src/cpu/mips/vm/stubGenerator_mips_64.cpp

Tue, 20 Sep 2016 11:48:21 +0800

author
jiangshaofeng
date
Tue, 20 Sep 2016 11:48:21 +0800
changeset 117
89e1dfe996be
parent 103
58408aa75fba
child 118
bf4b1d1988a6
permissions
-rw-r--r--

#4537 Rewrite generate_disjoint_byte_copy
Eliminated unaligned access and Optimized copy algorithm. The same as changeset 114
The unaligned account does not increase, has passed the SPECjvm2008 test.
20% speed up at the test program.
The test program:

public class ByteCopyTest{
public static void main(String args[]){
int count = 100000;
char []A = new char[count];
char []B = new char[count];
for(int i = 0; i < count; i++){
A[i] = (char)(i % 26 + 97);
}
long startTime = System.nanoTime();
System.arraycopy(A, 0, B, 0, count);
long endTime = System.nanoTime();
System.out.println(endTime - startTime);
}
}

aoqi@1 1 /*
aoqi@1 2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
aoqi@1 3 * Copyright (c) 2015, 2016, Loongson Technology. All rights reserved.
aoqi@1 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
aoqi@1 5 *
aoqi@1 6 * This code is free software; you can redistribute it and/or modify it
aoqi@1 7 * under the terms of the GNU General Public License version 2 only, as
aoqi@1 8 * published by the Free Software Foundation.
aoqi@1 9 *
aoqi@1 10 * This code is distributed in the hope that it will be useful, but WITHOUT
aoqi@1 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
aoqi@1 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
aoqi@1 13 * version 2 for more details (a copy is included in the LICENSE file that
aoqi@1 14 * accompanied this code).
aoqi@1 15 *
aoqi@1 16 * You should have received a copy of the GNU General Public License version
aoqi@1 17 * 2 along with this work; if not, write to the Free Software Foundation,
aoqi@1 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
aoqi@1 19 *
aoqi@1 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
aoqi@1 21 * or visit www.oracle.com if you need additional information or have any
aoqi@1 22 * questions.
aoqi@1 23 *
aoqi@1 24 */
aoqi@1 25
aoqi@1 26 #include "precompiled.hpp"
aoqi@1 27 #include "asm/macroAssembler.hpp"
aoqi@1 28 #include "asm/macroAssembler.inline.hpp"
aoqi@1 29 #include "interpreter/interpreter.hpp"
aoqi@1 30 #include "nativeInst_mips.hpp"
aoqi@1 31 #include "oops/instanceOop.hpp"
aoqi@1 32 #include "oops/method.hpp"
aoqi@1 33 #include "oops/objArrayKlass.hpp"
aoqi@1 34 #include "oops/oop.inline.hpp"
aoqi@1 35 #include "prims/methodHandles.hpp"
aoqi@1 36 #include "runtime/frame.inline.hpp"
aoqi@1 37 #include "runtime/handles.inline.hpp"
aoqi@1 38 #include "runtime/sharedRuntime.hpp"
aoqi@1 39 #include "runtime/stubCodeGenerator.hpp"
aoqi@1 40 #include "runtime/stubRoutines.hpp"
aoqi@1 41 #include "runtime/thread.inline.hpp"
aoqi@1 42 #include "utilities/top.hpp"
aoqi@1 43 #ifdef COMPILER2
aoqi@1 44 #include "opto/runtime.hpp"
aoqi@1 45 #endif
aoqi@1 46
aoqi@1 47
aoqi@1 48 // Declaration and definition of StubGenerator (no .hpp file).
aoqi@1 49 // For a more detailed description of the stub routine structure
aoqi@1 50 // see the comment in stubRoutines.hpp
aoqi@1 51
aoqi@1 52 #define __ _masm->
aoqi@1 53 //#define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
aoqi@1 54 //#define a__ ((Assembler*)_masm)->
aoqi@1 55
aoqi@1 56 //#ifdef PRODUCT
aoqi@1 57 //#define BLOCK_COMMENT(str) /* nothing */
aoqi@1 58 //#else
aoqi@1 59 //#define BLOCK_COMMENT(str) __ block_comment(str)
aoqi@1 60 //#endif
aoqi@1 61
aoqi@1 62 //#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
aoqi@1 63 const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
aoqi@1 64
aoqi@1 65 // Stub Code definitions
aoqi@1 66
aoqi@1 67 static address handle_unsafe_access() {
aoqi@1 68 JavaThread* thread = JavaThread::current();
aoqi@1 69 address pc = thread->saved_exception_pc();
aoqi@1 70 // pc is the instruction which we must emulate
aoqi@1 71 // doing a no-op is fine: return garbage from the load
aoqi@1 72 // therefore, compute npc
aoqi@1 73 //address npc = Assembler::locate_next_instruction(pc);
aoqi@1 74 address npc = (address)((unsigned long)pc + sizeof(unsigned long));
aoqi@1 75
aoqi@1 76 // request an async exception
aoqi@1 77 thread->set_pending_unsafe_access_error();
aoqi@1 78
aoqi@1 79 // return address of next instruction to execute
aoqi@1 80 return npc;
aoqi@1 81 }
aoqi@1 82
aoqi@1 83 class StubGenerator: public StubCodeGenerator {
aoqi@1 84 private:
aoqi@1 85
aoqi@1 86 // ABI mips n64
aoqi@1 87 // This fig is not MIPS ABI. It is call Java from C ABI.
aoqi@1 88 // Call stubs are used to call Java from C
aoqi@1 89 //
aoqi@1 90 // [ return_from_Java ]
aoqi@1 91 // [ argument word n-1 ] <--- sp
aoqi@1 92 // ...
aoqi@1 93 // [ argument word 0 ]
aoqi@1 94 // ...
aoqi@1 95 //-10 [ S6 ]
aoqi@1 96 // -9 [ S5 ]
aoqi@1 97 // -8 [ S4 ]
aoqi@1 98 // -7 [ S3 ]
aoqi@1 99 // -6 [ S0 ]
aoqi@1 100 // -5 [ TSR(S2) ]
aoqi@1 101 // -4 [ LVP(S7) ]
aoqi@1 102 // -3 [ BCP(S1) ]
aoqi@1 103 // -2 [ saved fp ] <--- fp_after_call
aoqi@1 104 // -1 [ return address ]
aoqi@1 105 // 0 [ ptr. to call wrapper ] <--- a0 (old sp -->)fp
aoqi@1 106 // 1 [ result ] <--- a1
aoqi@1 107 // 2 [ result_type ] <--- a2
aoqi@1 108 // 3 [ method ] <--- a3
aoqi@1 109 // 4 [ entry_point ] <--- a4
aoqi@1 110 // 5 [ parameters ] <--- a5
aoqi@1 111 // 6 [ parameter_size ] <--- a6
aoqi@1 112 // 7 [ thread ] <--- a7
aoqi@1 113
aoqi@1 114 //
aoqi@1 115 // _LP64: n64 does not save paras in sp.
aoqi@1 116 //
aoqi@1 117 // [ return_from_Java ]
aoqi@1 118 // [ argument word n-1 ] <--- sp
aoqi@1 119 // ...
aoqi@1 120 // [ argument word 0 ]
aoqi@1 121 // ...
aoqi@1 122 //-14 [ thread ]
aoqi@1 123 //-13 [ result_type ] <--- a2
aoqi@1 124 //-12 [ result ] <--- a1
aoqi@1 125 //-11 [ ptr. to call wrapper ] <--- a0
aoqi@1 126 //-10 [ S6 ]
aoqi@1 127 // -9 [ S5 ]
aoqi@1 128 // -8 [ S4 ]
aoqi@1 129 // -7 [ S3 ]
aoqi@1 130 // -6 [ S0 ]
aoqi@1 131 // -5 [ TSR(S2) ]
aoqi@1 132 // -4 [ LVP(S7) ]
aoqi@1 133 // -3 [ BCP(S1) ]
aoqi@1 134 // -2 [ saved fp ] <--- fp_after_call
aoqi@1 135 // -1 [ return address ]
aoqi@1 136 // 0 [ ] <--- old sp
aoqi@1 137 /*
aoqi@1 138 * 2014/01/16 Fu: Find a right place in the call_stub for GP.
aoqi@1 139 * GP will point to the starting point of Interpreter::dispatch_table(itos).
aoqi@1 140 * It should be saved/restored before/after Java calls.
aoqi@1 141 *
aoqi@1 142 */
aoqi@1 143 enum call_stub_layout {
aoqi@1 144 RA_off = -1,
aoqi@1 145 FP_off = -2,
aoqi@1 146 BCP_off = -3,
aoqi@1 147 LVP_off = -4,
aoqi@1 148 TSR_off = -5,
aoqi@1 149 S1_off = -6,
aoqi@1 150 S3_off = -7,
aoqi@1 151 S4_off = -8,
aoqi@1 152 S5_off = -9,
aoqi@1 153 S6_off = -10,
aoqi@1 154 result_off = -11,
aoqi@1 155 result_type_off = -12,
aoqi@1 156 thread_off = -13,
aoqi@1 157 total_off = thread_off - 3,
aoqi@1 158 GP_off = -16,
aoqi@1 159 };
aoqi@1 160
aoqi@1 161 address generate_call_stub(address& return_address) {
aoqi@1 162
aoqi@1 163 StubCodeMark mark(this, "StubRoutines", "call_stub");
aoqi@1 164 address start = __ pc();
aoqi@1 165
aoqi@1 166 // same as in generate_catch_exception()!
aoqi@1 167
aoqi@1 168 // stub code
aoqi@1 169 // save ra and fp
aoqi@1 170 __ sd(RA, SP, RA_off * wordSize);
aoqi@1 171 __ sd(FP, SP, FP_off * wordSize);
aoqi@1 172 __ sd(BCP, SP, BCP_off * wordSize);
aoqi@1 173 __ sd(LVP, SP, LVP_off * wordSize);
aoqi@1 174 __ sd(GP, SP, GP_off * wordSize);
aoqi@1 175 __ sd(TSR, SP, TSR_off * wordSize);
aoqi@1 176 __ sd(S1, SP, S1_off * wordSize);
aoqi@1 177 __ sd(S3, SP, S3_off * wordSize);
aoqi@1 178 __ sd(S4, SP, S4_off * wordSize);
aoqi@1 179 __ sd(S5, SP, S5_off * wordSize);
aoqi@1 180 __ sd(S6, SP, S6_off * wordSize);
aoqi@1 181
aoqi@1 182
aoqi@1 183 __ li48(GP, (long)Interpreter::dispatch_table(itos));
aoqi@1 184
aoqi@1 185 // I think 14 is the max gap between argument and callee saved register
aoqi@1 186 __ daddi(FP, SP, (-2) * wordSize);
aoqi@1 187 __ daddi(SP, SP, total_off * wordSize);
aoqi@1 188 //FIXME, aoqi. find a suitable place to save A1 & A2.
aoqi@1 189 /*
aoqi@1 190 __ sd(A0, FP, frame::entry_frame_call_wrapper_offset * wordSize);
aoqi@1 191 __ sd(A1, FP, 3 * wordSize);
aoqi@1 192 __ sd(A2, FP, 4 * wordSize);
aoqi@1 193 __ sd(A3, FP, 5 * wordSize);
aoqi@1 194 __ sd(A4, FP, 6 * wordSize);
aoqi@1 195 __ sd(A5, FP, 7 * wordSize);
aoqi@1 196 __ sd(A6, FP, 8 * wordSize);
aoqi@1 197 __ sd(A7, FP, 9 * wordSize);
aoqi@1 198 */
aoqi@1 199 __ sd(A0, FP, frame::entry_frame_call_wrapper_offset * wordSize);
aoqi@1 200 __ sd(A1, FP, result_off * wordSize);
aoqi@1 201 __ sd(A2, FP, result_type_off * wordSize);
aoqi@1 202 __ sd(A7, FP, thread_off * wordSize);
aoqi@1 203
aoqi@1 204 #ifdef OPT_THREAD
aoqi@1 205 //__ get_thread(TREG);
aoqi@1 206 __ move(TREG, A7);
aoqi@1 207
aoqi@1 208 //__ ld(TREG, FP, thread_off * wordSize);
aoqi@1 209 #endif
aoqi@1 210 //add for compressedoops
aoqi@1 211 __ reinit_heapbase();
aoqi@1 212
aoqi@1 213 #ifdef ASSERT
aoqi@1 214 // make sure we have no pending exceptions
aoqi@1 215 {
aoqi@1 216 Label L;
aoqi@1 217 __ ld(AT, A7, in_bytes(Thread::pending_exception_offset()));
aoqi@1 218 __ beq(AT, R0, L);
aoqi@1 219 __ delayed()->nop();
aoqi@1 220 /* FIXME: I do not know how to realize stop in mips arch, do it in the future */
aoqi@1 221 __ stop("StubRoutines::call_stub: entered with pending exception");
aoqi@1 222 __ bind(L);
aoqi@1 223 }
aoqi@1 224 #endif
aoqi@1 225
aoqi@1 226 // pass parameters if any
aoqi@1 227 // A5: parameter
aoqi@1 228 // A6: parameter_size
aoqi@1 229 // T0: parameter_size_tmp(--)
aoqi@1 230 // T2: offset(++)
aoqi@1 231 // T3: tmp
aoqi@1 232 Label parameters_done;
aoqi@1 233 // judge if the parameter_size equals 0
aoqi@1 234 __ beq(A6, R0, parameters_done);
aoqi@1 235 __ delayed()->nop();
aoqi@1 236 __ dsll(AT, A6, Interpreter::logStackElementSize);
aoqi@1 237 __ dsub(SP, SP, AT);
aoqi@1 238 __ move(AT, -StackAlignmentInBytes);
aoqi@1 239 __ andr(SP, SP , AT);
aoqi@1 240 // Copy Java parameters in reverse order (receiver last)
aoqi@1 241 // Note that the argument order is inverted in the process
aoqi@1 242 // source is edx[ecx: N-1..0]
aoqi@1 243 // dest is esp[ebx: 0..N-1]
aoqi@1 244 Label loop;
aoqi@1 245 __ move(T0, A6);
aoqi@1 246 __ move(T2, R0);
aoqi@1 247 __ bind(loop);
aoqi@1 248
aoqi@1 249 // get parameter
aoqi@1 250 __ dsll(T3, T0, LogBytesPerWord);
aoqi@1 251 __ dadd(T3, T3, A5);
aoqi@1 252 __ ld(AT, T3, -wordSize);
aoqi@1 253 __ dsll(T3, T2, LogBytesPerWord);
aoqi@1 254 __ dadd(T3, T3, SP);
aoqi@1 255 __ sd(AT, T3, Interpreter::expr_offset_in_bytes(0));
aoqi@1 256 __ daddi(T2, T2, 1);
aoqi@1 257 __ daddi(T0, T0, -1);
aoqi@1 258 __ bne(T0, R0, loop);
aoqi@1 259 __ delayed()->nop();
aoqi@1 260 // advance to next parameter
aoqi@1 261
aoqi@1 262 // call Java function
aoqi@1 263 __ bind(parameters_done);
aoqi@1 264
aoqi@1 265 // receiver in V0, methodOop in Rmethod
aoqi@1 266
aoqi@1 267 __ move(Rmethod, A3);
aoqi@1 268 __ move(Rsender, SP); //set sender sp
aoqi@1 269 __ jalr(A4);
aoqi@1 270 __ delayed()->nop();
aoqi@1 271 return_address = __ pc();
aoqi@1 272
aoqi@1 273 Label common_return;
aoqi@1 274 __ bind(common_return);
aoqi@1 275
aoqi@1 276 // store result depending on type
aoqi@1 277 // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
aoqi@1 278 __ ld(T0, FP, result_off * wordSize); // result --> T0
aoqi@1 279 Label is_long, is_float, is_double, exit;
aoqi@1 280 __ ld(T2, FP, result_type_off * wordSize); // result_type --> T2
aoqi@1 281 __ daddi(T3, T2, (-1) * T_LONG);
aoqi@1 282 __ beq(T3, R0, is_long);
aoqi@1 283 __ delayed()->daddi(T3, T2, (-1) * T_FLOAT);
aoqi@1 284 __ beq(T3, R0, is_float);
aoqi@1 285 __ delayed()->daddi(T3, T2, (-1) * T_DOUBLE);
aoqi@1 286 __ beq(T3, R0, is_double);
aoqi@1 287 __ delayed()->nop();
aoqi@1 288
aoqi@1 289 // handle T_INT case
aoqi@1 290 __ sd(V0, T0, 0 * wordSize);
aoqi@1 291 __ bind(exit);
aoqi@1 292
aoqi@1 293 // restore
aoqi@1 294 __ daddi(SP, FP, 2 * wordSize );
aoqi@1 295 __ ld(RA, SP, RA_off * wordSize);
aoqi@1 296 __ ld(FP, SP, FP_off * wordSize);
aoqi@1 297 __ ld(BCP, SP, BCP_off * wordSize);
aoqi@1 298 __ ld(LVP, SP, LVP_off * wordSize);
aoqi@1 299 __ ld(GP, SP, GP_off * wordSize);
aoqi@1 300 __ ld(TSR, SP, TSR_off * wordSize);
aoqi@1 301
aoqi@1 302 __ ld(S1, SP, S1_off * wordSize);
aoqi@1 303 __ ld(S3, SP, S3_off * wordSize);
aoqi@1 304 __ ld(S4, SP, S4_off * wordSize);
aoqi@1 305 __ ld(S5, SP, S5_off * wordSize);
aoqi@1 306 __ ld(S6, SP, S6_off * wordSize);
aoqi@1 307
aoqi@1 308 // return
aoqi@1 309 __ jr(RA);
aoqi@1 310 __ delayed()->nop();
aoqi@1 311
aoqi@1 312 // handle return types different from T_INT
aoqi@1 313 __ bind(is_long);
aoqi@1 314 __ sd(V0, T0, 0 * wordSize);
aoqi@1 315 //__ sd(V1, T0, 1 * wordSize);
aoqi@35 316 //__ sd(R0, T0, 1 * wordSize);
aoqi@1 317 __ b(exit);
aoqi@1 318 __ delayed()->nop();
aoqi@1 319
aoqi@1 320 __ bind(is_float);
aoqi@1 321 __ swc1(F0, T0, 0 * wordSize);
aoqi@1 322 __ b(exit);
aoqi@1 323 __ delayed()->nop();
aoqi@1 324
aoqi@1 325 __ bind(is_double);
aoqi@1 326 __ sdc1(F0, T0, 0 * wordSize);
aoqi@1 327 //__ sdc1(F1, T0, 1 * wordSize);
aoqi@35 328 //__ sd(R0, T0, 1 * wordSize);
aoqi@1 329 __ b(exit);
aoqi@1 330 __ delayed()->nop();
aoqi@1 331 //FIXME, 1.6 mips version add operation of fpu here
aoqi@1 332 StubRoutines::gs2::set_call_stub_compiled_return(__ pc());
aoqi@1 333 __ b(common_return);
aoqi@1 334 __ delayed()->nop();
aoqi@1 335 return start;
aoqi@1 336 }
aoqi@1 337
aoqi@1 338 // Return point for a Java call if there's an exception thrown in
aoqi@1 339 // Java code. The exception is caught and transformed into a
aoqi@1 340 // pending exception stored in JavaThread that can be tested from
aoqi@1 341 // within the VM.
aoqi@1 342 //
aoqi@1 343 // Note: Usually the parameters are removed by the callee. In case
aoqi@1 344 // of an exception crossing an activation frame boundary, that is
aoqi@1 345 // not the case if the callee is compiled code => need to setup the
aoqi@1 346 // rsp.
