src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Fri, 18 Feb 2011 10:07:34 -0800

author
johnc
date
Fri, 18 Feb 2011 10:07:34 -0800
changeset 2718
8f1042ff784d
parent 2717
371bbc844bf1
child 2817
49a67202bc67
permissions
-rw-r--r--

7020042: G1: Partially remove fix for 6994628
Summary: Disable reference discovery and processing during concurrent marking by disabling fix for 6994628.
Reviewed-by: tonyp, ysr

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
tonyp@2715 29 #include "gc_implementation/g1/g1AllocRegion.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1RemSet.hpp"
tonyp@2472 31 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 32 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
stefank@2314 33 #include "memory/barrierSet.hpp"
stefank@2314 34 #include "memory/memRegion.hpp"
stefank@2314 35 #include "memory/sharedHeap.hpp"
stefank@2314 36
ysr@777 37 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 38 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 39 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 40 // heap subsets that will yield large amounts of garbage.
ysr@777 41
ysr@777 42 class HeapRegion;
ysr@777 43 class HeapRegionSeq;
tonyp@2493 44 class HRRSCleanupTask;
ysr@777 45 class PermanentGenerationSpec;
ysr@777 46 class GenerationSpec;
ysr@777 47 class OopsInHeapRegionClosure;
ysr@777 48 class G1ScanHeapEvacClosure;
ysr@777 49 class ObjectClosure;
ysr@777 50 class SpaceClosure;
ysr@777 51 class CompactibleSpaceClosure;
ysr@777 52 class Space;
ysr@777 53 class G1CollectorPolicy;
ysr@777 54 class GenRemSet;
ysr@777 55 class G1RemSet;
ysr@777 56 class HeapRegionRemSetIterator;
ysr@777 57 class ConcurrentMark;
ysr@777 58 class ConcurrentMarkThread;
ysr@777 59 class ConcurrentG1Refine;
ysr@777 60
jcoomes@2064 61 typedef OverflowTaskQueue<StarTask> RefToScanQueue;
jcoomes@1746 62 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
ysr@777 63
johnc@1242 64 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 65 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 66
ysr@777 67 enum GCAllocPurpose {
ysr@777 68 GCAllocForTenured,
ysr@777 69 GCAllocForSurvived,
ysr@777 70 GCAllocPurposeCount
ysr@777 71 };
ysr@777 72
ysr@777 73 class YoungList : public CHeapObj {
ysr@777 74 private:
ysr@777 75 G1CollectedHeap* _g1h;
ysr@777 76
ysr@777 77 HeapRegion* _head;
ysr@777 78
johnc@1829 79 HeapRegion* _survivor_head;
johnc@1829 80 HeapRegion* _survivor_tail;
johnc@1829 81
johnc@1829 82 HeapRegion* _curr;
johnc@1829 83
ysr@777 84 size_t _length;
johnc@1829 85 size_t _survivor_length;
ysr@777 86
ysr@777 87 size_t _last_sampled_rs_lengths;
ysr@777 88 size_t _sampled_rs_lengths;
ysr@777 89
johnc@1829 90 void empty_list(HeapRegion* list);
ysr@777 91
ysr@777 92 public:
ysr@777 93 YoungList(G1CollectedHeap* g1h);
ysr@777 94
johnc@1829 95 void push_region(HeapRegion* hr);
johnc@1829 96 void add_survivor_region(HeapRegion* hr);
johnc@1829 97
johnc@1829 98 void empty_list();
johnc@1829 99 bool is_empty() { return _length == 0; }
johnc@1829 100 size_t length() { return _length; }
johnc@1829 101 size_t survivor_length() { return _survivor_length; }
ysr@777 102
ysr@777 103 void rs_length_sampling_init();
ysr@777 104 bool rs_length_sampling_more();
ysr@777 105 void rs_length_sampling_next();
ysr@777 106
ysr@777 107 void reset_sampled_info() {
ysr@777 108 _last_sampled_rs_lengths = 0;
ysr@777 109 }
ysr@777 110 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 111
ysr@777 112 // for development purposes
ysr@777 113 void reset_auxilary_lists();
johnc@1829 114 void clear() { _head = NULL; _length = 0; }
johnc@1829 115
johnc@1829 116 void clear_survivors() {
johnc@1829 117 _survivor_head = NULL;
johnc@1829 118 _survivor_tail = NULL;
johnc@1829 119 _survivor_length = 0;
johnc@1829 120 }
johnc@1829 121
ysr@777 122 HeapRegion* first_region() { return _head; }
ysr@777 123 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 124 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 125
ysr@777 126 // debugging
ysr@777 127 bool check_list_well_formed();
johnc@1829 128 bool check_list_empty(bool check_sample = true);
ysr@777 129 void print();
ysr@777 130 };
ysr@777 131
tonyp@2715 132 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 133 protected:
tonyp@2715 134 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 135 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 136 public:
tonyp@2715 137 MutatorAllocRegion()
tonyp@2715 138 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 139 };
tonyp@2715 140
ysr@777 141 class RefineCardTableEntryClosure;
ysr@777 142 class G1CollectedHeap : public SharedHeap {
ysr@777 143 friend class VM_G1CollectForAllocation;
ysr@777 144 friend class VM_GenCollectForPermanentAllocation;
ysr@777 145 friend class VM_G1CollectFull;
ysr@777 146 friend class VM_G1IncCollectionPause;
ysr@777 147 friend class VMStructs;
tonyp@2715 148 friend class MutatorAllocRegion;
ysr@777 149
ysr@777 150 // Closures used in implementation.
ysr@777 151 friend class G1ParCopyHelper;
ysr@777 152 friend class G1IsAliveClosure;
ysr@777 153 friend class G1EvacuateFollowersClosure;
ysr@777 154 friend class G1ParScanThreadState;
ysr@777 155 friend class G1ParScanClosureSuper;
ysr@777 156 friend class G1ParEvacuateFollowersClosure;
ysr@777 157 friend class G1ParTask;
ysr@777 158 friend class G1FreeGarbageRegionClosure;
ysr@777 159 friend class RefineCardTableEntryClosure;
ysr@777 160 friend class G1PrepareCompactClosure;
ysr@777 161 friend class RegionSorter;
tonyp@2472 162 friend class RegionResetter;
ysr@777 163 friend class CountRCClosure;
ysr@777 164 friend class EvacPopObjClosure;
apetrusenko@1231 165 friend class G1ParCleanupCTTask;
ysr@777 166
ysr@777 167 // Other related classes.
ysr@777 168 friend class G1MarkSweep;
ysr@777 169
ysr@777 170 private:
ysr@777 171 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 172 static G1CollectedHeap* _g1h;
ysr@777 173
tonyp@1377 174 static size_t _humongous_object_threshold_in_words;
tonyp@1377 175
ysr@777 176 // Storage for the G1 heap (excludes the permanent generation).
ysr@777 177 VirtualSpace _g1_storage;
ysr@777 178 MemRegion _g1_reserved;
ysr@777 179
ysr@777 180 // The part of _g1_storage that is currently committed.
ysr@777 181 MemRegion _g1_committed;
ysr@777 182
ysr@777 183 // The maximum part of _g1_storage that has ever been committed.
ysr@777 184 MemRegion _g1_max_committed;
ysr@777 185
tonyp@2472 186 // The master free list. It will satisfy all new region allocations.
tonyp@2472 187 MasterFreeRegionList _free_list;
tonyp@2472 188
tonyp@2472 189 // The secondary free list which contains regions that have been
tonyp@2472 190 // freed up during the cleanup process. This will be appended to the
tonyp@2472 191 // master free list when appropriate.
tonyp@2472 192 SecondaryFreeRegionList _secondary_free_list;
tonyp@2472 193
tonyp@2472 194 // It keeps track of the humongous regions.
tonyp@2472 195 MasterHumongousRegionSet _humongous_set;
ysr@777 196
ysr@777 197 // The number of regions we could create by expansion.
ysr@777 198 size_t _expansion_regions;
ysr@777 199
ysr@777 200 // The block offset table for the G1 heap.
ysr@777 201 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 202
ysr@777 203 // Move all of the regions off the free lists, then rebuild those free
ysr@777 204 // lists, before and after full GC.
ysr@777 205 void tear_down_region_lists();
ysr@777 206 void rebuild_region_lists();
ysr@777 207
ysr@777 208 // The sequence of all heap regions in the heap.
ysr@777 209 HeapRegionSeq* _hrs;
ysr@777 210
tonyp@2715 211 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 212 MutatorAllocRegion _mutator_alloc_region;
ysr@777 213
tonyp@2715 214 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 215 void init_mutator_alloc_region();
tonyp@2715 216
tonyp@2715 217 // It releases the mutator alloc region.
tonyp@2715 218 void release_mutator_alloc_region();
tonyp@2715 219
tonyp@1071 220 void abandon_gc_alloc_regions();
ysr@777 221
ysr@777 222 // The to-space memory regions into which objects are being copied during
ysr@777 223 // a GC.
ysr@777 224 HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
apetrusenko@980 225 size_t _gc_alloc_region_counts[GCAllocPurposeCount];
tonyp@1071 226 // These are the regions, one per GCAllocPurpose, that are half-full
tonyp@1071 227 // at the end of a collection and that we want to reuse during the
tonyp@1071 228 // next collection.
tonyp@1071 229 HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
tonyp@1071 230 // This specifies whether we will keep the last half-full region at
tonyp@1071 231 // the end of a collection so that it can be reused during the next
tonyp@1071 232 // collection (this is specified per GCAllocPurpose)
tonyp@1071 233 bool _retain_gc_alloc_region[GCAllocPurposeCount];
ysr@777 234
ysr@777 235 // A list of the regions that have been set to be alloc regions in the
ysr@777 236 // current collection.
ysr@777 237 HeapRegion* _gc_alloc_region_list;
ysr@777 238
apetrusenko@1826 239 // Determines PLAB size for a particular allocation purpose.
apetrusenko@1826 240 static size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 241
tonyp@2472 242 // When called by par thread, requires the FreeList_lock to be held.
ysr@777 243 void push_gc_alloc_region(HeapRegion* hr);
ysr@777 244
ysr@777 245 // This should only be called single-threaded. Undeclares all GC alloc
ysr@777 246 // regions.
ysr@777 247 void forget_alloc_region_list();
ysr@777 248
ysr@777 249 // Should be used to set an alloc region, because there's other
ysr@777 250 // associated bookkeeping.
ysr@777 251 void set_gc_alloc_region(int purpose, HeapRegion* r);
ysr@777 252
ysr@777 253 // Check well-formedness of alloc region list.
ysr@777 254 bool check_gc_alloc_regions();
ysr@777 255
ysr@777 256 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 257 // than the current allocation region.
ysr@777 258 size_t _summary_bytes_used;
ysr@777 259
tonyp@961 260 // This is used for a quick test on whether a reference points into
tonyp@961 261 // the collection set or not. Basically, we have an array, with one
tonyp@961 262 // byte per region, and that byte denotes whether the corresponding
tonyp@961 263 // region is in the collection set or not. The entry corresponding
tonyp@961 264 // the bottom of the heap, i.e., region 0, is pointed to by
tonyp@961 265 // _in_cset_fast_test_base. The _in_cset_fast_test field has been
tonyp@961 266 // biased so that it actually points to address 0 of the address
tonyp@961 267 // space, to make the test as fast as possible (we can simply shift
tonyp@961 268 // the address to address into it, instead of having to subtract the
tonyp@961 269 // bottom of the heap from the address before shifting it; basically
tonyp@961 270 // it works in the same way the card table works).
