaps ||
ysr@777 4074 !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
ysr@777 4075 // if we couldn't mark it on the local bitmap (this happens when
ysr@777 4076 // the object was not allocated in the GCLab), we have to bite
ysr@777 4077 // the bullet and do the standard parallel mark
ysr@777 4078 _cm->markAndGrayObjectIfNecessary(obj);
ysr@777 4079 }
ysr@777 4080 #if 1
ysr@777 4081 if (_g1->isMarkedNext(old)) {
ysr@777 4082 _cm->nextMarkBitMap()->parClear((HeapWord*)old);
ysr@777 4083 }
ysr@777 4084 #endif
ysr@777 4085 }
ysr@777 4086
ysr@777 4087 size_t* surv_young_words = _par_scan_state->surviving_young_words();
ysr@777 4088 surv_young_words[young_index] += word_sz;
ysr@777 4089
ysr@777 4090 if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
ysr@777 4091 arrayOop(old)->set_length(0);
tonyp@961 4092 _par_scan_state->push_on_queue(set_partial_array_mask(old));
ysr@777 4093 } else {
tonyp@961 4094 // No point in using the slower heap_region_containing() method,
tonyp@961 4095 // given that we know obj is in the heap.
tonyp@961 4096 _scanner->set_region(_g1->heap_region_containing_raw(obj));
ysr@777 4097 obj->oop_iterate_backwards(_scanner);
ysr@777 4098 }
ysr@777 4099 } else {
ysr@777 4100 _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
ysr@777 4101 obj = forward_ptr;
ysr@777 4102 }
ysr@777 4103 return obj;
ysr@777 4104 }
ysr@777 4105
tonyp@961 4106 template<bool do_gen_barrier, G1Barrier barrier,
tonyp@961 4107 bool do_mark_forwardee, bool skip_cset_test>
tonyp@961 4108 void G1ParCopyClosure<do_gen_barrier, barrier,
tonyp@961 4109 do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
ysr@777 4110 oop obj = *p;
ysr@777 4111 assert(barrier != G1BarrierRS || obj != NULL,
ysr@777 4112 "Precondition: G1BarrierRS implies obj is nonNull");
ysr@777 4113
tonyp@961 4114 // The only time we skip the cset test is when we're scanning
tonyp@961 4115 // references popped from the queue. And we only push on the queue
tonyp@961 4116 // references that we know point into the cset, so no point in
tonyp@961 4117 // checking again. But we'll leave an assert here for peace of mind.
tonyp@961 4118 assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
tonyp@961 4119
tonyp@961 4120 // here the null check is implicit in the cset_fast_test() test
tonyp@961 4121 if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
ysr@777 4122 #if G1_REM_SET_LOGGING
tonyp@961 4123 gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
tonyp@961 4124 "into CS.", p, (void*) obj);
ysr@777 4125 #endif
tonyp@961 4126 if (obj->is_forwarded()) {
tonyp@961 4127 *p = obj->forwardee();
tonyp@961 4128 } else {
tonyp@961 4129 *p = copy_to_survivor_space(obj);
ysr@777 4130 }
tonyp@961 4131 // When scanning the RS, we only care about objs in CS.
tonyp@961 4132 if (barrier == G1BarrierRS) {
iveresov@1051 4133 _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
ysr@777 4134 }
tonyp@961 4135 }
tonyp@961 4136
tonyp@961 4137 // When scanning moved objs, must look at all oops.
tonyp@961 4138 if (barrier == G1BarrierEvac && obj != NULL) {
iveresov@1051 4139 _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
tonyp@961 4140 }
tonyp@961 4141
tonyp@961 4142 if (do_gen_barrier && obj != NULL) {
tonyp@961 4143 par_do_barrier(p);
tonyp@961 4144 }
tonyp@961 4145 }
tonyp@961 4146
tonyp@961 4147 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
tonyp@961 4148
tonyp@961 4149 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
ysr@777 4150 oop obj, int start, int end) {
ysr@777 4151 // process our set of indices (include header in first chunk)
ysr@777 4152 assert(start < end, "invariant");
ysr@777 4153 T* const base = (T*)objArrayOop(obj)->base();
tonyp@961 4154 T* const start_addr = (start == 0) ? (T*) obj : base + start;
ysr@777 4155 T* const end_addr = base + end;
ysr@777 4156 MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
ysr@777 4157 _scanner.set_region(_g1->heap_region_containing(obj));
ysr@777 4158 obj->oop_iterate(&_scanner, mr);
ysr@777 4159 }
ysr@777 4160
ysr@777 4161 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
ysr@777 4162 assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
tonyp@961 4163 assert(has_partial_array_mask(p), "invariant");
tonyp@961 4164 oop old = clear_partial_array_mask(p);
ysr@777 4165 assert(old->is_objArray(), "must be obj array");
ysr@777 4166 assert(old->is_forwarded(), "must be forwarded");
ysr@777 4167 assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
ysr@777 4168
ysr@777 4169 objArrayOop obj = objArrayOop(old->forwardee());
ysr@777 4170 assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
ysr@777 4171 // Process ParGCArrayScanChunk elements now
ysr@777 4172 // and push the remainder back onto queue
ysr@777 4173 int start = arrayOop(old)->length();
ysr@777 4174 int end = obj->length();
ysr@777 4175 int remainder = end - start;
ysr@777 4176 assert(start <= end, "just checking");
ysr@777 4177 if (remainder > 2 * ParGCArrayScanChunk) {
ysr@777 4178 // Test above combines last partial chunk with a full chunk
ysr@777 4179 end = start + ParGCArrayScanChunk;
ysr@777 4180 arrayOop(old)->set_length(end);
ysr@777 4181 // Push remainder.
tonyp@961 4182 _par_scan_state->push_on_queue(set_partial_array_mask(old));
ysr@777 4183 } else {
ysr@777 4184 // Restore length so that the heap remains parsable in
ysr@777 4185 // case of evacuation failure.