aoqi@1 347 //
aoqi@1 348 // rax: exception oop
aoqi@1 349
aoqi@1 350 address generate_catch_exception() {
aoqi@1 351 StubCodeMark mark(this, "StubRoutines", "catch_exception");
aoqi@1 352 address start = __ pc();
aoqi@1 353
aoqi@1 354 Register thread = TREG;
aoqi@1 355
aoqi@1 356 // get thread directly
aoqi@1 357 #ifndef OPT_THREAD
aoqi@1 358 __ ld(thread, FP, thread_off * wordSize);
aoqi@1 359 #endif
aoqi@1 360
aoqi@1 361 #ifdef ASSERT
aoqi@1 362 // verify that threads correspond
aoqi@1 363 { Label L;
aoqi@1 364 __ get_thread(T8);
aoqi@1 365 __ beq(T8, thread, L);
aoqi@1 366 __ delayed()->nop();
aoqi@1 367 __ stop("StubRoutines::catch_exception: threads must correspond");
aoqi@1 368 __ bind(L);
aoqi@1 369 }
aoqi@1 370 #endif
aoqi@1 371 // set pending exception
aoqi@1 372 __ verify_oop(V0);
aoqi@1 373 __ sd(V0, thread, in_bytes(Thread::pending_exception_offset()));
aoqi@1 374 __ li(AT, (long)__FILE__);
aoqi@1 375 __ sd(AT, thread, in_bytes(Thread::exception_file_offset ()));
aoqi@1 376 __ li(AT, (long)__LINE__);
aoqi@1 377 __ sd(AT, thread, in_bytes(Thread::exception_line_offset ()));
aoqi@1 378
aoqi@1 379 // complete return to VM
aoqi@1 380 assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
aoqi@1 381 __ jmp(StubRoutines::_call_stub_return_address, relocInfo::none);
aoqi@1 382 __ delayed()->nop();
aoqi@1 383
aoqi@1 384 return start;
aoqi@1 385 }
aoqi@1 386
aoqi@1 387 // Continuation point for runtime calls returning with a pending
aoqi@1 388 // exception. The pending exception check happened in the runtime
aoqi@1 389 // or native call stub. The pending exception in Thread is
aoqi@1 390 // converted into a Java-level exception.
aoqi@1 391 //
aoqi@1 392 // Contract with Java-level exception handlers:
aoqi@1 393 // rax: exception
aoqi@1 394 // rdx: throwing pc
aoqi@1 395 //
aoqi@1 396 // NOTE: At entry of this stub, exception-pc must be on stack !!
aoqi@1 397
aoqi@1 398 address generate_forward_exception() {
aoqi@1 399 StubCodeMark mark(this, "StubRoutines", "forward exception");
aoqi@1 400 //Register thread = TREG;
aoqi@1 401 Register thread = TREG;
aoqi@1 402 address start = __ pc();
aoqi@1 403
aoqi@1 404 // Upon entry, the sp points to the return address returning into Java
aoqi@1 405 // (interpreted or compiled) code; i.e., the return address becomes the
aoqi@1 406 // throwing pc.
aoqi@1 407 //
aoqi@1 408 // Arguments pushed before the runtime call are still on the stack but
aoqi@1 409 // the exception handler will reset the stack pointer -> ignore them.
aoqi@1 410 // A potential result in registers can be ignored as well.
aoqi@1 411
aoqi@1 412 #ifdef ASSERT
aoqi@1 413 // make sure this code is only executed if there is a pending exception
aoqi@1 414 #ifndef OPT_THREAD
aoqi@1 415 __ get_thread(thread);
aoqi@1 416 #endif
aoqi@1 417 { Label L;
aoqi@1 418 __ ld(AT, thread, in_bytes(Thread::pending_exception_offset()));
aoqi@1 419 __ bne(AT, R0, L);
aoqi@1 420 __ delayed()->nop();
aoqi@1 421 __ stop("StubRoutines::forward exception: no pending exception (1)");
aoqi@1 422 __ bind(L);
aoqi@1 423 }
aoqi@1 424 #endif
aoqi@1 425
aoqi@1 426 // compute exception handler into T9
aoqi@1 427 __ ld(A1, SP, 0);
aoqi@1 428 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, A1);
aoqi@1 429 __ move(T9, V0);
aoqi@1 430 __ pop(V1);
aoqi@1 431
aoqi@1 432 #ifndef OPT_THREAD
aoqi@1 433 __ get_thread(thread);
aoqi@1 434 #endif
aoqi@1 435 __ ld(V0, thread, in_bytes(Thread::pending_exception_offset()));
aoqi@1 436 __ sd(R0, thread, in_bytes(Thread::pending_exception_offset()));
aoqi@1 437
aoqi@1 438 #ifdef ASSERT
aoqi@1 439 // make sure exception is set
aoqi@1 440 { Label L;
aoqi@1 441 __ bne(V0, R0, L);
aoqi@1 442 __ delayed()->nop();
aoqi@1 443 __ stop("StubRoutines::forward exception: no pending exception (2)");
aoqi@1 444 __ bind(L);
aoqi@1 445 }
aoqi@1 446 #endif
aoqi@1 447
aoqi@1 448 // continue at exception handler (return address removed)
aoqi@1 449 // V0: exception
aoqi@1 450 // T9: exception handler
aoqi@1 451 // V1: throwing pc
aoqi@1 452 __ verify_oop(V0);
aoqi@1 453 __ jr(T9);
aoqi@1 454 __ delayed()->nop();
aoqi@1 455
aoqi@1 456 return start;
aoqi@1 457 }
aoqi@1 458
aoqi@1 459 // Support for intptr_t get_previous_fp()
aoqi@1 460 //
aoqi@1 461 // This routine is used to find the previous frame pointer for the
aoqi@1 462 // caller (current_frame_guess). This is used as part of debugging
aoqi@1 463 // ps() is seemingly lost trying to find frames.
aoqi@1 464 // This code assumes that caller current_frame_guess) has a frame.
aoqi@1 465 address generate_get_previous_fp() {
aoqi@1 466 StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
aoqi@1 467 const Address old_fp (FP, 0);
aoqi@1 468 const Address older_fp (V0, 0);
aoqi@1 469 address start = __ pc();
aoqi@1 470 __ enter();
aoqi@1 471 __ lw(V0, old_fp); // callers fp
aoqi@1 472 __ lw(V0, older_fp); // the frame for ps()
aoqi@1 473 __ leave();
aoqi@1 474 __ jr(RA);
aoqi@1 475 __ delayed()->nop();
aoqi@1 476 return start;
aoqi@1 477 }
aoqi@1 478 // The following routine generates a subroutine to throw an
aoqi@1 479 // asynchronous UnknownError when an unsafe access gets a fault that
aoqi@1 480 // could not be reasonably prevented by the programmer. (Example:
aoqi@1 481 // SIGBUS/OBJERR.)
aoqi@1 482 address generate_handler_for_unsafe_access() {
aoqi@1 483 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
aoqi@1 484 address start = __ pc();
aoqi@1 485 __ pushad(); // push registers
aoqi@1 486 // Address next_pc(esp, RegisterImpl::number_of_registers * BytesPerWord);
aoqi@1 487 __ call(CAST_FROM_FN_PTR(address, handle_unsafe_access), relocInfo::runtime_call_type);
aoqi@1 488 __ delayed()->nop();
aoqi@1 489 __ sw(V0, SP, RegisterImpl::number_of_registers * BytesPerWord);
aoqi@1 490 __ popad();
aoqi@1 491 __ jr(RA);
aoqi@1 492 __ delayed()->nop();
aoqi@1 493 return start;
aoqi@1 494 }
aoqi@1 495
aoqi@1 496 // Non-destructive plausibility checks for oops
aoqi@1 497 //
aoqi@1 498 // Arguments:
aoqi@1 499 // all args on stack!
aoqi@1 500 //
aoqi@1 501 // Stack after saving c_rarg3:
aoqi@1 502 // [tos + 0]: saved c_rarg3
aoqi@1 503 // [tos + 1]: saved c_rarg2
aoqi@1 504 // [tos + 2]: saved r12 (several TemplateTable methods use it)
aoqi@1 505 // [tos + 3]: saved flags
aoqi@1 506 // [tos + 4]: return address
aoqi@1 507 // * [tos + 5]: error message (char*)
aoqi@1 508 // * [tos + 6]: object to verify (oop)
aoqi@1 509 // * [tos + 7]: saved rax - saved by caller and bashed
aoqi@1 510 // * = popped on exit
aoqi@1 511 address generate_verify_oop() {
aoqi@1 512 StubCodeMark mark(this, "StubRoutines", "verify_oop");
aoqi@1 513 address start = __ pc();
aoqi@1 514 __ reinit_heapbase();
aoqi@1 515 __ verify_oop_subroutine();
aoqi@1 516 address end = __ pc();
aoqi@1 517 return start;
aoqi@1 518 }
aoqi@1 519
aoqi@1 520 //
aoqi@1 521 // Generate overlap test for array copy stubs
aoqi@1 522 //
aoqi@1 523 // Input:
aoqi@1 524 // A0 - array1
aoqi@1 525 // A1 - array2
aoqi@1 526 // A2 - element count
aoqi@1 527 //
aoqi@1 528 // Note: this code can only use %eax, %ecx, and %edx
aoqi@1 529 //
aoqi@1 530
aoqi@1 531 // use T9 as temp
aoqi@1 532 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
aoqi@1 533 int elem_size = 1 << log2_elem_size;
aoqi@1 534 Address::ScaleFactor sf = Address::times_1;
aoqi@1 535
aoqi@1 536 switch (log2_elem_size) {
aoqi@1 537 case 0: sf = Address::times_1; break;
aoqi@1 538 case 1: sf = Address::times_2; break;
aoqi@1 539 case 2: sf = Address::times_4; break;
aoqi@1 540 case 3: sf = Address::times_8; break;
aoqi@1 541 }
aoqi@1 542
aoqi@1 543 __ dsll(AT, A2, sf);
aoqi@1 544 __ dadd(AT, AT, A0);
aoqi@1 545 __ lea(T9, Address(AT, -elem_size));
aoqi@1 546 __ dsub(AT, A1, A0);
aoqi@1 547 __ blez(AT, no_overlap_target);
aoqi@1 548 __ delayed()->nop();
aoqi@1 549 __ dsub(AT, A1, T9);
aoqi@1 550 __ bgtz(AT, no_overlap_target);
aoqi@1 551 __ delayed()->nop();
aoqi@1 552
aoqi@8 553 // 2016/05/10 aoqi: If A0 = 0xf... and A1 = 0x0..., than goto no_overlap_target
aoqi@8 554 Label L;
aoqi@8 555 __ bgez(A0, L);
aoqi@8 556 __ delayed()->nop();
aoqi@8 557 __ bgtz(A1, no_overlap_target);
aoqi@8 558 __ delayed()->nop();
aoqi@8 559 __ bind(L);
aoqi@8 560
aoqi@1 561 }
aoqi@1 562
aoqi@1 563 //
aoqi@1 564 // Generate store check for array
aoqi@1 565 //
aoqi@1 566 // Input:
aoqi@1 567 // %edi - starting address
aoqi@1 568 // %ecx - element count
aoqi@1 569 //
aoqi@1 570 // The 2 input registers are overwritten
aoqi@1 571 //
aoqi@1 572
aoqi@1 573 //
aoqi@1 574 // Generate store check for array
aoqi@1 575 //
aoqi@1 576 // Input:
aoqi@1 577 // T0 - starting address(edi)
aoqi@1 578 // T1 - element count (ecx)
aoqi@1 579 //
aoqi@1 580 // The 2 input registers are overwritten
aoqi@1 581 //
aoqi@1 582
aoqi@1 583 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
aoqi@1 584
aoqi@1 585 void array_store_check() {
aoqi@1 586 BarrierSet* bs = Universe::heap()->barrier_set();
aoqi@1 587 assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
aoqi@1 588 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
aoqi@1 589 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
aoqi@1 590 Label l_0;
aoqi@1 591
aoqi@1 592 __ dsll(AT, T1, TIMES_OOP);
aoqi@1 593 __ dadd(AT, T0, AT);
aoqi@1 594 __ daddiu(T1, AT, - BytesPerHeapOop);
aoqi@1 595
aoqi@1 596 __ shr(T0, CardTableModRefBS::card_shift);
aoqi@1 597 __ shr(T1, CardTableModRefBS::card_shift);
aoqi@1 598
aoqi@1 599 __ dsub(T1, T1, T0); // end --> cards count
aoqi@1 600 __ bind(l_0);
aoqi@1 601
aoqi@1 602 __ li48(AT, (long)ct->byte_map_base);
aoqi@1 603 __ dadd(AT, AT, T0);
aoqi@1 604 __ dadd(AT, AT, T1);
fujie@103 605 __ sync();
aoqi@1 606 __ sb(R0, AT, 0);
aoqi@1 607 //__ daddi(T1, T1, -4);
aoqi@1 608 __ daddi(T1, T1, - 1);
aoqi@1 609 __ bgez(T1, l_0);
aoqi@1 610 __ delayed()->nop();
aoqi@1 611 }
aoqi@1 612
aoqi@1 613 // Arguments:
aoqi@1 614 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 615 // ignored
aoqi@1 616 // name - stub name string
aoqi@1 617 //
aoqi@1 618 // Inputs:
aoqi@1 619 // c_rarg0 - source array address
aoqi@1 620 // c_rarg1 - destination array address
aoqi@1 621 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 622 //
aoqi@1 623 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
aoqi@1 624 // we let the hardware handle it. The one to eight bytes within words,
aoqi@1 625 // dwords or qwords that span cache line boundaries will still be loaded
aoqi@1 626 // and stored atomically.
aoqi@1 627 //
aoqi@1 628 // Side Effects:
aoqi@1 629 // disjoint_byte_copy_entry is set to the no-overlap entry point
aoqi@1 630 // used by generate_conjoint_byte_copy().
aoqi@1 631 //
jiangshaofeng@117 632 address generate_disjoint_byte_copy(bool aligned, const char * name) {
jiangshaofeng@117 633 StubCodeMark mark(this, "StubRoutines", name);
jiangshaofeng@117 634 __ align(CodeEntryAlignment);
jiangshaofeng@117 635
jiangshaofeng@117 636
jiangshaofeng@117 637 Register tmp1 = T0;
jiangshaofeng@117 638 Register tmp2 = T1;
jiangshaofeng@117 639 Register tmp3 = T3;
jiangshaofeng@117 640
jiangshaofeng@117 641 address start = __ pc();
jiangshaofeng@117 642
jiangshaofeng@117 643 __ push(tmp1);
jiangshaofeng@117 644 __ push(tmp2);
jiangshaofeng@117 645 __ push(tmp3);
jiangshaofeng@117 646 __ move(tmp1, A0);
jiangshaofeng@117 647 __ move(tmp2, A1);
jiangshaofeng@117 648 __ move(tmp3, A2);
jiangshaofeng@117 649
jiangshaofeng@117 650
jiangshaofeng@117 651 Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8, l_9, l_10, l_11;
jiangshaofeng@117 652 Label l_debug;
jiangshaofeng@117 653
jiangshaofeng@117 654 __ daddi(AT, tmp3, -9); //why the number is 9 ?
jiangshaofeng@117 655 __ blez(AT, l_9);
jiangshaofeng@117 656 __ delayed()->nop();
jiangshaofeng@117 657
jiangshaofeng@117 658 if (!aligned) {
jiangshaofeng@117 659 __ xorr(AT, tmp1, tmp2);
jiangshaofeng@117 660 __ andi(AT, AT, 1);
jiangshaofeng@117 661 __ bne(AT, R0, l_9); // if arrays don't have the same alignment mod 2, do 1 element copy
jiangshaofeng@117 662 __ delayed()->nop();
jiangshaofeng@117 663
jiangshaofeng@117 664 __ andi(AT, tmp1, 1);
jiangshaofeng@117 665 __ beq(AT, R0, l_10); //copy 1 enlement if necessary to aligh to 2 bytes
jiangshaofeng@117 666 __ delayed()->nop();
jiangshaofeng@117 667
jiangshaofeng@117 668 __ lb(AT, tmp1, 0);
jiangshaofeng@117 669 __ daddi(tmp1, tmp1, 1);
jiangshaofeng@117 670 __ sb(AT, tmp2, 0);
jiangshaofeng@117 671 __ daddi(tmp2, tmp2, 1);
jiangshaofeng@117 672 __ daddi(tmp3, tmp3, -1);
jiangshaofeng@117 673 __ bind(l_10);
jiangshaofeng@117 674
jiangshaofeng@117 675 __ xorr(AT, tmp1, tmp2);
jiangshaofeng@117 676 __ andi(AT, AT, 3);
jiangshaofeng@117 677 __ bne(AT, R0, l_1); // if arrays don't have the same alignment mod 4, do 2 elements copy
jiangshaofeng@117 678 __ delayed()->nop();
jiangshaofeng@117 679
jiangshaofeng@117 680 // At this point it is guaranteed that both, from and to have the same alignment mod 4.
jiangshaofeng@117 681
jiangshaofeng@117 682 // Copy 2 elements if necessary to align to 4 bytes.
jiangshaofeng@117 683 __ andi(AT, tmp1, 3);
jiangshaofeng@117 684 __ beq(AT, R0, l_2);
jiangshaofeng@117 685 __ delayed()->nop();
jiangshaofeng@117 686
jiangshaofeng@117 687 __ lhu(AT, tmp1, 0);
jiangshaofeng@117 688 __ daddi(tmp1, tmp1, 2);
jiangshaofeng@117 689 __ sh(AT, tmp2, 0);
jiangshaofeng@117 690 __ daddi(tmp2, tmp2, 2);
jiangshaofeng@117 691 __ daddi(tmp3, tmp3, -2);
jiangshaofeng@117 692 __ bind(l_2);
jiangshaofeng@117 693
jiangshaofeng@117 694 // At this point the positions of both, from and to, are at least 4 byte aligned.
jiangshaofeng@117 695
jiangshaofeng@117 696 // Copy 4 elements at a time.
jiangshaofeng@117 697 // Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
jiangshaofeng@117 698 __ xorr(AT, tmp1, tmp2);
jiangshaofeng@117 699 __ andi(AT, AT, 7);
jiangshaofeng@117 700 __ bne(AT, R0, l_6); // not same alignment mod 8 -> copy 2, either from or to will be unaligned
jiangshaofeng@117 701 __ delayed()->nop();
jiangshaofeng@117 702
jiangshaofeng@117 703 // Copy a 4 elements if necessary to align to 8 bytes.
jiangshaofeng@117 704 __ andi(AT, tmp1, 7);
jiangshaofeng@117 705 __ beq(AT, R0, l_7);
jiangshaofeng@117 706 __ delayed()->nop();
jiangshaofeng@117 707
jiangshaofeng@117 708 __ lw(AT, tmp1, 0);
jiangshaofeng@117 709 __ daddi(tmp3, tmp3, -4);
jiangshaofeng@117 710 __ sw(AT, tmp2, 0);
jiangshaofeng@117 711 { // FasterArrayCopy
jiangshaofeng@117 712 __ daddi(tmp1, tmp1, 4);
jiangshaofeng@117 713 __ daddi(tmp2, tmp2, 4);
jiangshaofeng@117 714 }
jiangshaofeng@117 715 }
jiangshaofeng@117 716
jiangshaofeng@117 717 __ bind(l_7);
jiangshaofeng@117 718
jiangshaofeng@117 719 // Copy 4 elements at a time; either the loads or the stores can
jiangshaofeng@117 720 // be unaligned if aligned == false.