tonyp@961 271 bool* _in_cset_fast_test;
tonyp@961 272
tonyp@961 273 // The allocated array used for the fast test on whether a reference
tonyp@961 274 // points into the collection set or not. This field is also used to
tonyp@961 275 // free the array.
tonyp@961 276 bool* _in_cset_fast_test_base;
tonyp@961 277
tonyp@961 278 // The length of the _in_cset_fast_test_base array.
tonyp@961 279 size_t _in_cset_fast_test_length;
tonyp@961 280
iveresov@788 281 volatile unsigned _gc_time_stamp;
ysr@777 282
ysr@777 283 size_t* _surviving_young_words;
ysr@777 284
ysr@777 285 void setup_surviving_young_words();
ysr@777 286 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 287 void cleanup_surviving_young_words();
ysr@777 288
tonyp@2011 289 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 290 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 291 // explicitly started if:
tonyp@2011 292 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 293 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
tonyp@2011 294 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 295
tonyp@2011 296 // Keeps track of how many "full collections" (i.e., Full GCs or
tonyp@2011 297 // concurrent cycles) we have completed. The number of them we have
tonyp@2011 298 // started is maintained in _total_full_collections in CollectedHeap.
tonyp@2011 299 volatile unsigned int _full_collections_completed;
tonyp@2011 300
tonyp@2315 301 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 302 // line number, file, etc.
tonyp@2315 303
tonyp@2643 304 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 305 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 306 (_extra_message_), \
tonyp@2472 307 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 308 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 309 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 310
tonyp@2315 311 #define assert_heap_locked() \
tonyp@2315 312 do { \
tonyp@2315 313 assert(Heap_lock->owned_by_self(), \
tonyp@2315 314 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 315 } while (0)
tonyp@2315 316
tonyp@2643 317 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 318 do { \
tonyp@2315 319 assert(Heap_lock->owned_by_self() || \
tonyp@2472 320 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 321 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 322 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 323 "should be at a safepoint")); \
tonyp@2315 324 } while (0)
tonyp@2315 325
tonyp@2315 326 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 327 do { \
tonyp@2315 328 assert(Heap_lock->owned_by_self() && \
tonyp@2315 329 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 330 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 331 "should not be at a safepoint")); \
tonyp@2315 332 } while (0)
tonyp@2315 333
tonyp@2315 334 #define assert_heap_not_locked() \
tonyp@2315 335 do { \
tonyp@2315 336 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 337 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 338 } while (0)
tonyp@2315 339
tonyp@2315 340 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 341 do { \
tonyp@2315 342 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 343 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 344 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 345 "should not be at a safepoint")); \
tonyp@2315 346 } while (0)
tonyp@2315 347
tonyp@2643 348 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 349 do { \
tonyp@2472 350 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 351 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 352 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 353 } while (0)
tonyp@2315 354
tonyp@2315 355 #define assert_not_at_safepoint() \
tonyp@2315 356 do { \
tonyp@2315 357 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 358 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 359 } while (0)
tonyp@2315 360
ysr@777 361 protected:
ysr@777 362
ysr@777 363 // Returns "true" iff none of the gc alloc regions have any allocations
ysr@777 364 // since the last call to "save_marks".
ysr@777 365 bool all_alloc_regions_no_allocs_since_save_marks();
apetrusenko@980 366 // Perform finalization stuff on all allocation regions.
apetrusenko@980 367 void retire_all_alloc_regions();
ysr@777 368
ysr@777 369 // The number of regions allocated to hold humongous objects.
ysr@777 370 int _num_humongous_regions;
ysr@777 371 YoungList* _young_list;
ysr@777 372
ysr@777 373 // The current policy object for the collector.
ysr@777 374 G1CollectorPolicy* _g1_policy;
ysr@777 375
tonyp@2472 376 // This is the second level of trying to allocate a new region. If
tonyp@2715 377 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 378 // check whether there's anything available on the
tonyp@2715 379 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 380 // that list, if _free_regions_coming is set.
tonyp@2643 381 HeapRegion* new_region_try_secondary_free_list();
ysr@777 382
tonyp@2643 383 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 384 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 385 // attempt to expand the heap if necessary to satisfy the allocation
tonyp@2643 386 // request.
tonyp@2715 387 HeapRegion* new_region(size_t word_size, bool do_expand);
ysr@777 388
tonyp@2715 389 // Try to allocate a new region to be used for allocation by
tonyp@2715 390 // a GC thread. It will try to expand the heap if no region is
tonyp@2643 391 // available.
tonyp@2472 392 HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
tonyp@2472 393
tonyp@2643 394 // Attempt to satisfy a humongous allocation request of the given
tonyp@2643 395 // size by finding a contiguous set of free regions of num_regions
tonyp@2643 396 // length and remove them from the master free list. Return the
tonyp@2643 397 // index of the first region or -1 if the search was unsuccessful.
tonyp@2472 398 int humongous_obj_allocate_find_first(size_t num_regions, size_t word_size);
ysr@777 399
tonyp@2643 400 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 401 // and starting at index first so that they appear as a single
tonyp@2643 402 // humongous region.
tonyp@2643 403 HeapWord* humongous_obj_allocate_initialize_regions(int first,
tonyp@2643 404 size_t num_regions,
tonyp@2643 405 size_t word_size);
tonyp@2643 406
tonyp@2643 407 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 408 // NULL if unsuccessful.
tonyp@2472 409 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 410
tonyp@2315 411 // The following two methods, allocate_new_tlab() and
tonyp@2315 412 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 413 // into the G1's allocation routines. They have the following
tonyp@2315 414 // assumptions:
tonyp@2315 415 //
tonyp@2315 416 // * They should both be called outside safepoints.
tonyp@2315 417 //
tonyp@2315 418 // * They should both be called without holding the Heap_lock.
tonyp@2315 419 //
tonyp@2315 420 // * All allocation requests for new TLABs should go to
tonyp@2315 421 // allocate_new_tlab().
tonyp@2315 422 //
tonyp@2315 423 // * All non-TLAB allocation requests should go to mem_allocate()
tonyp@2315 424 // and mem_allocate() should never be called with is_tlab == true.
tonyp@2315 425 //
tonyp@2315 426 // * If either call cannot satisfy the allocation request using the
tonyp@2315 427 // current allocating region, they will try to get a new one. If
tonyp@2315 428 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 429 // retry the allocation.
tonyp@2315 430 //
tonyp@2315 431 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 432 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 433 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 434 // schedule a Full GC.
tonyp@2315 435 //
tonyp@2315 436 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 437 // should never be called with word_size being humongous. All
tonyp@2315 438 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 439 // will satisfy them with a special path.
ysr@777 440
tonyp@2315 441 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 442
tonyp@2315 443 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 444 bool is_noref,
tonyp@2315 445 bool is_tlab, /* expected to be false */
tonyp@2315 446 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 447
tonyp@2715 448 // The following three methods take a gc_count_before_ret
tonyp@2715 449 // parameter which is used to return the GC count if the method
tonyp@2715 450 // returns NULL. Given that we are required to read the GC count
tonyp@2715 451 // while holding the Heap_lock, and these paths will take the
tonyp@2715 452 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 453 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 454 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 455 // Heap_lock just to read the GC count.
tonyp@2315 456
tonyp@2715 457 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 458 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 459 // should only be used for non-humongous allocations.
tonyp@2715 460 inline HeapWord* attempt_allocation(size_t word_size,
tonyp@2715 461 unsigned int* gc_count_before_ret);
tonyp@2315 462
tonyp@2715 463 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 464 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 465 // pause. This should only be used for non-humongous allocations.
tonyp@2715 466 HeapWord* attempt_allocation_slow(size_t word_size,
tonyp@2715 467 unsigned int* gc_count_before_ret);
tonyp@2315 468
tonyp@2715 469 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 470 // potentially schedule a GC pause.
tonyp@2715 471 HeapWord* attempt_allocation_humongous(size_t word_size,
tonyp@2715 472 unsigned int* gc_count_before_ret);
tonyp@2454 473
tonyp@2715 474 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 475 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 476 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 477 // or not.
tonyp@2315 478 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 479 bool expect_null_mutator_alloc_region);
tonyp@2315 480
tonyp@2315 481 // It dirties the cards that cover the block so that so that the post
tonyp@2315 482 // write barrier never queues anything when updating objects on this
tonyp@2315 483 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 484 // belongs to a young region.
tonyp@2315 485 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 486
ysr@777 487 // Allocate blocks during garbage collection. Will ensure an
ysr@777 488 // allocation region, either by picking one or expanding the
ysr@777 489 // heap, and then allocate a block of the given size. The block
ysr@777 490 // may not be a humongous - it must fit into a single heap region.
ysr@777 491 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 492
ysr@777 493 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
ysr@777 494 HeapRegion* alloc_region,
ysr@777 495 bool par,
ysr@777 496 size_t word_size);
ysr@777 497
ysr@777 498 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 499 // that parallel threads might be attempting allocations.
ysr@777 500 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 501
apetrusenko@980 502 // Retires an allocation region when it is full or at the end of a
apetrusenko@980 503 // GC pause.
apetrusenko@980 504 void retire_alloc_region(HeapRegion* alloc_region, bool par);
apetrusenko@980 505
tonyp@2715 506 // These two methods are the "callbacks" from the G1AllocRegion class.
tonyp@2715 507
tonyp@2715 508 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 509 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 510 size_t allocated_bytes);
tonyp@2715 511
tonyp@2011 512 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 513 // inspection request and should collect the entire heap
tonyp@2315 514 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 515 // cleared during the GC
tonyp@2011 516 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 517 // the GC should attempt (at least) to satisfy
tonyp@2315 518 // - it returns false if it is unable to do the collection due to the
tonyp@2315 519 // GC locker being active, true otherwise
tonyp@2315 520 bool do_collection(bool explicit_gc,
tonyp@2011 521 bool clear_all_soft_refs,
ysr@777 522 size_t word_size);
ysr@777 523
ysr@777 524 // Callback from VM_G1CollectFull operation.
ysr@777 525 // Perform a full collection.
ysr@777 526 void do_full_collection(bool clear_all_soft_refs);
ysr@777 527
ysr@777 528 // Resize the heap if necessary after a full collection. If this is
ysr@777 529 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 530 // and will be considered part of the used portion of the heap.
ysr@777 531 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 532
ysr@777 533 // Callback from VM_G1CollectForAllocation operation.
ysr@777 534 // This function does everything necessary/possible to satisfy a
ysr@777 535 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 536 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 537
ysr@777 538 // Attempting to expand the heap sufficiently
ysr@777 539 // to support an allocation of the given "word_size". If
ysr@777 540 // successful, perform the allocation and return the address of the
ysr@777 541 // allocated block, or else "NULL".
tonyp@2315 542 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 543
ysr@777 544 public:
ysr@777 545 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 546 // Returns true if the heap was expanded by the requested amount;
johnc@2504 547 // false otherwise.
