src/share/vm/opto/matcher.hpp

Wed, 12 Mar 2014 11:24:26 -0700

author
iveresov
date
Wed, 12 Mar 2014 11:24:26 -0700
changeset 6378
8a8ff6b577ed
parent 6375
085b304a1cc5
child 6518
62c54fcc0a35
permissions
-rw-r--r--

8031321: Support Intel bit manipulation instructions
Summary: Add support for BMI1 instructions
Reviewed-by: kvn, roland

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_MATCHER_HPP
stefank@2314 26 #define SHARE_VM_OPTO_MATCHER_HPP
stefank@2314 27
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/resourceArea.hpp"
stefank@2314 30 #include "opto/node.hpp"
stefank@2314 31 #include "opto/phaseX.hpp"
stefank@2314 32 #include "opto/regmask.hpp"
stefank@2314 33
duke@435 34 class Compile;
duke@435 35 class Node;
duke@435 36 class MachNode;
duke@435 37 class MachTypeNode;
duke@435 38 class MachOper;
duke@435 39
duke@435 40 //---------------------------Matcher-------------------------------------------
duke@435 41 class Matcher : public PhaseTransform {
duke@435 42 friend class VMStructs;
duke@435 43 // Private arena of State objects
duke@435 44 ResourceArea _states_arena;
duke@435 45
duke@435 46 VectorSet _visited; // Visit bits
duke@435 47
duke@435 48 // Used to control the Label pass
duke@435 49 VectorSet _shared; // Shared Ideal Node
duke@435 50 VectorSet _dontcare; // Nothing the matcher cares about
duke@435 51
duke@435 52 // Private methods which perform the actual matching and reduction
duke@435 53 // Walks the label tree, generating machine nodes
duke@435 54 MachNode *ReduceInst( State *s, int rule, Node *&mem);
duke@435 55 void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
duke@435 56 uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
duke@435 57 void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
duke@435 58
duke@435 59 // If this node already matched using "rule", return the MachNode for it.
kvn@603 60 MachNode* find_shared_node(Node* n, uint rule);
duke@435 61
duke@435 62 // Convert a dense opcode number to an expanded rule number
duke@435 63 const int *_reduceOp;
duke@435 64 const int *_leftOp;
duke@435 65 const int *_rightOp;
duke@435 66
duke@435 67 // Map dense opcode number to info on when rule is swallowed constant.
duke@435 68 const bool *_swallowed;
duke@435 69
duke@435 70 // Map dense rule number to determine if this is an instruction chain rule
duke@435 71 const uint _begin_inst_chain_rule;
duke@435 72 const uint _end_inst_chain_rule;
duke@435 73
duke@435 74 // We want to clone constants and possible CmpI-variants.
duke@435 75 // If we do not clone CmpI, then we can have many instances of
duke@435 76 // condition codes alive at once. This is OK on some chips and
duke@435 77 // bad on others. Hence the machine-dependent table lookup.