jiangshaofeng@117 721
jiangshaofeng@117 722 { // FasterArrayCopy
jiangshaofeng@117 723 __ daddi(AT, tmp3, -7);
jiangshaofeng@117 724 __ blez(AT, l_6); // copy 4 at a time if less than 4 elements remain
jiangshaofeng@117 725 __ delayed()->nop();
jiangshaofeng@117 726
jiangshaofeng@117 727 __ bind(l_8);
jiangshaofeng@117 728 // For Loongson, there is 128-bit memory access. TODO
jiangshaofeng@117 729 __ ld(AT, tmp1, 0);
jiangshaofeng@117 730 __ sd(AT, tmp2, 0);
jiangshaofeng@117 731 __ daddi(tmp1, tmp1, 8);
jiangshaofeng@117 732 __ daddi(tmp2, tmp2, 8);
jiangshaofeng@117 733 __ daddi(tmp3, tmp3, -8);
jiangshaofeng@117 734 __ daddi(AT, tmp3, -8);
jiangshaofeng@117 735 __ bgez(AT, l_8);
jiangshaofeng@117 736 __ delayed()->nop();
jiangshaofeng@117 737 }
jiangshaofeng@117 738 __ bind(l_6);
jiangshaofeng@117 739
jiangshaofeng@117 740 // copy 4 bytes at a time
jiangshaofeng@117 741 { // FasterArrayCopy
jiangshaofeng@117 742 __ daddi(AT, tmp3, -3);
jiangshaofeng@117 743 __ blez(AT, l_1);
jiangshaofeng@117 744 __ delayed()->nop();
jiangshaofeng@117 745
jiangshaofeng@117 746 __ bind(l_3);
jiangshaofeng@117 747 __ lw(AT, tmp1, 0);
jiangshaofeng@117 748 __ sw(AT, tmp2, 0);
jiangshaofeng@117 749 __ daddi(tmp1, tmp1, 4);
jiangshaofeng@117 750 __ daddi(tmp2, tmp2, 4);
jiangshaofeng@117 751 __ daddi(tmp3, tmp3, -4);
jiangshaofeng@117 752 __ daddi(AT, tmp3, -4);
jiangshaofeng@117 753 __ bgez(AT, l_3);
jiangshaofeng@117 754 __ delayed()->nop();
jiangshaofeng@117 755
jiangshaofeng@117 756 }
jiangshaofeng@117 757
jiangshaofeng@117 758 // do 2 bytes copy
jiangshaofeng@117 759 __ bind(l_1);
jiangshaofeng@117 760 {
jiangshaofeng@117 761 __ daddi(AT, tmp3, -1);
jiangshaofeng@117 762 __ blez(AT, l_9);
jiangshaofeng@117 763 __ delayed()->nop();
jiangshaofeng@117 764
jiangshaofeng@117 765 __ bind(l_5);
jiangshaofeng@117 766 __ lhu(AT, tmp1, 0);
jiangshaofeng@117 767 __ daddi(tmp3, tmp3, -2);
jiangshaofeng@117 768 __ sh(AT, tmp2, 0);
jiangshaofeng@117 769 __ daddi(tmp1, tmp1, 2);
jiangshaofeng@117 770 __ daddi(tmp2, tmp2, 2);
jiangshaofeng@117 771 __ daddi(AT, tmp3, -2);
jiangshaofeng@117 772 __ bgez(AT, l_5);
jiangshaofeng@117 773 __ delayed()->nop();
jiangshaofeng@117 774 }
jiangshaofeng@117 775
jiangshaofeng@117 776 //do 1 element copy--byte
jiangshaofeng@117 777 __ bind(l_9);
jiangshaofeng@117 778 __ beq(R0, tmp3, l_4);
jiangshaofeng@117 779 __ delayed()->nop();
jiangshaofeng@117 780
jiangshaofeng@117 781 {
jiangshaofeng@117 782 __ bind(l_11);
jiangshaofeng@117 783 __ lb(AT, tmp1, 0);
jiangshaofeng@117 784 __ daddi(tmp3, tmp3, -1);
jiangshaofeng@117 785 __ sb(AT, tmp2, 0);
jiangshaofeng@117 786 __ daddi(tmp1, tmp1, 1);
jiangshaofeng@117 787 __ daddi(tmp2, tmp2, 1);
jiangshaofeng@117 788 __ daddi(AT, tmp3, -1);
jiangshaofeng@117 789 __ bgez(AT, l_11);
jiangshaofeng@117 790 __ delayed()->nop();
jiangshaofeng@117 791 }
jiangshaofeng@117 792
jiangshaofeng@117 793 __ bind(l_4);
jiangshaofeng@117 794 __ pop(tmp3);
jiangshaofeng@117 795 __ pop(tmp2);
jiangshaofeng@117 796 __ pop(tmp1);
jiangshaofeng@117 797
jiangshaofeng@117 798 __ jr(RA);
jiangshaofeng@117 799 __ delayed()->nop();
jiangshaofeng@117 800
jiangshaofeng@117 801 return start;
aoqi@1 802 }
aoqi@1 803
aoqi@1 804 // Arguments:
aoqi@1 805 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 806 // ignored
aoqi@1 807 // name - stub name string
aoqi@1 808 //
aoqi@1 809 // Inputs:
aoqi@8 810 // A0 - source array address
aoqi@8 811 // A1 - destination array address
aoqi@8 812 // A2 - element count, treated as ssize_t, can be zero
aoqi@1 813 //
aoqi@1 814 // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
aoqi@1 815 // we let the hardware handle it. The one to eight bytes within words,
aoqi@1 816 // dwords or qwords that span cache line boundaries will still be loaded
aoqi@1 817 // and stored atomically.
aoqi@1 818 //
aoqi@1 819 address generate_conjoint_byte_copy(bool aligned, const char *name) {
aoqi@8 820 __ align(CodeEntryAlignment);
aoqi@8 821 StubCodeMark mark(this, "StubRoutines", name);
aoqi@8 822 address start = __ pc();
aoqi@1 823
aoqi@8 824 Label l_copy_4_bytes_loop, l_copy_suffix, l_copy_suffix_loop, l_exit;
aoqi@8 825 Label l_copy_byte, l_from_unaligned, l_unaligned, l_4_bytes_aligned;
aoqi@1 826
aoqi@8 827 address nooverlap_target = aligned ?
aoqi@8 828 StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
aoqi@8 829 StubRoutines::jbyte_disjoint_arraycopy();
aoqi@1 830
aoqi@8 831 array_overlap_test(nooverlap_target, 0);
Jin@7 832
aoqi@8 833 const Register from = A0; // source array address
aoqi@8 834 const Register to = A1; // destination array address
aoqi@8 835 const Register count = A2; // elements count
aoqi@8 836 const Register end_from = T3; // source array end address
aoqi@8 837 const Register end_to = T0; // destination array end address
aoqi@8 838 const Register end_count = T1; // destination array end address
Jin@7 839
aoqi@8 840 __ push(end_from);
aoqi@8 841 __ push(end_to);
aoqi@8 842 __ push(end_count);
aoqi@8 843 __ push(T8);
Jin@7 844
aoqi@8 845 // copy from high to low
aoqi@8 846 __ move(end_count, count);
aoqi@8 847 __ dadd(end_from, from, end_count);
aoqi@8 848 __ dadd(end_to, to, end_count);
Jin@7 849
aoqi@8 850 // 2016/05/08 aoqi: If end_from and end_to has differante alignment, unaligned copy is performed.
aoqi@8 851 __ andi(AT, end_from, 3);
aoqi@8 852 __ andi(T8, end_to, 3);
aoqi@8 853 __ bne(AT, T8, l_copy_byte);
aoqi@8 854 __ delayed()->nop();
Jin@7 855
aoqi@8 856 // First deal with the unaligned data at the top.
aoqi@8 857 __ bind(l_unaligned);
aoqi@8 858 __ beq(end_count, R0, l_exit);
aoqi@8 859 __ delayed()->nop();
aoqi@8 860
aoqi@8 861 __ andi(AT, end_from, 3);
aoqi@8 862 __ bne(AT, R0, l_from_unaligned);
aoqi@8 863 __ delayed()->nop();
aoqi@8 864
aoqi@8 865 __ andi(AT, end_to, 3);
aoqi@8 866 __ beq(AT, R0, l_4_bytes_aligned);
aoqi@8 867 __ delayed()->nop();
aoqi@8 868
aoqi@8 869 __ bind(l_from_unaligned);
aoqi@8 870 __ lb(AT, end_from, -1);
aoqi@8 871 __ sb(AT, end_to, -1);
aoqi@8 872 __ daddi(end_from, end_from, -1);
aoqi@8 873 __ daddi(end_to, end_to, -1);
aoqi@8 874 __ daddi(end_count, end_count, -1);
aoqi@8 875 __ b(l_unaligned);
aoqi@8 876 __ delayed()->nop();
aoqi@8 877
aoqi@8 878 // now end_to, end_from point to 4-byte aligned high-ends
aoqi@8 879 // end_count contains byte count that is not copied.
aoqi@8 880 // copy 4 bytes at a time
aoqi@8 881 __ bind(l_4_bytes_aligned);
aoqi@8 882
aoqi@8 883 __ move(T8, end_count);
aoqi@8 884 __ daddi(AT, end_count, -3);
aoqi@8 885 __ blez(AT, l_copy_suffix);
aoqi@8 886 __ delayed()->nop();
aoqi@8 887
aoqi@8 888 //__ andi(T8, T8, 3);
aoqi@8 889 __ lea(end_from, Address(end_from, -4));
aoqi@8 890 __ lea(end_to, Address(end_to, -4));
aoqi@8 891
aoqi@8 892 __ dsrl(end_count, end_count, 2);
aoqi@8 893 __ align(16);
aoqi@8 894 __ bind(l_copy_4_bytes_loop); //l_copy_4_bytes
aoqi@8 895 __ lw(AT, end_from, 0);
aoqi@8 896 __ sw(AT, end_to, 0);
aoqi@8 897 __ addi(end_from, end_from, -4);
aoqi@8 898 __ addi(end_to, end_to, -4);
aoqi@8 899 __ addi(end_count, end_count, -1);
aoqi@8 900 __ bne(end_count, R0, l_copy_4_bytes_loop);
aoqi@8 901 __ delayed()->nop();
aoqi@8 902
aoqi@8 903 __ b(l_copy_suffix);
aoqi@8 904 __ delayed()->nop();
aoqi@8 905 // copy dwords aligned or not with repeat move
aoqi@8 906 // l_copy_suffix
aoqi@8 907 // copy suffix (0-3 bytes)
aoqi@8 908 __ bind(l_copy_suffix);
aoqi@8 909 __ andi(T8, T8, 3);
aoqi@8 910 __ beq(T8, R0, l_exit);
aoqi@8 911 __ delayed()->nop();
aoqi@8 912 __ addi(end_from, end_from, 3);
aoqi@8 913 __ addi(end_to, end_to, 3);
aoqi@8 914 __ bind(l_copy_suffix_loop);
aoqi@8 915 __ lb(AT, end_from, 0);
aoqi@8 916 __ sb(AT, end_to, 0);
aoqi@8 917 __ addi(end_from, end_from, -1);
aoqi@8 918 __ addi(end_to, end_to, -1);
aoqi@8 919 __ addi(T8, T8, -1);
aoqi@8 920 __ bne(T8, R0, l_copy_suffix_loop);
aoqi@8 921 __ delayed()->nop();
aoqi@8 922
aoqi@8 923 __ bind(l_copy_byte);
aoqi@8 924 __ beq(end_count, R0, l_exit);
aoqi@8 925 __ delayed()->nop();
aoqi@8 926 __ lb(AT, end_from, -1);
aoqi@8 927 __ sb(AT, end_to, -1);
aoqi@8 928 __ daddi(end_from, end_from, -1);
aoqi@8 929 __ daddi(end_to, end_to, -1);
aoqi@8 930 __ daddi(end_count, end_count, -1);
aoqi@8 931 __ b(l_copy_byte);
aoqi@8 932 __ delayed()->nop();
aoqi@8 933
aoqi@8 934 __ bind(l_exit);
aoqi@8 935 __ pop(T8);
aoqi@8 936 __ pop(end_count);
aoqi@8 937 __ pop(end_to);
aoqi@8 938 __ pop(end_from);
aoqi@8 939 __ jr(RA);
aoqi@8 940 __ delayed()->nop();
aoqi@8 941 return start;
aoqi@1 942 }
aoqi@1 943
aoqi@13 944 // Generate stub for disjoint short copy. If "aligned" is true, the
aoqi@13 945 // "from" and "to" addresses are assumed to be heapword aligned.
aoqi@1 946 //
aoqi@13 947 // Arguments for generated stub:
aoqi@13 948 // from: A0
aoqi@13 949 // to: A1
aoqi@13 950 // elm.count: A2 treated as signed
aoqi@13 951 // one element: 2 bytes
aoqi@1 952 //
aoqi@13 953 // Strategy for aligned==true:
aoqi@1 954 //
aoqi@13 955 // If length <= 9:
aoqi@13 956 // 1. copy 1 elements at a time (l_5)
aoqi@1 957 //
aoqi@13 958 // If length > 9:
aoqi@13 959 // 1. copy 4 elements at a time until less than 4 elements are left (l_7)
aoqi@13 960 // 2. copy 2 elements at a time until less than 2 elements are left (l_6)
aoqi@13 961 // 3. copy last element if one was left in step 2. (l_1)
aoqi@13 962 //
aoqi@13 963 //
aoqi@13 964 // Strategy for aligned==false:
aoqi@13 965 //
aoqi@13 966 // If length <= 9: same as aligned==true case
aoqi@13 967 //
aoqi@13 968 // If length > 9:
aoqi@13 969 // 1. continue with step 7. if the alignment of from and to mod 4
aoqi@13 970 // is different.
aoqi@13 971 // 2. align from and to to 4 bytes by copying 1 element if necessary
aoqi@13 972 // 3. at l_2 from and to are 4 byte aligned; continue with
aoqi@13 973 // 6. if they cannot be aligned to 8 bytes because they have
aoqi@13 974 // got different alignment mod 8.
aoqi@13 975 // 4. at this point we know that both, from and to, have the same
aoqi@13 976 // alignment mod 8, now copy one element if necessary to get
aoqi@13 977 // 8 byte alignment of from and to.
aoqi@13 978 // 5. copy 4 elements at a time until less than 4 elements are
aoqi@13 979 // left; depending on step 3. all load/stores are aligned.
aoqi@13 980 // 6. copy 2 elements at a time until less than 2 elements are
aoqi@13 981 // left. (l_6)
aoqi@13 982 // 7. copy 1 element at a time. (l_5)
aoqi@13 983 // 8. copy last element if one was left in step 6. (l_1)
aoqi@13 984 //
aoqi@13 985 // TODO:
aoqi@13 986 //
aoqi@13 987 // 1. use loongson 128-bit load/store
aoqi@13 988 // 2. use loop unrolling optimization when len is big enough, for example if len > 0x2000:
aoqi@13 989 // __ bind(l_x);
aoqi@13 990 // __ ld(AT, tmp1, 0);
aoqi@13 991 // __ ld(tmp, tmp1, 8);
aoqi@13 992 // __ sd(AT, tmp2, 0);
aoqi@13 993 // __ sd(tmp, tmp2, 8);
aoqi@13 994 // __ ld(AT, tmp1, 16);
aoqi@13 995 // __ ld(tmp, tmp1, 24);
aoqi@13 996 // __ sd(AT, tmp2, 16);
aoqi@13 997 // __ sd(tmp, tmp2, 24);
aoqi@13 998 // __ daddi(tmp1, tmp1, 32);
aoqi@13 999 // __ daddi(tmp2, tmp2, 32);
aoqi@13 1000 // __ daddi(tmp3, tmp3, -16);
aoqi@13 1001 // __ daddi(AT, tmp3, -16);
aoqi@13 1002 // __ bgez(AT, l_x);
aoqi@13 1003 // __ delayed()->nop();
aoqi@13 1004 //
aoqi@13 1005 address generate_disjoint_short_copy(bool aligned, const char * name) {
aoqi@13 1006 StubCodeMark mark(this, "StubRoutines", name);
aoqi@13 1007 __ align(CodeEntryAlignment);
aoqi@1 1008
aoqi@13 1009 Register tmp1 = T0;
aoqi@13 1010 Register tmp2 = T1;
aoqi@13 1011 Register tmp3 = T3;
aoqi@1 1012
aoqi@13 1013 address start = __ pc();
aoqi@13 1014
aoqi@13 1015 __ push(tmp1);
aoqi@13 1016 __ push(tmp2);
aoqi@13 1017 __ push(tmp3);
aoqi@13 1018 __ move(tmp1, A0);
aoqi@13 1019 __ move(tmp2, A1);
aoqi@13 1020 __ move(tmp3, A2);
aoqi@13 1021
aoqi@13 1022 Label l_1, l_2, l_3, l_4, l_5, l_6, l_7, l_8;
aoqi@13 1023 Label l_debug;
aoqi@13 1024 // don't try anything fancy if arrays don't have many elements
aoqi@13 1025 __ daddi(AT, tmp3, -9);
aoqi@13 1026 __ blez(AT, l_1);
aoqi@13 1027 __ delayed()->nop();
aoqi@13 1028
aoqi@13 1029 if (!aligned) {
aoqi@13 1030 __ xorr(AT, A0, A1);
aoqi@13 1031 __ andi(AT, AT, 1);
aoqi@13 1032 __ bne(AT, R0, l_debug); // if arrays don't have the same alignment mod 2, can this happen?
aoqi@13 1033 __ delayed()->nop();
aoqi@13 1034
aoqi@13 1035 __ xorr(AT, A0, A1);
aoqi@13 1036 __ andi(AT, AT, 3);
aoqi@13 1037 __ bne(AT, R0, l_1); // if arrays don't have the same alignment mod 4, do 1 element copy
aoqi@13 1038 __ delayed()->nop();
aoqi@13 1039
aoqi@13 1040 // At this point it is guaranteed that both, from and to have the same alignment mod 4.
aoqi@13 1041
aoqi@13 1042 // Copy 1 element if necessary to align to 4 bytes.
aoqi@13 1043 __ andi(AT, A0, 3);
aoqi@13 1044 __ beq(AT, R0, l_2);
aoqi@13 1045 __ delayed()->nop();
aoqi@13 1046
aoqi@13 1047 __ lhu(AT, tmp1, 0);
aoqi@13 1048 __ daddi(tmp1, tmp1, 2);
aoqi@13 1049 __ sh(AT, tmp2, 0);
aoqi@13 1050 __ daddi(tmp2, tmp2, 2);
aoqi@13 1051 __ daddi(tmp3, tmp3, -1);
aoqi@13 1052 __ bind(l_2);
aoqi@13 1053
aoqi@13 1054 // At this point the positions of both, from and to, are at least 4 byte aligned.
aoqi@13 1055
aoqi@13 1056 // Copy 4 elements at a time.
aoqi@13 1057 // Align to 8 bytes, but only if both, from and to, have same alignment mod 8.
aoqi@13 1058 __ xorr(AT, tmp1, tmp2);
aoqi@13 1059 __ andi(AT, AT, 7);
aoqi@13 1060 __ bne(AT, R0, l_6); // not same alignment mod 8 -> copy 2, either from or to will be unaligned
aoqi@13 1061 __ delayed()->nop();
aoqi@13 1062
aoqi@13 1063 // Copy a 2-element word if necessary to align to 8 bytes.
aoqi@13 1064 __ andi(AT, tmp1, 7);
aoqi@13 1065 __ beq(AT, R0, l_7);
aoqi@13 1066 __ delayed()->nop();
aoqi@13 1067
aoqi@13 1068 __ lw(AT, tmp1, 0);
aoqi@13 1069 __ daddi(tmp3, tmp3, -2);
aoqi@13 1070 __ sw(AT, tmp2, 0);
aoqi@13 1071 { // FasterArrayCopy
aoqi@13 1072 __ daddi(tmp1, tmp1, 4);
aoqi@13 1073 __ daddi(tmp2, tmp2, 4);
aoqi@13 1074 }
aoqi@13 1075 }
aoqi@13 1076
aoqi@13 1077 __ bind(l_7);
aoqi@13 1078
aoqi@13 1079 // Copy 4 elements at a time; either the loads or the stores can
aoqi@13 1080 // be unaligned if aligned == false.
aoqi@13 1081
aoqi@13 1082 { // FasterArrayCopy
aoqi@13 1083 __ daddi(AT, tmp3, -15);
aoqi@13 1084 __ blez(AT, l_6); // copy 2 at a time if less than 16 elements remain
aoqi@13 1085 __ delayed()->nop();
aoqi@13 1086
aoqi@13 1087 __ bind(l_8);
aoqi@13 1088 // For Loongson, there is 128-bit memory access. TODO
aoqi@13 1089 __ ld(AT, tmp1, 0);
aoqi@13 1090 __ sd(AT, tmp2, 0);
aoqi@13 1091 __ daddi(tmp1, tmp1, 8);
aoqi@13 1092 __ daddi(tmp2, tmp2, 8);
aoqi@13 1093 __ daddi(tmp3, tmp3, -4);
aoqi@13 1094 __ daddi(AT, tmp3, -4);
aoqi@13 1095 __ bgez(AT, l_8);
aoqi@13 1096 __ delayed()->nop();
aoqi@13 1097 }
aoqi@13 1098 __ bind(l_6);
aoqi@13 1099
aoqi@13 1100 // copy 2 element at a time
aoqi@13 1101 { // FasterArrayCopy
aoqi@13 1102 __ daddi(AT, tmp3, -1);
aoqi@13 1103 __ blez(AT, l_1);
aoqi@13 1104 __ delayed()->nop();
aoqi@13 1105
aoqi@13 1106 __ bind(l_3);
aoqi@13 1107 __ lw(AT, tmp1, 0);
aoqi@13 1108 __ sw(AT, tmp2, 0);
aoqi@13 1109 __ daddi(tmp1, tmp1, 4);
aoqi@13 1110 __ daddi(tmp2, tmp2, 4);
aoqi@13 1111 __ daddi(tmp3, tmp3, -2);
aoqi@13 1112 __ daddi(AT, tmp3, -2);
aoqi@13 1113 __ bgez(AT, l_3);
aoqi@13 1114 __ delayed()->nop();
aoqi@13 1115
aoqi@13 1116 }
aoqi@13 1117
aoqi@13 1118 // do single element copy (8 bit), can this happen?