ysr@777 548 // (Rounds up to a HeapRegion boundary.)
johnc@2504 549 bool expand(size_t expand_bytes);
ysr@777 550
ysr@777 551 // Do anything common to GC's.
ysr@777 552 virtual void gc_prologue(bool full);
ysr@777 553 virtual void gc_epilogue(bool full);
ysr@777 554
tonyp@961 555 // We register a region with the fast "in collection set" test. We
tonyp@961 556 // simply set to true the array slot corresponding to this region.
tonyp@961 557 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tonyp@961 558 assert(_in_cset_fast_test_base != NULL, "sanity");
tonyp@961 559 assert(r->in_collection_set(), "invariant");
tonyp@961 560 int index = r->hrs_index();
johnc@1829 561 assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
tonyp@961 562 assert(!_in_cset_fast_test_base[index], "invariant");
tonyp@961 563 _in_cset_fast_test_base[index] = true;
tonyp@961 564 }
tonyp@961 565
tonyp@961 566 // This is a fast test on whether a reference points into the
tonyp@961 567 // collection set or not. It does not assume that the reference
tonyp@961 568 // points into the heap; if it doesn't, it will return false.
tonyp@961 569 bool in_cset_fast_test(oop obj) {
tonyp@961 570 assert(_in_cset_fast_test != NULL, "sanity");
tonyp@961 571 if (_g1_committed.contains((HeapWord*) obj)) {
tonyp@961 572 // no need to subtract the bottom of the heap from obj,
tonyp@961 573 // _in_cset_fast_test is biased
tonyp@961 574 size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
tonyp@961 575 bool ret = _in_cset_fast_test[index];
tonyp@961 576 // let's make sure the result is consistent with what the slower
tonyp@961 577 // test returns
tonyp@961 578 assert( ret || !obj_in_cs(obj), "sanity");
tonyp@961 579 assert(!ret || obj_in_cs(obj), "sanity");
tonyp@961 580 return ret;
tonyp@961 581 } else {
tonyp@961 582 return false;
tonyp@961 583 }
tonyp@961 584 }
tonyp@961 585
johnc@1829 586 void clear_cset_fast_test() {
johnc@1829 587 assert(_in_cset_fast_test_base != NULL, "sanity");
johnc@1829 588 memset(_in_cset_fast_test_base, false,
johnc@1829 589 _in_cset_fast_test_length * sizeof(bool));
johnc@1829 590 }
johnc@1829 591
tonyp@2011 592 // This is called at the end of either a concurrent cycle or a Full
tonyp@2011 593 // GC to update the number of full collections completed. Those two
tonyp@2011 594 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 595 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 596 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 597 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 598 // tighter consistency checking in the method. If concurrent is
tonyp@2372 599 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 600 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 601 // in this nesting (i.e., the concurrent cycle). Further nesting is
tonyp@2372 602 // not currently supported. The end of the this call also notifies
tonyp@2372 603 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 604 // GC to happen (e.g., it called System.gc() with
tonyp@2011 605 // +ExplicitGCInvokesConcurrent).
tonyp@2372 606 void increment_full_collections_completed(bool concurrent);
tonyp@2011 607
tonyp@2011 608 unsigned int full_collections_completed() {
tonyp@2011 609 return _full_collections_completed;
tonyp@2011 610 }
tonyp@2011 611
ysr@777 612 protected:
ysr@777 613
ysr@777 614 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 615 // (Rounds down to a HeapRegion boundary.)
ysr@777 616 virtual void shrink(size_t expand_bytes);
ysr@777 617 void shrink_helper(size_t expand_bytes);
ysr@777 618
jcoomes@2064 619 #if TASKQUEUE_STATS
jcoomes@2064 620 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 621 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 622 void reset_taskqueue_stats();
jcoomes@2064 623 #endif // TASKQUEUE_STATS
jcoomes@2064 624
tonyp@2315 625 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 626 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 627 // return whether the VM operation was successful (it did do an
tonyp@2315 628 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 629 // locker was active). Given that we should not be holding the
tonyp@2315 630 // Heap_lock when we enter this method, we will pass the
tonyp@2315 631 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 632 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 633 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 634 // before the call, so it's easy to read gc_count_before just before.
tonyp@2315 635 HeapWord* do_collection_pause(size_t word_size,
tonyp@2315 636 unsigned int gc_count_before,
tonyp@2315 637 bool* succeeded);
ysr@777 638
ysr@777 639 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 640 // thread. It returns false if it is unable to do the collection due
tonyp@2315 641 // to the GC locker being active, true otherwise
tonyp@2315 642 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 643
ysr@777 644 // Actually do the work of evacuating the collection set.
tonyp@2315 645 void evacuate_collection_set();
ysr@777 646
ysr@777 647 // The g1 remembered set of the heap.
ysr@777 648 G1RemSet* _g1_rem_set;
ysr@777 649 // And it's mod ref barrier set, used to track updates for the above.
ysr@777 650 ModRefBarrierSet* _mr_bs;
ysr@777 651
iveresov@1051 652 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 653 // concurrently after the collection.
iveresov@1051 654 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 655
ysr@777 656 // The Heap Region Rem Set Iterator.
ysr@777 657 HeapRegionRemSetIterator** _rem_set_iterator;
ysr@777 658
ysr@777 659 // The closure used to refine a single card.
ysr@777 660 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 661
ysr@777 662 // A function to check the consistency of dirty card logs.
ysr@777 663 void check_ct_logs_at_safepoint();
ysr@777 664
johnc@2060 665 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 666 // references into the current collection set. This is used to
johnc@2060 667 // update the remembered sets of the regions in the collection
johnc@2060 668 // set in the event of an evacuation failure.
johnc@2060 669 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 670
ysr@777 671 // After a collection pause, make the regions in the CS into free
ysr@777 672 // regions.
ysr@777 673 void free_collection_set(HeapRegion* cs_head);
ysr@777 674
johnc@1829 675 // Abandon the current collection set without recording policy
johnc@1829 676 // statistics or updating free lists.
johnc@1829 677 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 678
ysr@777 679 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 680 // "scan_rs" to roots inside the heap (having done "set_region" to
ysr@777 681 // indicate the region in which the root resides), and does "scan_perm"
ysr@777 682 // (setting the generation to the perm generation.) If "scan_rs" is
ysr@777 683 // NULL, then this step is skipped. The "worker_i"
ysr@777 684 // param is for use with parallel roots processing, and should be
ysr@777 685 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 686 // In the sequential case this param will be ignored.
ysr@777 687 void g1_process_strong_roots(bool collecting_perm_gen,
ysr@777 688 SharedHeap::ScanningOption so,
ysr@777 689 OopClosure* scan_non_heap_roots,
ysr@777 690 OopsInHeapRegionClosure* scan_rs,
ysr@777 691 OopsInGenClosure* scan_perm,
ysr@777 692 int worker_i);
ysr@777 693
ysr@777 694 // Apply "blk" to all the weak roots of the system. These include
ysr@777 695 // JNI weak roots, the code cache, system dictionary, symbol table,
ysr@777 696 // string table, and referents of reachable weak refs.
ysr@777 697 void g1_process_weak_roots(OopClosure* root_closure,
ysr@777 698 OopClosure* non_root_closure);
ysr@777 699
ysr@777 700 // Invoke "save_marks" on all heap regions.
ysr@777 701 void save_marks();
ysr@777 702
tonyp@2643 703 // Frees a non-humongous region by initializing its contents and
tonyp@2472 704 // adding it to the free list that's passed as a parameter (this is
tonyp@2472 705 // usually a local list which will be appended to the master free
tonyp@2472 706 // list later). The used bytes of freed regions are accumulated in
tonyp@2472 707 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2472 708 // up. The assumption is that this will be done later.
tonyp@2472 709 void free_region(HeapRegion* hr,
tonyp@2472 710 size_t* pre_used,
tonyp@2472 711 FreeRegionList* free_list,
tonyp@2472 712 bool par);
ysr@777 713
tonyp@2643 714 // Frees a humongous region by collapsing it into individual regions
tonyp@2643 715 // and calling free_region() for each of them. The freed regions
tonyp@2643 716 // will be added to the free list that's passed as a parameter (this
tonyp@2643 717 // is usually a local list which will be appended to the master free
tonyp@2643 718 // list later). The used bytes of freed regions are accumulated in
tonyp@2643 719 // pre_used. If par is true, the region's RSet will not be freed
tonyp@2643 720 // up. The assumption is that this will be done later.
tonyp@2472 721 void free_humongous_region(HeapRegion* hr,
tonyp@2472 722 size_t* pre_used,
tonyp@2472 723 FreeRegionList* free_list,
tonyp@2472 724 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 725 bool par);
ysr@777 726
ysr@777 727 // The concurrent marker (and the thread it runs in.)
ysr@777 728 ConcurrentMark* _cm;
ysr@777 729 ConcurrentMarkThread* _cmThread;
ysr@777 730 bool _mark_in_progress;
ysr@777 731
ysr@777 732 // The concurrent refiner.
ysr@777 733 ConcurrentG1Refine* _cg1r;
ysr@777 734
ysr@777 735 // The parallel task queues
ysr@777 736 RefToScanQueueSet *_task_queues;
ysr@777 737
ysr@777 738 // True iff a evacuation has failed in the current collection.
ysr@777 739 bool _evacuation_failed;
ysr@777 740
ysr@777 741 // Set the attribute indicating whether evacuation has failed in the
ysr@777 742 // current collection.
ysr@777 743 void set_evacuation_failed(bool b) { _evacuation_failed = b; }
ysr@777 744
ysr@777 745 // Failed evacuations cause some logical from-space objects to have
ysr@777 746 // forwarding pointers to themselves. Reset them.
ysr@777 747 void remove_self_forwarding_pointers();
ysr@777 748
ysr@777 749 // When one is non-null, so is the other. Together, they each pair is
ysr@777 750 // an object with a preserved mark, and its mark value.
ysr@777 751 GrowableArray<oop>* _objs_with_preserved_marks;
ysr@777 752 GrowableArray<markOop>* _preserved_marks_of_objs;
ysr@777 753
ysr@777 754 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 755 // word being overwritten with a self-forwarding-pointer.
ysr@777 756 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 757
ysr@777 758 // The stack of evac-failure objects left to be scanned.
ysr@777 759 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 760 // The closure to apply to evac-failure objects.
ysr@777 761
ysr@777 762 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 763 // Set the field above.
ysr@777 764 void
ysr@777 765 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 766 _evac_failure_closure = evac_failure_closure;
ysr@777 767 }
ysr@777 768
ysr@777 769 // Push "obj" on the scan stack.
ysr@777 770 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 771 // Process scan stack entries until the stack is empty.
ysr@777 772 void drain_evac_failure_scan_stack();
ysr@777 773 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 774 // prevent unnecessary recursion.
ysr@777 775 bool _drain_in_progress;
ysr@777 776
ysr@777 777 // Do any necessary initialization for evacuation-failure handling.
ysr@777 778 // "cl" is the closure that will be used to process evac-failure
ysr@777 779 // objects.
ysr@777 780 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 781 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 782 // structures.
ysr@777 783 void finalize_for_evac_failure();
ysr@777 784
ysr@777 785 // An attempt to evacuate "obj" has failed; take necessary steps.