duke@435 78 const char *_must_clone;
duke@435 79
duke@435 80 // Find shared Nodes, or Nodes that otherwise are Matcher roots
duke@435 81 void find_shared( Node *n );
iveresov@6378 82 #ifdef X86
iveresov@6378 83 bool is_bmi_pattern(Node *n, Node *m);
iveresov@6378 84 #endif
duke@435 85
duke@435 86 // Debug and profile information for nodes in old space:
duke@435 87 GrowableArray<Node_Notes*>* _old_node_note_array;
duke@435 88
duke@435 89 // Node labeling iterator for instruction selection
duke@435 90 Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
duke@435 91
duke@435 92 Node *transform( Node *dummy );
duke@435 93
adlertz@5539 94 Node_List _projection_list; // For Machine nodes killing many values
duke@435 95
kvn@603 96 Node_Array _shared_nodes;
duke@435 97
duke@435 98 debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
never@657 99 debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal
duke@435 100
duke@435 101 // Accessors for the inherited field PhaseTransform::_nodes:
duke@435 102 void grow_new_node_array(uint idx_limit) {
duke@435 103 _nodes.map(idx_limit-1, NULL);
duke@435 104 }
duke@435 105 bool has_new_node(const Node* n) const {
duke@435 106 return _nodes.at(n->_idx) != NULL;
duke@435 107 }
duke@435 108 Node* new_node(const Node* n) const {
duke@435 109 assert(has_new_node(n), "set before get");
duke@435 110 return _nodes.at(n->_idx);
duke@435 111 }
duke@435 112 void set_new_node(const Node* n, Node *nn) {
duke@435 113 assert(!has_new_node(n), "set only once");
duke@435 114 _nodes.map(n->_idx, nn);
duke@435 115 }
duke@435 116
duke@435 117 #ifdef ASSERT
duke@435 118 // Make sure only new nodes are reachable from this node
duke@435 119 void verify_new_nodes_only(Node* root);
kvn@651 120
kvn@651 121 Node* _mem_node; // Ideal memory node consumed by mach node
duke@435 122 #endif
duke@435 123
kvn@1164 124 // Mach node for ConP #NULL
kvn@1164 125 MachNode* _mach_null;
kvn@1164 126
duke@435 127 public:
duke@435 128 int LabelRootDepth;
duke@435 129 // Convert ideal machine register to a register mask for spill-loads
duke@435 130 static const RegMask *idealreg2regmask[];
twisti@1572 131 RegMask *idealreg2spillmask [_last_machine_leaf];
twisti@1572 132 RegMask *idealreg2debugmask [_last_machine_leaf];
twisti@1572 133 RegMask *idealreg2mhdebugmask[_last_machine_leaf];
duke@435 134 void init_spill_mask( Node *ret );
duke@435 135 // Convert machine register number to register mask
duke@435 136 static uint mreg2regmask_max;
duke@435 137 static RegMask mreg2regmask[];
duke@435 138 static RegMask STACK_ONLY_mask;
duke@435 139
kvn@1164 140 MachNode* mach_null() const { return _mach_null; }
kvn@1164 141
duke@435 142 bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
duke@435 143 void set_shared( Node *n ) { _shared.set(n->_idx); }
duke@435 144 bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
duke@435 145 void set_visited( Node *n ) { _visited.set(n->_idx); }
duke@435 146 bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
duke@435 147 void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
duke@435 148
duke@435 149 // Mode bit to tell DFA and expand rules whether we are running after
duke@435 150 // (or during) register selection. Usually, the matcher runs before,
duke@435 151 // but it will also get called to generate post-allocation spill code.
duke@435 152 // In this situation, it is a deadly error to attempt to allocate more
duke@435 153 // temporary registers.
duke@435 154 bool _allocation_started;
duke@435 155
duke@435 156 // Machine register names
duke@435 157 static const char *regName[];
duke@435 158 // Machine register encodings
duke@435 159 static const unsigned char _regEncode[];
duke@435 160 // Machine Node names
duke@435 161 const char **_ruleName;
duke@435 162 // Rules that are cheaper to rematerialize than to spill
duke@435 163 static const uint _begin_rematerialize;
duke@435 164 static const uint _end_rematerialize;
duke@435 165
duke@435 166 // An array of chars, from 0 to _last_Mach_Reg.
duke@435 167 // No Save = 'N' (for register windows)
duke@435 168 // Save on Entry = 'E'
duke@435 169 // Save on Call = 'C'
duke@435 170 // Always Save = 'A' (same as SOE + SOC)
duke@435 171 const char *_register_save_policy;
duke@435 172 const char *_c_reg_save_policy;
duke@435 173 // Convert a machine register to a machine register type, so-as to
duke@435 174 // properly match spill code.
duke@435 175 const int *_register_save_type;
duke@435 176 // Maps from machine register to boolean; true if machine register can
duke@435 177 // be holding a call argument in some signature.
duke@435 178 static bool can_be_java_arg( int reg );
duke@435 179 // Maps from machine register to boolean; true if machine register holds
duke@435 180 // a spillable argument.
duke@435 181 static bool is_spillable_arg( int reg );
duke@435 182
duke@435 183 // List of IfFalse or IfTrue Nodes that indicate a taken null test.
duke@435 184 // List is valid in the post-matching space.