aoqi@13 1119 __ bind(l_1);
aoqi@13 1120 __ beq(R0, tmp3, l_4);
aoqi@13 1121 __ delayed()->nop();
aoqi@13 1122
aoqi@13 1123 { // FasterArrayCopy
aoqi@13 1124
aoqi@13 1125 __ bind(l_5);
aoqi@13 1126 __ lhu(AT, tmp1, 0);
aoqi@13 1127 __ daddi(tmp3, tmp3, -1);
aoqi@13 1128 __ sh(AT, tmp2, 0);
aoqi@13 1129 __ daddi(tmp1, tmp1, 2);
aoqi@13 1130 __ daddi(tmp2, tmp2, 2);
aoqi@13 1131 __ daddi(AT, tmp3, -1);
aoqi@13 1132 __ bgez(AT, l_5);
aoqi@13 1133 __ delayed()->nop();
aoqi@13 1134 }
aoqi@13 1135 __ bind(l_4);
aoqi@13 1136 __ pop(tmp3);
aoqi@13 1137 __ pop(tmp2);
aoqi@13 1138 __ pop(tmp1);
aoqi@13 1139
aoqi@13 1140 __ jr(RA);
aoqi@13 1141 __ delayed()->nop();
aoqi@13 1142
aoqi@13 1143 __ bind(l_debug);
aoqi@13 1144 __ stop("generate_disjoint_short_copy should not reach here");
aoqi@13 1145 return start;
aoqi@1 1146 }
aoqi@1 1147
aoqi@1 1148 // Arguments:
aoqi@1 1149 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 1150 // ignored
aoqi@1 1151 // name - stub name string
aoqi@1 1152 //
aoqi@1 1153 // Inputs:
aoqi@1 1154 // c_rarg0 - source array address
aoqi@1 1155 // c_rarg1 - destination array address
aoqi@1 1156 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1157 //
aoqi@1 1158 // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
aoqi@1 1159 // let the hardware handle it. The two or four words within dwords
aoqi@1 1160 // or qwords that span cache line boundaries will still be loaded
aoqi@1 1161 // and stored atomically.
aoqi@1 1162 //
aoqi@1 1163 address generate_conjoint_short_copy(bool aligned, const char *name) {
aoqi@1 1164 Label l_1, l_2, l_3, l_4, l_5;
aoqi@1 1165 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1166 __ align(CodeEntryAlignment);
aoqi@1 1167 address start = __ pc();
aoqi@1 1168 address nooverlap_target = aligned ?
aoqi@1 1169 StubRoutines::arrayof_jshort_disjoint_arraycopy() :
aoqi@1 1170 StubRoutines::jshort_disjoint_arraycopy();
aoqi@1 1171
aoqi@1 1172 array_overlap_test(nooverlap_target, 1);
aoqi@1 1173
aoqi@1 1174 __ push(T3);
aoqi@1 1175 __ push(T0);
aoqi@1 1176 __ push(T1);
aoqi@1 1177 __ push(T8);
aoqi@1 1178
aoqi@1 1179 /*
aoqi@1 1180 __ pushl(esi);
aoqi@1 1181 __ movl(ecx, Address(esp, 4+12)); // count
aoqi@1 1182 __ pushl(edi);
aoqi@1 1183 __ movl(esi, Address(esp, 8+ 4)); // from
aoqi@1 1184 __ movl(edi, Address(esp, 8+ 8)); // to
aoqi@1 1185 */
aoqi@1 1186 __ move(T1, A2);
aoqi@1 1187 __ move(T3, A0);
aoqi@1 1188 __ move(T0, A1);
aoqi@1 1189
aoqi@1 1190
aoqi@1 1191 // copy dwords from high to low
aoqi@1 1192 // __ leal(esi, Address(esi, ecx, Address::times_2, -4)); // from + count*2 - 4
aoqi@1 1193 __ sll(AT, T1, Address::times_2);
aoqi@1 1194 __ add(AT, T3, AT);
aoqi@1 1195 __ lea(T3, Address( AT, -4));
aoqi@1 1196 //__ std();
aoqi@1 1197 //__ leal(edi, Address(edi, ecx, Address::times_2, -4)); // to + count*2 - 4
aoqi@1 1198 __ sll(AT,T1 , Address::times_2);
aoqi@1 1199 __ add(AT, T0, AT);
aoqi@1 1200 __ lea(T0, Address( AT, -4));
aoqi@1 1201 // __ movl(eax, ecx);
aoqi@1 1202 __ move(T8, T1);
aoqi@1 1203 __ bind(l_1);
aoqi@1 1204 // __ sarl(ecx, 1); // dword count
aoqi@1 1205 __ sra(T1,T1, 1);
aoqi@1 1206 //__ jcc(Assembler::equal, l_4); // no dwords to move
aoqi@1 1207 __ beq(T1, R0, l_4);
aoqi@1 1208 __ delayed()->nop();
aoqi@1 1209 /* __ cmpl(ecx, 32);
aoqi@1 1210 __ jcc(Assembler::above, l_3); // > 32 dwords
aoqi@1 1211 // copy dwords with loop
aoqi@1 1212 __ subl(edi, esi);
aoqi@1 1213 */ __ align(16);
aoqi@1 1214 __ bind(l_2);
aoqi@1 1215 //__ movl(edx, Address(esi));
aoqi@1 1216 __ lw(AT, T3, 0);
aoqi@1 1217 //__ movl(Address(edi, esi, Address::times_1), edx);
aoqi@1 1218 __ sw(AT, T0, 0);
aoqi@1 1219 //__ subl(esi, 4);
aoqi@1 1220 __ addi(T3, T3, -4);
aoqi@1 1221 __ addi(T0, T0, -4);
aoqi@1 1222 //__ decl(ecx);
aoqi@1 1223 __ addi(T1, T1, -1);
aoqi@1 1224 // __ jcc(Assembler::notEqual, l_2);
aoqi@1 1225 __ bne(T1, R0, l_2);
aoqi@1 1226 __ delayed()->nop();
aoqi@1 1227 // __ addl(edi, esi);
aoqi@1 1228 // __ jmp(l_4);
aoqi@1 1229 __ b(l_4);
aoqi@1 1230 __ delayed()->nop();
aoqi@1 1231 // copy dwords with repeat move
aoqi@1 1232 __ bind(l_3);
aoqi@1 1233 // __ rep_movl();
aoqi@1 1234 __ bind(l_4);
aoqi@1 1235 // __ andl(eax, 1); // suffix count
aoqi@1 1236 __ andi(T8, T8, 1); // suffix count
aoqi@1 1237 //__ jcc(Assembler::equal, l_5); // no suffix
aoqi@1 1238 __ beq(T8, R0, l_5 );
aoqi@1 1239 __ delayed()->nop();
aoqi@1 1240 // copy suffix
aoqi@1 1241 // __ movw(edx, Address(esi, 2));
aoqi@1 1242 __ lh(AT, T3, 2);
aoqi@1 1243 // __ movw(Address(edi, 2), edx);
aoqi@1 1244 __ sh(AT, T0, 2);
aoqi@1 1245 __ bind(l_5);
aoqi@1 1246 // __ cld();
aoqi@1 1247 // __ popl(edi);
aoqi@1 1248 // __ popl(esi);
aoqi@1 1249 // __ ret(0);
aoqi@1 1250 __ pop(T8);
aoqi@1 1251 __ pop(T1);
aoqi@1 1252 __ pop(T0);
aoqi@1 1253 __ pop(T3);
aoqi@1 1254 __ jr(RA);
aoqi@1 1255 __ delayed()->nop();
aoqi@1 1256 return start;
aoqi@1 1257 }
aoqi@1 1258
aoqi@1 1259 // Arguments:
aoqi@1 1260 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 1261 // ignored
aoqi@1 1262 // is_oop - true => oop array, so generate store check code
aoqi@1 1263 // name - stub name string
aoqi@1 1264 //
aoqi@1 1265 // Inputs:
aoqi@1 1266 // c_rarg0 - source array address
aoqi@1 1267 // c_rarg1 - destination array address
aoqi@1 1268 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1269 //
aoqi@1 1270 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
aoqi@1 1271 // the hardware handle it. The two dwords within qwords that span
aoqi@1 1272 // cache line boundaries will still be loaded and stored atomicly.
aoqi@1 1273 //
aoqi@1 1274 // Side Effects:
aoqi@1 1275 // disjoint_int_copy_entry is set to the no-overlap entry point
aoqi@1 1276 // used by generate_conjoint_int_oop_copy().
aoqi@1 1277 //
aoqi@1 1278 address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
aoqi@1 1279 Label l_2, l_3, l_4, l_stchk;
aoqi@1 1280 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1281 __ align(CodeEntryAlignment);
aoqi@1 1282 address start = __ pc();
aoqi@1 1283 /*
aoqi@1 1284 __ pushl(esi);
aoqi@1 1285 __ movl(ecx, Address(esp, 4+12)); // count
aoqi@1 1286 __ pushl(edi);
aoqi@1 1287 __ movl(esi, Address(esp, 8+ 4)); // from
aoqi@1 1288 __ movl(edi, Address(esp, 8+ 8)); // to
aoqi@1 1289 */
aoqi@1 1290 __ push(T3);
aoqi@1 1291 __ push(T0);
aoqi@1 1292 __ push(T1);
aoqi@1 1293 __ push(T8);
aoqi@1 1294 __ move(T1, A2);
aoqi@1 1295 __ move(T3, A0);
aoqi@1 1296 __ move(T0, A1);
aoqi@1 1297
aoqi@1 1298 // __ cmpl(ecx, 32);
aoqi@1 1299 // __ jcc(Assembler::belowEqual, l_2); // <= 32 dwords
aoqi@1 1300 // __ rep_movl();
aoqi@1 1301 __ b(l_2);
aoqi@1 1302 __ delayed()->nop();
aoqi@1 1303 if (is_oop) {
aoqi@1 1304 // __ jmp(l_stchk);
aoqi@1 1305 __ b(l_stchk);
aoqi@1 1306 __ delayed()->nop();
aoqi@1 1307 }
aoqi@1 1308 // __ popl(edi);
aoqi@1 1309 // __ popl(esi);
aoqi@1 1310 // __ ret(0);
aoqi@1 1311 __ pop(T8);
aoqi@1 1312 __ pop(T1);
aoqi@1 1313 __ pop(T0);
aoqi@1 1314 __ pop(T3);
aoqi@1 1315 __ jr(RA);
aoqi@1 1316 __ delayed()->nop();
aoqi@1 1317
aoqi@1 1318 __ bind(l_2);
aoqi@1 1319 // __ subl(edi, esi);
aoqi@1 1320 // __ testl(ecx, ecx);
aoqi@1 1321 // __ jcc(Assembler::zero, l_4);
aoqi@1 1322 __ beq(T1, R0, l_4);
aoqi@1 1323 __ delayed()->nop();
aoqi@1 1324 __ align(16);
aoqi@1 1325 __ bind(l_3);
aoqi@1 1326 //__ movl(edx, Address(esi));
aoqi@1 1327 __ lw(AT, T3, 0);
aoqi@1 1328 // __ movl(Address(edi, esi, Address::times_1), edx);
aoqi@1 1329 __ sw(AT, T0, 0);
aoqi@1 1330 // __ addl(esi, 4);
aoqi@1 1331 __ addi(T3, T3, 4);
aoqi@1 1332 __ addi(T0, T0, 4);
aoqi@1 1333 // __ decl(ecx);
aoqi@1 1334 __ addi(T1, T1, -1);
aoqi@1 1335 // __ jcc(Assembler::notEqual, l_3);
aoqi@1 1336 __ bne(T1, R0, l_3);
aoqi@1 1337 __ delayed()->nop();
aoqi@1 1338 if (is_oop) {
aoqi@1 1339 __ bind(l_stchk);
aoqi@1 1340 // __ movl(edi, Address(esp, 8+ 8));
aoqi@1 1341 // __ movl(ecx, Address(esp, 8+ 12));
aoqi@1 1342 __ move(T0, A1);
aoqi@1 1343 __ move(T1, A2);
aoqi@1 1344 array_store_check();
aoqi@1 1345 }
aoqi@1 1346 __ bind(l_4);
aoqi@1 1347 // __ popl(edi);
aoqi@1 1348 // __ popl(esi);
aoqi@1 1349 // __ ret(0);
aoqi@1 1350 __ pop(T8);
aoqi@1 1351 __ pop(T1);
aoqi@1 1352 __ pop(T0);
aoqi@1 1353 __ pop(T3);
aoqi@1 1354 __ jr(RA);
aoqi@1 1355 __ delayed()->nop();
aoqi@1 1356 return start;
aoqi@1 1357 }
aoqi@1 1358
aoqi@1 1359 // Arguments:
aoqi@1 1360 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 1361 // ignored
aoqi@1 1362 // is_oop - true => oop array, so generate store check code
aoqi@1 1363 // name - stub name string
aoqi@1 1364 //
aoqi@1 1365 // Inputs:
aoqi@1 1366 // c_rarg0 - source array address
aoqi@1 1367 // c_rarg1 - destination array address
aoqi@1 1368 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1369 //
aoqi@1 1370 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
aoqi@1 1371 // the hardware handle it. The two dwords within qwords that span
aoqi@1 1372 // cache line boundaries will still be loaded and stored atomicly.
aoqi@1 1373 //
aoqi@1 1374 address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
aoqi@1 1375 Label l_2, l_3, l_4, l_stchk;
aoqi@1 1376 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1377 __ align(CodeEntryAlignment);
aoqi@1 1378 address start = __ pc();
aoqi@1 1379 address nooverlap_target;
aoqi@1 1380
aoqi@1 1381 if (is_oop) {
aoqi@1 1382 nooverlap_target = aligned ?
aoqi@1 1383 StubRoutines::arrayof_oop_disjoint_arraycopy() :
aoqi@1 1384 StubRoutines::oop_disjoint_arraycopy();
aoqi@1 1385 }else {
aoqi@1 1386 nooverlap_target = aligned ?
aoqi@1 1387 StubRoutines::arrayof_jint_disjoint_arraycopy() :
aoqi@1 1388 StubRoutines::jint_disjoint_arraycopy();
aoqi@1 1389 }
aoqi@1 1390
aoqi@1 1391 array_overlap_test(nooverlap_target, 2);
aoqi@1 1392
aoqi@1 1393 __ push(T3);
aoqi@1 1394 __ push(T0);
aoqi@1 1395 __ push(T1);
aoqi@1 1396 __ push(T8);
aoqi@1 1397
aoqi@1 1398 /*
aoqi@1 1399 __ pushl(esi);
aoqi@1 1400 __ movl(ecx, Address(esp, 4+12)); // count
aoqi@1 1401 __ pushl(edi);
aoqi@1 1402 __ movl(esi, Address(esp, 8+ 4)); // from
aoqi@1 1403 __ movl(edi, Address(esp, 8+ 8)); // to
aoqi@1 1404 */
aoqi@1 1405 __ move(T1, A2);
aoqi@1 1406 __ move(T3, A0);
aoqi@1 1407 __ move(T0, A1);
aoqi@1 1408
aoqi@1 1409 //__ leal(esi, Address(esi, ecx, Address::times_4, -4)); // from + count*4 - 4
aoqi@1 1410 __ sll(AT, T1, Address::times_4);
aoqi@1 1411 __ add(AT, T3, AT);
aoqi@1 1412 __ lea(T3 , Address(AT, -4));
aoqi@1 1413 //__ std();
aoqi@1 1414 //__ leal(edi, Address(edi, ecx, Address::times_4, -4)); // to + count*4 - 4
aoqi@1 1415 __ sll(AT, T1, Address::times_4);
aoqi@1 1416 __ add(AT, T0, AT);
aoqi@1 1417 __ lea(T0 , Address(AT, -4));
aoqi@1 1418
aoqi@1 1419 // __ cmpl(ecx, 32);
aoqi@1 1420 // __ jcc(Assembler::above, l_3); // > 32 dwords
aoqi@1 1421 // __ testl(ecx, ecx);
aoqi@1 1422 //__ jcc(Assembler::zero, l_4);
aoqi@1 1423 __ beq(T1, R0, l_4);
aoqi@1 1424 __ delayed()->nop();
aoqi@1 1425 // __ subl(edi, esi);
aoqi@1 1426 __ align(16);
aoqi@1 1427 __ bind(l_2);
aoqi@1 1428 // __ movl(edx, Address(esi));
aoqi@1 1429 __ lw(AT, T3, 0);
aoqi@1 1430 // __ movl(Address(esi, edi, Address::times_1), edx);
aoqi@1 1431 __ sw(AT, T0, 0);
aoqi@1 1432 // __ subl(esi, 4);
aoqi@1 1433 __ addi(T3, T3, -4);
aoqi@1 1434 __ addi(T0, T0, -4);
aoqi@1 1435 // __ decl(ecx);
aoqi@1 1436 __ addi(T1, T1, -1);
aoqi@1 1437 //__ jcc(Assembler::notEqual, l_2);
aoqi@1 1438 __ bne(T1, R0, l_2);
aoqi@1 1439 __ delayed()->nop();
aoqi@1 1440 if (is_oop) {
aoqi@1 1441 // __ jmp(l_stchk);
aoqi@1 1442 __ b( l_stchk);
aoqi@1 1443 __ delayed()->nop();
aoqi@1 1444 }
aoqi@1 1445 __ bind(l_4);
aoqi@1 1446 // __ cld();
aoqi@1 1447 // __ popl(edi);
aoqi@1 1448 // __ popl(esi);
aoqi@1 1449 // __ ret(0);
aoqi@1 1450 __ pop(T8);
aoqi@1 1451 __ pop(T1);
aoqi@1 1452 __ pop(T0);
aoqi@1 1453 __ pop(T3);
aoqi@1 1454 __ jr(RA);
aoqi@1 1455 __ delayed()->nop();
aoqi@1 1456 __ bind(l_3);
aoqi@1 1457 // __ rep_movl();
aoqi@1 1458 if (is_oop) {
aoqi@1 1459 __ bind(l_stchk);
aoqi@1 1460 // __ movl(edi, Address(esp, 8+ 8));
aoqi@1 1461 __ move(T0, A1);
aoqi@1 1462 // __ movl(ecx, Address(esp, 8+ 12));
aoqi@1 1463 __ move(T1, A2);
aoqi@1 1464 array_store_check();
aoqi@1 1465 }
aoqi@1 1466 // __ cld();
aoqi@1 1467 // __ popl(edi);
aoqi@1 1468 // __ popl(esi);
aoqi@1 1469 // __ ret(0);
aoqi@1 1470 __ pop(T8);
aoqi@1 1471 __ pop(T1);
aoqi@1 1472 __ pop(T0);
aoqi@1 1473 __ pop(T3);
aoqi@1 1474 __ jr(RA);
aoqi@1 1475 __ delayed()->nop();
aoqi@1 1476 return start;
aoqi@1 1477 }
aoqi@1 1478
aoqi@1 1479 // Arguments:
aoqi@1 1480 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 1481 // ignored
aoqi@1 1482 // is_oop - true => oop array, so generate store check code
aoqi@1 1483 // name - stub name string
aoqi@1 1484 //
aoqi@1 1485 // Inputs:
aoqi@1 1486 // c_rarg0 - source array address
aoqi@1 1487 // c_rarg1 - destination array address
aoqi@1 1488 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1489 //
aoqi@1 1490 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
aoqi@1 1491 // the hardware handle it. The two dwords within qwords that span
aoqi@1 1492 // cache line boundaries will still be loaded and stored atomicly.
aoqi@1 1493 //
aoqi@1 1494 // Side Effects:
aoqi@1 1495 // disjoint_int_copy_entry is set to the no-overlap entry point
aoqi@1 1496 // used by generate_conjoint_int_oop_copy().