ysr@777 4186 arrayOop(old)->set_length(end);
ysr@777 4187 }
ysr@777 4188
ysr@777 4189 // process our set of indices (include header in first chunk)
ysr@777 4190 process_array_chunk<oop>(obj, start, end);
ysr@777 4191 }
ysr@777 4192
ysr@777 4193 int G1ScanAndBalanceClosure::_nq = 0;
ysr@777 4194
ysr@777 4195 class G1ParEvacuateFollowersClosure : public VoidClosure {
ysr@777 4196 protected:
ysr@777 4197 G1CollectedHeap* _g1h;
ysr@777 4198 G1ParScanThreadState* _par_scan_state;
ysr@777 4199 RefToScanQueueSet* _queues;
ysr@777 4200 ParallelTaskTerminator* _terminator;
ysr@777 4201
ysr@777 4202 G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
ysr@777 4203 RefToScanQueueSet* queues() { return _queues; }
ysr@777 4204 ParallelTaskTerminator* terminator() { return _terminator; }
ysr@777 4205
ysr@777 4206 public:
ysr@777 4207 G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
ysr@777 4208 G1ParScanThreadState* par_scan_state,
ysr@777 4209 RefToScanQueueSet* queues,
ysr@777 4210 ParallelTaskTerminator* terminator)
ysr@777 4211 : _g1h(g1h), _par_scan_state(par_scan_state),
ysr@777 4212 _queues(queues), _terminator(terminator) {}
ysr@777 4213
ysr@777 4214 void do_void() {
ysr@777 4215 G1ParScanThreadState* pss = par_scan_state();
ysr@777 4216 while (true) {
ysr@777 4217 oop* ref_to_scan;
ysr@777 4218 pss->trim_queue();
ysr@777 4219 IF_G1_DETAILED_STATS(pss->note_steal_attempt());
ysr@777 4220 if (queues()->steal(pss->queue_num(),
ysr@777 4221 pss->hash_seed(),
ysr@777 4222 ref_to_scan)) {
ysr@777 4223 IF_G1_DETAILED_STATS(pss->note_steal());
tonyp@961 4224
tonyp@961 4225 // slightly paranoid tests; I'm trying to catch potential
tonyp@961 4226 // problems before we go into push_on_queue to know where the
tonyp@961 4227 // problem is coming from
tonyp@961 4228 assert(ref_to_scan != NULL, "invariant");
tonyp@961 4229 assert(has_partial_array_mask(ref_to_scan) ||
tonyp@961 4230 _g1h->obj_in_cs(*ref_to_scan), "invariant");
ysr@777 4231 pss->push_on_queue(ref_to_scan);
ysr@777 4232 continue;
ysr@777 4233 }
ysr@777 4234 pss->start_term_time();
ysr@777 4235 if (terminator()->offer_termination()) break;
ysr@777 4236 pss->end_term_time();
ysr@777 4237 }
ysr@777 4238 pss->end_term_time();
ysr@777 4239 pss->retire_alloc_buffers();
ysr@777 4240 }
ysr@777 4241 };
ysr@777 4242
ysr@777 4243 class G1ParTask : public AbstractGangTask {
ysr@777 4244 protected:
ysr@777 4245 G1CollectedHeap* _g1h;
ysr@777 4246 RefToScanQueueSet *_queues;
ysr@777 4247 ParallelTaskTerminator _terminator;
ysr@777 4248
ysr@777 4249 Mutex _stats_lock;
ysr@777 4250 Mutex* stats_lock() { return &_stats_lock; }
ysr@777 4251
ysr@777 4252 size_t getNCards() {
ysr@777 4253 return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
ysr@777 4254 / G1BlockOffsetSharedArray::N_bytes;
ysr@777 4255 }
ysr@777 4256
ysr@777 4257 public:
ysr@777 4258 G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
ysr@777 4259 : AbstractGangTask("G1 collection"),
ysr@777 4260 _g1h(g1h),
ysr@777 4261 _queues(task_queues),
ysr@777 4262 _terminator(workers, _queues),
ysr@777 4263 _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
ysr@777 4264 {}
ysr@777 4265
ysr@777 4266 RefToScanQueueSet* queues() { return _queues; }
ysr@777 4267
ysr@777 4268 RefToScanQueue *work_queue(int i) {
ysr@777 4269 return queues()->queue(i);
ysr@777 4270 }
ysr@777 4271
ysr@777 4272 void work(int i) {
ysr@777 4273 ResourceMark rm;
ysr@777 4274 HandleMark hm;
ysr@777 4275
tonyp@961 4276 G1ParScanThreadState pss(_g1h, i);
tonyp@961 4277 G1ParScanHeapEvacClosure scan_evac_cl(_g1h, &pss);
tonyp@961 4278 G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
tonyp@961 4279 G1ParScanPartialArrayClosure partial_scan_cl(_g1h, &pss);
ysr@777 4280
ysr@777 4281 pss.set_evac_closure(&scan_evac_cl);
ysr@777 4282 pss.set_evac_failure_closure(&evac_failure_cl);
ysr@777 4283 pss.set_partial_scan_closure(&partial_scan_cl);
ysr@777 4284
ysr@777 4285 G1ParScanExtRootClosure only_scan_root_cl(_g1h, &pss);
ysr@777 4286 G1ParScanPermClosure only_scan_perm_cl(_g1h, &pss);
ysr@777 4287 G1ParScanHeapRSClosure only_scan_heap_rs_cl(_g1h, &pss);
iveresov@1051 4288
ysr@777 4289 G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss);
ysr@777 4290 G1ParScanAndMarkPermClosure scan_mark_perm_cl(_g1h, &pss);
ysr@777 4291 G1ParScanAndMarkHeapRSClosure scan_mark_heap_rs_cl(_g1h, &pss);
ysr@777 4292
ysr@777 4293 OopsInHeapRegionClosure *scan_root_cl;
ysr@777 4294 OopsInHeapRegionClosure *scan_perm_cl;
ysr@777 4295 OopsInHeapRegionClosure *scan_so_cl;
ysr@777 4296
ysr@777 4297 if (_g1h->g1_policy()->should_initiate_conc_mark()) {
ysr@777 4298 scan_root_cl = &scan_mark_root_cl;
ysr@777 4299 scan_perm_cl = &scan_mark_perm_cl;
ysr@777 4300 scan_so_cl = &scan_mark_heap_rs_cl;
ysr@777 4301 } else {
ysr@777 4302 scan_root_cl = &only_scan_root_cl;
ysr@777 4303 scan_perm_cl = &only_scan_perm_cl;
ysr@777 4304 scan_so_cl = &only_scan_heap_rs_cl;
ysr@777 4305 }
ysr@777 4306
ysr@777 4307 pss.start_strong_roots();
ysr@777 4308 _g1h->g1_process_strong_roots(/* not collecting perm */ false,
ysr@777 4309 SharedHeap::SO_AllClasses,
ysr@777 4310 scan_root_cl,
ysr@777 4311 &only_scan_heap_rs_cl,
ysr@777 4312 scan_so_cl,
ysr@777 4313 scan_perm_cl,
ysr@777 4314 i);
ysr@777 4315 pss.end_strong_roots();
ysr@777 4316 {
ysr@777 4317 double start = os::elapsedTime();
ysr@777 4318 G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
ysr@777 4319 evac.do_void();
ysr@777 4320 double elapsed_ms = (os::elapsedTime()-start)*1000.0;
ysr@777 4321 double term_ms = pss.term_time()*1000.0;
ysr@777 4322 _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
ysr@777 4323 _g1h->g1_policy()->record_termination_time(i, term_ms);
ysr@777 4324 }
apetrusenko@980 4325 if (G1UseSurvivorSpace) {
apetrusenko@980 4326 _g1h->g1_policy()->record_thread_age_table(pss.age_table());
apetrusenko@980 4327 }
ysr@777 4328 _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
ysr@777 4329
ysr@777 4330 // Clean up any par-expanded rem sets.
ysr@777 4331 HeapRegionRemSet::par_cleanup();
ysr@777 4332
ysr@777 4333 MutexLocker x(stats_lock());
ysr@777 4334 if (ParallelGCVerbose) {
ysr@777 4335 gclog_or_tty->print("Thread %d complete:\n", i);
ysr@777 4336 #if G1_DETAILED_STATS
ysr@777 4337 gclog_or_tty->print(" Pushes: %7d Pops: %7d Overflows: %7d Steals %7d (in %d attempts)\n",
ysr@777 4338 pss.pushes(),
ysr@777 4339 pss.pops(),
ysr@777 4340 pss.overflow_pushes(),
ysr@777 4341 pss.steals(),
ysr@777 4342 pss.steal_attempts());
ysr@777 4343 #endif
ysr@777 4344 double elapsed = pss.elapsed();
ysr@777 4345 double strong_roots = pss.strong_roots_time();
ysr@777 4346 double term = pss.term_time();
ysr@777 4347 gclog_or_tty->print(" Elapsed: %7.2f ms.\n"
ysr@777 4348 " Strong roots: %7.2f ms (%6.2f%%)\n"
ysr@777 4349 " Termination: %7.2f ms (%6.2f%%) (in %d entries)\n",
ysr@777 4350 elapsed * 1000.0,
ysr@777 4351 strong_roots * 1000.0, (strong_roots*100.0/elapsed),
ysr@777 4352 term * 1000.0, (term*100.0/elapsed),
ysr@777 4353 pss.term_attempts());
ysr@777 4354 size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
ysr@777 4355 gclog_or_tty->print(" Waste: %8dK\n"
ysr@777 4356 " Alloc Buffer: %8dK\n"
ysr@777 4357 " Undo: %8dK\n",
ysr@777 4358 (total_waste * HeapWordSize) / K,
ysr@777 4359 (pss.alloc_buffer_waste() * HeapWordSize) / K,
ysr@777 4360 (pss.undo_waste() * HeapWordSize) / K);
ysr@777 4361 }
ysr@777 4362
ysr@777 4363 assert(pss.refs_to_scan() == 0, "Task queue should be empty");
ysr@777 4364 assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
ysr@777 4365 }
ysr@777 4366 };
ysr@777 4367
ysr@777 4368 // *** Common G1 Evacuation Stuff
ysr@777 4369
ysr@777 4370 class G1CountClosure: public OopsInHeapRegionClosure {
ysr@777 4371 public:
ysr@777 4372 int n;
ysr@777 4373 G1CountClosure() : n(0) {}
ysr@777 4374 void do_oop(narrowOop* p) {
ysr@777 4375 guarantee(false, "NYI");
ysr@777 4376 }
ysr@777 4377 void do_oop(oop* p) {
ysr@777 4378 oop obj = *p;
ysr@777 4379 assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
ysr@777 4380 "Rem set closure called on non-rem-set pointer.");
ysr@777 4381 n++;
ysr@777 4382 }
ysr@777 4383 };
ysr@777 4384
ysr@777 4385 static G1CountClosure count_closure;
ysr@777 4386
ysr@777 4387 void
ysr@777 4388 G1CollectedHeap::
ysr@777 4389 g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 4390 SharedHeap::ScanningOption so,
ysr@777 4391 OopClosure* scan_non_heap_roots,
ysr@777 4392 OopsInHeapRegionClosure* scan_rs,
ysr@777 4393 OopsInHeapRegionClosure* scan_so,
ysr@777 4394 OopsInGenClosure* scan_perm,
ysr@777 4395 int worker_i) {
ysr@777 4396 // First scan the strong roots, including the perm gen.