ysr@777 786 oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
ysr@777 787 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 788
ysr@777 789
ysr@777 790 // Ensure that the relevant gc_alloc regions are set.
ysr@777 791 void get_gc_alloc_regions();
tonyp@1071 792 // We're done with GC alloc regions. We are going to tear down the
tonyp@1071 793 // gc alloc list and remove the gc alloc tag from all the regions on
tonyp@1071 794 // that list. However, we will also retain the last (i.e., the one
tonyp@1071 795 // that is half-full) GC alloc region, per GCAllocPurpose, for
tonyp@1071 796 // possible reuse during the next collection, provided
tonyp@1071 797 // _retain_gc_alloc_region[] indicates that it should be the
tonyp@1071 798 // case. Said regions are kept in the _retained_gc_alloc_regions[]
tonyp@1071 799 // array. If the parameter totally is set, we will not retain any
tonyp@1071 800 // regions, irrespective of what _retain_gc_alloc_region[]
tonyp@1071 801 // indicates.
tonyp@1071 802 void release_gc_alloc_regions(bool totally);
tonyp@1071 803 #ifndef PRODUCT
tonyp@1071 804 // Useful for debugging.
tonyp@1071 805 void print_gc_alloc_regions();
tonyp@1071 806 #endif // !PRODUCT
ysr@777 807
johnc@2379 808 // Instance of the concurrent mark is_alive closure for embedding
johnc@2379 809 // into the reference processor as the is_alive_non_header. This
johnc@2379 810 // prevents unnecessary additions to the discovered lists during
johnc@2379 811 // concurrent discovery.
johnc@2379 812 G1CMIsAliveClosure _is_alive_closure;
johnc@2379 813
ysr@777 814 // ("Weak") Reference processing support
ysr@777 815 ReferenceProcessor* _ref_processor;
ysr@777 816
ysr@777 817 enum G1H_process_strong_roots_tasks {
ysr@777 818 G1H_PS_mark_stack_oops_do,
ysr@777 819 G1H_PS_refProcessor_oops_do,
ysr@777 820 // Leave this one last.
ysr@777 821 G1H_PS_NumElements
ysr@777 822 };
ysr@777 823
ysr@777 824 SubTasksDone* _process_strong_tasks;
ysr@777 825
tonyp@2472 826 volatile bool _free_regions_coming;
ysr@777 827
ysr@777 828 public:
jmasa@2188 829
jmasa@2188 830 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 831
ysr@777 832 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 833
jcoomes@2064 834 RefToScanQueue *task_queue(int i) const;
ysr@777 835
iveresov@1051 836 // A set of cards where updates happened during the GC
iveresov@1051 837 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 838
johnc@2060 839 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 840 // references into the current collection set. This is used to
johnc@2060 841 // update the remembered sets of the regions in the collection
johnc@2060 842 // set in the event of an evacuation failure.
johnc@2060 843 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 844 { return _into_cset_dirty_card_queue_set; }
johnc@2060 845
ysr@777 846 // Create a G1CollectedHeap with the specified policy.
ysr@777 847 // Must call the initialize method afterwards.
ysr@777 848 // May not return if something goes wrong.
ysr@777 849 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 850
ysr@777 851 // Initialize the G1CollectedHeap to have the initial and
ysr@777 852 // maximum sizes, permanent generation, and remembered and barrier sets
ysr@777 853 // specified by the policy object.
ysr@777 854 jint initialize();
ysr@777 855
johnc@2379 856 virtual void ref_processing_init();
ysr@777 857
ysr@777 858 void set_par_threads(int t) {
ysr@777 859 SharedHeap::set_par_threads(t);
jmasa@2188 860 _process_strong_tasks->set_n_threads(t);
ysr@777 861 }
ysr@777 862
ysr@777 863 virtual CollectedHeap::Name kind() const {
ysr@777 864 return CollectedHeap::G1CollectedHeap;
ysr@777 865 }
ysr@777 866
ysr@777 867 // The current policy object for the collector.
ysr@777 868 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 869
ysr@777 870 // Adaptive size policy. No such thing for g1.
ysr@777 871 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 872
ysr@777 873 // The rem set and barrier set.
ysr@777 874 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 875 ModRefBarrierSet* mr_bs() const { return _mr_bs; }
ysr@777 876
ysr@777 877 // The rem set iterator.
ysr@777 878 HeapRegionRemSetIterator* rem_set_iterator(int i) {
ysr@777 879 return _rem_set_iterator[i];
ysr@777 880 }
ysr@777 881
ysr@777 882 HeapRegionRemSetIterator* rem_set_iterator() {
ysr@777 883 return _rem_set_iterator[0];
ysr@777 884 }
ysr@777 885
ysr@777 886 unsigned get_gc_time_stamp() {
ysr@777 887 return _gc_time_stamp;
ysr@777 888 }
ysr@777 889
ysr@777 890 void reset_gc_time_stamp() {
ysr@777 891 _gc_time_stamp = 0;
iveresov@788 892 OrderAccess::fence();
iveresov@788 893 }
iveresov@788 894
iveresov@788 895 void increment_gc_time_stamp() {
iveresov@788 896 ++_gc_time_stamp;
iveresov@788 897 OrderAccess::fence();
ysr@777 898 }
ysr@777 899
johnc@2060 900 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 901 DirtyCardQueue* into_cset_dcq,
johnc@2060 902 bool concurrent, int worker_i);
ysr@777 903
ysr@777 904 // The shared block offset table array.
ysr@777 905 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 906
ysr@777 907 // Reference Processing accessor
ysr@777 908 ReferenceProcessor* ref_processor() { return _ref_processor; }
ysr@777 909
ysr@777 910 virtual size_t capacity() const;
ysr@777 911 virtual size_t used() const;
tonyp@1281 912 // This should be called when we're not holding the heap lock. The
tonyp@1281 913 // result might be a bit inaccurate.
tonyp@1281 914 size_t used_unlocked() const;
ysr@777 915 size_t recalculate_used() const;
ysr@777 916 #ifndef PRODUCT
ysr@777 917 size_t recalculate_used_regions() const;
ysr@777 918 #endif // PRODUCT
ysr@777 919
ysr@777 920 // These virtual functions do the actual allocation.
ysr@777 921 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 922 // allocation, via inlined code (by exporting the address of the top and
ysr@777 923 // end fields defining the extent of the contiguous allocation region.)
ysr@777 924 // But G1CollectedHeap doesn't yet support this.
ysr@777 925
ysr@777 926 // Return an estimate of the maximum allocation that could be performed
ysr@777 927 // without triggering any collection or expansion activity. In a
ysr@777 928 // generational collector, for example, this is probably the largest
ysr@777 929 // allocation that could be supported (without expansion) in the youngest
ysr@777 930 // generation. It is "unsafe" because no locks are taken; the result
ysr@777 931 // should be treated as an approximation, not a guarantee, for use in
ysr@777 932 // heuristic resizing decisions.
ysr@777 933 virtual size_t unsafe_max_alloc();
ysr@777 934
ysr@777 935 virtual bool is_maximal_no_gc() const {
ysr@777 936 return _g1_storage.uncommitted_size() == 0;
ysr@777 937 }
ysr@777 938
ysr@777 939 // The total number of regions in the heap.
ysr@777 940 size_t n_regions();
ysr@777 941
ysr@777 942 // The number of regions that are completely free.
ysr@777 943 size_t max_regions();
ysr@777 944
ysr@777 945 // The number of regions that are completely free.
tonyp@2472 946 size_t free_regions() {
tonyp@2472 947 return _free_list.length();
tonyp@2472 948 }
ysr@777 949
ysr@777 950 // The number of regions that are not completely free.
ysr@777 951 size_t used_regions() { return n_regions() - free_regions(); }
ysr@777 952
ysr@777 953 // The number of regions available for "regular" expansion.
ysr@777 954 size_t expansion_regions() { return _expansion_regions; }
ysr@777 955
tonyp@2715 956 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 957 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 958
tonyp@2472 959 // verify_region_sets() performs verification over the region
tonyp@2472 960 // lists. It will be compiled in the product code to be used when
tonyp@2472 961 // necessary (i.e., during heap verification).
tonyp@2472 962 void verify_region_sets();
ysr@777 963
tonyp@2472 964 // verify_region_sets_optional() is planted in the code for
tonyp@2472 965 // list verification in non-product builds (and it can be enabled in
tonyp@2472 966 // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 967 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 968 void verify_region_sets_optional() {
tonyp@2472 969 verify_region_sets();
tonyp@2472 970 }
tonyp@2472 971 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 972 void verify_region_sets_optional() { }
tonyp@2472 973 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 974
tonyp@2472 975 #ifdef ASSERT
tonyp@2643 976 bool is_on_master_free_list(HeapRegion* hr) {
tonyp@2472 977 return hr->containing_set() == &_free_list;
tonyp@2472 978 }
ysr@777 979
tonyp@2643 980 bool is_in_humongous_set(HeapRegion* hr) {
tonyp@2472 981 return hr->containing_set() == &_humongous_set;
tonyp@2643 982 }
tonyp@2472 983 #endif // ASSERT
ysr@777 984
tonyp@2472 985 // Wrapper for the region list operations that can be called from
tonyp@2472 986 // methods outside this class.
ysr@777 987
tonyp@2472 988 void secondary_free_list_add_as_tail(FreeRegionList* list) {
tonyp@2472 989 _secondary_free_list.add_as_tail(list);
tonyp@2472 990 }
ysr@777 991
tonyp@2472 992 void append_secondary_free_list() {
tonyp@2714 993 _free_list.add_as_head(&_secondary_free_list);
tonyp@2472 994 }
ysr@777 995
tonyp@2643 996 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 997 // If the secondary free list looks empty there's no reason to
tonyp@2643 998 // take the lock and then try to append it.
tonyp@2472 999 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1000 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1001 append_secondary_free_list();
tonyp@2472 1002 }
tonyp@2472 1003 }
ysr@777 1004
tonyp@2472 1005 void set_free_regions_coming();
tonyp@2472 1006 void reset_free_regions_coming();
tonyp@2472 1007 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1008 void wait_while_free_regions_coming();
ysr@777 1009
ysr@777 1010 // Perform a collection of the heap; intended for use in implementing
ysr@777 1011 // "System.gc". This probably implies as full a collection as the
ysr@777 1012 // "CollectedHeap" supports.
ysr@777 1013 virtual void collect(GCCause::Cause cause);
ysr@777 1014
ysr@777 1015 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1016 void collect_locked(GCCause::Cause cause);
ysr@777 1017
ysr@777 1018 // This interface assumes that it's being called by the
ysr@777 1019 // vm thread. It collects the heap assuming that the
ysr@777 1020 // heap lock is already held and that we are executing in
ysr@777 1021 // the context of the vm thread.
ysr@777 1022 virtual void collect_as_vm_thread(GCCause::Cause cause);
ysr@777 1023
ysr@777 1024 // True iff a evacuation has failed in the most-recent collection.
ysr@777 1025 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1026
tonyp@2472 1027 // It will free a region if it has allocated objects in it that are
tonyp@2472 1028 // all dead. It calls either free_region() or
tonyp@2472 1029 // free_humongous_region() depending on the type of the region that
tonyp@2472 1030 // is passed to it.