duke@435 185 Node_List _null_check_tests;
kvn@803 186 void collect_null_checks( Node *proj, Node *orig_proj );
duke@435 187 void validate_null_checks( );
duke@435 188
adlertz@5539 189 Matcher();
adlertz@5539 190
adlertz@5539 191 // Get a projection node at position pos
adlertz@5539 192 Node* get_projection(uint pos) {
adlertz@5539 193 return _projection_list[pos];
adlertz@5539 194 }
adlertz@5539 195
adlertz@5539 196 // Push a projection node onto the projection list
adlertz@5539 197 void push_projection(Node* node) {
adlertz@5539 198 _projection_list.push(node);
adlertz@5539 199 }
adlertz@5539 200
adlertz@5539 201 Node* pop_projection() {
adlertz@5539 202 return _projection_list.pop();
adlertz@5539 203 }
adlertz@5539 204
adlertz@5539 205 // Number of nodes in the projection list
adlertz@5539 206 uint number_of_projections() const {
adlertz@5539 207 return _projection_list.size();
adlertz@5539 208 }
duke@435 209
duke@435 210 // Select instructions for entire method
adlertz@5539 211 void match();
adlertz@5539 212
duke@435 213 // Helper for match
duke@435 214 OptoReg::Name warp_incoming_stk_arg( VMReg reg );
duke@435 215
duke@435 216 // Transform, then walk. Does implicit DCE while walking.
duke@435 217 // Name changed from "transform" to avoid it being virtual.
duke@435 218 Node *xform( Node *old_space_node, int Nodes );
duke@435 219
duke@435 220 // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
duke@435 221 MachNode *match_tree( const Node *n );
duke@435 222 MachNode *match_sfpt( SafePointNode *sfpt );
duke@435 223 // Helper for match_sfpt
duke@435 224 OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
duke@435 225
duke@435 226 // Initialize first stack mask and related masks.
duke@435 227 void init_first_stack_mask();
duke@435 228
duke@435 229 // If we should save-on-entry this register
duke@435 230 bool is_save_on_entry( int reg );
duke@435 231
duke@435 232 // Fixup the save-on-entry registers
duke@435 233 void Fixup_Save_On_Entry( );
duke@435 234
duke@435 235 // --- Frame handling ---
duke@435 236
duke@435 237 // Register number of the stack slot corresponding to the incoming SP.
duke@435 238 // Per the Big Picture in the AD file, it is:
duke@435 239 // SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
duke@435 240 OptoReg::Name _old_SP;
duke@435 241
duke@435 242 // Register number of the stack slot corresponding to the highest incoming
duke@435 243 // argument on the stack. Per the Big Picture in the AD file, it is:
duke@435 244 // _old_SP + out_preserve_stack_slots + incoming argument size.
duke@435 245 OptoReg::Name _in_arg_limit;
duke@435 246
duke@435 247 // Register number of the stack slot corresponding to the new SP.
duke@435 248 // Per the Big Picture in the AD file, it is:
duke@435 249 // _in_arg_limit + pad0
duke@435 250 OptoReg::Name _new_SP;
duke@435 251
duke@435 252 // Register number of the stack slot corresponding to the highest outgoing
duke@435 253 // argument on the stack. Per the Big Picture in the AD file, it is:
duke@435 254 // _new_SP + max outgoing arguments of all calls
duke@435 255 OptoReg::Name _out_arg_limit;
duke@435 256
duke@435 257 OptoRegPair *_parm_regs; // Array of machine registers per argument
duke@435 258 RegMask *_calling_convention_mask; // Array of RegMasks per argument
duke@435 259
twisti@1210 260 // Does matcher have a match rule for this ideal node?
duke@435 261 static const bool has_match_rule(int opcode);
duke@435 262 static const bool _hasMatchRule[_last_opcode];
duke@435 263
twisti@1210 264 // Does matcher have a match rule for this ideal node and is the
twisti@1210 265 // predicate (if there is one) true?
twisti@1210 266 // NOTE: If this function is used more commonly in the future, ADLC
twisti@1210 267 // should generate this one.