ysr@777 4397 double ext_roots_start = os::elapsedTime();
ysr@777 4398 double closure_app_time_sec = 0.0;
ysr@777 4399
ysr@777 4400 BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
ysr@777 4401 BufferingOopsInGenClosure buf_scan_perm(scan_perm);
ysr@777 4402 buf_scan_perm.set_generation(perm_gen());
ysr@777 4403
ysr@777 4404 process_strong_roots(collecting_perm_gen, so,
ysr@777 4405 &buf_scan_non_heap_roots,
ysr@777 4406 &buf_scan_perm);
ysr@777 4407 // Finish up any enqueued closure apps.
ysr@777 4408 buf_scan_non_heap_roots.done();
ysr@777 4409 buf_scan_perm.done();
ysr@777 4410 double ext_roots_end = os::elapsedTime();
ysr@777 4411 g1_policy()->reset_obj_copy_time(worker_i);
ysr@777 4412 double obj_copy_time_sec =
ysr@777 4413 buf_scan_non_heap_roots.closure_app_seconds() +
ysr@777 4414 buf_scan_perm.closure_app_seconds();
ysr@777 4415 g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
ysr@777 4416 double ext_root_time_ms =
ysr@777 4417 ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
ysr@777 4418 g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
ysr@777 4419
ysr@777 4420 // Scan strong roots in mark stack.
ysr@777 4421 if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
ysr@777 4422 concurrent_mark()->oops_do(scan_non_heap_roots);
ysr@777 4423 }
ysr@777 4424 double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
ysr@777 4425 g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
ysr@777 4426
ysr@777 4427 // XXX What should this be doing in the parallel case?
ysr@777 4428 g1_policy()->record_collection_pause_end_CH_strong_roots();
ysr@777 4429 if (G1VerifyRemSet) {
ysr@777 4430 // :::: FIXME ::::
ysr@777 4431 // The stupid remembered set doesn't know how to filter out dead
ysr@777 4432 // objects, which the smart one does, and so when it is created
ysr@777 4433 // and then compared the number of entries in each differs and
ysr@777 4434 // the verification code fails.
ysr@777 4435 guarantee(false, "verification code is broken, see note");
ysr@777 4436
ysr@777 4437 // Let's make sure that the current rem set agrees with the stupidest
ysr@777 4438 // one possible!
ysr@777 4439 bool refs_enabled = ref_processor()->discovery_enabled();
ysr@777 4440 if (refs_enabled) ref_processor()->disable_discovery();
ysr@777 4441 StupidG1RemSet stupid(this);
ysr@777 4442 count_closure.n = 0;
ysr@777 4443 stupid.oops_into_collection_set_do(&count_closure, worker_i);
ysr@777 4444 int stupid_n = count_closure.n;
ysr@777 4445 count_closure.n = 0;
ysr@777 4446 g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
ysr@777 4447 guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
ysr@777 4448 gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
ysr@777 4449 if (refs_enabled) ref_processor()->enable_discovery();
ysr@777 4450 }
ysr@777 4451 if (scan_so != NULL) {
ysr@777 4452 scan_scan_only_set(scan_so, worker_i);
ysr@777 4453 }
ysr@777 4454 // Now scan the complement of the collection set.
ysr@777 4455 if (scan_rs != NULL) {
ysr@777 4456 g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
ysr@777 4457 }
ysr@777 4458 // Finish with the ref_processor roots.
ysr@777 4459 if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
ysr@777 4460 ref_processor()->oops_do(scan_non_heap_roots);
ysr@777 4461 }
ysr@777 4462 g1_policy()->record_collection_pause_end_G1_strong_roots();
ysr@777 4463 _process_strong_tasks->all_tasks_completed();
ysr@777 4464 }
ysr@777 4465
ysr@777 4466 void
ysr@777 4467 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
ysr@777 4468 OopsInHeapRegionClosure* oc,
ysr@777 4469 int worker_i) {
ysr@777 4470 HeapWord* startAddr = r->bottom();
ysr@777 4471 HeapWord* endAddr = r->used_region().end();
ysr@777 4472
ysr@777 4473 oc->set_region(r);
ysr@777 4474
ysr@777 4475 HeapWord* p = r->bottom();
ysr@777 4476 HeapWord* t = r->top();
ysr@777 4477 guarantee( p == r->next_top_at_mark_start(), "invariant" );
ysr@777 4478 while (p < t) {
ysr@777 4479 oop obj = oop(p);
ysr@777 4480 p += obj->oop_iterate(oc);
ysr@777 4481 }
ysr@777 4482 }
ysr@777 4483
ysr@777 4484 void
ysr@777 4485 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
ysr@777 4486 int worker_i) {
ysr@777 4487 double start = os::elapsedTime();
ysr@777 4488
ysr@777 4489 BufferingOopsInHeapRegionClosure boc(oc);
ysr@777 4490
ysr@777 4491 FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
ysr@777 4492 FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
ysr@777 4493
ysr@777 4494 OopsInHeapRegionClosure *foc;
ysr@777 4495 if (g1_policy()->should_initiate_conc_mark())
ysr@777 4496 foc = &scan_and_mark;
ysr@777 4497 else
ysr@777 4498 foc = &scan_only;
ysr@777 4499
ysr@777 4500 HeapRegion* hr;
ysr@777 4501 int n = 0;
ysr@777 4502 while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
ysr@777 4503 scan_scan_only_region(hr, foc, worker_i);
ysr@777 4504 ++n;
ysr@777 4505 }
ysr@777 4506 boc.done();
ysr@777 4507
ysr@777 4508 double closure_app_s = boc.closure_app_seconds();
ysr@777 4509 g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
ysr@777 4510 double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
ysr@777 4511 g1_policy()->record_scan_only_time(worker_i, ms, n);
ysr@777 4512 }
ysr@777 4513
ysr@777 4514 void
ysr@777 4515 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
ysr@777 4516 OopClosure* non_root_closure) {
ysr@777 4517 SharedHeap::process_weak_roots(root_closure, non_root_closure);
ysr@777 4518 }
ysr@777 4519
ysr@777 4520
ysr@777 4521 class SaveMarksClosure: public HeapRegionClosure {
ysr@777 4522 public:
ysr@777 4523 bool doHeapRegion(HeapRegion* r) {
ysr@777 4524 r->save_marks();
ysr@777 4525 return false;
ysr@777 4526 }
ysr@777 4527 };
ysr@777 4528
ysr@777 4529 void G1CollectedHeap::save_marks() {
ysr@777 4530 if (ParallelGCThreads == 0) {
ysr@777 4531 SaveMarksClosure sm;
ysr@777 4532 heap_region_iterate(&sm);
ysr@777 4533 }
ysr@777 4534 // We do this even in the parallel case
ysr@777 4535 perm_gen()->save_marks();
ysr@777 4536 }
ysr@777 4537
ysr@777 4538 void G1CollectedHeap::evacuate_collection_set() {
ysr@777 4539 set_evacuation_failed(false);
ysr@777 4540
ysr@777 4541 g1_rem_set()->prepare_for_oops_into_collection_set_do();
ysr@777 4542 concurrent_g1_refine()->set_use_cache(false);
ysr@777 4543 int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
ysr@777 4544 set_par_threads(n_workers);
ysr@777 4545 G1ParTask g1_par_task(this, n_workers, _task_queues);
ysr@777 4546
ysr@777 4547 init_for_evac_failure(NULL);
ysr@777 4548
ysr@777 4549 change_strong_roots_parity(); // In preparation for parallel strong roots.