tonyp@2493 1031 void free_region_if_empty(HeapRegion* hr,
tonyp@2493 1032 size_t* pre_used,
tonyp@2493 1033 FreeRegionList* free_list,
tonyp@2493 1034 HumongousRegionSet* humongous_proxy_set,
tonyp@2493 1035 HRRSCleanupTask* hrrs_cleanup_task,
tonyp@2493 1036 bool par);
ysr@777 1037
tonyp@2472 1038 // It appends the free list to the master free list and updates the
tonyp@2472 1039 // master humongous list according to the contents of the proxy
tonyp@2472 1040 // list. It also adjusts the total used bytes according to pre_used
tonyp@2472 1041 // (if par is true, it will do so by taking the ParGCRareEvent_lock).
tonyp@2472 1042 void update_sets_after_freeing_regions(size_t pre_used,
tonyp@2472 1043 FreeRegionList* free_list,
tonyp@2472 1044 HumongousRegionSet* humongous_proxy_set,
tonyp@2472 1045 bool par);
ysr@777 1046
ysr@777 1047 // Returns "TRUE" iff "p" points into the allocated area of the heap.
ysr@777 1048 virtual bool is_in(const void* p) const;
ysr@777 1049
ysr@777 1050 // Return "TRUE" iff the given object address is within the collection
ysr@777 1051 // set.
ysr@777 1052 inline bool obj_in_cs(oop obj);
ysr@777 1053
ysr@777 1054 // Return "TRUE" iff the given object address is in the reserved
ysr@777 1055 // region of g1 (excluding the permanent generation).
ysr@777 1056 bool is_in_g1_reserved(const void* p) const {
ysr@777 1057 return _g1_reserved.contains(p);
ysr@777 1058 }
ysr@777 1059
tonyp@2717 1060 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1061 // reserved for the heap
tonyp@2717 1062 MemRegion g1_reserved() {
tonyp@2717 1063 return _g1_reserved;
tonyp@2717 1064 }
tonyp@2717 1065
tonyp@2717 1066 // Returns a MemRegion that corresponds to the space that has been
ysr@777 1067 // committed in the heap
ysr@777 1068 MemRegion g1_committed() {
ysr@777 1069 return _g1_committed;
ysr@777 1070 }
ysr@777 1071
johnc@2593 1072 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1073
ysr@777 1074 // Dirty card table entries covering a list of young regions.
ysr@777 1075 void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
ysr@777 1076
ysr@777 1077 // This resets the card table to all zeros. It is used after
ysr@777 1078 // a collection pause which used the card table to claim cards.
ysr@777 1079 void cleanUpCardTable();
ysr@777 1080
ysr@777 1081 // Iteration functions.
ysr@777 1082
ysr@777 1083 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1084 // "cl.do_oop" on each.
iveresov@1113 1085 virtual void oop_iterate(OopClosure* cl) {
iveresov@1113 1086 oop_iterate(cl, true);
iveresov@1113 1087 }
iveresov@1113 1088 void oop_iterate(OopClosure* cl, bool do_perm);
ysr@777 1089
ysr@777 1090 // Same as above, restricted to a memory region.
iveresov@1113 1091 virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
iveresov@1113 1092 oop_iterate(mr, cl, true);
iveresov@1113 1093 }
iveresov@1113 1094 void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
ysr@777 1095
ysr@777 1096 // Iterate over all objects, calling "cl.do_object" on each.
iveresov@1113 1097 virtual void object_iterate(ObjectClosure* cl) {
iveresov@1113 1098 object_iterate(cl, true);
iveresov@1113 1099 }
iveresov@1113 1100 virtual void safe_object_iterate(ObjectClosure* cl) {
iveresov@1113 1101 object_iterate(cl, true);
iveresov@1113 1102 }
iveresov@1113 1103 void object_iterate(ObjectClosure* cl, bool do_perm);
ysr@777 1104
ysr@777 1105 // Iterate over all objects allocated since the last collection, calling
ysr@777 1106 // "cl.do_object" on each. The heap must have been initialized properly
ysr@777 1107 // to support this function, or else this call will fail.
ysr@777 1108 virtual void object_iterate_since_last_GC(ObjectClosure* cl);
ysr@777 1109
ysr@777 1110 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1111 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1112
ysr@777 1113 // Iterate over heap regions, in address order, terminating the
ysr@777 1114 // iteration early if the "doHeapRegion" method returns "true".
ysr@777 1115 void heap_region_iterate(HeapRegionClosure* blk);
ysr@777 1116
ysr@777 1117 // Iterate over heap regions starting with r (or the first region if "r"
ysr@777 1118 // is NULL), in address order, terminating early if the "doHeapRegion"
ysr@777 1119 // method returns "true".
ysr@777 1120 void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
ysr@777 1121
ysr@777 1122 // As above but starting from the region at index idx.
ysr@777 1123 void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
ysr@777 1124
ysr@777 1125 HeapRegion* region_at(size_t idx);
ysr@777 1126
ysr@777 1127 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1128 // of regions divided by the number of parallel threads times some
ysr@777 1129 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1130 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1131 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1132 // calls will use the same "claim_value", and that that claim value is
ysr@777 1133 // different from the claim_value of any heap region before the start of
ysr@777 1134 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1135 // attempting to claim the first region in each chunk, and, if
ysr@777 1136 // successful, applying the closure to each region in the chunk (and
ysr@777 1137 // setting the claim value of the second and subsequent regions of the
ysr@777 1138 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1139 // i.e., that a closure never attempt to abort a traversal.
ysr@777 1140 void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
ysr@777 1141 int worker,
ysr@777 1142 jint claim_value);
ysr@777 1143
tonyp@825 1144 // It resets all the region claim values to the default.
tonyp@825 1145 void reset_heap_region_claim_values();
tonyp@825 1146
tonyp@790 1147 #ifdef ASSERT
tonyp@790 1148 bool check_heap_region_claim_values(jint claim_value);
tonyp@790 1149 #endif // ASSERT
tonyp@790 1150
ysr@777 1151 // Iterate over the regions (if any) in the current collection set.
ysr@777 1152 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1153
ysr@777 1154 // As above but starting from region r
ysr@777 1155 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1156
ysr@777 1157 // Returns the first (lowest address) compactible space in the heap.
ysr@777 1158 virtual CompactibleSpace* first_compactible_space();
ysr@777 1159
ysr@777 1160 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1161 // space containing a given address, or else returns NULL.
ysr@777 1162 virtual Space* space_containing(const void* addr) const;
ysr@777 1163
ysr@777 1164 // A G1CollectedHeap will contain some number of heap regions. This
ysr@777 1165 // finds the region containing a given address, or else returns NULL.
ysr@777 1166 HeapRegion* heap_region_containing(const void* addr) const;
ysr@777 1167
ysr@777 1168 // Like the above, but requires "addr" to be in the heap (to avoid a
ysr@777 1169 // null-check), and unlike the above, may return an continuing humongous
ysr@777 1170 // region.
ysr@777 1171 HeapRegion* heap_region_containing_raw(const void* addr) const;
ysr@777 1172
ysr@777 1173 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1174 // each address in the (reserved) heap is a member of exactly
ysr@777 1175 // one block. The defining characteristic of a block is that it is
ysr@777 1176 // possible to find its size, and thus to progress forward to the next
ysr@777 1177 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1178 // represent Java objects, or they might be free blocks in a
ysr@777 1179 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1180 // distinguishable and the size of each is determinable.
ysr@777 1181
ysr@777 1182 // Returns the address of the start of the "block" that contains the
ysr@777 1183 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1184 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1185 // non-object.
ysr@777 1186 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1187
ysr@777 1188 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1189 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1190 // of the active area of the heap.
ysr@777 1191 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1192
ysr@777 1193 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1194 // the block is an object.
ysr@777 1195 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1196
ysr@777 1197 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1198 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1199
ysr@777 1200 // Section on thread-local allocation buffers (TLABs)
ysr@777 1201 // See CollectedHeap for semantics.
ysr@777 1202
ysr@777 1203 virtual bool supports_tlab_allocation() const;
ysr@777 1204 virtual size_t tlab_capacity(Thread* thr) const;
ysr@777 1205 virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
ysr@777 1206
ysr@777 1207 // Can a compiler initialize a new object without store barriers?
ysr@777 1208 // This permission only extends from the creation of a new object
ysr@1462 1209 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1210 // is granted for this heap type, the compiler promises to call
ysr@1462 1211 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1212 // a new object for which such initializing store barriers will
ysr@1462 1213 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1214 // ready to provide a compensating write barrier as necessary
ysr@1462 1215 // if that storage came out of a non-young region. The efficiency
ysr@1462 1216 // of this implementation depends crucially on being able to
ysr@1462 1217 // answer very efficiently in constant time whether a piece of
ysr@1462 1218 // storage in the heap comes from a young region or not.
ysr@1462 1219 // See ReduceInitialCardMarks.
ysr@777 1220 virtual bool can_elide_tlab_store_barriers() const {
ysr@1629 1221 // 6920090: Temporarily disabled, because of lingering
ysr@1629 1222 // instabilities related to RICM with G1. In the
ysr@1629 1223 // interim, the option ReduceInitialCardMarksForG1
ysr@1629 1224 // below is left solely as a debugging device at least
ysr@1629 1225 // until 6920109 fixes the instabilities.
ysr@1629 1226 return ReduceInitialCardMarksForG1;
ysr@1462 1227 }
ysr@1462 1228
ysr@1601 1229 virtual bool card_mark_must_follow_store() const {
ysr@1601 1230 return true;
ysr@1601 1231 }
ysr@1601 1232
ysr@1462 1233 bool is_in_young(oop obj) {
ysr@1462 1234 HeapRegion* hr = heap_region_containing(obj);
ysr@1462 1235 return hr != NULL && hr->is_young();
ysr@1462 1236 }
ysr@1462 1237
ysr@1462 1238 // We don't need barriers for initializing stores to objects
ysr@1462 1239 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1240 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1241 // update logging post-barrier, we don't maintain remembered set
ysr@1462 1242 // information for young gen objects. Note that non-generational
ysr@1462 1243 // G1 does not have any "young" objects, should not elide
ysr@1462 1244 // the rs logging barrier and so should always answer false below.
ysr@1462 1245 // However, non-generational G1 (-XX:-G1Gen) appears to have
ysr@1462 1246 // bit-rotted so was not tested below.
ysr@1462 1247 virtual bool can_elide_initializing_store_barrier(oop new_obj) {
ysr@1629 1248 // Re 6920090, 6920109 above.
ysr@1629 1249 assert(ReduceInitialCardMarksForG1, "Else cannot be here");
ysr@1462 1250 assert(G1Gen || !is_in_young(new_obj),
ysr@1462 1251 "Non-generational G1 should never return true below");
ysr@1462 1252 return is_in_young(new_obj);
ysr@777 1253 }
ysr@777 1254
ysr@777 1255 // Can a compiler elide a store barrier when it writes
ysr@777 1256 // a permanent oop into the heap? Applies when the compiler
ysr@777 1257 // is storing x to the heap, where x->is_perm() is true.