aoqi@1 1497 //
aoqi@1 1498 address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
aoqi@1 1499 Label l_2, l_3, l_4, l_stchk;
aoqi@1 1500 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1501 __ align(CodeEntryAlignment);
aoqi@1 1502 address start = __ pc();
aoqi@1 1503 __ push(T3);
aoqi@1 1504 __ push(T0);
aoqi@1 1505 __ push(T1);
aoqi@1 1506 __ push(T8);
aoqi@1 1507 __ move(T1, A2);
aoqi@1 1508 __ move(T3, A0);
aoqi@1 1509 __ move(T0, A1);
aoqi@1 1510
aoqi@1 1511 // __ cmpl(ecx, 32);
aoqi@1 1512 // __ jcc(Assembler::belowEqual, l_2); // <= 32 dwords
aoqi@1 1513 // __ rep_movl();
aoqi@1 1514 __ b(l_2);
aoqi@1 1515 __ delayed()->nop();
aoqi@1 1516 if (is_oop) {
aoqi@1 1517 // __ jmp(l_stchk);
aoqi@1 1518 __ b(l_stchk);
aoqi@1 1519 __ delayed()->nop();
aoqi@1 1520 }
aoqi@1 1521 // __ popl(edi);
aoqi@1 1522 // __ popl(esi);
aoqi@1 1523 // __ ret(0);
aoqi@1 1524 __ pop(T8);
aoqi@1 1525 __ pop(T1);
aoqi@1 1526 __ pop(T0);
aoqi@1 1527 __ pop(T3);
aoqi@1 1528 __ jr(RA);
aoqi@1 1529 __ delayed()->nop();
aoqi@1 1530
aoqi@1 1531 __ bind(l_2);
aoqi@1 1532 // __ subl(edi, esi);
aoqi@1 1533 // __ testl(ecx, ecx);
aoqi@1 1534 // __ jcc(Assembler::zero, l_4);
aoqi@1 1535 __ beq(T1, R0, l_4);
aoqi@1 1536 __ delayed()->nop();
aoqi@1 1537 __ align(16);
aoqi@1 1538 __ bind(l_3);
aoqi@1 1539 //__ movl(edx, Address(esi));
aoqi@1 1540 __ ld(AT, T3, 0);
aoqi@1 1541 // __ movl(Address(edi, esi, Address::times_1), edx);
aoqi@1 1542 __ sd(AT, T0, 0);
aoqi@1 1543 // __ addl(esi, 4);
aoqi@1 1544 __ addi(T3, T3, 8);
aoqi@1 1545 __ addi(T0, T0, 8);
aoqi@1 1546 // __ decl(ecx);
aoqi@1 1547 __ addi(T1, T1, -1);
aoqi@1 1548 // __ jcc(Assembler::notEqual, l_3);
aoqi@1 1549 __ bne(T1, R0, l_3);
aoqi@1 1550 __ delayed()->nop();
aoqi@1 1551 if (is_oop) {
aoqi@1 1552 __ bind(l_stchk);
aoqi@1 1553 // __ movl(edi, Address(esp, 8+ 8));
aoqi@1 1554 // __ movl(ecx, Address(esp, 8+ 12));
aoqi@1 1555 __ move(T0, A1);
aoqi@1 1556 __ move(T1, A2);
aoqi@1 1557 array_store_check();
aoqi@1 1558 }
aoqi@1 1559 __ bind(l_4);
aoqi@1 1560 // __ popl(edi);
aoqi@1 1561 // __ popl(esi);
aoqi@1 1562 // __ ret(0);
aoqi@1 1563 __ pop(T8);
aoqi@1 1564 __ pop(T1);
aoqi@1 1565 __ pop(T0);
aoqi@1 1566 __ pop(T3);
aoqi@1 1567 __ jr(RA);
aoqi@1 1568 __ delayed()->nop();
aoqi@1 1569 return start;
aoqi@1 1570 }
aoqi@1 1571
aoqi@1 1572 // Arguments:
aoqi@1 1573 // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
aoqi@1 1574 // ignored
aoqi@1 1575 // is_oop - true => oop array, so generate store check code
aoqi@1 1576 // name - stub name string
aoqi@1 1577 //
aoqi@1 1578 // Inputs:
aoqi@1 1579 // c_rarg0 - source array address
aoqi@1 1580 // c_rarg1 - destination array address
aoqi@1 1581 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1582 //
aoqi@1 1583 // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
aoqi@1 1584 // the hardware handle it. The two dwords within qwords that span
aoqi@1 1585 // cache line boundaries will still be loaded and stored atomicly.
aoqi@1 1586 //
aoqi@1 1587 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
aoqi@1 1588 Label l_2, l_3, l_4, l_stchk;
aoqi@1 1589 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1590 __ align(CodeEntryAlignment);
aoqi@1 1591 address start = __ pc();
aoqi@1 1592 address nooverlap_target;
aoqi@1 1593
aoqi@1 1594 if (is_oop) {
aoqi@1 1595 nooverlap_target = aligned ?
aoqi@1 1596 StubRoutines::arrayof_oop_disjoint_arraycopy() :
aoqi@1 1597 StubRoutines::oop_disjoint_arraycopy();
aoqi@1 1598 }else {
aoqi@1 1599 nooverlap_target = aligned ?
aoqi@1 1600 StubRoutines::arrayof_jlong_disjoint_arraycopy() :
aoqi@1 1601 StubRoutines::jlong_disjoint_arraycopy();
aoqi@1 1602 }
aoqi@1 1603
aoqi@1 1604 array_overlap_test(nooverlap_target, 3);
aoqi@1 1605
aoqi@1 1606 __ push(T3);
aoqi@1 1607 __ push(T0);
aoqi@1 1608 __ push(T1);
aoqi@1 1609 __ push(T8);
aoqi@1 1610
aoqi@1 1611 __ move(T1, A2);
aoqi@1 1612 __ move(T3, A0);
aoqi@1 1613 __ move(T0, A1);
aoqi@1 1614
aoqi@1 1615 //__ leal(esi, Address(esi, ecx, Address::times_4, -4)); // from + count*4 - 4
aoqi@1 1616 __ sll(AT, T1, Address::times_8);
aoqi@1 1617 __ add(AT, T3, AT);
aoqi@1 1618 __ lea(T3 , Address(AT, -8));
aoqi@1 1619 //__ std();
aoqi@1 1620 //__ leal(edi, Address(edi, ecx, Address::times_4, -4)); // to + count*4 - 4
aoqi@1 1621 __ sll(AT, T1, Address::times_8);
aoqi@1 1622 __ add(AT, T0, AT);
aoqi@1 1623 __ lea(T0 , Address(AT, -8));
aoqi@1 1624
aoqi@1 1625 // __ cmpl(ecx, 32);
aoqi@1 1626 // __ jcc(Assembler::above, l_3); // > 32 dwords
aoqi@1 1627 // __ testl(ecx, ecx);
aoqi@1 1628 //__ jcc(Assembler::zero, l_4);
aoqi@1 1629 __ beq(T1, R0, l_4);
aoqi@1 1630 __ delayed()->nop();
aoqi@1 1631 // __ subl(edi, esi);
aoqi@1 1632 __ align(16);
aoqi@1 1633 __ bind(l_2);
aoqi@1 1634 // __ movl(edx, Address(esi));
aoqi@1 1635 __ ld(AT, T3, 0);
aoqi@1 1636 // __ movl(Address(esi, edi, Address::times_1), edx);
aoqi@1 1637 __ sd(AT, T0, 0);
aoqi@1 1638 // __ subl(esi, 4);
aoqi@1 1639 __ addi(T3, T3, -8);
aoqi@1 1640 __ addi(T0, T0, -8);
aoqi@1 1641 // __ decl(ecx);
aoqi@1 1642 __ addi(T1, T1, -1);
aoqi@1 1643 //__ jcc(Assembler::notEqual, l_2);
aoqi@1 1644 __ bne(T1, R0, l_2);
aoqi@1 1645 __ delayed()->nop();
aoqi@1 1646 if (is_oop) {
aoqi@1 1647 // __ jmp(l_stchk);
aoqi@1 1648 __ b( l_stchk);
aoqi@1 1649 __ delayed()->nop();
aoqi@1 1650 }
aoqi@1 1651 __ bind(l_4);
aoqi@1 1652 // __ cld();
aoqi@1 1653 // __ popl(edi);
aoqi@1 1654 // __ popl(esi);
aoqi@1 1655 // __ ret(0);
aoqi@1 1656 __ pop(T8);
aoqi@1 1657 __ pop(T1);
aoqi@1 1658 __ pop(T0);
aoqi@1 1659 __ pop(T3);
aoqi@1 1660 __ jr(RA);
aoqi@1 1661 __ delayed()->nop();
aoqi@1 1662 __ bind(l_3);
aoqi@1 1663 // __ rep_movl();
aoqi@1 1664 if (is_oop) {
aoqi@1 1665 __ bind(l_stchk);
aoqi@1 1666 // __ movl(edi, Address(esp, 8+ 8));
aoqi@1 1667 __ move(T0, A1);
aoqi@1 1668 // __ movl(ecx, Address(esp, 8+ 12));
aoqi@1 1669 __ move(T1, A2);
aoqi@1 1670 array_store_check();
aoqi@1 1671 }
aoqi@1 1672 // __ cld();
aoqi@1 1673 // __ popl(edi);
aoqi@1 1674 // __ popl(esi);
aoqi@1 1675 // __ ret(0);
aoqi@1 1676 __ pop(T8);
aoqi@1 1677 __ pop(T1);
aoqi@1 1678 __ pop(T0);
aoqi@1 1679 __ pop(T3);
aoqi@1 1680 __ jr(RA);
aoqi@1 1681 __ delayed()->nop();
aoqi@1 1682 return start;
aoqi@1 1683 }
aoqi@1 1684 #if 0
aoqi@1 1685 // Arguments:
aoqi@1 1686 // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
aoqi@1 1687 // ignored
aoqi@1 1688 // is_oop - true => oop array, so generate store check code
aoqi@1 1689 // name - stub name string
aoqi@1 1690 //
aoqi@1 1691 // Inputs:
aoqi@1 1692 // c_rarg0 - source array address
aoqi@1 1693 // c_rarg1 - destination array address
aoqi@1 1694 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1695 //
aoqi@1 1696 address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
aoqi@1 1697 __ align(CodeEntryAlignment);
aoqi@1 1698 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1699 address start = __ pc();
aoqi@1 1700
aoqi@1 1701 Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
aoqi@1 1702 const Register from = rdi; // source array address
aoqi@1 1703 const Register to = rsi; // destination array address
aoqi@1 1704 const Register qword_count = rdx; // elements count
aoqi@1 1705 const Register saved_count = rcx;
aoqi@1 1706
aoqi@1 1707 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 1708 assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int.
aoqi@1 1709
aoqi@1 1710 address disjoint_copy_entry = NULL;
aoqi@1 1711 if (is_oop) {
aoqi@1 1712 assert(!UseCompressedOops, "shouldn't be called for compressed oops");
aoqi@1 1713 disjoint_copy_entry = disjoint_oop_copy_entry;
aoqi@1 1714 oop_copy_entry = __ pc();
aoqi@1 1715 array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
aoqi@1 1716 } else {
aoqi@1 1717 disjoint_copy_entry = disjoint_long_copy_entry;
aoqi@1 1718 long_copy_entry = __ pc();
aoqi@1 1719 array_overlap_test(disjoint_long_copy_entry, Address::times_8);
aoqi@1 1720 }
aoqi@1 1721 BLOCK_COMMENT("Entry:");
aoqi@1 1722 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
aoqi@1 1723
aoqi@1 1724 array_overlap_test(disjoint_copy_entry, Address::times_8);
aoqi@1 1725 setup_arg_regs(); // from => rdi, to => rsi, count => rdx
aoqi@1 1726 // r9 and r10 may be used to save non-volatile registers
aoqi@1 1727
aoqi@1 1728 // 'from', 'to' and 'qword_count' are now valid
aoqi@1 1729
aoqi@1 1730 if (is_oop) {
aoqi@1 1731 // Save to and count for store barrier
aoqi@1 1732 __ movptr(saved_count, qword_count);
aoqi@1 1733 // No registers are destroyed by this call
aoqi@1 1734 gen_write_ref_array_pre_barrier(to, saved_count);
aoqi@1 1735 }
aoqi@1 1736
aoqi@1 1737 __ jmp(L_copy_32_bytes);
aoqi@1 1738
aoqi@1 1739 // Copy trailing qwords
aoqi@1 1740 __ BIND(L_copy_8_bytes);
aoqi@1 1741 __ movq(rax, Address(from, qword_count, Address::times_8, -8));
aoqi@1 1742 __ movq(Address(to, qword_count, Address::times_8, -8), rax);
aoqi@1 1743 __ decrement(qword_count);
aoqi@1 1744 __ jcc(Assembler::notZero, L_copy_8_bytes);
aoqi@1 1745
aoqi@1 1746 if (is_oop) {
aoqi@1 1747 __ jmp(L_exit);
aoqi@1 1748 } else {
aoqi@1 1749 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
aoqi@1 1750 restore_arg_regs();
aoqi@1 1751 __ xorptr(rax, rax); // return 0
aoqi@1 1752 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 1753 __ ret(0);
aoqi@1 1754 }
aoqi@1 1755
aoqi@1 1756 // Copy in 32-bytes chunks
aoqi@1 1757 copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
aoqi@1 1758
aoqi@1 1759 if (is_oop) {
aoqi@1 1760 __ BIND(L_exit);
aoqi@1 1761 __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
aoqi@1 1762 gen_write_ref_array_post_barrier(to, rcx, rax);
aoqi@1 1763 inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
aoqi@1 1764 } else {
aoqi@1 1765 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
aoqi@1 1766 }
aoqi@1 1767 restore_arg_regs();
aoqi@1 1768 __ xorptr(rax, rax); // return 0
aoqi@1 1769 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 1770 __ ret(0);
aoqi@1 1771
aoqi@1 1772 return start;
aoqi@1 1773 }
aoqi@1 1774
aoqi@1 1775
aoqi@1 1776 // Helper for generating a dynamic type check.
aoqi@1 1777 // Smashes no registers.
aoqi@1 1778 void generate_type_check(Register sub_klass,
aoqi@1 1779 Register super_check_offset,
aoqi@1 1780 Register super_klass,
aoqi@1 1781 Label& L_success) {
aoqi@1 1782 assert_different_registers(sub_klass, super_check_offset, super_klass);
aoqi@1 1783
aoqi@1 1784 BLOCK_COMMENT("type_check:");
aoqi@1 1785
aoqi@1 1786 Label L_miss;
aoqi@1 1787
aoqi@1 1788 // a couple of useful fields in sub_klass:
aoqi@1 1789 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
aoqi@1 1790 Klass::secondary_supers_offset_in_bytes());
aoqi@1 1791 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
aoqi@1 1792 Klass::secondary_super_cache_offset_in_bytes());
aoqi@1 1793 Address secondary_supers_addr(sub_klass, ss_offset);
aoqi@1 1794 Address super_cache_addr( sub_klass, sc_offset);
aoqi@1 1795
aoqi@1 1796 // if the pointers are equal, we are done (e.g., String[] elements)
aoqi@1 1797 __ cmpptr(super_klass, sub_klass);
aoqi@1 1798 __ jcc(Assembler::equal, L_success);
aoqi@1 1799
aoqi@1 1800 // check the supertype display:
aoqi@1 1801 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
aoqi@1 1802 __ cmpptr(super_klass, super_check_addr); // test the super type
aoqi@1 1803 __ jcc(Assembler::equal, L_success);
aoqi@1 1804
aoqi@1 1805 // if it was a primary super, we can just fail immediately
aoqi@1 1806 __ cmpl(super_check_offset, sc_offset);
aoqi@1 1807 __ jcc(Assembler::notEqual, L_miss);
aoqi@1 1808
aoqi@1 1809 // Now do a linear scan of the secondary super-klass chain.
aoqi@1 1810 // The repne_scan instruction uses fixed registers, which we must spill.
aoqi@1 1811 // (We need a couple more temps in any case.)
aoqi@1 1812 // This code is rarely used, so simplicity is a virtue here.
aoqi@1 1813 inc_counter_np(SharedRuntime::_partial_subtype_ctr);
aoqi@1 1814 {
aoqi@1 1815 __ push(rax);
aoqi@1 1816 __ push(rcx);
aoqi@1 1817 __ push(rdi);
aoqi@1 1818 assert_different_registers(sub_klass, super_klass, rax, rcx, rdi);
aoqi@1 1819
aoqi@1 1820 __ movptr(rdi, secondary_supers_addr);
aoqi@1 1821 // Load the array length.
aoqi@1 1822 __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
aoqi@1 1823 // Skip to start of data.
aoqi@1 1824 __ addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
aoqi@1 1825 // Scan rcx words at [rdi] for occurance of rax
aoqi@1 1826 // Set NZ/Z based on last compare
aoqi@1 1827 __ movptr(rax, super_klass);
aoqi@1 1828 if (UseCompressedOops) {
aoqi@1 1829 // Compare against compressed form. Don't need to uncompress because
aoqi@1 1830 // looks like orig rax is restored in popq below.
aoqi@1 1831 __ encode_heap_oop(rax);
aoqi@1 1832 __ repne_scanl();
aoqi@1 1833 } else {
aoqi@1 1834 __ repne_scan();
aoqi@1 1835 }
aoqi@1 1836
aoqi@1 1837 // Unspill the temp. registers:
aoqi@1 1838 __ pop(rdi);
aoqi@1 1839 __ pop(rcx);
aoqi@1 1840 __ pop(rax);
aoqi@1 1841
aoqi@1 1842 __ jcc(Assembler::notEqual, L_miss);
aoqi@1 1843 }
aoqi@1 1844
aoqi@1 1845 // Success. Cache the super we found and proceed in triumph.
aoqi@1 1846 __ movptr(super_cache_addr, super_klass); // note: rax is dead
aoqi@1 1847 __ jmp(L_success);
aoqi@1 1848
aoqi@1 1849 // Fall through on failure!
aoqi@1 1850 __ BIND(L_miss);
aoqi@1 1851 }
aoqi@1 1852
aoqi@1 1853 //
aoqi@1 1854 // Generate checkcasting array copy stub
aoqi@1 1855 //
aoqi@1 1856 // Input:
aoqi@1 1857 // c_rarg0 - source array address
aoqi@1 1858 // c_rarg1 - destination array address
aoqi@1 1859 // c_rarg2 - element count, treated as ssize_t, can be zero
aoqi@1 1860 // c_rarg3 - size_t ckoff (super_check_offset)
aoqi@1 1861 // not Win64
aoqi@1 1862 // c_rarg4 - oop ckval (super_klass)
aoqi@1 1863 // Win64
aoqi@1 1864 // rsp+40 - oop ckval (super_klass)
aoqi@1 1865 //
aoqi@1 1866 // Output:
aoqi@1 1867 // rax == 0 - success
aoqi@1 1868 // rax == -1^K - failure, where K is partial transfer count
aoqi@1 1869 //
aoqi@1 1870 address generate_checkcast_copy(const char *name) {
aoqi@1 1871
aoqi@1 1872 Label L_load_element, L_store_element, L_do_card_marks, L_done;
aoqi@1 1873
aoqi@1 1874 // Input registers (after setup_arg_regs)
aoqi@1 1875 const Register from = rdi; // source array address
aoqi@1 1876 const Register to = rsi; // destination array address
aoqi@1 1877 const Register length = rdx; // elements count
aoqi@1 1878 const Register ckoff = rcx; // super_check_offset
aoqi@1 1879 const Register ckval = r8; // super_klass
aoqi@1 1880
aoqi@1 1881 // Registers used as temps (r13, r14 are save-on-entry)
aoqi@1 1882 const Register end_from = from; // source array end address
aoqi@1 1883 const Register end_to = r13; // destination array end address
aoqi@1 1884 const Register count = rdx; // -(count_remaining)
aoqi@1 1885 const Register r14_length = r14; // saved copy of length
aoqi@1 1886 // End pointers are inclusive, and if length is not zero they point
aoqi@1 1887 // to the last unit copied: end_to[0] := end_from[0]
aoqi@1 1888
aoqi@1 1889 const Register rax_oop = rax; // actual oop copied
aoqi@1 1890 const Register r11_klass = r11; // oop._klass
aoqi@1 1891
aoqi@1 1892 //---------------------------------------------------------------
aoqi@1 1893 // Assembler stub will be used for this call to arraycopy
aoqi@1 1894 // if the two arrays are subtypes of Object[] but the
aoqi@1 1895 // destination array type is not equal to or a supertype
aoqi@1 1896 // of the source type. Each element must be separately
aoqi@1 1897 // checked.