ysr@777 4550 rem_set()->prepare_for_younger_refs_iterate(true);
iveresov@1051 4551
iveresov@1051 4552 assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
ysr@777 4553 double start_par = os::elapsedTime();
ysr@777 4554 if (ParallelGCThreads > 0) {
ysr@777 4555 // The individual threads will set their evac-failure closures.
ysr@777 4556 workers()->run_task(&g1_par_task);
ysr@777 4557 } else {
ysr@777 4558 g1_par_task.work(0);
ysr@777 4559 }
ysr@777 4560
ysr@777 4561 double par_time = (os::elapsedTime() - start_par) * 1000.0;
ysr@777 4562 g1_policy()->record_par_time(par_time);
ysr@777 4563 set_par_threads(0);
ysr@777 4564 // Is this the right thing to do here? We don't save marks
ysr@777 4565 // on individual heap regions when we allocate from
ysr@777 4566 // them in parallel, so this seems like the correct place for this.
apetrusenko@980 4567 retire_all_alloc_regions();
ysr@777 4568 {
ysr@777 4569 G1IsAliveClosure is_alive(this);
ysr@777 4570 G1KeepAliveClosure keep_alive(this);
ysr@777 4571 JNIHandles::weak_oops_do(&is_alive, &keep_alive);
ysr@777 4572 }
ysr@777 4573 g1_rem_set()->cleanup_after_oops_into_collection_set_do();
iveresov@1051 4574
ysr@777 4575 concurrent_g1_refine()->set_use_cache(true);
ysr@777 4576
ysr@777 4577 finalize_for_evac_failure();
ysr@777 4578
ysr@777 4579 // Must do this before removing self-forwarding pointers, which clears
ysr@777 4580 // the per-region evac-failure flags.
ysr@777 4581 concurrent_mark()->complete_marking_in_collection_set();
ysr@777 4582
ysr@777 4583 if (evacuation_failed()) {
ysr@777 4584 remove_self_forwarding_pointers();
ysr@777 4585 if (PrintGCDetails) {
ysr@777 4586 gclog_or_tty->print(" (evacuation failed)");
ysr@777 4587 } else if (PrintGC) {
ysr@777 4588 gclog_or_tty->print("--");
ysr@777 4589 }
ysr@777 4590 }
ysr@777 4591
iveresov@1051 4592 if (G1DeferredRSUpdate) {
iveresov@1051 4593 RedirtyLoggedCardTableEntryFastClosure redirty;
iveresov@1051 4594 dirty_card_queue_set().set_closure(&redirty);
iveresov@1051 4595 dirty_card_queue_set().apply_closure_to_all_completed_buffers();
iveresov@1051 4596 JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
iveresov@1051 4597 assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
iveresov@1051 4598 }
iveresov@1051 4599
ysr@777 4600 COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
ysr@777 4601 }
ysr@777 4602
ysr@777 4603 void G1CollectedHeap::free_region(HeapRegion* hr) {
ysr@777 4604 size_t pre_used = 0;
ysr@777 4605 size_t cleared_h_regions = 0;
ysr@777 4606 size_t freed_regions = 0;
ysr@777 4607 UncleanRegionList local_list;
ysr@777 4608
ysr@777 4609 HeapWord* start = hr->bottom();
ysr@777 4610 HeapWord* end = hr->prev_top_at_mark_start();
ysr@777 4611 size_t used_bytes = hr->used();
ysr@777 4612 size_t live_bytes = hr->max_live_bytes();
ysr@777 4613 if (used_bytes > 0) {
ysr@777 4614 guarantee( live_bytes <= used_bytes, "invariant" );
ysr@777 4615 } else {
ysr@777 4616 guarantee( live_bytes == 0, "invariant" );
ysr@777 4617 }
ysr@777 4618
ysr@777 4619 size_t garbage_bytes = used_bytes - live_bytes;
ysr@777 4620 if (garbage_bytes > 0)
ysr@777 4621 g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
ysr@777 4622
ysr@777 4623 free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
ysr@777 4624 &local_list);
ysr@777 4625 finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
ysr@777 4626 &local_list);
ysr@777 4627 }
ysr@777 4628
ysr@777 4629 void
ysr@777 4630 G1CollectedHeap::free_region_work(HeapRegion* hr,
ysr@777 4631 size_t& pre_used,
ysr@777 4632 size_t& cleared_h_regions,
ysr@777 4633 size_t& freed_regions,
ysr@777 4634 UncleanRegionList* list,
ysr@777 4635 bool par) {
ysr@777 4636 pre_used += hr->used();
ysr@777 4637 if (hr->isHumongous()) {
ysr@777 4638 assert(hr->startsHumongous(),
ysr@777 4639 "Only the start of a humongous region should be freed.");
ysr@777 4640 int ind = _hrs->find(hr);
ysr@777 4641 assert(ind != -1, "Should have an index.");
ysr@777 4642 // Clear the start region.
ysr@777 4643 hr->hr_clear(par, true /*clear_space*/);
ysr@777 4644 list->insert_before_head(hr);
ysr@777 4645 cleared_h_regions++;
ysr@777 4646 freed_regions++;
ysr@777 4647 // Clear any continued regions.
ysr@777 4648 ind++;
ysr@777 4649 while ((size_t)ind < n_regions()) {
ysr@777 4650 HeapRegion* hrc = _hrs->at(ind);
ysr@777 4651 if (!hrc->continuesHumongous()) break;
ysr@777 4652 // Otherwise, does continue the H region.
ysr@777 4653 assert(hrc->humongous_start_region() == hr, "Huh?");
ysr@777 4654 hrc->hr_clear(par, true /*clear_space*/);
ysr@777 4655 cleared_h_regions++;
ysr@777 4656 freed_regions++;
ysr@777 4657 list->insert_before_head(hrc);
ysr@777 4658 ind++;
ysr@777 4659 }
ysr@777 4660 } else {
ysr@777 4661 hr->hr_clear(par, true /*clear_space*/);
ysr@777 4662 list->insert_before_head(hr);
ysr@777 4663 freed_regions++;
ysr@777 4664 // If we're using clear2, this should not be enabled.
ysr@777 4665 // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
ysr@777 4666 }
ysr@777 4667 }
ysr@777 4668
ysr@777 4669 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
ysr@777 4670 size_t cleared_h_regions,
ysr@777 4671 size_t freed_regions,
ysr@777 4672 UncleanRegionList* list) {
ysr@777 4673 if (list != NULL && list->sz() > 0) {
ysr@777 4674 prepend_region_list_on_unclean_list(list);
ysr@777 4675 }
ysr@777 4676 // Acquire a lock, if we're parallel, to update possibly-shared
ysr@777 4677 // variables.