twisti@1210 268 static const bool match_rule_supported(int opcode);
twisti@1210 269
duke@435 270 // Used to determine if we have fast l2f conversion
duke@435 271 // USII has it, USIII doesn't
duke@435 272 static const bool convL2FSupported(void);
duke@435 273
duke@435 274 // Vector width in bytes
kvn@3882 275 static const int vector_width_in_bytes(BasicType bt);
kvn@3882 276
kvn@3882 277 // Limits on vector size (number of elements).
kvn@3882 278 static const int max_vector_size(const BasicType bt);
kvn@3882 279 static const int min_vector_size(const BasicType bt);
kvn@3882 280 static const bool vector_size_supported(const BasicType bt, int size) {
kvn@3882 281 return (Matcher::max_vector_size(bt) >= size &&
kvn@3882 282 Matcher::min_vector_size(bt) <= size);
kvn@3882 283 }
duke@435 284
duke@435 285 // Vector ideal reg
kvn@3882 286 static const int vector_ideal_reg(int len);
kvn@4134 287 static const int vector_shift_count_ideal_reg(int len);
kvn@3882 288
kvn@3882 289 // CPU supports misaligned vectors store/load.
kvn@3882 290 static const bool misaligned_vectors_ok();
duke@435 291
kvn@6312 292 // Should original key array reference be passed to AES stubs
kvn@6312 293 static const bool pass_original_key_for_aes();
kvn@6312 294
duke@435 295 // Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
duke@435 296 // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
duke@435 297 // Depends on the details of 64-bit constant generation on the CPU.
duke@435 298 static const bool isSimpleConstant64(jlong con);
duke@435 299
duke@435 300 // These calls are all generated by the ADLC
duke@435 301
duke@435 302 // TRUE - grows up, FALSE - grows down (Intel)
duke@435 303 virtual bool stack_direction() const;
duke@435 304
duke@435 305 // Java-Java calling convention
duke@435 306 // (what you use when Java calls Java)
duke@435 307
duke@435 308 // Alignment of stack in bytes, standard Intel word alignment is 4.
duke@435 309 // Sparc probably wants at least double-word (8).
duke@435 310 static uint stack_alignment_in_bytes();
duke@435 311 // Alignment of stack, measured in stack slots.
duke@435 312 // The size of stack slots is defined by VMRegImpl::stack_slot_size.
duke@435 313 static uint stack_alignment_in_slots() {
duke@435 314 return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
duke@435 315 }
duke@435 316
duke@435 317 // Array mapping arguments to registers. Argument 0 is usually the 'this'
duke@435 318 // pointer. Registers can include stack-slots and regular registers.
duke@435 319 static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
duke@435 320
duke@435 321 // Convert a sig into a calling convention register layout
duke@435 322 // and find interesting things about it.
duke@435 323 static OptoReg::Name find_receiver( bool is_outgoing );
duke@435 324 // Return address register. On Intel it is a stack-slot. On PowerPC
duke@435 325 // it is the Link register. On Sparc it is r31?
duke@435 326 virtual OptoReg::Name return_addr() const;
duke@435 327 RegMask _return_addr_mask;
duke@435 328 // Return value register. On Intel it is EAX. On Sparc i0/o0.
duke@435 329 static OptoRegPair return_value(int ideal_reg, bool is_outgoing);
duke@435 330 static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
duke@435 331 RegMask _return_value_mask;
duke@435 332 // Inline Cache Register
duke@435 333 static OptoReg::Name inline_cache_reg();
duke@435 334 static int inline_cache_reg_encode();
duke@435 335
duke@435 336 // Register for DIVI projection of divmodI
duke@435 337 static RegMask divI_proj_mask();
duke@435 338 // Register for MODI projection of divmodI
duke@435 339 static RegMask modI_proj_mask();
duke@435 340
duke@435 341 // Register for DIVL projection of divmodL
duke@435 342 static RegMask divL_proj_mask();
duke@435 343 // Register for MODL projection of divmodL
duke@435 344 static RegMask modL_proj_mask();
duke@435 345
kvn@2269 346 // Use hardware DIV instruction when it is faster than
kvn@2269 347 // a code which use multiply for division by constant.