aoqi@1 1898
aoqi@1 1899 __ align(CodeEntryAlignment);
aoqi@1 1900 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 1901 address start = __ pc();
aoqi@1 1902
aoqi@1 1903 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 1904
aoqi@1 1905 checkcast_copy_entry = __ pc();
aoqi@1 1906 BLOCK_COMMENT("Entry:");
aoqi@1 1907
aoqi@1 1908 #ifdef ASSERT
aoqi@1 1909 // caller guarantees that the arrays really are different
aoqi@1 1910 // otherwise, we would have to make conjoint checks
aoqi@1 1911 { Label L;
aoqi@1 1912 array_overlap_test(L, TIMES_OOP);
aoqi@1 1913 __ stop("checkcast_copy within a single array");
aoqi@1 1914 __ bind(L);
aoqi@1 1915 }
aoqi@1 1916 #endif //ASSERT
aoqi@1 1917
aoqi@1 1918 // allocate spill slots for r13, r14
aoqi@1 1919 enum {
aoqi@1 1920 saved_r13_offset,
aoqi@1 1921 saved_r14_offset,
aoqi@1 1922 saved_rbp_offset,
aoqi@1 1923 saved_rip_offset,
aoqi@1 1924 saved_rarg0_offset
aoqi@1 1925 };
aoqi@1 1926 __ subptr(rsp, saved_rbp_offset * wordSize);
aoqi@1 1927 __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
aoqi@1 1928 __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
aoqi@1 1929 setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
aoqi@1 1930 // ckoff => rcx, ckval => r8
aoqi@1 1931 // r9 and r10 may be used to save non-volatile registers
aoqi@1 1932 #ifdef _WIN64
aoqi@1 1933 // last argument (#4) is on stack on Win64
aoqi@1 1934 const int ckval_offset = saved_rarg0_offset + 4;
aoqi@1 1935 __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
aoqi@1 1936 #endif
aoqi@1 1937
aoqi@1 1938 // check that int operands are properly extended to size_t
aoqi@1 1939 assert_clean_int(length, rax);
aoqi@1 1940 assert_clean_int(ckoff, rax);
aoqi@1 1941
aoqi@1 1942 #ifdef ASSERT
aoqi@1 1943 BLOCK_COMMENT("assert consistent ckoff/ckval");
aoqi@1 1944 // The ckoff and ckval must be mutually consistent,
aoqi@1 1945 // even though caller generates both.
aoqi@1 1946 { Label L;
aoqi@1 1947 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
aoqi@1 1948 Klass::super_check_offset_offset_in_bytes());
aoqi@1 1949 __ cmpl(ckoff, Address(ckval, sco_offset));
aoqi@1 1950 __ jcc(Assembler::equal, L);
aoqi@1 1951 __ stop("super_check_offset inconsistent");
aoqi@1 1952 __ bind(L);
aoqi@1 1953 }
aoqi@1 1954 #endif //ASSERT
aoqi@1 1955
aoqi@1 1956 // Loop-invariant addresses. They are exclusive end pointers.
aoqi@1 1957 Address end_from_addr(from, length, TIMES_OOP, 0);
aoqi@1 1958 Address end_to_addr(to, length, TIMES_OOP, 0);
aoqi@1 1959 // Loop-variant addresses. They assume post-incremented count < 0.
aoqi@1 1960 Address from_element_addr(end_from, count, TIMES_OOP, 0);
aoqi@1 1961 Address to_element_addr(end_to, count, TIMES_OOP, 0);
aoqi@1 1962
aoqi@1 1963 gen_write_ref_array_pre_barrier(to, count);
aoqi@1 1964
aoqi@1 1965 // Copy from low to high addresses, indexed from the end of each array.
aoqi@1 1966 __ lea(end_from, end_from_addr);
aoqi@1 1967 __ lea(end_to, end_to_addr);
aoqi@1 1968 __ movptr(r14_length, length); // save a copy of the length
aoqi@1 1969 assert(length == count, ""); // else fix next line:
aoqi@1 1970 __ negptr(count); // negate and test the length
aoqi@1 1971 __ jcc(Assembler::notZero, L_load_element);
aoqi@1 1972
aoqi@1 1973 // Empty array: Nothing to do.
aoqi@1 1974 __ xorptr(rax, rax); // return 0 on (trivial) success
aoqi@1 1975 __ jmp(L_done);
aoqi@1 1976
aoqi@1 1977 // ======== begin loop ========
aoqi@1 1978 // (Loop is rotated; its entry is L_load_element.)
aoqi@1 1979 // Loop control:
aoqi@1 1980 // for (count = -count; count != 0; count++)
aoqi@1 1981 // Base pointers src, dst are biased by 8*(count-1),to last element.
aoqi@1 1982 __ align(16);
aoqi@1 1983
aoqi@1 1984 __ BIND(L_store_element);
aoqi@1 1985 __ store_heap_oop(rax_oop, to_element_addr); // store the oop
fujie@32 1986 __ sync();
aoqi@1 1987 __ increment(count); // increment the count toward zero
aoqi@1 1988 __ jcc(Assembler::zero, L_do_card_marks);
aoqi@1 1989
aoqi@1 1990 // ======== loop entry is here ========
aoqi@1 1991 __ BIND(L_load_element);
aoqi@1 1992 __ load_heap_oop(rax_oop, from_element_addr); // load the oop
aoqi@1 1993 __ testptr(rax_oop, rax_oop);
aoqi@1 1994 __ jcc(Assembler::zero, L_store_element);
aoqi@1 1995
aoqi@1 1996 __ load_klass(r11_klass, rax_oop);// query the object klass
aoqi@1 1997 generate_type_check(r11_klass, ckoff, ckval, L_store_element);
aoqi@1 1998 // ======== end loop ========
aoqi@1 1999
aoqi@1 2000 // It was a real error; we must depend on the caller to finish the job.
aoqi@1 2001 // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
aoqi@1 2002 // Emit GC store barriers for the oops we have copied (r14 + rdx),
aoqi@1 2003 // and report their number to the caller.
aoqi@1 2004 assert_different_registers(rax, r14_length, count, to, end_to, rcx);
aoqi@1 2005 __ lea(end_to, to_element_addr);
aoqi@1 2006 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
aoqi@1 2007 __ movptr(rax, r14_length); // original oops
aoqi@1 2008 __ addptr(rax, count); // K = (original - remaining) oops
aoqi@1 2009 __ notptr(rax); // report (-1^K) to caller
aoqi@1 2010 __ jmp(L_done);
aoqi@1 2011
aoqi@1 2012 // Come here on success only.
aoqi@1 2013 __ BIND(L_do_card_marks);
aoqi@1 2014 __ addptr(end_to, -wordSize); // make an inclusive end pointer
aoqi@1 2015 gen_write_ref_array_post_barrier(to, end_to, rscratch1);
aoqi@1 2016 __ xorptr(rax, rax); // return 0 on success
aoqi@1 2017
aoqi@1 2018 // Common exit point (success or failure).
aoqi@1 2019 __ BIND(L_done);
aoqi@1 2020 __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
aoqi@1 2021 __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
aoqi@1 2022 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
aoqi@1 2023 restore_arg_regs();
aoqi@1 2024 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 2025 __ ret(0);
aoqi@1 2026
aoqi@1 2027 return start;
aoqi@1 2028 }
aoqi@1 2029
aoqi@1 2030 //
aoqi@1 2031 // Generate 'unsafe' array copy stub
aoqi@1 2032 // Though just as safe as the other stubs, it takes an unscaled
aoqi@1 2033 // size_t argument instead of an element count.
aoqi@1 2034 //
aoqi@1 2035 // Input:
aoqi@1 2036 // c_rarg0 - source array address
aoqi@1 2037 // c_rarg1 - destination array address
aoqi@1 2038 // c_rarg2 - byte count, treated as ssize_t, can be zero
aoqi@1 2039 //
aoqi@1 2040 // Examines the alignment of the operands and dispatches
aoqi@1 2041 // to a long, int, short, or byte copy loop.
aoqi@1 2042 //
aoqi@1 2043 address generate_unsafe_copy(const char *name) {
aoqi@1 2044
aoqi@1 2045 Label L_long_aligned, L_int_aligned, L_short_aligned;
aoqi@1 2046
aoqi@1 2047 // Input registers (before setup_arg_regs)
aoqi@1 2048 const Register from = c_rarg0; // source array address
aoqi@1 2049 const Register to = c_rarg1; // destination array address
aoqi@1 2050 const Register size = c_rarg2; // byte count (size_t)
aoqi@1 2051
aoqi@1 2052 // Register used as a temp
aoqi@1 2053 const Register bits = rax; // test copy of low bits
aoqi@1 2054
aoqi@1 2055 __ align(CodeEntryAlignment);
aoqi@1 2056 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 2057 address start = __ pc();
aoqi@1 2058
aoqi@1 2059 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 2060
aoqi@1 2061 // bump this on entry, not on exit:
aoqi@1 2062 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
aoqi@1 2063
aoqi@1 2064 __ mov(bits, from);
aoqi@1 2065 __ orptr(bits, to);
aoqi@1 2066 __ orptr(bits, size);
aoqi@1 2067
aoqi@1 2068 __ testb(bits, BytesPerLong-1);
aoqi@1 2069 __ jccb(Assembler::zero, L_long_aligned);
aoqi@1 2070
aoqi@1 2071 __ testb(bits, BytesPerInt-1);
aoqi@1 2072 __ jccb(Assembler::zero, L_int_aligned);
aoqi@1 2073
aoqi@1 2074 __ testb(bits, BytesPerShort-1);
aoqi@1 2075 __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
aoqi@1 2076
aoqi@1 2077 __ BIND(L_short_aligned);
aoqi@1 2078 __ shrptr(size, LogBytesPerShort); // size => short_count
aoqi@1 2079 __ jump(RuntimeAddress(short_copy_entry));
aoqi@1 2080
aoqi@1 2081 __ BIND(L_int_aligned);
aoqi@1 2082 __ shrptr(size, LogBytesPerInt); // size => int_count
aoqi@1 2083 __ jump(RuntimeAddress(int_copy_entry));
aoqi@1 2084
aoqi@1 2085 __ BIND(L_long_aligned);
aoqi@1 2086 __ shrptr(size, LogBytesPerLong); // size => qword_count
aoqi@1 2087 __ jump(RuntimeAddress(long_copy_entry));
aoqi@1 2088
aoqi@1 2089 return start;
aoqi@1 2090 }
aoqi@1 2091
aoqi@1 2092 // Perform range checks on the proposed arraycopy.
aoqi@1 2093 // Kills temp, but nothing else.
aoqi@1 2094 // Also, clean the sign bits of src_pos and dst_pos.
aoqi@1 2095 void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
aoqi@1 2096 Register src_pos, // source position (c_rarg1)
aoqi@1 2097 Register dst, // destination array oo (c_rarg2)
aoqi@1 2098 Register dst_pos, // destination position (c_rarg3)
aoqi@1 2099 Register length,
aoqi@1 2100 Register temp,
aoqi@1 2101 Label& L_failed) {
aoqi@1 2102 BLOCK_COMMENT("arraycopy_range_checks:");
aoqi@1 2103
aoqi@1 2104 // if (src_pos + length > arrayOop(src)->length()) FAIL;
aoqi@1 2105 __ movl(temp, length);
aoqi@1 2106 __ addl(temp, src_pos); // src_pos + length
aoqi@1 2107 __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
aoqi@1 2108 __ jcc(Assembler::above, L_failed);
aoqi@1 2109
aoqi@1 2110 // if (dst_pos + length > arrayOop(dst)->length()) FAIL;
aoqi@1 2111 __ movl(temp, length);
aoqi@1 2112 __ addl(temp, dst_pos); // dst_pos + length
aoqi@1 2113 __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
aoqi@1 2114 __ jcc(Assembler::above, L_failed);
aoqi@1 2115
aoqi@1 2116 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
aoqi@1 2117 // Move with sign extension can be used since they are positive.
aoqi@1 2118 __ movslq(src_pos, src_pos);
aoqi@1 2119 __ movslq(dst_pos, dst_pos);
aoqi@1 2120
aoqi@1 2121 BLOCK_COMMENT("arraycopy_range_checks done");
aoqi@1 2122 }
aoqi@1 2123
aoqi@1 2124 //
aoqi@1 2125 // Generate generic array copy stubs
aoqi@1 2126 //
aoqi@1 2127 // Input:
aoqi@1 2128 // c_rarg0 - src oop
aoqi@1 2129 // c_rarg1 - src_pos (32-bits)
aoqi@1 2130 // c_rarg2 - dst oop
aoqi@1 2131 // c_rarg3 - dst_pos (32-bits)
aoqi@1 2132 // not Win64
aoqi@1 2133 // c_rarg4 - element count (32-bits)
aoqi@1 2134 // Win64
aoqi@1 2135 // rsp+40 - element count (32-bits)
aoqi@1 2136 //
aoqi@1 2137 // Output:
aoqi@1 2138 // rax == 0 - success
aoqi@1 2139 // rax == -1^K - failure, where K is partial transfer count
aoqi@1 2140 //
aoqi@1 2141 address generate_generic_copy(const char *name) {
aoqi@1 2142
aoqi@1 2143 Label L_failed, L_failed_0, L_objArray;
aoqi@1 2144 Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
aoqi@1 2145
aoqi@1 2146 // Input registers
aoqi@1 2147 const Register src = c_rarg0; // source array oop
aoqi@1 2148 const Register src_pos = c_rarg1; // source position
aoqi@1 2149 const Register dst = c_rarg2; // destination array oop
aoqi@1 2150 const Register dst_pos = c_rarg3; // destination position
aoqi@1 2151 // elements count is on stack on Win64
aoqi@1 2152 #ifdef _WIN64
aoqi@1 2153 #define C_RARG4 Address(rsp, 6 * wordSize)
aoqi@1 2154 #else
aoqi@1 2155 #define C_RARG4 c_rarg4
aoqi@1 2156 #endif
aoqi@1 2157
aoqi@1 2158 { int modulus = CodeEntryAlignment;
aoqi@1 2159 int target = modulus - 5; // 5 = sizeof jmp(L_failed)
aoqi@1 2160 int advance = target - (__ offset() % modulus);
aoqi@1 2161 if (advance < 0) advance += modulus;
aoqi@1 2162 if (advance > 0) __ nop(advance);
aoqi@1 2163 }
aoqi@1 2164 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 2165
aoqi@1 2166 // Short-hop target to L_failed. Makes for denser prologue code.
aoqi@1 2167 __ BIND(L_failed_0);
aoqi@1 2168 __ jmp(L_failed);
aoqi@1 2169 assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
aoqi@1 2170
aoqi@1 2171 __ align(CodeEntryAlignment);
aoqi@1 2172 address start = __ pc();
aoqi@1 2173
aoqi@1 2174 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 2175
aoqi@1 2176 // bump this on entry, not on exit:
aoqi@1 2177 inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
aoqi@1 2178
aoqi@1 2179 //-----------------------------------------------------------------------
aoqi@1 2180 // Assembler stub will be used for this call to arraycopy
aoqi@1 2181 // if the following conditions are met:
aoqi@1 2182 //
aoqi@1 2183 // (1) src and dst must not be null.
aoqi@1 2184 // (2) src_pos must not be negative.
aoqi@1 2185 // (3) dst_pos must not be negative.
aoqi@1 2186 // (4) length must not be negative.
aoqi@1 2187 // (5) src klass and dst klass should be the same and not NULL.
aoqi@1 2188 // (6) src and dst should be arrays.
aoqi@1 2189 // (7) src_pos + length must not exceed length of src.
aoqi@1 2190 // (8) dst_pos + length must not exceed length of dst.
aoqi@1 2191 //
aoqi@1 2192
aoqi@1 2193 // if (src == NULL) return -1;
aoqi@1 2194 __ testptr(src, src); // src oop
aoqi@1 2195 size_t j1off = __ offset();
aoqi@1 2196 __ jccb(Assembler::zero, L_failed_0);
aoqi@1 2197
aoqi@1 2198 // if (src_pos < 0) return -1;
aoqi@1 2199 __ testl(src_pos, src_pos); // src_pos (32-bits)
aoqi@1 2200 __ jccb(Assembler::negative, L_failed_0);
aoqi@1 2201
aoqi@1 2202 // if (dst == NULL) return -1;
aoqi@1 2203 __ testptr(dst, dst); // dst oop
aoqi@1 2204 __ jccb(Assembler::zero, L_failed_0);
aoqi@1 2205
aoqi@1 2206 // if (dst_pos < 0) return -1;
aoqi@1 2207 __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
aoqi@1 2208 size_t j4off = __ offset();
aoqi@1 2209 __ jccb(Assembler::negative, L_failed_0);
aoqi@1 2210
aoqi@1 2211 // The first four tests are very dense code,
aoqi@1 2212 // but not quite dense enough to put four
aoqi@1 2213 // jumps in a 16-byte instruction fetch buffer.
aoqi@1 2214 // That's good, because some branch predicters
aoqi@1 2215 // do not like jumps so close together.
aoqi@1 2216 // Make sure of this.
aoqi@1 2217 guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
aoqi@1 2218
aoqi@1 2219 // registers used as temp
aoqi@1 2220 const Register r11_length = r11; // elements count to copy
aoqi@1 2221 const Register r10_src_klass = r10; // array klass
aoqi@1 2222 const Register r9_dst_klass = r9; // dest array klass
aoqi@1 2223
aoqi@1 2224 // if (length < 0) return -1;
aoqi@1 2225 __ movl(r11_length, C_RARG4); // length (elements count, 32-bits value)
aoqi@1 2226 __ testl(r11_length, r11_length);
aoqi@1 2227 __ jccb(Assembler::negative, L_failed_0);
aoqi@1 2228
aoqi@1 2229 __ load_klass(r10_src_klass, src);
aoqi@1 2230 #ifdef ASSERT
aoqi@1 2231 // assert(src->klass() != NULL);
aoqi@1 2232 BLOCK_COMMENT("assert klasses not null");
aoqi@1 2233 { Label L1, L2;
aoqi@1 2234 __ testptr(r10_src_klass, r10_src_klass);
aoqi@1 2235 __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL
aoqi@1 2236 __ bind(L1);
aoqi@1 2237 __ stop("broken null klass");
aoqi@1 2238 __ bind(L2);
aoqi@1 2239 __ load_klass(r9_dst_klass, dst);
aoqi@1 2240 __ cmpq(r9_dst_klass, 0);
aoqi@1 2241 __ jcc(Assembler::equal, L1); // this would be broken also
aoqi@1 2242 BLOCK_COMMENT("assert done");
aoqi@1 2243 }
aoqi@1 2244 #endif
aoqi@1 2245
aoqi@1 2246 // Load layout helper (32-bits)
aoqi@1 2247 //
aoqi@1 2248 // |array_tag| | header_size | element_type | |log2_element_size|
aoqi@1 2249 // 32 30 24 16 8 2 0
aoqi@1 2250 //
aoqi@1 2251 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
aoqi@1 2252 //
aoqi@1 2253
aoqi@1 2254 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
aoqi@1 2255 Klass::layout_helper_offset_in_bytes();
aoqi@1 2256
aoqi@1 2257 const Register rax_lh = rax; // layout helper
aoqi@1 2258
aoqi@1 2259 __ movl(rax_lh, Address(r10_src_klass, lh_offset));
aoqi@1 2260
aoqi@1 2261 // Handle objArrays completely differently...
aoqi@1 2262 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
aoqi@1 2263 __ cmpl(rax_lh, objArray_lh);
aoqi@1 2264 __ jcc(Assembler::equal, L_objArray);
aoqi@1 2265
aoqi@1 2266 // if (src->klass() != dst->klass()) return -1;
aoqi@1 2267 __ load_klass(r9_dst_klass, dst);
aoqi@1 2268 __ cmpq(r10_src_klass, r9_dst_klass);
aoqi@1 2269 __ jcc(Assembler::notEqual, L_failed);
aoqi@1 2270
aoqi@1 2271 // if (!src->is_Array()) return -1;
aoqi@1 2272 __ cmpl(rax_lh, Klass::_lh_neutral_value);
aoqi@1 2273 __ jcc(Assembler::greaterEqual, L_failed);
aoqi@1 2274
aoqi@1 2275 // At this point, it is known to be a typeArray (array_tag 0x3).