ysr@777 4678 Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
ysr@777 4679 {
ysr@777 4680 MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
ysr@777 4681 _summary_bytes_used -= pre_used;
ysr@777 4682 _num_humongous_regions -= (int) cleared_h_regions;
ysr@777 4683 _free_regions += freed_regions;
ysr@777 4684 }
ysr@777 4685 }
ysr@777 4686
ysr@777 4687
ysr@777 4688 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
ysr@777 4689 while (list != NULL) {
ysr@777 4690 guarantee( list->is_young(), "invariant" );
ysr@777 4691
ysr@777 4692 HeapWord* bottom = list->bottom();
ysr@777 4693 HeapWord* end = list->end();
ysr@777 4694 MemRegion mr(bottom, end);
ysr@777 4695 ct_bs->dirty(mr);
ysr@777 4696
ysr@777 4697 list = list->get_next_young_region();
ysr@777 4698 }
ysr@777 4699 }
ysr@777 4700
ysr@777 4701 void G1CollectedHeap::cleanUpCardTable() {
ysr@777 4702 CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
ysr@777 4703 double start = os::elapsedTime();
ysr@777 4704
ysr@777 4705 ct_bs->clear(_g1_committed);
ysr@777 4706
ysr@777 4707 // now, redirty the cards of the scan-only and survivor regions
ysr@777 4708 // (it seemed faster to do it this way, instead of iterating over
ysr@777 4709 // all regions and then clearing / dirtying as approprite)
ysr@777 4710 dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
ysr@777 4711 dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
ysr@777 4712
ysr@777 4713 double elapsed = os::elapsedTime() - start;
ysr@777 4714 g1_policy()->record_clear_ct_time( elapsed * 1000.0);
ysr@777 4715 }
ysr@777 4716
ysr@777 4717
ysr@777 4718 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
ysr@777 4719 if (g1_policy()->should_do_collection_pause(word_size)) {
ysr@777 4720 do_collection_pause();
ysr@777 4721 }
ysr@777 4722 }
ysr@777 4723
ysr@777 4724 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
ysr@777 4725 double young_time_ms = 0.0;
ysr@777 4726 double non_young_time_ms = 0.0;
ysr@777 4727
ysr@777 4728 G1CollectorPolicy* policy = g1_policy();
ysr@777 4729
ysr@777 4730 double start_sec = os::elapsedTime();
ysr@777 4731 bool non_young = true;
ysr@777 4732
ysr@777 4733 HeapRegion* cur = cs_head;
ysr@777 4734 int age_bound = -1;
ysr@777 4735 size_t rs_lengths = 0;
ysr@777 4736
ysr@777 4737 while (cur != NULL) {
ysr@777 4738 if (non_young) {
ysr@777 4739 if (cur->is_young()) {
ysr@777 4740 double end_sec = os::elapsedTime();
ysr@777 4741 double elapsed_ms = (end_sec - start_sec) * 1000.0;
ysr@777 4742 non_young_time_ms += elapsed_ms;
ysr@777 4743
ysr@777 4744 start_sec = os::elapsedTime();
ysr@777 4745 non_young = false;
ysr@777 4746 }
ysr@777 4747 } else {
ysr@777 4748 if (!cur->is_on_free_list()) {
ysr@777 4749 double end_sec = os::elapsedTime();
ysr@777 4750 double elapsed_ms = (end_sec - start_sec) * 1000.0;
ysr@777 4751 young_time_ms += elapsed_ms;
ysr@777 4752
ysr@777 4753 start_sec = os::elapsedTime();
ysr@777 4754 non_young = true;
ysr@777 4755 }
ysr@777 4756 }
ysr@777 4757
ysr@777 4758 rs_lengths += cur->rem_set()->occupied();
ysr@777 4759
ysr@777 4760 HeapRegion* next = cur->next_in_collection_set();
ysr@777 4761 assert(cur->in_collection_set(), "bad CS");
ysr@777 4762 cur->set_next_in_collection_set(NULL);
ysr@777 4763 cur->set_in_collection_set(false);
ysr@777 4764
ysr@777 4765 if (cur->is_young()) {
ysr@777 4766 int index = cur->young_index_in_cset();
ysr@777 4767 guarantee( index != -1, "invariant" );
ysr@777 4768 guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
ysr@777 4769 size_t words_survived = _surviving_young_words[index];
ysr@777 4770 cur->record_surv_words_in_group(words_survived);
ysr@777 4771 } else {
ysr@777 4772 int index = cur->young_index_in_cset();
ysr@777 4773 guarantee( index == -1, "invariant" );
ysr@777 4774 }
ysr@777 4775
ysr@777 4776 assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
ysr@777 4777 (!cur->is_young() && cur->young_index_in_cset() == -1),
ysr@777 4778 "invariant" );
ysr@777 4779
ysr@777 4780 if (!cur->evacuation_failed()) {
ysr@777 4781 // And the region is empty.
ysr@777 4782 assert(!cur->is_empty(),
ysr@777 4783 "Should not have empty regions in a CS.");
ysr@777 4784 free_region(cur);
ysr@777 4785 } else {
ysr@777 4786 guarantee( !cur->is_scan_only(), "should not be scan only" );
ysr@777 4787 cur->uninstall_surv_rate_group();
ysr@777 4788 if (cur->is_young())
ysr@777 4789 cur->set_young_index_in_cset(-1);
ysr@777 4790 cur->set_not_young();
ysr@777 4791 cur->set_evacuation_failed(false);
ysr@777 4792 }
ysr@777 4793 cur = next;
ysr@777 4794 }
ysr@777 4795
ysr@777 4796 policy->record_max_rs_lengths(rs_lengths);
ysr@777 4797 policy->cset_regions_freed();
ysr@777 4798
ysr@777 4799 double end_sec = os::elapsedTime();
ysr@777 4800 double elapsed_ms = (end_sec - start_sec) * 1000.0;
ysr@777 4801 if (non_young)
ysr@777 4802 non_young_time_ms += elapsed_ms;
ysr@777 4803 else
ysr@777 4804 young_time_ms += elapsed_ms;
ysr@777 4805
ysr@777 4806 policy->record_young_free_cset_time_ms(young_time_ms);
ysr@777 4807 policy->record_non_young_free_cset_time_ms(non_young_time_ms);
ysr@777 4808 }
ysr@777 4809
ysr@777 4810 HeapRegion*
ysr@777 4811 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
ysr@777 4812 assert(ZF_mon->owned_by_self(), "Precondition");
ysr@777 4813 HeapRegion* res = pop_unclean_region_list_locked();
ysr@777 4814 if (res != NULL) {
ysr@777 4815 assert(!res->continuesHumongous() &&
ysr@777 4816 res->zero_fill_state() != HeapRegion::Allocated,
ysr@777 4817 "Only free regions on unclean list.");
ysr@777 4818 if (zero_filled) {
ysr@777 4819 res->ensure_zero_filled_locked();
ysr@777 4820 res->set_zero_fill_allocated();
ysr@777 4821 }
ysr@777 4822 }
ysr@777 4823 return res;
ysr@777 4824 }
ysr@777 4825
ysr@777 4826 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
ysr@777 4827 MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4828 return alloc_region_from_unclean_list_locked(zero_filled);
ysr@777 4829 }
ysr@777 4830
ysr@777 4831 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
ysr@777 4832 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4833 put_region_on_unclean_list_locked(r);
ysr@777 4834 if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
ysr@777 4835 }
ysr@777 4836
ysr@777 4837 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
ysr@777 4838 MutexLockerEx x(Cleanup_mon);
ysr@777 4839 set_unclean_regions_coming_locked(b);
ysr@777 4840 }
ysr@777 4841
ysr@777 4842 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
ysr@777 4843 assert(Cleanup_mon->owned_by_self(), "Precondition");
ysr@777 4844 _unclean_regions_coming = b;
ysr@777 4845 // Wake up mutator threads that might be waiting for completeCleanup to
ysr@777 4846 // finish.
ysr@777 4847 if (!b) Cleanup_mon->notify_all();
ysr@777 4848 }
ysr@777 4849
ysr@777 4850 void G1CollectedHeap::wait_for_cleanup_complete() {
ysr@777 4851 MutexLockerEx x(Cleanup_mon);
ysr@777 4852 wait_for_cleanup_complete_locked();
ysr@777 4853 }
ysr@777 4854
ysr@777 4855 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
ysr@777 4856 assert(Cleanup_mon->owned_by_self(), "precondition");
ysr@777 4857 while (_unclean_regions_coming) {
ysr@777 4858 Cleanup_mon->wait();
ysr@777 4859 }
ysr@777 4860 }
ysr@777 4861
ysr@777 4862 void
ysr@777 4863 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
ysr@777 4864 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 4865 _unclean_region_list.insert_before_head(r);
ysr@777 4866 }
ysr@777 4867
ysr@777 4868 void
ysr@777 4869 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
ysr@777 4870 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4871 prepend_region_list_on_unclean_list_locked(list);
ysr@777 4872 if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
ysr@777 4873 }
ysr@777 4874
ysr@777 4875 void
ysr@777 4876 G1CollectedHeap::
ysr@777 4877 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
ysr@777 4878 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 4879 _unclean_region_list.prepend_list(list);
ysr@777 4880 }
ysr@777 4881
ysr@777 4882 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
ysr@777 4883 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 4884 HeapRegion* res = _unclean_region_list.pop();
ysr@777 4885 if (res != NULL) {
ysr@777 4886 // Inform ZF thread that there's a new unclean head.