kvn@2269 348 static bool use_asm_for_ldiv_by_con( jlong divisor );
kvn@2269 349
twisti@1572 350 static const RegMask method_handle_invoke_SP_save_mask();
twisti@1572 351
duke@435 352 // Java-Interpreter calling convention
duke@435 353 // (what you use when calling between compiled-Java and Interpreted-Java
duke@435 354
duke@435 355 // Number of callee-save + always-save registers
duke@435 356 // Ignores frame pointer and "special" registers
duke@435 357 static int number_of_saved_registers();
duke@435 358
duke@435 359 // The Method-klass-holder may be passed in the inline_cache_reg
duke@435 360 // and then expanded into the inline_cache_reg and a method_oop register
duke@435 361
duke@435 362 static OptoReg::Name interpreter_method_oop_reg();
duke@435 363 static int interpreter_method_oop_reg_encode();
duke@435 364
duke@435 365 static OptoReg::Name compiler_method_oop_reg();
duke@435 366 static const RegMask &compiler_method_oop_reg_mask();
duke@435 367 static int compiler_method_oop_reg_encode();
duke@435 368
duke@435 369 // Interpreter's Frame Pointer Register
duke@435 370 static OptoReg::Name interpreter_frame_pointer_reg();
duke@435 371
duke@435 372 // Java-Native calling convention
duke@435 373 // (what you use when intercalling between Java and C++ code)
duke@435 374
duke@435 375 // Array mapping arguments to registers. Argument 0 is usually the 'this'
duke@435 376 // pointer. Registers can include stack-slots and regular registers.
duke@435 377 static void c_calling_convention( BasicType*, VMRegPair *, uint );
duke@435 378 // Frame pointer. The frame pointer is kept at the base of the stack
duke@435 379 // and so is probably the stack pointer for most machines. On Intel
duke@435 380 // it is ESP. On the PowerPC it is R1. On Sparc it is SP.
duke@435 381 OptoReg::Name c_frame_pointer() const;
duke@435 382 static RegMask c_frame_ptr_mask;
duke@435 383
duke@435 384 // !!!!! Special stuff for building ScopeDescs
duke@435 385 virtual int regnum_to_fpu_offset(int regnum);
duke@435 386
duke@435 387 // Is this branch offset small enough to be addressed by a short branch?
kvn@3049 388 bool is_short_branch_offset(int rule, int br_size, int offset);
duke@435 389
duke@435 390 // Optional scaling for the parameter to the ClearArray/CopyArray node.
duke@435 391 static const bool init_array_count_is_in_bytes;
duke@435 392
duke@435 393 // Threshold small size (in bytes) for a ClearArray/CopyArray node.
duke@435 394 // Anything this size or smaller may get converted to discrete scalar stores.
duke@435 395 static const int init_array_short_size;
duke@435 396
kvn@3243 397 // Some hardware needs 2 CMOV's for longs.
kvn@3243 398 static const int long_cmove_cost();
kvn@3243 399
kvn@3243 400 // Some hardware have expensive CMOV for float and double.
kvn@3243 401 static const int float_cmove_cost();
kvn@3243 402
duke@435 403 // Should the Matcher clone shifts on addressing modes, expecting them to
duke@435 404 // be subsumed into complex addressing expressions or compute them into
duke@435 405 // registers? True for Intel but false for most RISCs
duke@435 406 static const bool clone_shift_expressions;
duke@435 407
kvn@1930 408 static bool narrow_oop_use_complex_address();
roland@4159 409 static bool narrow_klass_use_complex_address();
kvn@1930 410
kvn@1930 411 // Generate implicit null check for narrow oops if it can fold
kvn@1930 412 // into address expression (x64).
kvn@1930 413 //
kvn@1930 414 // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
kvn@1930 415 // NullCheck narrow_oop_reg
kvn@1930 416 //
kvn@1930 417 // When narrow oops can't fold into address expression (Sparc) and
kvn@1930 418 // base is not null use decode_not_null and normal implicit null check.