aoqi@1 2276 #ifdef ASSERT
aoqi@1 2277 { Label L;
aoqi@1 2278 __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
aoqi@1 2279 __ jcc(Assembler::greaterEqual, L);
aoqi@1 2280 __ stop("must be a primitive array");
aoqi@1 2281 __ bind(L);
aoqi@1 2282 }
aoqi@1 2283 #endif
aoqi@1 2284
aoqi@1 2285 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
aoqi@1 2286 r10, L_failed);
aoqi@1 2287
aoqi@1 2288 // typeArrayKlass
aoqi@1 2289 //
aoqi@1 2290 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
aoqi@1 2291 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
aoqi@1 2292 //
aoqi@1 2293
aoqi@1 2294 const Register r10_offset = r10; // array offset
aoqi@1 2295 const Register rax_elsize = rax_lh; // element size
aoqi@1 2296
aoqi@1 2297 __ movl(r10_offset, rax_lh);
aoqi@1 2298 __ shrl(r10_offset, Klass::_lh_header_size_shift);
aoqi@1 2299 __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset
aoqi@1 2300 __ addptr(src, r10_offset); // src array offset
aoqi@1 2301 __ addptr(dst, r10_offset); // dst array offset
aoqi@1 2302 BLOCK_COMMENT("choose copy loop based on element size");
aoqi@1 2303 __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
aoqi@1 2304
aoqi@1 2305 // next registers should be set before the jump to corresponding stub
aoqi@1 2306 const Register from = c_rarg0; // source array address
aoqi@1 2307 const Register to = c_rarg1; // destination array address
aoqi@1 2308 const Register count = c_rarg2; // elements count
aoqi@1 2309
aoqi@1 2310 // 'from', 'to', 'count' registers should be set in such order
aoqi@1 2311 // since they are the same as 'src', 'src_pos', 'dst'.
aoqi@1 2312
aoqi@1 2313 __ BIND(L_copy_bytes);
aoqi@1 2314 __ cmpl(rax_elsize, 0);
aoqi@1 2315 __ jccb(Assembler::notEqual, L_copy_shorts);
aoqi@1 2316 __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
aoqi@1 2317 __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr
aoqi@1 2318 __ movl2ptr(count, r11_length); // length
aoqi@1 2319 __ jump(RuntimeAddress(byte_copy_entry));
aoqi@1 2320
aoqi@1 2321 __ BIND(L_copy_shorts);
aoqi@1 2322 __ cmpl(rax_elsize, LogBytesPerShort);
aoqi@1 2323 __ jccb(Assembler::notEqual, L_copy_ints);
aoqi@1 2324 __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
aoqi@1 2325 __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr
aoqi@1 2326 __ movl2ptr(count, r11_length); // length
aoqi@1 2327 __ jump(RuntimeAddress(short_copy_entry));
aoqi@1 2328
aoqi@1 2329 __ BIND(L_copy_ints);
aoqi@1 2330 __ cmpl(rax_elsize, LogBytesPerInt);
aoqi@1 2331 __ jccb(Assembler::notEqual, L_copy_longs);
aoqi@1 2332 __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
aoqi@1 2333 __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr
aoqi@1 2334 __ movl2ptr(count, r11_length); // length
aoqi@1 2335 __ jump(RuntimeAddress(int_copy_entry));
aoqi@1 2336
aoqi@1 2337 __ BIND(L_copy_longs);
aoqi@1 2338 #ifdef ASSERT
aoqi@1 2339 { Label L;
aoqi@1 2340 __ cmpl(rax_elsize, LogBytesPerLong);
aoqi@1 2341 __ jcc(Assembler::equal, L);
aoqi@1 2342 __ stop("must be long copy, but elsize is wrong");
aoqi@1 2343 __ bind(L);
aoqi@1 2344 }
aoqi@1 2345 #endif
aoqi@1 2346 __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
aoqi@1 2347 __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr
aoqi@1 2348 __ movl2ptr(count, r11_length); // length
aoqi@1 2349 __ jump(RuntimeAddress(long_copy_entry));
aoqi@1 2350
aoqi@1 2351 // objArrayKlass
aoqi@1 2352 __ BIND(L_objArray);
aoqi@1 2353 // live at this point: r10_src_klass, src[_pos], dst[_pos]
aoqi@1 2354
aoqi@1 2355 Label L_plain_copy, L_checkcast_copy;
aoqi@1 2356 // test array classes for subtyping
aoqi@1 2357 __ load_klass(r9_dst_klass, dst);
aoqi@1 2358 __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
aoqi@1 2359 __ jcc(Assembler::notEqual, L_checkcast_copy);
aoqi@1 2360
aoqi@1 2361 // Identically typed arrays can be copied without element-wise checks.
aoqi@1 2362 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
aoqi@1 2363 r10, L_failed);
aoqi@1 2364
aoqi@1 2365 __ lea(from, Address(src, src_pos, TIMES_OOP,
aoqi@1 2366 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
aoqi@1 2367 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
aoqi@1 2368 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
aoqi@1 2369 __ movl2ptr(count, r11_length); // length
aoqi@1 2370 __ BIND(L_plain_copy);
aoqi@1 2371 __ jump(RuntimeAddress(oop_copy_entry));
aoqi@1 2372
aoqi@1 2373 __ BIND(L_checkcast_copy);
aoqi@1 2374 // live at this point: r10_src_klass, !r11_length
aoqi@1 2375 {
aoqi@1 2376 // assert(r11_length == C_RARG4); // will reload from here
aoqi@1 2377 Register r11_dst_klass = r11;
aoqi@1 2378 __ load_klass(r11_dst_klass, dst);
aoqi@1 2379
aoqi@1 2380 // Before looking at dst.length, make sure dst is also an objArray.
aoqi@1 2381 __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
aoqi@1 2382 __ jcc(Assembler::notEqual, L_failed);
aoqi@1 2383
aoqi@1 2384 // It is safe to examine both src.length and dst.length.
aoqi@1 2385 #ifndef _WIN64
aoqi@1 2386 arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
aoqi@1 2387 rax, L_failed);
aoqi@1 2388 #else
aoqi@1 2389 __ movl(r11_length, C_RARG4); // reload
aoqi@1 2390 arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
aoqi@1 2391 rax, L_failed);
aoqi@1 2392 __ load_klass(r11_dst_klass, dst); // reload
aoqi@1 2393 #endif
aoqi@1 2394
aoqi@1 2395 // Marshal the base address arguments now, freeing registers.
aoqi@1 2396 __ lea(from, Address(src, src_pos, TIMES_OOP,
aoqi@1 2397 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
aoqi@1 2398 __ lea(to, Address(dst, dst_pos, TIMES_OOP,
aoqi@1 2399 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
aoqi@1 2400 __ movl(count, C_RARG4); // length (reloaded)
aoqi@1 2401 Register sco_temp = c_rarg3; // this register is free now
aoqi@1 2402 assert_different_registers(from, to, count, sco_temp,
aoqi@1 2403 r11_dst_klass, r10_src_klass);
aoqi@1 2404 assert_clean_int(count, sco_temp);
aoqi@1 2405
aoqi@1 2406 // Generate the type check.
aoqi@1 2407 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
aoqi@1 2408 Klass::super_check_offset_offset_in_bytes());
aoqi@1 2409 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
aoqi@1 2410 assert_clean_int(sco_temp, rax);
aoqi@1 2411 generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
aoqi@1 2412
aoqi@1 2413 // Fetch destination element klass from the objArrayKlass header.
aoqi@1 2414 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
aoqi@1 2415 objArrayKlass::element_klass_offset_in_bytes());
aoqi@1 2416 __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
aoqi@1 2417 __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
aoqi@1 2418 assert_clean_int(sco_temp, rax);
aoqi@1 2419
aoqi@1 2420 // the checkcast_copy loop needs two extra arguments:
aoqi@1 2421 assert(c_rarg3 == sco_temp, "#3 already in place");
aoqi@1 2422 __ movptr(C_RARG4, r11_dst_klass); // dst.klass.element_klass
aoqi@1 2423 __ jump(RuntimeAddress(checkcast_copy_entry));
aoqi@1 2424 }
aoqi@1 2425
aoqi@1 2426 __ BIND(L_failed);
aoqi@1 2427 __ xorptr(rax, rax);
aoqi@1 2428 __ notptr(rax); // return -1
aoqi@1 2429 __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 2430 __ ret(0);
aoqi@1 2431
aoqi@1 2432 return start;
aoqi@1 2433 }
aoqi@1 2434
aoqi@1 2435 #undef length_arg
aoqi@1 2436 #endif
aoqi@1 2437
aoqi@1 2438 //FIXME
aoqi@1 2439 address generate_disjoint_long_copy(bool aligned, const char *name) {
aoqi@1 2440 Label l_1, l_2;
aoqi@1 2441 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 2442 __ align(CodeEntryAlignment);
aoqi@1 2443 address start = __ pc();
aoqi@1 2444
aoqi@1 2445 // __ movl(ecx, Address(esp, 4+8)); // count
aoqi@1 2446 // __ movl(eax, Address(esp, 4+0)); // from
aoqi@1 2447 // __ movl(edx, Address(esp, 4+4)); // to
aoqi@1 2448 __ move(T1, A2);
aoqi@1 2449 __ move(T3, A0);
aoqi@1 2450 __ move(T0, A1);
aoqi@1 2451 __ push(T3);
aoqi@1 2452 __ push(T0);
aoqi@1 2453 __ push(T1);
aoqi@1 2454 //__ subl(edx, eax);
aoqi@1 2455 //__ jmp(l_2);
aoqi@1 2456 __ b(l_2);
aoqi@1 2457 __ delayed()->nop();
aoqi@1 2458 __ align(16);
aoqi@1 2459 __ bind(l_1);
aoqi@1 2460 // if (VM_Version::supports_mmx()) {
aoqi@1 2461 // __ movq(mmx0, Address(eax));
aoqi@1 2462 // __ movq(Address(eax, edx, Address::times_1), mmx0);
aoqi@1 2463 // } else {
aoqi@1 2464 // __ fild_d(Address(eax));
aoqi@1 2465 __ ld(AT, T3, 0);
aoqi@1 2466 // __ fistp_d(Address(eax, edx, Address::times_1));
aoqi@1 2467 __ sd (AT, T0, 0);
aoqi@1 2468 // }
aoqi@1 2469 // __ addl(eax, 8);
aoqi@1 2470 __ addi(T3, T3, 8);
aoqi@1 2471 __ addi(T0, T0, 8);
aoqi@1 2472 __ bind(l_2);
aoqi@1 2473 // __ decl(ecx);
aoqi@1 2474 __ addi(T1, T1, -1);
aoqi@1 2475 // __ jcc(Assembler::greaterEqual, l_1);
aoqi@1 2476 __ bgez(T1, l_1);
aoqi@1 2477 __ delayed()->nop();
aoqi@1 2478 // if (VM_Version::supports_mmx()) {
aoqi@1 2479 // __ emms();
aoqi@1 2480 // }
aoqi@1 2481 // __ ret(0);
aoqi@1 2482 __ pop(T1);
aoqi@1 2483 __ pop(T0);
aoqi@1 2484 __ pop(T3);
aoqi@1 2485 __ jr(RA);
aoqi@1 2486 __ delayed()->nop();
aoqi@1 2487 return start;
aoqi@1 2488 }
aoqi@1 2489
aoqi@1 2490
aoqi@1 2491 address generate_conjoint_long_copy(bool aligned, const char *name) {
aoqi@1 2492 Label l_1, l_2;
aoqi@1 2493 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 2494 __ align(CodeEntryAlignment);
aoqi@1 2495 address start = __ pc();
aoqi@1 2496 address nooverlap_target = aligned ?
aoqi@1 2497 StubRoutines::arrayof_jlong_disjoint_arraycopy() :
aoqi@1 2498 StubRoutines::jlong_disjoint_arraycopy();
aoqi@1 2499 array_overlap_test(nooverlap_target, 3);
aoqi@1 2500
aoqi@1 2501 __ push(T3);
aoqi@1 2502 __ push(T0);
aoqi@1 2503 __ push(T1);
aoqi@1 2504
aoqi@1 2505 /* __ movl(ecx, Address(esp, 4+8)); // count
aoqi@1 2506 __ movl(eax, Address(esp, 4+0)); // from
aoqi@1 2507 __ movl(edx, Address(esp, 4+4)); // to
aoqi@1 2508 __ jmp(l_2);
aoqi@1 2509
aoqi@1 2510 */
aoqi@1 2511 __ move(T1, A2);
aoqi@1 2512 __ move(T3, A0);
aoqi@1 2513 __ move(T0, A1);
aoqi@1 2514 __ sll(AT, T1, Address::times_8);
aoqi@1 2515 __ add(AT, T3, AT);
aoqi@1 2516 __ lea(T3 , Address(AT, -8));
aoqi@1 2517 __ sll(AT, T1, Address::times_8);
aoqi@1 2518 __ add(AT, T0, AT);
aoqi@1 2519 __ lea(T0 , Address(AT, -8));
aoqi@1 2520
aoqi@1 2521
aoqi@1 2522
aoqi@1 2523 __ b(l_2);
aoqi@1 2524 __ delayed()->nop();
aoqi@1 2525 __ align(16);
aoqi@1 2526 __ bind(l_1);
aoqi@1 2527 /* if (VM_Version::supports_mmx()) {
aoqi@1 2528 __ movq(mmx0, Address(eax, ecx, Address::times_8));
aoqi@1 2529 __ movq(Address(edx, ecx,Address::times_8), mmx0);
aoqi@1 2530 } else {
aoqi@1 2531 __ fild_d(Address(eax, ecx, Address::times_8));
aoqi@1 2532 __ fistp_d(Address(edx, ecx,Address::times_8));
aoqi@1 2533 }
aoqi@1 2534 */
aoqi@1 2535 __ ld(AT, T3, 0);
aoqi@1 2536 __ sd (AT, T0, 0);
aoqi@1 2537 __ addi(T3, T3, -8);
aoqi@1 2538 __ addi(T0, T0,-8);
aoqi@1 2539 __ bind(l_2);
aoqi@1 2540 // __ decl(ecx);
aoqi@1 2541 __ addi(T1, T1, -1);
aoqi@1 2542 //__ jcc(Assembler::greaterEqual, l_1);
aoqi@1 2543 __ bgez(T1, l_1);
aoqi@1 2544 __ delayed()->nop();
aoqi@1 2545 // if (VM_Version::supports_mmx()) {
aoqi@1 2546 // __ emms();
aoqi@1 2547 // }
aoqi@1 2548 // __ ret(0);
aoqi@1 2549 __ pop(T1);
aoqi@1 2550 __ pop(T0);
aoqi@1 2551 __ pop(T3);
aoqi@1 2552 __ jr(RA);
aoqi@1 2553 __ delayed()->nop();
aoqi@1 2554 return start;
aoqi@1 2555 }
aoqi@1 2556
aoqi@1 2557 void generate_arraycopy_stubs() {
aoqi@1 2558 if (UseCompressedOops) {
aoqi@1 2559 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
aoqi@1 2560 StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
aoqi@1 2561 } else {
aoqi@1 2562 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
aoqi@1 2563 StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
aoqi@1 2564 }
aoqi@1 2565
aoqi@1 2566 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
aoqi@1 2567 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
aoqi@1 2568 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
aoqi@1 2569 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
aoqi@1 2570 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
aoqi@1 2571
aoqi@1 2572 // if (VM_Version::supports_mmx())
aoqi@1 2573 //if (false)
aoqi@1 2574 // StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_mmx_copy_aligned("arrayof_jshort_disjoint_arraycopy");
aoqi@1 2575 // else
aoqi@1 2576 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
aoqi@1 2577 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(true, false, "arrayof_jint_disjoint_arraycopy");
aoqi@1 2578 //StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(true, true, "arrayof_oop_disjoint_arraycopy");
aoqi@1 2579 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
aoqi@1 2580
aoqi@1 2581 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
aoqi@1 2582 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
aoqi@1 2583 StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
aoqi@1 2584 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
aoqi@1 2585
aoqi@1 2586 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
aoqi@1 2587 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
aoqi@1 2588 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_oop_copy(true, false, "arrayof_jint_arraycopy");
aoqi@1 2589 //StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_int_oop_copy(true, true, "arrayof_oop_arraycopy");
aoqi@1 2590 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, "arrayof_jlong_arraycopy");
aoqi@1 2591
aoqi@1 2592 StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
aoqi@1 2593 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
aoqi@1 2594 }
aoqi@1 2595
aoqi@1 2596 //Wang: add a function to implement SafeFetch32 and SafeFetchN
aoqi@1 2597 void generate_safefetch(const char* name, int size, address* entry,
aoqi@1 2598 address* fault_pc, address* continuation_pc) {
aoqi@1 2599 // safefetch signatures:
aoqi@1 2600 // int SafeFetch32(int* adr, int errValue);
aoqi@1 2601 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
aoqi@1 2602 //
aoqi@1 2603 // arguments:
aoqi@1 2604 // A0 = adr
aoqi@1 2605 // A1 = errValue
aoqi@1 2606 //
aoqi@1 2607 // result:
aoqi@1 2608 // PPC_RET = *adr or errValue
aoqi@1 2609
aoqi@1 2610 StubCodeMark mark(this, "StubRoutines", name);
aoqi@1 2611
aoqi@1 2612 // Entry point, pc or function descriptor.
aoqi@1 2613 *entry = __ pc();
aoqi@1 2614
aoqi@1 2615 // Load *adr into A1, may fault.
aoqi@1 2616 *fault_pc = __ pc();
aoqi@1 2617 switch (size) {
aoqi@1 2618 case 4:
aoqi@1 2619 // int32_t
aoqi@1 2620 __ lw(A1, A0, 0);
aoqi@1 2621 break;
aoqi@1 2622 case 8:
aoqi@1 2623 // int64_t
aoqi@1 2624 __ ld(A1, A0, 0);
aoqi@1 2625 break;
aoqi@1 2626 default:
aoqi@1 2627 ShouldNotReachHere();
aoqi@1 2628 }
aoqi@1 2629
aoqi@1 2630 // return errValue or *adr
aoqi@1 2631 *continuation_pc = __ pc();
aoqi@1 2632 __ addu(V0,A1,R0);
aoqi@1 2633 __ jr(RA);
aoqi@1 2634 __ delayed()->nop();
aoqi@1 2635 }
aoqi@1 2636
aoqi@1 2637
aoqi@1 2638 #undef __
aoqi@1 2639 #define __ masm->
aoqi@1 2640
aoqi@1 2641 // Continuation point for throwing of implicit exceptions that are
aoqi@1 2642 // not handled in the current activation. Fabricates an exception
aoqi@1 2643 // oop and initiates normal exception dispatching in this
aoqi@1 2644 // frame. Since we need to preserve callee-saved values (currently
aoqi@1 2645 // only for C2, but done for C1 as well) we need a callee-saved oop
aoqi@1 2646 // map and therefore have to make these stubs into RuntimeStubs
aoqi@1 2647 // rather than BufferBlobs. If the compiler needs all registers to
aoqi@1 2648 // be preserved between the fault point and the exception handler
aoqi@1 2649 // then it must assume responsibility for that in
aoqi@1 2650 // AbstractCompiler::continuation_for_implicit_null_exception or
aoqi@1 2651 // continuation_for_implicit_division_by_zero_exception. All other
aoqi@1 2652 // implicit exceptions (e.g., NullPointerException or
aoqi@1 2653 // AbstractMethodError on entry) are either at call sites or
aoqi@1 2654 // otherwise assume that stack unwinding will be initiated, so
aoqi@1 2655 // caller saved registers were assumed volatile in the compiler.
aoqi@1 2656 address generate_throw_exception(const char* name,
aoqi@1 2657 address runtime_entry,
aoqi@1 2658 bool restore_saved_exception_pc) {
aoqi@1 2659 // Information about frame layout at time of blocking runtime call.
aoqi@1 2660 // Note that we only have to preserve callee-saved registers since
aoqi@1 2661 // the compilers are responsible for supplying a continuation point
aoqi@1 2662 // if they expect all registers to be preserved.