ysr@777 4887 if (_unclean_region_list.hd() != NULL && should_zf())
ysr@777 4888 ZF_mon->notify_all();
ysr@777 4889 }
ysr@777 4890 return res;
ysr@777 4891 }
ysr@777 4892
ysr@777 4893 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
ysr@777 4894 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 4895 return _unclean_region_list.hd();
ysr@777 4896 }
ysr@777 4897
ysr@777 4898
ysr@777 4899 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
ysr@777 4900 assert(ZF_mon->owned_by_self(), "Precondition");
ysr@777 4901 HeapRegion* r = peek_unclean_region_list_locked();
ysr@777 4902 if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
ysr@777 4903 // Result of below must be equal to "r", since we hold the lock.
ysr@777 4904 (void)pop_unclean_region_list_locked();
ysr@777 4905 put_free_region_on_list_locked(r);
ysr@777 4906 return true;
ysr@777 4907 } else {
ysr@777 4908 return false;
ysr@777 4909 }
ysr@777 4910 }
ysr@777 4911
ysr@777 4912 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
ysr@777 4913 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4914 return move_cleaned_region_to_free_list_locked();
ysr@777 4915 }
ysr@777 4916
ysr@777 4917
ysr@777 4918 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
ysr@777 4919 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 4920 assert(_free_region_list_size == free_region_list_length(), "Inv");
ysr@777 4921 assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
ysr@777 4922 "Regions on free list must be zero filled");
ysr@777 4923 assert(!r->isHumongous(), "Must not be humongous.");
ysr@777 4924 assert(r->is_empty(), "Better be empty");
ysr@777 4925 assert(!r->is_on_free_list(),
ysr@777 4926 "Better not already be on free list");
ysr@777 4927 assert(!r->is_on_unclean_list(),
ysr@777 4928 "Better not already be on unclean list");
ysr@777 4929 r->set_on_free_list(true);
ysr@777 4930 r->set_next_on_free_list(_free_region_list);
ysr@777 4931 _free_region_list = r;
ysr@777 4932 _free_region_list_size++;
ysr@777 4933 assert(_free_region_list_size == free_region_list_length(), "Inv");
ysr@777 4934 }
ysr@777 4935
ysr@777 4936 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
ysr@777 4937 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4938 put_free_region_on_list_locked(r);
ysr@777 4939 }
ysr@777 4940
ysr@777 4941 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
ysr@777 4942 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 4943 assert(_free_region_list_size == free_region_list_length(), "Inv");
ysr@777 4944 HeapRegion* res = _free_region_list;
ysr@777 4945 if (res != NULL) {
ysr@777 4946 _free_region_list = res->next_from_free_list();
ysr@777 4947 _free_region_list_size--;
ysr@777 4948 res->set_on_free_list(false);
ysr@777 4949 res->set_next_on_free_list(NULL);
ysr@777 4950 assert(_free_region_list_size == free_region_list_length(), "Inv");
ysr@777 4951 }
ysr@777 4952 return res;
ysr@777 4953 }
ysr@777 4954
ysr@777 4955
ysr@777 4956 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
ysr@777 4957 // By self, or on behalf of self.
ysr@777 4958 assert(Heap_lock->is_locked(), "Precondition");
ysr@777 4959 HeapRegion* res = NULL;
ysr@777 4960 bool first = true;
ysr@777 4961 while (res == NULL) {
ysr@777 4962 if (zero_filled || !first) {
ysr@777 4963 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4964 res = pop_free_region_list_locked();
ysr@777 4965 if (res != NULL) {
ysr@777 4966 assert(!res->zero_fill_is_allocated(),
ysr@777 4967 "No allocated regions on free list.");
ysr@777 4968 res->set_zero_fill_allocated();
ysr@777 4969 } else if (!first) {
ysr@777 4970 break; // We tried both, time to return NULL.
ysr@777 4971 }
ysr@777 4972 }
ysr@777 4973
ysr@777 4974 if (res == NULL) {
ysr@777 4975 res = alloc_region_from_unclean_list(zero_filled);
ysr@777 4976 }
ysr@777 4977 assert(res == NULL ||
ysr@777 4978 !zero_filled ||
ysr@777 4979 res->zero_fill_is_allocated(),
ysr@777 4980 "We must have allocated the region we're returning");
ysr@777 4981 first = false;
ysr@777 4982 }
ysr@777 4983 return res;
ysr@777 4984 }
ysr@777 4985
ysr@777 4986 void G1CollectedHeap::remove_allocated_regions_from_lists() {
ysr@777 4987 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 4988 {
ysr@777 4989 HeapRegion* prev = NULL;
ysr@777 4990 HeapRegion* cur = _unclean_region_list.hd();
ysr@777 4991 while (cur != NULL) {
ysr@777 4992 HeapRegion* next = cur->next_from_unclean_list();
ysr@777 4993 if (cur->zero_fill_is_allocated()) {
ysr@777 4994 // Remove from the list.
ysr@777 4995 if (prev == NULL) {
ysr@777 4996 (void)_unclean_region_list.pop();
ysr@777 4997 } else {
ysr@777 4998 _unclean_region_list.delete_after(prev);
ysr@777 4999 }
ysr@777 5000 cur->set_on_unclean_list(false);
ysr@777 5001 cur->set_next_on_unclean_list(NULL);
ysr@777 5002 } else {
ysr@777 5003 prev = cur;
ysr@777 5004 }
ysr@777 5005 cur = next;
ysr@777 5006 }
ysr@777 5007 assert(_unclean_region_list.sz() == unclean_region_list_length(),
ysr@777 5008 "Inv");
ysr@777 5009 }
ysr@777 5010
ysr@777 5011 {
ysr@777 5012 HeapRegion* prev = NULL;
ysr@777 5013 HeapRegion* cur = _free_region_list;
ysr@777 5014 while (cur != NULL) {
ysr@777 5015 HeapRegion* next = cur->next_from_free_list();
ysr@777 5016 if (cur->zero_fill_is_allocated()) {
ysr@777 5017 // Remove from the list.
ysr@777 5018 if (prev == NULL) {
ysr@777 5019 _free_region_list = cur->next_from_free_list();
ysr@777 5020 } else {
ysr@777 5021 prev->set_next_on_free_list(cur->next_from_free_list());
ysr@777 5022 }
ysr@777 5023 cur->set_on_free_list(false);
ysr@777 5024 cur->set_next_on_free_list(NULL);
ysr@777 5025 _free_region_list_size--;
ysr@777 5026 } else {
ysr@777 5027 prev = cur;
ysr@777 5028 }
ysr@777 5029 cur = next;
ysr@777 5030 }
ysr@777 5031 assert(_free_region_list_size == free_region_list_length(), "Inv");
ysr@777 5032 }
ysr@777 5033 }
ysr@777 5034
ysr@777 5035 bool G1CollectedHeap::verify_region_lists() {
ysr@777 5036 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 5037 return verify_region_lists_locked();
ysr@777 5038 }
ysr@777 5039
ysr@777 5040 bool G1CollectedHeap::verify_region_lists_locked() {
ysr@777 5041 HeapRegion* unclean = _unclean_region_list.hd();
ysr@777 5042 while (unclean != NULL) {
ysr@777 5043 guarantee(unclean->is_on_unclean_list(), "Well, it is!");
ysr@777 5044 guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
ysr@777 5045 guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
ysr@777 5046 "Everything else is possible.");
ysr@777 5047 unclean = unclean->next_from_unclean_list();
ysr@777 5048 }
ysr@777 5049 guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
ysr@777 5050
ysr@777 5051 HeapRegion* free_r = _free_region_list;
ysr@777 5052 while (free_r != NULL) {
ysr@777 5053 assert(free_r->is_on_free_list(), "Well, it is!");
ysr@777 5054 assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
ysr@777 5055 switch (free_r->zero_fill_state()) {
ysr@777 5056 case HeapRegion::NotZeroFilled:
ysr@777 5057 case HeapRegion::ZeroFilling:
ysr@777 5058 guarantee(false, "Should not be on free list.");
ysr@777 5059 break;
ysr@777 5060 default:
ysr@777 5061 // Everything else is possible.
ysr@777 5062 break;
ysr@777 5063 }
ysr@777 5064 free_r = free_r->next_from_free_list();
ysr@777 5065 }
ysr@777 5066 guarantee(_free_region_list_size == free_region_list_length(), "Inv");
ysr@777 5067 // If we didn't do an assertion...