ysr@777 1258 virtual bool can_elide_permanent_oop_store_barriers() const {
ysr@777 1259 // At least until perm gen collection is also G1-ified, at
ysr@777 1260 // which point this should return false.
ysr@777 1261 return true;
ysr@777 1262 }
ysr@777 1263
ysr@777 1264 // The boundary between a "large" and "small" array of primitives, in
ysr@777 1265 // words.
ysr@777 1266 virtual size_t large_typearray_limit();
ysr@777 1267
ysr@777 1268 // Returns "true" iff the given word_size is "very large".
ysr@777 1269 static bool isHumongous(size_t word_size) {
johnc@1748 1270 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1271 // are capped at the humongous thresold and we want to
johnc@1748 1272 // ensure that we don't try to allocate a TLAB as
johnc@1748 1273 // humongous and that we don't allocate a humongous
johnc@1748 1274 // object in a TLAB.
johnc@1748 1275 return word_size > _humongous_object_threshold_in_words;
ysr@777 1276 }
ysr@777 1277
ysr@777 1278 // Update mod union table with the set of dirty cards.
ysr@777 1279 void updateModUnion();
ysr@777 1280
ysr@777 1281 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1282 // that this is always a safe operation, since it doesn't clear any
ysr@777 1283 // bits.
ysr@777 1284 void markModUnionRange(MemRegion mr);
ysr@777 1285
ysr@777 1286 // Records the fact that a marking phase is no longer in progress.
ysr@777 1287 void set_marking_complete() {
ysr@777 1288 _mark_in_progress = false;
ysr@777 1289 }
ysr@777 1290 void set_marking_started() {
ysr@777 1291 _mark_in_progress = true;
ysr@777 1292 }
ysr@777 1293 bool mark_in_progress() {
ysr@777 1294 return _mark_in_progress;
ysr@777 1295 }
ysr@777 1296
ysr@777 1297 // Print the maximum heap capacity.
ysr@777 1298 virtual size_t max_capacity() const;
ysr@777 1299
ysr@777 1300 virtual jlong millis_since_last_gc();
ysr@777 1301
ysr@777 1302 // Perform any cleanup actions necessary before allowing a verification.
ysr@777 1303 virtual void prepare_for_verify();
ysr@777 1304
ysr@777 1305 // Perform verification.
tonyp@1246 1306
tonyp@1246 1307 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1308 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1309 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 1310 // consistent most of the time, so most calls to this should use
tonyp@1246 1311 // use_prev_marking == true. Currently, there is only one case where
tonyp@1246 1312 // this is called with use_prev_marking == false, which is to verify
tonyp@1246 1313 // the "next" marking information at the end of remark.
tonyp@1246 1314 void verify(bool allow_dirty, bool silent, bool use_prev_marking);
tonyp@1246 1315
tonyp@1246 1316 // Override; it uses the "prev" marking information
ysr@777 1317 virtual void verify(bool allow_dirty, bool silent);
tonyp@1273 1318 // Default behavior by calling print(tty);
ysr@777 1319 virtual void print() const;
tonyp@1273 1320 // This calls print_on(st, PrintHeapAtGCExtended).
ysr@777 1321 virtual void print_on(outputStream* st) const;
tonyp@1273 1322 // If extended is true, it will print out information for all
tonyp@1273 1323 // regions in the heap by calling print_on_extended(st).
tonyp@1273 1324 virtual void print_on(outputStream* st, bool extended) const;
tonyp@1273 1325 virtual void print_on_extended(outputStream* st) const;
ysr@777 1326
ysr@777 1327 virtual void print_gc_threads_on(outputStream* st) const;
ysr@777 1328 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1329
ysr@777 1330 // Override
ysr@777 1331 void print_tracing_info() const;
ysr@777 1332
ysr@777 1333 // If "addr" is a pointer into the (reserved?) heap, returns a positive
ysr@777 1334 // number indicating the "arena" within the heap in which "addr" falls.
ysr@777 1335 // Or else returns 0.
ysr@777 1336 virtual int addr_to_arena_id(void* addr) const;
ysr@777 1337
ysr@777 1338 // Convenience function to be used in situations where the heap type can be
ysr@777 1339 // asserted to be this type.
ysr@777 1340 static G1CollectedHeap* heap();
ysr@777 1341
ysr@777 1342 void empty_young_list();
ysr@777 1343
ysr@777 1344 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1345 // add appropriate methods for any other surv rate groups
ysr@777 1346
johnc@1829 1347 YoungList* young_list() { return _young_list; }
ysr@777 1348
ysr@777 1349 // debugging
ysr@777 1350 bool check_young_list_well_formed() {
ysr@777 1351 return _young_list->check_list_well_formed();
ysr@777 1352 }
johnc@1829 1353
johnc@1829 1354 bool check_young_list_empty(bool check_heap,
ysr@777 1355 bool check_sample = true);
ysr@777 1356
ysr@777 1357 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1358 // many of these need to be public.
ysr@777 1359
ysr@777 1360 // The functions below are helper functions that a subclass of
ysr@777 1361 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1362 // functions.
ysr@777 1363 // This performs a concurrent marking of the live objects in a
ysr@777 1364 // bitmap off to the side.
ysr@777 1365 void doConcurrentMark();
ysr@777 1366
ysr@777 1367 // This is called from the marksweep collector which then does
ysr@777 1368 // a concurrent mark and verifies that the results agree with
ysr@777 1369 // the stop the world marking.
ysr@777 1370 void checkConcurrentMark();
ysr@777 1371 void do_sync_mark();
ysr@777 1372
ysr@777 1373 bool isMarkedPrev(oop obj) const;
ysr@777 1374 bool isMarkedNext(oop obj) const;
ysr@777 1375
tonyp@1246 1376 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1377 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1378 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1379 const HeapRegion* hr,
tonyp@1246 1380 const bool use_prev_marking) const {
tonyp@1246 1381 if (use_prev_marking) {
tonyp@1246 1382 return is_obj_dead(obj, hr);
tonyp@1246 1383 } else {
tonyp@1246 1384 return is_obj_ill(obj, hr);
tonyp@1246 1385 }
tonyp@1246 1386 }
tonyp@1246 1387
ysr@777 1388 // Determine if an object is dead, given the object and also
ysr@777 1389 // the region to which the object belongs. An object is dead
ysr@777 1390 // iff a) it was not allocated since the last mark and b) it
ysr@777 1391 // is not marked.
ysr@777 1392
ysr@777 1393 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1394 return
ysr@777 1395 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1396 !isMarkedPrev(obj);
ysr@777 1397 }
ysr@777 1398
ysr@777 1399 // This is used when copying an object to survivor space.
ysr@777 1400 // If the object is marked live, then we mark the copy live.
ysr@777 1401 // If the object is allocated since the start of this mark
ysr@777 1402 // cycle, then we mark the copy live.
ysr@777 1403 // If the object has been around since the previous mark
ysr@777 1404 // phase, and hasn't been marked yet during this phase,
ysr@777 1405 // then we don't mark it, we just wait for the
ysr@777 1406 // current marking cycle to get to it.
ysr@777 1407
ysr@777 1408 // This function returns true when an object has been
ysr@777 1409 // around since the previous marking and hasn't yet
ysr@777 1410 // been marked during this marking.
ysr@777 1411
ysr@777 1412 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1413 return
ysr@777 1414 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1415 !isMarkedNext(obj);
ysr@777 1416 }
ysr@777 1417
ysr@777 1418 // Determine if an object is dead, given only the object itself.
ysr@777 1419 // This will find the region to which the object belongs and
ysr@777 1420 // then call the region version of the same function.
ysr@777 1421
ysr@777 1422 // Added if it is in permanent gen it isn't dead.
ysr@777 1423 // Added if it is NULL it isn't dead.
ysr@777 1424
tonyp@1246 1425 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 1426 // use_prev_marking == false -> use "next" marking information
tonyp@1246 1427 bool is_obj_dead_cond(const oop obj,
tonyp@1246 1428 const bool use_prev_marking) {
tonyp@1246 1429 if (use_prev_marking) {
tonyp@1246 1430 return is_obj_dead(obj);
tonyp@1246 1431 } else {
tonyp@1246 1432 return is_obj_ill(obj);
tonyp@1246 1433 }
tonyp@1246 1434 }
tonyp@1246 1435
tonyp@1246 1436 bool is_obj_dead(const oop obj) {
tonyp@1246 1437 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1438 if (hr == NULL) {
ysr@777 1439 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1440 return false;
ysr@777 1441 else if (obj == NULL) return false;
ysr@777 1442 else return true;
ysr@777 1443 }
ysr@777 1444 else return is_obj_dead(obj, hr);
ysr@777 1445 }
ysr@777 1446
tonyp@1246 1447 bool is_obj_ill(const oop obj) {
tonyp@1246 1448 const HeapRegion* hr = heap_region_containing(obj);
ysr@777 1449 if (hr == NULL) {
ysr@777 1450 if (Universe::heap()->is_in_permanent(obj))
ysr@777 1451 return false;
ysr@777 1452 else if (obj == NULL) return false;
ysr@777 1453 else return true;
ysr@777 1454 }
ysr@777 1455 else return is_obj_ill(obj, hr);
ysr@777 1456 }
ysr@777 1457
ysr@777 1458 // The following is just to alert the verification code
ysr@777 1459 // that a full collection has occurred and that the
ysr@777 1460 // remembered sets are no longer up to date.
ysr@777 1461 bool _full_collection;
ysr@777 1462 void set_full_collection() { _full_collection = true;}
ysr@777 1463 void clear_full_collection() {_full_collection = false;}
ysr@777 1464 bool full_collection() {return _full_collection;}
ysr@777 1465
ysr@777 1466 ConcurrentMark* concurrent_mark() const { return _cm; }
ysr@777 1467 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
ysr@777 1468
apetrusenko@1231 1469 // The dirty cards region list is used to record a subset of regions
apetrusenko@1231 1470 // whose cards need clearing. The list if populated during the
apetrusenko@1231 1471 // remembered set scanning and drained during the card table
apetrusenko@1231 1472 // cleanup. Although the methods are reentrant, population/draining
apetrusenko@1231 1473 // phases must not overlap. For synchronization purposes the last
apetrusenko@1231 1474 // element on the list points to itself.