aoqi@1 2663 //#define aoqi_test
aoqi@1 2664 #ifdef aoqi_test
aoqi@1 2665 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2666 #endif
aoqi@1 2667 enum layout {
aoqi@1 2668 thread_off, // last_java_sp
aoqi@1 2669 S7_off, // callee saved register sp + 1
aoqi@1 2670 S6_off, // callee saved register sp + 2
aoqi@1 2671 S5_off, // callee saved register sp + 3
aoqi@1 2672 S4_off, // callee saved register sp + 4
aoqi@1 2673 S3_off, // callee saved register sp + 5
aoqi@1 2674 S2_off, // callee saved register sp + 6
aoqi@1 2675 S1_off, // callee saved register sp + 7
aoqi@1 2676 S0_off, // callee saved register sp + 8
aoqi@1 2677 FP_off,
aoqi@1 2678 ret_address,
aoqi@1 2679 framesize
aoqi@1 2680 };
aoqi@1 2681
aoqi@1 2682 int insts_size = 2048;
aoqi@1 2683 int locs_size = 32;
aoqi@1 2684
aoqi@1 2685 // CodeBuffer* code = new CodeBuffer(insts_size, locs_size, 0, 0, 0, false,
aoqi@1 2686 // NULL, NULL, NULL, false, NULL, name, false);
aoqi@1 2687 CodeBuffer code (name , insts_size, locs_size);
aoqi@1 2688 #ifdef aoqi_test
aoqi@1 2689 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2690 #endif
aoqi@1 2691 OopMapSet* oop_maps = new OopMapSet();
aoqi@1 2692 #ifdef aoqi_test
aoqi@1 2693 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2694 #endif
aoqi@1 2695 MacroAssembler* masm = new MacroAssembler(&code);
aoqi@1 2696 #ifdef aoqi_test
aoqi@1 2697 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2698 #endif
aoqi@1 2699
aoqi@1 2700 address start = __ pc();
aoqi@1 2701 //__ stop("generate_throw_exception");
aoqi@1 2702 /*
aoqi@1 2703 __ move(AT, (int)&jerome1 );
aoqi@1 2704 __ sw(SP, AT, 0);
aoqi@1 2705 __ move(AT, (int)&jerome2 );
aoqi@1 2706 __ sw(FP, AT, 0);
aoqi@1 2707 __ move(AT, (int)&jerome3 );
aoqi@1 2708 __ sw(RA, AT, 0);
aoqi@1 2709 __ move(AT, (int)&jerome4 );
aoqi@1 2710 __ sw(R0, AT, 0);
aoqi@1 2711 __ move(AT, (int)&jerome5 );
aoqi@1 2712 __ sw(R0, AT, 0);
aoqi@1 2713 __ move(AT, (int)&jerome6 );
aoqi@1 2714 __ sw(R0, AT, 0);
aoqi@1 2715 __ move(AT, (int)&jerome7 );
aoqi@1 2716 __ sw(R0, AT, 0);
aoqi@1 2717 __ move(AT, (int)&jerome10 );
aoqi@1 2718 __ sw(R0, AT, 0);
aoqi@1 2719
aoqi@1 2720 __ pushad();
aoqi@1 2721
aoqi@1 2722 //__ enter();
aoqi@1 2723 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::print_call_statistics),
aoqi@1 2724 relocInfo::runtime_call_type);
aoqi@1 2725 __ delayed()->nop();
aoqi@1 2726
aoqi@1 2727 //__ leave();
aoqi@1 2728 __ popad();
aoqi@1 2729
aoqi@1 2730 */
aoqi@1 2731
aoqi@1 2732 // This is an inlined and slightly modified version of call_VM
aoqi@1 2733 // which has the ability to fetch the return PC out of
aoqi@1 2734 // thread-local storage and also sets up last_Java_sp slightly
aoqi@1 2735 // differently than the real call_VM
aoqi@1 2736 #ifndef OPT_THREAD
aoqi@1 2737 Register java_thread = TREG;
aoqi@1 2738 __ get_thread(java_thread);
aoqi@1 2739 #else
aoqi@1 2740 Register java_thread = TREG;
aoqi@1 2741 #endif
aoqi@1 2742 #ifdef aoqi_test
aoqi@1 2743 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2744 #endif
aoqi@1 2745 if (restore_saved_exception_pc) {
aoqi@1 2746 __ ld(RA, java_thread, in_bytes(JavaThread::saved_exception_pc_offset())); // eax
aoqi@1 2747 }
aoqi@1 2748
aoqi@1 2749 __ enter(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 2750
aoqi@1 2751 __ addi(SP, SP, (-1) * (framesize-2) * wordSize); // prolog
aoqi@1 2752 __ sd(S0, SP, S0_off * wordSize);
aoqi@1 2753 __ sd(S1, SP, S1_off * wordSize);
aoqi@1 2754 __ sd(S2, SP, S2_off * wordSize);
aoqi@1 2755 __ sd(S3, SP, S3_off * wordSize);
aoqi@1 2756 __ sd(S4, SP, S4_off * wordSize);
aoqi@1 2757 __ sd(S5, SP, S5_off * wordSize);
aoqi@1 2758 __ sd(S6, SP, S6_off * wordSize);
aoqi@1 2759 __ sd(S7, SP, S7_off * wordSize);
aoqi@1 2760
aoqi@1 2761 int frame_complete = __ pc() - start;
aoqi@1 2762 // push java thread (becomes first argument of C function)
aoqi@1 2763 __ sd(java_thread, SP, thread_off * wordSize);
aoqi@1 2764 if (java_thread!=A0)
aoqi@1 2765 __ move(A0, java_thread);
aoqi@1 2766
aoqi@1 2767 // Set up last_Java_sp and last_Java_fp
aoqi@1 2768 __ set_last_Java_frame(java_thread, SP, FP, NULL);
aoqi@1 2769 __ relocate(relocInfo::internal_pc_type);
aoqi@1 2770 {
aoqi@1 2771 intptr_t save_pc = (intptr_t)__ pc() + NativeMovConstReg::instruction_size + NativeCall::return_address_offset + 4;
aoqi@1 2772 __ li48(AT, save_pc);
aoqi@1 2773 }
aoqi@1 2774 __ sd(AT, java_thread, in_bytes(JavaThread::last_Java_pc_offset()));
aoqi@1 2775
aoqi@1 2776 // Call runtime
aoqi@1 2777 __ call(runtime_entry);
aoqi@1 2778 __ delayed()->nop();
aoqi@1 2779 // Generate oop map
aoqi@1 2780 OopMap* map = new OopMap(framesize, 0);
aoqi@1 2781 oop_maps->add_gc_map(__ offset(), map);
aoqi@1 2782
aoqi@1 2783 // restore the thread (cannot use the pushed argument since arguments
aoqi@1 2784 // may be overwritten by C code generated by an optimizing compiler);
aoqi@1 2785 // however can use the register value directly if it is callee saved.
aoqi@1 2786 #ifndef OPT_THREAD
aoqi@1 2787 __ get_thread(java_thread);
aoqi@1 2788 #endif
aoqi@1 2789
aoqi@1 2790 __ ld(SP, java_thread, in_bytes(JavaThread::last_Java_sp_offset()));
aoqi@1 2791 // __ reset_last_Java_frame(java_thread, true);
aoqi@1 2792 __ reset_last_Java_frame(java_thread, true, true);
aoqi@1 2793
aoqi@1 2794 // Restore callee save registers. This must be done after resetting the Java frame
aoqi@1 2795 __ ld(S0, SP, S0_off * wordSize);
aoqi@1 2796 __ ld(S1, SP, S1_off * wordSize);
aoqi@1 2797 __ ld(S2, SP, S2_off * wordSize);
aoqi@1 2798 __ ld(S3, SP, S3_off * wordSize);
aoqi@1 2799 __ ld(S4, SP, S4_off * wordSize);
aoqi@1 2800 __ ld(S5, SP, S5_off * wordSize);
aoqi@1 2801 __ ld(S6, SP, S6_off * wordSize);
aoqi@1 2802 __ ld(S7, SP, S7_off * wordSize);
aoqi@1 2803
aoqi@1 2804 // discard arguments
aoqi@1 2805 __ addi(SP, SP, (framesize-2) * wordSize); // epilog
aoqi@1 2806 // __ leave(); // required for proper stackwalking of RuntimeStub frame
aoqi@1 2807 __ addi(SP, FP, wordSize);
aoqi@1 2808 __ ld(FP, SP, -1*wordSize);
aoqi@1 2809 // check for pending exceptions
aoqi@1 2810 #ifdef ASSERT
aoqi@1 2811 Label L;
aoqi@1 2812 __ lw(AT, java_thread, in_bytes(Thread::pending_exception_offset()));
aoqi@1 2813 __ bne(AT, R0, L);
aoqi@1 2814 __ delayed()->nop();
aoqi@1 2815 __ should_not_reach_here();
aoqi@1 2816 __ bind(L);
aoqi@1 2817 #endif //ASSERT
aoqi@1 2818 __ jmp(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
aoqi@1 2819 __ delayed()->nop();
aoqi@1 2820 #ifdef aoqi_test
aoqi@1 2821 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2822 #endif
aoqi@1 2823 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code,frame_complete,
aoqi@1 2824 framesize, oop_maps, false);
aoqi@1 2825 #ifdef aoqi_test
aoqi@1 2826 tty->print_cr("%s:%d name:%s", __func__, __LINE__, name);
aoqi@1 2827 #endif
aoqi@1 2828 return stub->entry_point();
aoqi@1 2829 }
aoqi@1 2830
aoqi@1 2831 // Initialization
aoqi@1 2832 void generate_initial() {
aoqi@1 2833 /*
aoqi@1 2834 // Generates all stubs and initializes the entry points
aoqi@1 2835
aoqi@1 2836 // This platform-specific stub is needed by generate_call_stub()
aoqi@1 2837 StubRoutines::mips::_mxcsr_std = generate_fp_mask("mxcsr_std", 0x0000000000001F80);
aoqi@1 2838
aoqi@1 2839 // entry points that exist in all platforms Note: This is code
aoqi@1 2840 // that could be shared among different platforms - however the
aoqi@1 2841 // benefit seems to be smaller than the disadvantage of having a
aoqi@1 2842 // much more complicated generator structure. See also comment in
aoqi@1 2843 // stubRoutines.hpp.
aoqi@1 2844
aoqi@1 2845 StubRoutines::_forward_exception_entry = generate_forward_exception();
aoqi@1 2846
aoqi@1 2847 StubRoutines::_call_stub_entry =
aoqi@1 2848 generate_call_stub(StubRoutines::_call_stub_return_address);
aoqi@1 2849
aoqi@1 2850 // is referenced by megamorphic call
aoqi@1 2851 StubRoutines::_catch_exception_entry = generate_catch_exception();
aoqi@1 2852
aoqi@1 2853 // atomic calls
aoqi@1 2854 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
aoqi@1 2855 StubRoutines::_atomic_xchg_ptr_entry = generate_atomic_xchg_ptr();
aoqi@1 2856 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
aoqi@1 2857 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
aoqi@1 2858 StubRoutines::_atomic_add_entry = generate_atomic_add();
aoqi@1 2859 StubRoutines::_atomic_add_ptr_entry = generate_atomic_add_ptr();
aoqi@1 2860 StubRoutines::_fence_entry = generate_orderaccess_fence();
aoqi@1 2861
aoqi@1 2862 StubRoutines::_handler_for_unsafe_access_entry =
aoqi@1 2863 generate_handler_for_unsafe_access();
aoqi@1 2864
aoqi@1 2865 // platform dependent
aoqi@1 2866 StubRoutines::mips::_get_previous_fp_entry = generate_get_previous_fp();
aoqi@1 2867
aoqi@1 2868 StubRoutines::mips::_verify_mxcsr_entry = generate_verify_mxcsr();
aoqi@1 2869 */
aoqi@1 2870 // Generates all stubs and initializes the entry points
aoqi@1 2871
aoqi@1 2872 //-------------------------------------------------------------
aoqi@1 2873 //-----------------------------------------------------------
aoqi@1 2874 // entry points that exist in all platforms
aoqi@1 2875 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller
aoqi@1 2876 // than the disadvantage of having a much more complicated generator structure.
aoqi@1 2877 // See also comment in stubRoutines.hpp.
aoqi@1 2878 StubRoutines::_forward_exception_entry = generate_forward_exception();
aoqi@1 2879 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
aoqi@1 2880 // is referenced by megamorphic call
aoqi@1 2881 StubRoutines::_catch_exception_entry = generate_catch_exception();
aoqi@1 2882
aoqi@1 2883 StubRoutines::_handler_for_unsafe_access_entry = generate_handler_for_unsafe_access();
aoqi@1 2884
aoqi@1 2885 // platform dependent
aoqi@1 2886 StubRoutines::gs2::_get_previous_fp_entry = generate_get_previous_fp();
aoqi@1 2887 }
aoqi@1 2888
aoqi@1 2889 void generate_all() {
aoqi@1 2890 #ifdef aoqi_test
aoqi@1 2891 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2892 #endif
aoqi@1 2893 // Generates all stubs and initializes the entry points
aoqi@1 2894
aoqi@1 2895 // These entry points require SharedInfo::stack0 to be set up in
aoqi@1 2896 // non-core builds and need to be relocatable, so they each
aoqi@1 2897 // fabricate a RuntimeStub internally.
aoqi@1 2898 /*
aoqi@1 2899 StubRoutines::_throw_AbstractMethodError_entry =
aoqi@1 2900 generate_throw_exception("AbstractMethodError throw_exception",
aoqi@1 2901 CAST_FROM_FN_PTR(address,
aoqi@1 2902 SharedRuntime::
aoqi@1 2903 throw_AbstractMethodError),
aoqi@1 2904 false);
aoqi@1 2905
aoqi@1 2906 StubRoutines::_throw_IncompatibleClassChangeError_entry =
aoqi@1 2907 generate_throw_exception("IncompatibleClassChangeError throw_exception",
aoqi@1 2908 CAST_FROM_FN_PTR(address,
aoqi@1 2909 SharedRuntime::
aoqi@1 2910 throw_IncompatibleClassChangeError),
aoqi@1 2911 false);
aoqi@1 2912
aoqi@1 2913 StubRoutines::_throw_ArithmeticException_entry =
aoqi@1 2914 generate_throw_exception("ArithmeticException throw_exception",
aoqi@1 2915 CAST_FROM_FN_PTR(address,
aoqi@1 2916 SharedRuntime::
aoqi@1 2917 throw_ArithmeticException),
aoqi@1 2918 true);
aoqi@1 2919
aoqi@1 2920 StubRoutines::_throw_NullPointerException_entry =
aoqi@1 2921 generate_throw_exception("NullPointerException throw_exception",
aoqi@1 2922 CAST_FROM_FN_PTR(address,
aoqi@1 2923 SharedRuntime::
aoqi@1 2924 throw_NullPointerException),
aoqi@1 2925 true);
aoqi@1 2926
aoqi@1 2927 StubRoutines::_throw_NullPointerException_at_call_entry =
aoqi@1 2928 generate_throw_exception("NullPointerException at call throw_exception",
aoqi@1 2929 CAST_FROM_FN_PTR(address,
aoqi@1 2930 SharedRuntime::
aoqi@1 2931 throw_NullPointerException_at_call),
aoqi@1 2932 false);
aoqi@1 2933
aoqi@1 2934 StubRoutines::_throw_StackOverflowError_entry =
aoqi@1 2935 generate_throw_exception("StackOverflowError throw_exception",
aoqi@1 2936 CAST_FROM_FN_PTR(address,
aoqi@1 2937 SharedRuntime::
aoqi@1 2938 throw_StackOverflowError),
aoqi@1 2939 false);
aoqi@1 2940
aoqi@1 2941 // entry points that are platform specific
aoqi@1 2942 StubRoutines::mips::_f2i_fixup = generate_f2i_fixup();
aoqi@1 2943 StubRoutines::mips::_f2l_fixup = generate_f2l_fixup();
aoqi@1 2944 StubRoutines::mips::_d2i_fixup = generate_d2i_fixup();
aoqi@1 2945 StubRoutines::mips::_d2l_fixup = generate_d2l_fixup();
aoqi@1 2946
aoqi@1 2947 StubRoutines::mips::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF);
aoqi@1 2948 StubRoutines::mips::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000);
aoqi@1 2949 StubRoutines::mips::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
aoqi@1 2950 StubRoutines::mips::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
aoqi@1 2951
aoqi@1 2952 // support for verify_oop (must happen after universe_init)
aoqi@1 2953 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
aoqi@1 2954
aoqi@1 2955 // arraycopy stubs used by compilers
aoqi@1 2956 generate_arraycopy_stubs();
aoqi@1 2957 */
aoqi@1 2958 #ifdef aoqi_test
aoqi@1 2959 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2960 #endif
aoqi@1 2961 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
aoqi@1 2962 #ifdef aoqi_test
aoqi@1 2963 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2964 #endif
aoqi@1 2965 // StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
aoqi@1 2966 #ifdef aoqi_test
aoqi@1 2967 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2968 #endif
aoqi@1 2969 // StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
aoqi@1 2970 #ifdef aoqi_test
aoqi@1 2971 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2972 #endif
aoqi@1 2973 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
aoqi@1 2974 #ifdef aoqi_test
aoqi@1 2975 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2976 #endif
aoqi@1 2977 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
aoqi@1 2978 #ifdef aoqi_test
aoqi@1 2979 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2980 #endif
aoqi@1 2981
aoqi@1 2982 //------------------------------------------------------
aoqi@1 2983 //------------------------------------------------------------------
aoqi@1 2984 // entry points that are platform specific
aoqi@1 2985
aoqi@1 2986 // support for verify_oop (must happen after universe_init)
aoqi@1 2987 #ifdef aoqi_test
aoqi@1 2988 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2989 #endif
aoqi@1 2990 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
aoqi@1 2991 #ifdef aoqi_test
aoqi@1 2992 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2993 #endif
aoqi@1 2994 #ifndef CORE
aoqi@1 2995 // arraycopy stubs used by compilers
aoqi@1 2996 generate_arraycopy_stubs();
aoqi@1 2997 #ifdef aoqi_test
aoqi@1 2998 tty->print_cr("%s:%d", __func__, __LINE__);
aoqi@1 2999 #endif
aoqi@1 3000 #endif
aoqi@1 3001
aoqi@1 3002 // Safefetch stubs.
aoqi@1 3003 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
aoqi@1 3004 &StubRoutines::_safefetch32_fault_pc,
aoqi@1 3005 &StubRoutines::_safefetch32_continuation_pc);
aoqi@1 3006 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
aoqi@1 3007 &StubRoutines::_safefetchN_fault_pc,
aoqi@1 3008 &StubRoutines::_safefetchN_continuation_pc);
aoqi@1 3009 }
aoqi@1 3010
aoqi@1 3011 public:
aoqi@1 3012 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
aoqi@1 3013 if (all) {
aoqi@1 3014 generate_all();
aoqi@1 3015 } else {
aoqi@1 3016 generate_initial();
aoqi@1 3017 }
aoqi@1 3018 }
aoqi@1 3019 }; // end class declaration
aoqi@1 3020 /*
aoqi@1 3021 address StubGenerator::disjoint_byte_copy_entry = NULL;
aoqi@1 3022 address StubGenerator::disjoint_short_copy_entry = NULL;
aoqi@1 3023 address StubGenerator::disjoint_int_copy_entry = NULL;
aoqi@1 3024 address StubGenerator::disjoint_long_copy_entry = NULL;
aoqi@1 3025 address StubGenerator::disjoint_oop_copy_entry = NULL;
aoqi@1 3026
aoqi@1 3027 address StubGenerator::byte_copy_entry = NULL;
aoqi@1 3028 address StubGenerator::short_copy_entry = NULL;
aoqi@1 3029 address StubGenerator::int_copy_entry = NULL;
aoqi@1 3030 address StubGenerator::long_copy_entry = NULL;
aoqi@1 3031 address StubGenerator::oop_copy_entry = NULL;
aoqi@1 3032
aoqi@1 3033 address StubGenerator::checkcast_copy_entry = NULL;
aoqi@1 3034 */
aoqi@1 3035 void StubGenerator_generate(CodeBuffer* code, bool all) {
aoqi@1 3036 StubGenerator g(code, all);
aoqi@1 3037 }

mercurial