ysr@777 5068 return true;
ysr@777 5069 }
ysr@777 5070
ysr@777 5071 size_t G1CollectedHeap::free_region_list_length() {
ysr@777 5072 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 5073 size_t len = 0;
ysr@777 5074 HeapRegion* cur = _free_region_list;
ysr@777 5075 while (cur != NULL) {
ysr@777 5076 len++;
ysr@777 5077 cur = cur->next_from_free_list();
ysr@777 5078 }
ysr@777 5079 return len;
ysr@777 5080 }
ysr@777 5081
ysr@777 5082 size_t G1CollectedHeap::unclean_region_list_length() {
ysr@777 5083 assert(ZF_mon->owned_by_self(), "precondition.");
ysr@777 5084 return _unclean_region_list.length();
ysr@777 5085 }
ysr@777 5086
ysr@777 5087 size_t G1CollectedHeap::n_regions() {
ysr@777 5088 return _hrs->length();
ysr@777 5089 }
ysr@777 5090
ysr@777 5091 size_t G1CollectedHeap::max_regions() {
ysr@777 5092 return
ysr@777 5093 (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
ysr@777 5094 HeapRegion::GrainBytes;
ysr@777 5095 }
ysr@777 5096
ysr@777 5097 size_t G1CollectedHeap::free_regions() {
ysr@777 5098 /* Possibly-expensive assert.
ysr@777 5099 assert(_free_regions == count_free_regions(),
ysr@777 5100 "_free_regions is off.");
ysr@777 5101 */
ysr@777 5102 return _free_regions;
ysr@777 5103 }
ysr@777 5104
ysr@777 5105 bool G1CollectedHeap::should_zf() {
ysr@777 5106 return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
ysr@777 5107 }
ysr@777 5108
ysr@777 5109 class RegionCounter: public HeapRegionClosure {
ysr@777 5110 size_t _n;
ysr@777 5111 public:
ysr@777 5112 RegionCounter() : _n(0) {}
ysr@777 5113 bool doHeapRegion(HeapRegion* r) {
apetrusenko@1112 5114 if (r->is_empty()) {
ysr@777 5115 assert(!r->isHumongous(), "H regions should not be empty.");
ysr@777 5116 _n++;
ysr@777 5117 }
ysr@777 5118 return false;
ysr@777 5119 }
ysr@777 5120 int res() { return (int) _n; }
ysr@777 5121 };
ysr@777 5122
ysr@777 5123 size_t G1CollectedHeap::count_free_regions() {
ysr@777 5124 RegionCounter rc;
ysr@777 5125 heap_region_iterate(&rc);
ysr@777 5126 size_t n = rc.res();
ysr@777 5127 if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
ysr@777 5128 n--;
ysr@777 5129 return n;
ysr@777 5130 }
ysr@777 5131
ysr@777 5132 size_t G1CollectedHeap::count_free_regions_list() {
ysr@777 5133 size_t n = 0;
ysr@777 5134 size_t o = 0;
ysr@777 5135 ZF_mon->lock_without_safepoint_check();
ysr@777 5136 HeapRegion* cur = _free_region_list;
ysr@777 5137 while (cur != NULL) {
ysr@777 5138 cur = cur->next_from_free_list();
ysr@777 5139 n++;
ysr@777 5140 }
ysr@777 5141 size_t m = unclean_region_list_length();
ysr@777 5142 ZF_mon->unlock();
ysr@777 5143 return n + m;
ysr@777 5144 }
ysr@777 5145
ysr@777 5146 bool G1CollectedHeap::should_set_young_locked() {
ysr@777 5147 assert(heap_lock_held_for_gc(),
ysr@777 5148 "the heap lock should already be held by or for this thread");
ysr@777 5149 return (g1_policy()->in_young_gc_mode() &&
ysr@777 5150 g1_policy()->should_add_next_region_to_young_list());
ysr@777 5151 }
ysr@777 5152
ysr@777 5153 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
ysr@777 5154 assert(heap_lock_held_for_gc(),
ysr@777 5155 "the heap lock should already be held by or for this thread");
ysr@777 5156 _young_list->push_region(hr);
ysr@777 5157 g1_policy()->set_region_short_lived(hr);
ysr@777 5158 }
ysr@777 5159
ysr@777 5160 class NoYoungRegionsClosure: public HeapRegionClosure {
ysr@777 5161 private:
ysr@777 5162 bool _success;
ysr@777 5163 public:
ysr@777 5164 NoYoungRegionsClosure() : _success(true) { }
ysr@777 5165 bool doHeapRegion(HeapRegion* r) {
ysr@777 5166 if (r->is_young()) {
ysr@777 5167 gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
ysr@777 5168 r->bottom(), r->end());
ysr@777 5169 _success = false;
ysr@777 5170 }
ysr@777 5171 return false;
ysr@777 5172 }
ysr@777 5173 bool success() { return _success; }
ysr@777 5174 };
ysr@777 5175
ysr@777 5176 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
ysr@777 5177 bool check_sample) {
ysr@777 5178 bool ret = true;
ysr@777 5179
ysr@777 5180 ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
ysr@777 5181 if (!ignore_scan_only_list) {
ysr@777 5182 NoYoungRegionsClosure closure;
ysr@777 5183 heap_region_iterate(&closure);
ysr@777 5184 ret = ret && closure.success();
ysr@777 5185 }
ysr@777 5186
ysr@777 5187 return ret;
ysr@777 5188 }
ysr@777 5189
ysr@777 5190 void G1CollectedHeap::empty_young_list() {
ysr@777 5191 assert(heap_lock_held_for_gc(),
ysr@777 5192 "the heap lock should already be held by or for this thread");
ysr@777 5193 assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
ysr@777 5194
ysr@777 5195 _young_list->empty_list();
ysr@777 5196 }
ysr@777 5197
ysr@777 5198 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
ysr@777 5199 bool no_allocs = true;
ysr@777 5200 for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
ysr@777 5201 HeapRegion* r = _gc_alloc_regions[ap];
ysr@777 5202 no_allocs = r == NULL || r->saved_mark_at_top();
ysr@777 5203 }
ysr@777 5204 return no_allocs;
ysr@777 5205 }
ysr@777 5206
apetrusenko@980 5207 void G1CollectedHeap::retire_all_alloc_regions() {
ysr@777 5208 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
ysr@777 5209 HeapRegion* r = _gc_alloc_regions[ap];
ysr@777 5210 if (r != NULL) {
ysr@777 5211 // Check for aliases.
ysr@777 5212 bool has_processed_alias = false;
ysr@777 5213 for (int i = 0; i < ap; ++i) {
ysr@777 5214 if (_gc_alloc_regions[i] == r) {
ysr@777 5215 has_processed_alias = true;
ysr@777 5216 break;
ysr@777 5217 }
ysr@777 5218 }
ysr@777 5219 if (!has_processed_alias) {
apetrusenko@980 5220 retire_alloc_region(r, false /* par */);
ysr@777 5221 }
ysr@777 5222 }
ysr@777 5223 }
ysr@777 5224 }
ysr@777 5225
ysr@777 5226
ysr@777 5227 // Done at the start of full GC.
ysr@777 5228 void G1CollectedHeap::tear_down_region_lists() {
ysr@777 5229 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 5230 while (pop_unclean_region_list_locked() != NULL) ;
ysr@777 5231 assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
ysr@777 5232 "Postconditions of loop.")
ysr@777 5233 while (pop_free_region_list_locked() != NULL) ;
ysr@777 5234 assert(_free_region_list == NULL, "Postcondition of loop.");
ysr@777 5235 if (_free_region_list_size != 0) {
ysr@777 5236 gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
ysr@777 5237 print();
ysr@777 5238 }
ysr@777 5239 assert(_free_region_list_size == 0, "Postconditions of loop.");
ysr@777 5240 }
ysr@777 5241
ysr@777 5242
ysr@777 5243 class RegionResetter: public HeapRegionClosure {
ysr@777 5244 G1CollectedHeap* _g1;
ysr@777 5245 int _n;
ysr@777 5246 public:
ysr@777 5247 RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
ysr@777 5248 bool doHeapRegion(HeapRegion* r) {
ysr@777 5249 if (r->continuesHumongous()) return false;
ysr@777 5250 if (r->top() > r->bottom()) {
ysr@777 5251 if (r->top() < r->end()) {
ysr@777 5252 Copy::fill_to_words(r->top(),
ysr@777 5253 pointer_delta(r->end(), r->top()));
ysr@777 5254 }
ysr@777 5255 r->set_zero_fill_allocated();
ysr@777 5256 } else {
ysr@777 5257 assert(r->is_empty(), "tautology");
apetrusenko@1112 5258 _n++;
apetrusenko@1112 5259 switch (r->zero_fill_state()) {
ysr@777 5260 case HeapRegion::NotZeroFilled:
ysr@777 5261 case HeapRegion::ZeroFilling:
ysr@777 5262 _g1->put_region_on_unclean_list_locked(r);
ysr@777 5263 break;
ysr@777 5264 case HeapRegion::Allocated:
ysr@777 5265 r->set_zero_fill_complete();
ysr@777 5266 // no break; go on to put on free list.