apetrusenko@1231 1475 HeapRegion* _dirty_cards_region_list;
apetrusenko@1231 1476 void push_dirty_cards_region(HeapRegion* hr);
apetrusenko@1231 1477 HeapRegion* pop_dirty_cards_region();
apetrusenko@1231 1478
ysr@777 1479 public:
ysr@777 1480 void stop_conc_gc_threads();
ysr@777 1481
ysr@777 1482 // <NEW PREDICTION>
ysr@777 1483
ysr@777 1484 double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
ysr@777 1485 void check_if_region_is_too_expensive(double predicted_time_ms);
ysr@777 1486 size_t pending_card_num();
ysr@777 1487 size_t max_pending_card_num();
ysr@777 1488 size_t cards_scanned();
ysr@777 1489
ysr@777 1490 // </NEW PREDICTION>
ysr@777 1491
ysr@777 1492 protected:
ysr@777 1493 size_t _max_heap_capacity;
ysr@777 1494 };
ysr@777 1495
ysr@1280 1496 #define use_local_bitmaps 1
ysr@1280 1497 #define verify_local_bitmaps 0
ysr@1280 1498 #define oop_buffer_length 256
ysr@1280 1499
ysr@1280 1500 #ifndef PRODUCT
ysr@1280 1501 class GCLabBitMap;
ysr@1280 1502 class GCLabBitMapClosure: public BitMapClosure {
ysr@1280 1503 private:
ysr@1280 1504 ConcurrentMark* _cm;
ysr@1280 1505 GCLabBitMap* _bitmap;
ysr@1280 1506
ysr@1280 1507 public:
ysr@1280 1508 GCLabBitMapClosure(ConcurrentMark* cm,
ysr@1280 1509 GCLabBitMap* bitmap) {
ysr@1280 1510 _cm = cm;
ysr@1280 1511 _bitmap = bitmap;
ysr@1280 1512 }
ysr@1280 1513
ysr@1280 1514 virtual bool do_bit(size_t offset);
ysr@1280 1515 };
ysr@1280 1516 #endif // !PRODUCT
ysr@1280 1517
ysr@1280 1518 class GCLabBitMap: public BitMap {
ysr@1280 1519 private:
ysr@1280 1520 ConcurrentMark* _cm;
ysr@1280 1521
ysr@1280 1522 int _shifter;
ysr@1280 1523 size_t _bitmap_word_covers_words;
ysr@1280 1524
ysr@1280 1525 // beginning of the heap
ysr@1280 1526 HeapWord* _heap_start;
ysr@1280 1527
ysr@1280 1528 // this is the actual start of the GCLab
ysr@1280 1529 HeapWord* _real_start_word;
ysr@1280 1530
ysr@1280 1531 // this is the actual end of the GCLab
ysr@1280 1532 HeapWord* _real_end_word;
ysr@1280 1533
ysr@1280 1534 // this is the first word, possibly located before the actual start
ysr@1280 1535 // of the GCLab, that corresponds to the first bit of the bitmap
ysr@1280 1536 HeapWord* _start_word;
ysr@1280 1537
ysr@1280 1538 // size of a GCLab in words
ysr@1280 1539 size_t _gclab_word_size;
ysr@1280 1540
ysr@1280 1541 static int shifter() {
ysr@1280 1542 return MinObjAlignment - 1;
ysr@1280 1543 }
ysr@1280 1544
ysr@1280 1545 // how many heap words does a single bitmap word corresponds to?
ysr@1280 1546 static size_t bitmap_word_covers_words() {
ysr@1280 1547 return BitsPerWord << shifter();
ysr@1280 1548 }
ysr@1280 1549
apetrusenko@1826 1550 size_t gclab_word_size() const {
apetrusenko@1826 1551 return _gclab_word_size;
ysr@1280 1552 }
ysr@1280 1553
apetrusenko@1826 1554 // Calculates actual GCLab size in words
apetrusenko@1826 1555 size_t gclab_real_word_size() const {
apetrusenko@1826 1556 return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
apetrusenko@1826 1557 / BitsPerWord;
apetrusenko@1826 1558 }
apetrusenko@1826 1559
apetrusenko@1826 1560 static size_t bitmap_size_in_bits(size_t gclab_word_size) {
apetrusenko@1826 1561 size_t bits_in_bitmap = gclab_word_size >> shifter();
ysr@1280 1562 // We are going to ensure that the beginning of a word in this
ysr@1280 1563 // bitmap also corresponds to the beginning of a word in the
ysr@1280 1564 // global marking bitmap. To handle the case where a GCLab
ysr@1280 1565 // starts from the middle of the bitmap, we need to add enough
ysr@1280 1566 // space (i.e. up to a bitmap word) to ensure that we have
ysr@1280 1567 // enough bits in the bitmap.
ysr@1280 1568 return bits_in_bitmap + BitsPerWord - 1;
ysr@1280 1569 }
ysr@1280 1570 public:
apetrusenko@1826 1571 GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
apetrusenko@1826 1572 : BitMap(bitmap_size_in_bits(gclab_word_size)),
ysr@1280 1573 _cm(G1CollectedHeap::heap()->concurrent_mark()),
ysr@1280 1574 _shifter(shifter()),
ysr@1280 1575 _bitmap_word_covers_words(bitmap_word_covers_words()),
ysr@1280 1576 _heap_start(heap_start),
apetrusenko@1826 1577 _gclab_word_size(gclab_word_size),
ysr@1280 1578 _real_start_word(NULL),
ysr@1280 1579 _real_end_word(NULL),
ysr@1280 1580 _start_word(NULL)
ysr@1280 1581 {
ysr@1280 1582 guarantee( size_in_words() >= bitmap_size_in_words(),
ysr@1280 1583 "just making sure");
ysr@1280 1584 }
ysr@1280 1585
ysr@1280 1586 inline unsigned heapWordToOffset(HeapWord* addr) {
ysr@1280 1587 unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
ysr@1280 1588 assert(offset < size(), "offset should be within bounds");
ysr@1280 1589 return offset;
ysr@1280 1590 }
ysr@1280 1591
ysr@1280 1592 inline HeapWord* offsetToHeapWord(size_t offset) {
ysr@1280 1593 HeapWord* addr = _start_word + (offset << _shifter);
ysr@1280 1594 assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
ysr@1280 1595 return addr;
ysr@1280 1596 }
ysr@1280 1597
ysr@1280 1598 bool fields_well_formed() {
ysr@1280 1599 bool ret1 = (_real_start_word == NULL) &&
ysr@1280 1600 (_real_end_word == NULL) &&
ysr@1280 1601 (_start_word == NULL);
ysr@1280 1602 if (ret1)
ysr@1280 1603 return true;
ysr@1280 1604
ysr@1280 1605 bool ret2 = _real_start_word >= _start_word &&
ysr@1280 1606 _start_word < _real_end_word &&
ysr@1280 1607 (_real_start_word + _gclab_word_size) == _real_end_word &&
ysr@1280 1608 (_start_word + _gclab_word_size + _bitmap_word_covers_words)
ysr@1280 1609 > _real_end_word;
ysr@1280 1610 return ret2;
ysr@1280 1611 }
ysr@1280 1612
ysr@1280 1613 inline bool mark(HeapWord* addr) {
ysr@1280 1614 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1615 assert(fields_well_formed(), "invariant");
ysr@1280 1616
ysr@1280 1617 if (addr >= _real_start_word && addr < _real_end_word) {
ysr@1280 1618 assert(!isMarked(addr), "should not have already been marked");
ysr@1280 1619
ysr@1280 1620 // first mark it on the bitmap
ysr@1280 1621 at_put(heapWordToOffset(addr), true);
ysr@1280 1622
ysr@1280 1623 return true;
ysr@1280 1624 } else {
ysr@1280 1625 return false;
ysr@1280 1626 }
ysr@1280 1627 }
ysr@1280 1628
ysr@1280 1629 inline bool isMarked(HeapWord* addr) {
ysr@1280 1630 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1631 assert(fields_well_formed(), "invariant");
ysr@1280 1632
ysr@1280 1633 return at(heapWordToOffset(addr));
ysr@1280 1634 }
ysr@1280 1635
ysr@1280 1636 void set_buffer(HeapWord* start) {
ysr@1280 1637 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1638 clear();
ysr@1280 1639
ysr@1280 1640 assert(start != NULL, "invariant");
ysr@1280 1641 _real_start_word = start;
ysr@1280 1642 _real_end_word = start + _gclab_word_size;
ysr@1280 1643
ysr@1280 1644 size_t diff =
ysr@1280 1645 pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
ysr@1280 1646 _start_word = start - diff;
ysr@1280 1647
ysr@1280 1648 assert(fields_well_formed(), "invariant");
ysr@1280 1649 }
ysr@1280 1650
ysr@1280 1651 #ifndef PRODUCT
ysr@1280 1652 void verify() {
ysr@1280 1653 // verify that the marks have been propagated
ysr@1280 1654 GCLabBitMapClosure cl(_cm, this);
ysr@1280 1655 iterate(&cl);
ysr@1280 1656 }
ysr@1280 1657 #endif // PRODUCT
ysr@1280 1658
ysr@1280 1659 void retire() {
ysr@1280 1660 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1661 assert(fields_well_formed(), "invariant");
ysr@1280 1662
ysr@1280 1663 if (_start_word != NULL) {
ysr@1280 1664 CMBitMap* mark_bitmap = _cm->nextMarkBitMap();
ysr@1280 1665
ysr@1280 1666 // this means that the bitmap was set up for the GCLab
ysr@1280 1667 assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
ysr@1280 1668
ysr@1280 1669 mark_bitmap->mostly_disjoint_range_union(this,
ysr@1280 1670 0, // always start from the start of the bitmap
ysr@1280 1671 _start_word,
apetrusenko@1826 1672 gclab_real_word_size());
ysr@1280 1673 _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
ysr@1280 1674
ysr@1280 1675 #ifndef PRODUCT
ysr@1280 1676 if (use_local_bitmaps && verify_local_bitmaps)
ysr@1280 1677 verify();
ysr@1280 1678 #endif // PRODUCT
ysr@1280 1679 } else {
ysr@1280 1680 assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
ysr@1280 1681 }
ysr@1280 1682 }
ysr@1280 1683
apetrusenko@1826 1684 size_t bitmap_size_in_words() const {
apetrusenko@1826 1685 return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
ysr@1280 1686 }
apetrusenko@1826 1687
ysr@1280 1688 };
ysr@1280 1689
ysr@1280 1690 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1691 private:
ysr@1280 1692 bool _retired;
ysr@1280 1693 bool _during_marking;
ysr@1280 1694 GCLabBitMap _bitmap;
ysr@1280 1695
ysr@1280 1696 public:
apetrusenko@1826 1697 G1ParGCAllocBuffer(size_t gclab_word_size) :
apetrusenko@1826 1698 ParGCAllocBuffer(gclab_word_size),
ysr@1280 1699 _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
apetrusenko@1826 1700 _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
ysr@1280 1701 _retired(false)
ysr@1280 1702 { }
ysr@1280 1703
ysr@1280 1704 inline bool mark(HeapWord* addr) {
ysr@1280 1705 guarantee(use_local_bitmaps, "invariant");
ysr@1280 1706 assert(_during_marking, "invariant");
ysr@1280 1707 return _bitmap.mark(addr);
ysr@1280 1708 }
ysr@1280 1709
ysr@1280 1710 inline void set_buf(HeapWord* buf) {
ysr@1280 1711 if (use_local_bitmaps && _during_marking)
ysr@1280 1712 _bitmap.set_buffer(buf);
ysr@1280 1713 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1714 _retired = false;
ysr@1280 1715 }
ysr@1280 1716
ysr@1280 1717 inline void retire(bool end_of_gc, bool retain) {
ysr@1280 1718 if (_retired)
ysr@1280 1719 return;
ysr@1280 1720 if (use_local_bitmaps && _during_marking) {
ysr@1280 1721 _bitmap.retire();
ysr@1280 1722 }
ysr@1280 1723 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1724 _retired = true;
ysr@1280 1725 }
ysr@1280 1726 };
ysr@1280 1727
ysr@1280 1728 class G1ParScanThreadState : public StackObj {
ysr@1280 1729 protected:
ysr@1280 1730 G1CollectedHeap* _g1h;
ysr@1280 1731 RefToScanQueue* _refs;
ysr@1280 1732 DirtyCardQueue _dcq;
ysr@1280 1733 CardTableModRefBS* _ct_bs;
ysr@1280 1734 G1RemSet* _g1_rem;
ysr@1280 1735
apetrusenko@1826 1736 G1ParGCAllocBuffer _surviving_alloc_buffer;
apetrusenko@1826 1737 G1ParGCAllocBuffer _tenured_alloc_buffer;
apetrusenko@1826 1738 G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
apetrusenko@1826 1739 ageTable _age_table;
ysr@1280 1740
ysr@1280 1741 size_t _alloc_buffer_waste;
ysr@1280 1742 size_t _undo_waste;
ysr@1280 1743
ysr@1280 1744 OopsInHeapRegionClosure* _evac_failure_cl;
ysr@1280 1745 G1ParScanHeapEvacClosure* _evac_cl;
ysr@1280 1746 G1ParScanPartialArrayClosure* _partial_scan_cl;
ysr@1280 1747
ysr@1280 1748 int _hash_seed;
ysr@1280 1749 int _queue_num;
ysr@1280 1750
tonyp@1966 1751 size_t _term_attempts;
ysr@1280 1752
ysr@1280 1753 double _start;
ysr@1280 1754 double _start_strong_roots;
ysr@1280 1755 double _strong_roots_time;
ysr@1280 1756 double _start_term;
ysr@1280 1757 double _term_time;
ysr@1280 1758
ysr@1280 1759 // Map from young-age-index (0 == not young, 1 is youngest) to
ysr@1280 1760 // surviving words. base is what we get back from the malloc call
ysr@1280 1761 size_t* _surviving_young_words_base;
ysr@1280 1762 // this points into the array, as we use the first few entries for padding
ysr@1280 1763 size_t* _surviving_young_words;
ysr@1280 1764
jcoomes@2064 1765 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
ysr@1280 1766
ysr@1280 1767 void add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
ysr@1280 1768
ysr@1280 1769 void add_to_undo_waste(size_t waste) { _undo_waste += waste; }
ysr@1280 1770
ysr@1280 1771 DirtyCardQueue& dirty_card_queue() { return _dcq; }
ysr@1280 1772 CardTableModRefBS* ctbs() { return _ct_bs; }
ysr@1280 1773
ysr@1280 1774 template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1775 if (!from->is_survivor()) {
ysr@1280 1776 _g1_rem->par_write_ref(from, p, tid);
ysr@1280 1777 }
ysr@1280 1778 }
ysr@1280 1779
ysr@1280 1780 template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
ysr@1280 1781 // If the new value of the field points to the same region or
ysr@1280 1782 // is the to-space, we don't need to include it in the Rset updates.