kvn@1930 419 // Note, decode_not_null node can be used here since it is referenced
kvn@1930 420 // only on non null path but it requires special handling, see
kvn@1930 421 // collect_null_checks():
kvn@1930 422 //
kvn@1930 423 // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
kvn@1930 424 // [oop_reg + offset]
kvn@1930 425 // NullCheck oop_reg
kvn@1930 426 //
kvn@1930 427 // With Zero base and when narrow oops can not fold into address
kvn@1930 428 // expression use normal implicit null check since only shift
kvn@1930 429 // is needed to decode narrow oop.
kvn@1930 430 //
kvn@1930 431 // decode narrow_oop_reg, oop_reg // only 'shift'
kvn@1930 432 // [oop_reg + offset]
kvn@1930 433 // NullCheck oop_reg
kvn@1930 434 //
kvn@1930 435 inline static bool gen_narrow_oop_implicit_null_checks() {
kvn@1930 436 return Universe::narrow_oop_use_implicit_null_checks() &&
kvn@1930 437 (narrow_oop_use_complex_address() ||
kvn@1930 438 Universe::narrow_oop_base() != NULL);
kvn@1930 439 }
kvn@1930 440
duke@435 441 // Is it better to copy float constants, or load them directly from memory?
duke@435 442 // Intel can load a float constant from a direct address, requiring no
duke@435 443 // extra registers. Most RISCs will have to materialize an address into a
duke@435 444 // register first, so they may as well materialize the constant immediately.
duke@435 445 static const bool rematerialize_float_constants;
duke@435 446
duke@435 447 // If CPU can load and store mis-aligned doubles directly then no fixup is
duke@435 448 // needed. Else we split the double into 2 integer pieces and move it
duke@435 449 // piece-by-piece. Only happens when passing doubles into C code or when
duke@435 450 // calling i2c adapters as the Java calling convention forces doubles to be
duke@435 451 // aligned.
duke@435 452 static const bool misaligned_doubles_ok;
duke@435 453
duke@435 454 // Perform a platform dependent implicit null fixup. This is needed
duke@435 455 // on windows95 to take care of some unusual register constraints.
duke@435 456 void pd_implicit_null_fixup(MachNode *load, uint idx);
duke@435 457
duke@435 458 // Advertise here if the CPU requires explicit rounding operations
duke@435 459 // to implement the UseStrictFP mode.
duke@435 460 static const bool strict_fp_requires_explicit_rounding;
duke@435 461
kvn@1709 462 // Are floats conerted to double when stored to stack during deoptimization?
kvn@1709 463 static bool float_in_double();
duke@435 464 // Do ints take an entire long register or just half?
duke@435 465 static const bool int_in_long;
duke@435 466
roland@2683 467 // Do the processor's shift instructions only use the low 5/6 bits
roland@2683 468 // of the count for 32/64 bit ints? If not we need to do the masking
roland@2683 469 // ourselves.
roland@2683 470 static const bool need_masked_shift_count;
roland@2683 471
duke@435 472 // This routine is run whenever a graph fails to match.
duke@435 473 // If it returns, the compiler should bailout to interpreter without error.
duke@435 474 // In non-product mode, SoftMatchFailure is false to detect non-canonical
duke@435 475 // graphs. Print a message and exit.
duke@435 476 static void soft_match_failure() {
duke@435 477 if( SoftMatchFailure ) return;
duke@435 478 else { fatal("SoftMatchFailure is not allowed except in product"); }
duke@435 479 }
duke@435 480
duke@435 481 // Check for a following volatile memory barrier without an
duke@435 482 // intervening load and thus we don't need a barrier here. We
duke@435 483 // retain the Node to act as a compiler ordering barrier.
duke@435 484 static bool post_store_load_barrier(const Node* mb);
duke@435 485
duke@435 486
duke@435 487 #ifdef ASSERT
duke@435 488 void dump_old2new_map(); // machine-independent to machine-dependent
never@657 489
never@657 490 Node* find_old_node(Node* new_node) {
never@657 491 return _new2old_map[new_node->_idx];
never@657 492 }
duke@435 493 #endif
duke@435 494 };
stefank@2314 495
stefank@2314 496 #endif // SHARE_VM_OPTO_MATCHER_HPP

mercurial