ysr@777 5267 case HeapRegion::ZeroFilled:
ysr@777 5268 _g1->put_free_region_on_list_locked(r);
ysr@777 5269 break;
ysr@777 5270 }
ysr@777 5271 }
ysr@777 5272 return false;
ysr@777 5273 }
ysr@777 5274
ysr@777 5275 int getFreeRegionCount() {return _n;}
ysr@777 5276 };
ysr@777 5277
ysr@777 5278 // Done at the end of full GC.
ysr@777 5279 void G1CollectedHeap::rebuild_region_lists() {
ysr@777 5280 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 5281 // This needs to go at the end of the full GC.
ysr@777 5282 RegionResetter rs;
ysr@777 5283 heap_region_iterate(&rs);
ysr@777 5284 _free_regions = rs.getFreeRegionCount();
ysr@777 5285 // Tell the ZF thread it may have work to do.
ysr@777 5286 if (should_zf()) ZF_mon->notify_all();
ysr@777 5287 }
ysr@777 5288
ysr@777 5289 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
ysr@777 5290 G1CollectedHeap* _g1;
ysr@777 5291 int _n;
ysr@777 5292 public:
ysr@777 5293 UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
ysr@777 5294 bool doHeapRegion(HeapRegion* r) {
ysr@777 5295 if (r->continuesHumongous()) return false;
ysr@777 5296 if (r->top() > r->bottom()) {
ysr@777 5297 // There are assertions in "set_zero_fill_needed()" below that
ysr@777 5298 // require top() == bottom(), so this is technically illegal.
ysr@777 5299 // We'll skirt the law here, by making that true temporarily.
ysr@777 5300 DEBUG_ONLY(HeapWord* save_top = r->top();
ysr@777 5301 r->set_top(r->bottom()));
ysr@777 5302 r->set_zero_fill_needed();
ysr@777 5303 DEBUG_ONLY(r->set_top(save_top));
ysr@777 5304 }
ysr@777 5305 return false;
ysr@777 5306 }
ysr@777 5307 };
ysr@777 5308
ysr@777 5309 // Done at the start of full GC.
ysr@777 5310 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
ysr@777 5311 MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
ysr@777 5312 // This needs to go at the end of the full GC.
ysr@777 5313 UsedRegionsNeedZeroFillSetter rs;
ysr@777 5314 heap_region_iterate(&rs);
ysr@777 5315 }
ysr@777 5316
ysr@777 5317 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
ysr@777 5318 _refine_cte_cl->set_concurrent(concurrent);
ysr@777 5319 }
ysr@777 5320
ysr@777 5321 #ifndef PRODUCT
ysr@777 5322
ysr@777 5323 class PrintHeapRegionClosure: public HeapRegionClosure {
ysr@777 5324 public:
ysr@777 5325 bool doHeapRegion(HeapRegion *r) {
ysr@777 5326 gclog_or_tty->print("Region: "PTR_FORMAT":", r);
ysr@777 5327 if (r != NULL) {
ysr@777 5328 if (r->is_on_free_list())
ysr@777 5329 gclog_or_tty->print("Free ");
ysr@777 5330 if (r->is_young())
ysr@777 5331 gclog_or_tty->print("Young ");
ysr@777 5332 if (r->isHumongous())
ysr@777 5333 gclog_or_tty->print("Is Humongous ");
ysr@777 5334 r->print();
ysr@777 5335 }
ysr@777 5336 return false;
ysr@777 5337 }
ysr@777 5338 };
ysr@777 5339
ysr@777 5340 class SortHeapRegionClosure : public HeapRegionClosure {
ysr@777 5341 size_t young_regions,free_regions, unclean_regions;
ysr@777 5342 size_t hum_regions, count;
ysr@777 5343 size_t unaccounted, cur_unclean, cur_alloc;
ysr@777 5344 size_t total_free;
ysr@777 5345 HeapRegion* cur;
ysr@777 5346 public:
ysr@777 5347 SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
ysr@777 5348 free_regions(0), unclean_regions(0),
ysr@777 5349 hum_regions(0),
ysr@777 5350 count(0), unaccounted(0),
ysr@777 5351 cur_alloc(0), total_free(0)
ysr@777 5352 {}
ysr@777 5353 bool doHeapRegion(HeapRegion *r) {
ysr@777 5354 count++;
ysr@777 5355 if (r->is_on_free_list()) free_regions++;
ysr@777 5356 else if (r->is_on_unclean_list()) unclean_regions++;
ysr@777 5357 else if (r->isHumongous()) hum_regions++;
ysr@777 5358 else if (r->is_young()) young_regions++;
ysr@777 5359 else if (r == cur) cur_alloc++;
ysr@777 5360 else unaccounted++;
ysr@777 5361 return false;
ysr@777 5362 }
ysr@777 5363 void print() {
ysr@777 5364 total_free = free_regions + unclean_regions;
ysr@777 5365 gclog_or_tty->print("%d regions\n", count);
ysr@777 5366 gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
ysr@777 5367 total_free, free_regions, unclean_regions);
ysr@777 5368 gclog_or_tty->print("%d humongous %d young\n",
ysr@777 5369 hum_regions, young_regions);
ysr@777 5370 gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
ysr@777 5371 gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
ysr@777 5372 }
ysr@777 5373 };
ysr@777 5374
ysr@777 5375 void G1CollectedHeap::print_region_counts() {
ysr@777 5376 SortHeapRegionClosure sc(_cur_alloc_region);
ysr@777 5377 PrintHeapRegionClosure cl;
ysr@777 5378 heap_region_iterate(&cl);
ysr@777 5379 heap_region_iterate(&sc);
ysr@777 5380 sc.print();
ysr@777 5381 print_region_accounting_info();
ysr@777 5382 };
ysr@777 5383
ysr@777 5384 bool G1CollectedHeap::regions_accounted_for() {
ysr@777 5385 // TODO: regions accounting for young/survivor/tenured
ysr@777 5386 return true;
ysr@777 5387 }
ysr@777 5388
ysr@777 5389 bool G1CollectedHeap::print_region_accounting_info() {
ysr@777 5390 gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
ysr@777 5391 free_regions(),
ysr@777 5392 count_free_regions(), count_free_regions_list(),
ysr@777 5393 _free_region_list_size, _unclean_region_list.sz());
ysr@777 5394 gclog_or_tty->print_cr("cur_alloc: %d.",
ysr@777 5395 (_cur_alloc_region == NULL ? 0 : 1));
ysr@777 5396 gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
ysr@777 5397
ysr@777 5398 // TODO: check regions accounting for young/survivor/tenured
ysr@777 5399 return true;
ysr@777 5400 }
ysr@777 5401
ysr@777 5402 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
ysr@777 5403 HeapRegion* hr = heap_region_containing(p);
ysr@777 5404 if (hr == NULL) {
ysr@777 5405 return is_in_permanent(p);
ysr@777 5406 } else {
ysr@777 5407 return hr->is_in(p);
ysr@777 5408 }
ysr@777 5409 }
ysr@777 5410 #endif // PRODUCT
ysr@777 5411
ysr@777 5412 void G1CollectedHeap::g1_unimplemented() {
ysr@777 5413 // Unimplemented();
ysr@777 5414 }
ysr@777 5415
ysr@777 5416
ysr@777 5417 // Local Variables: ***
ysr@777 5418 // c-indentation-style: gnu ***
ysr@777 5419 // End: ***

mercurial