ysr@1280 1783 if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
ysr@1280 1784 size_t card_index = ctbs()->index_for(p);
ysr@1280 1785 // If the card hasn't been added to the buffer, do it.
ysr@1280 1786 if (ctbs()->mark_card_deferred(card_index)) {
ysr@1280 1787 dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
ysr@1280 1788 }
ysr@1280 1789 }
ysr@1280 1790 }
ysr@1280 1791
ysr@1280 1792 public:
ysr@1280 1793 G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
ysr@1280 1794
ysr@1280 1795 ~G1ParScanThreadState() {
ysr@1280 1796 FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
ysr@1280 1797 }
ysr@1280 1798
ysr@1280 1799 RefToScanQueue* refs() { return _refs; }
ysr@1280 1800 ageTable* age_table() { return &_age_table; }
ysr@1280 1801
ysr@1280 1802 G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
apetrusenko@1826 1803 return _alloc_buffers[purpose];
ysr@1280 1804 }
ysr@1280 1805
jcoomes@2064 1806 size_t alloc_buffer_waste() const { return _alloc_buffer_waste; }
jcoomes@2064 1807 size_t undo_waste() const { return _undo_waste; }
ysr@1280 1808
jcoomes@2217 1809 #ifdef ASSERT
jcoomes@2217 1810 bool verify_ref(narrowOop* ref) const;
jcoomes@2217 1811 bool verify_ref(oop* ref) const;
jcoomes@2217 1812 bool verify_task(StarTask ref) const;
jcoomes@2217 1813 #endif // ASSERT
jcoomes@2217 1814
ysr@1280 1815 template <class T> void push_on_queue(T* ref) {
jcoomes@2217 1816 assert(verify_ref(ref), "sanity");
jcoomes@2064 1817 refs()->push(ref);
ysr@1280 1818 }
ysr@1280 1819
ysr@1280 1820 template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
ysr@1280 1821 if (G1DeferredRSUpdate) {
ysr@1280 1822 deferred_rs_update(from, p, tid);
ysr@1280 1823 } else {
ysr@1280 1824 immediate_rs_update(from, p, tid);
ysr@1280 1825 }
ysr@1280 1826 }
ysr@1280 1827
ysr@1280 1828 HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1829
ysr@1280 1830 HeapWord* obj = NULL;
apetrusenko@1826 1831 size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
apetrusenko@1826 1832 if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
ysr@1280 1833 G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
apetrusenko@1826 1834 assert(gclab_word_size == alloc_buf->word_sz(),
apetrusenko@1826 1835 "dynamic resizing is not supported");
ysr@1280 1836 add_to_alloc_buffer_waste(alloc_buf->words_remaining());
ysr@1280 1837 alloc_buf->retire(false, false);
ysr@1280 1838
apetrusenko@1826 1839 HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
ysr@1280 1840 if (buf == NULL) return NULL; // Let caller handle allocation failure.
ysr@1280 1841 // Otherwise.
ysr@1280 1842 alloc_buf->set_buf(buf);
ysr@1280 1843
ysr@1280 1844 obj = alloc_buf->allocate(word_sz);
ysr@1280 1845 assert(obj != NULL, "buffer was definitely big enough...");
ysr@1280 1846 } else {
ysr@1280 1847 obj = _g1h->par_allocate_during_gc(purpose, word_sz);
ysr@1280 1848 }
ysr@1280 1849 return obj;
ysr@1280 1850 }
ysr@1280 1851
ysr@1280 1852 HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
ysr@1280 1853 HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
ysr@1280 1854 if (obj != NULL) return obj;
ysr@1280 1855 return allocate_slow(purpose, word_sz);
ysr@1280 1856 }
ysr@1280 1857
ysr@1280 1858 void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
ysr@1280 1859 if (alloc_buffer(purpose)->contains(obj)) {
ysr@1280 1860 assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
ysr@1280 1861 "should contain whole object");
ysr@1280 1862 alloc_buffer(purpose)->undo_allocation(obj, word_sz);
ysr@1280 1863 } else {
ysr@1280 1864 CollectedHeap::fill_with_object(obj, word_sz);
ysr@1280 1865 add_to_undo_waste(word_sz);
ysr@1280 1866 }
ysr@1280 1867 }
ysr@1280 1868
ysr@1280 1869 void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
ysr@1280 1870 _evac_failure_cl = evac_failure_cl;
ysr@1280 1871 }
ysr@1280 1872 OopsInHeapRegionClosure* evac_failure_closure() {
ysr@1280 1873 return _evac_failure_cl;
ysr@1280 1874 }
ysr@1280 1875
ysr@1280 1876 void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
ysr@1280 1877 _evac_cl = evac_cl;
ysr@1280 1878 }
ysr@1280 1879
ysr@1280 1880 void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
ysr@1280 1881 _partial_scan_cl = partial_scan_cl;
ysr@1280 1882 }
ysr@1280 1883
ysr@1280 1884 int* hash_seed() { return &_hash_seed; }
ysr@1280 1885 int queue_num() { return _queue_num; }
ysr@1280 1886
jcoomes@2064 1887 size_t term_attempts() const { return _term_attempts; }
tonyp@1966 1888 void note_term_attempt() { _term_attempts++; }
ysr@1280 1889
ysr@1280 1890 void start_strong_roots() {
ysr@1280 1891 _start_strong_roots = os::elapsedTime();
ysr@1280 1892 }
ysr@1280 1893 void end_strong_roots() {
ysr@1280 1894 _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
ysr@1280 1895 }
jcoomes@2064 1896 double strong_roots_time() const { return _strong_roots_time; }
ysr@1280 1897
ysr@1280 1898 void start_term_time() {
ysr@1280 1899 note_term_attempt();
ysr@1280 1900 _start_term = os::elapsedTime();
ysr@1280 1901 }
ysr@1280 1902 void end_term_time() {
ysr@1280 1903 _term_time += (os::elapsedTime() - _start_term);
ysr@1280 1904 }
jcoomes@2064 1905 double term_time() const { return _term_time; }
ysr@1280 1906
jcoomes@2064 1907 double elapsed_time() const {
ysr@1280 1908 return os::elapsedTime() - _start;
ysr@1280 1909 }
ysr@1280 1910
jcoomes@2064 1911 static void
jcoomes@2064 1912 print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 1913 void
jcoomes@2064 1914 print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
jcoomes@2064 1915
ysr@1280 1916 size_t* surviving_young_words() {
ysr@1280 1917 // We add on to hide entry 0 which accumulates surviving words for
ysr@1280 1918 // age -1 regions (i.e. non-young ones)
ysr@1280 1919 return _surviving_young_words;
ysr@1280 1920 }
ysr@1280 1921
ysr@1280 1922 void retire_alloc_buffers() {
ysr@1280 1923 for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
apetrusenko@1826 1924 size_t waste = _alloc_buffers[ap]->words_remaining();
ysr@1280 1925 add_to_alloc_buffer_waste(waste);
apetrusenko@1826 1926 _alloc_buffers[ap]->retire(true, false);
ysr@1280 1927 }
ysr@1280 1928 }
ysr@1280 1929
ysr@1280 1930 template <class T> void deal_with_reference(T* ref_to_scan) {
ysr@1280 1931 if (has_partial_array_mask(ref_to_scan)) {
ysr@1280 1932 _partial_scan_cl->do_oop_nv(ref_to_scan);
ysr@1280 1933 } else {
ysr@1280 1934 // Note: we can use "raw" versions of "region_containing" because
ysr@1280 1935 // "obj_to_scan" is definitely in the heap, and is not in a
ysr@1280 1936 // humongous region.
ysr@1280 1937 HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
ysr@1280 1938 _evac_cl->set_region(r);
ysr@1280 1939 _evac_cl->do_oop_nv(ref_to_scan);
ysr@1280 1940 }
ysr@1280 1941 }
ysr@1280 1942
jcoomes@2217 1943 void deal_with_reference(StarTask ref) {
jcoomes@2217 1944 assert(verify_task(ref), "sanity");
jcoomes@2217 1945 if (ref.is_narrow()) {
jcoomes@2217 1946 deal_with_reference((narrowOop*)ref);
jcoomes@2217 1947 } else {
jcoomes@2217 1948 deal_with_reference((oop*)ref);
ysr@1280 1949 }
ysr@1280 1950 }
jcoomes@2217 1951
jcoomes@2217 1952 public:
jcoomes@2217 1953 void trim_queue();
ysr@1280 1954 };
stefank@2314 1955
stefank@2314 1956 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial