src/share/vm/opto/cfgnode.cpp

Fri, 12 Apr 2013 19:14:47 -0700

author
drchase
date
Fri, 12 Apr 2013 19:14:47 -0700
changeset 4944
886d1fd67dc3
parent 4409
d092d1b31229
child 5110
6f3fd5150b67
permissions
-rw-r--r--

6443505: Ideal() function for CmpLTMask
Summary: Repair wrong code generation, added new matching rule
Reviewed-by: kvn, twisti

duke@435 1 /*
drchase@4944 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "oops/objArrayKlass.hpp"
stefank@2314 29 #include "opto/addnode.hpp"
stefank@2314 30 #include "opto/cfgnode.hpp"
stefank@2314 31 #include "opto/connode.hpp"
stefank@2314 32 #include "opto/loopnode.hpp"
stefank@2314 33 #include "opto/machnode.hpp"
stefank@2314 34 #include "opto/mulnode.hpp"
stefank@2314 35 #include "opto/phaseX.hpp"
stefank@2314 36 #include "opto/regmask.hpp"
stefank@2314 37 #include "opto/runtime.hpp"
stefank@2314 38 #include "opto/subnode.hpp"
stefank@2314 39
duke@435 40 // Portions of code courtesy of Clifford Click
duke@435 41
duke@435 42 // Optimization - Graph Style
duke@435 43
duke@435 44 //=============================================================================
duke@435 45 //------------------------------Value------------------------------------------
duke@435 46 // Compute the type of the RegionNode.
duke@435 47 const Type *RegionNode::Value( PhaseTransform *phase ) const {
duke@435 48 for( uint i=1; i<req(); ++i ) { // For all paths in
duke@435 49 Node *n = in(i); // Get Control source
duke@435 50 if( !n ) continue; // Missing inputs are TOP
duke@435 51 if( phase->type(n) == Type::CONTROL )
duke@435 52 return Type::CONTROL;
duke@435 53 }
duke@435 54 return Type::TOP; // All paths dead? Then so are we
duke@435 55 }
duke@435 56
duke@435 57 //------------------------------Identity---------------------------------------
duke@435 58 // Check for Region being Identity.
duke@435 59 Node *RegionNode::Identity( PhaseTransform *phase ) {
duke@435 60 // Cannot have Region be an identity, even if it has only 1 input.
duke@435 61 // Phi users cannot have their Region input folded away for them,
duke@435 62 // since they need to select the proper data input
duke@435 63 return this;
duke@435 64 }
duke@435 65
duke@435 66 //------------------------------merge_region-----------------------------------
duke@435 67 // If a Region flows into a Region, merge into one big happy merge. This is
duke@435 68 // hard to do if there is stuff that has to happen
duke@435 69 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
duke@435 70 if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
duke@435 71 return NULL;
duke@435 72 Node *progress = NULL; // Progress flag
duke@435 73 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 74
duke@435 75 uint rreq = region->req();
duke@435 76 for( uint i = 1; i < rreq; i++ ) {
duke@435 77 Node *r = region->in(i);
duke@435 78 if( r && r->Opcode() == Op_Region && // Found a region?
duke@435 79 r->in(0) == r && // Not already collapsed?
duke@435 80 r != region && // Avoid stupid situations
duke@435 81 r->outcnt() == 2 ) { // Self user and 'region' user only?
duke@435 82 assert(!r->as_Region()->has_phi(), "no phi users");
duke@435 83 if( !progress ) { // No progress
duke@435 84 if (region->has_phi()) {
duke@435 85 return NULL; // Only flatten if no Phi users
duke@435 86 // igvn->hash_delete( phi );
duke@435 87 }
duke@435 88 igvn->hash_delete( region );
duke@435 89 progress = region; // Making progress
duke@435 90 }
duke@435 91 igvn->hash_delete( r );
duke@435 92
duke@435 93 // Append inputs to 'r' onto 'region'
duke@435 94 for( uint j = 1; j < r->req(); j++ ) {
duke@435 95 // Move an input from 'r' to 'region'
duke@435 96 region->add_req(r->in(j));
duke@435 97 r->set_req(j, phase->C->top());
duke@435 98 // Update phis of 'region'
duke@435 99 //for( uint k = 0; k < max; k++ ) {
duke@435 100 // Node *phi = region->out(k);
duke@435 101 // if( phi->is_Phi() ) {
duke@435 102 // phi->add_req(phi->in(i));
duke@435 103 // }
duke@435 104 //}
duke@435 105
duke@435 106 rreq++; // One more input to Region
duke@435 107 } // Found a region to merge into Region
duke@435 108 // Clobber pointer to the now dead 'r'
duke@435 109 region->set_req(i, phase->C->top());
duke@435 110 }
duke@435 111 }
duke@435 112
duke@435 113 return progress;
duke@435 114 }
duke@435 115
duke@435 116
duke@435 117
duke@435 118 //--------------------------------has_phi--------------------------------------
duke@435 119 // Helper function: Return any PhiNode that uses this region or NULL
duke@435 120 PhiNode* RegionNode::has_phi() const {
duke@435 121 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
duke@435 122 Node* phi = fast_out(i);
duke@435 123 if (phi->is_Phi()) { // Check for Phi users
duke@435 124 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
duke@435 125 return phi->as_Phi(); // this one is good enough
duke@435 126 }
duke@435 127 }
duke@435 128
duke@435 129 return NULL;
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 //-----------------------------has_unique_phi----------------------------------
duke@435 134 // Helper function: Return the only PhiNode that uses this region or NULL
duke@435 135 PhiNode* RegionNode::has_unique_phi() const {
duke@435 136 // Check that only one use is a Phi
duke@435 137 PhiNode* only_phi = NULL;
duke@435 138 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
duke@435 139 Node* phi = fast_out(i);
duke@435 140 if (phi->is_Phi()) { // Check for Phi users
duke@435 141 assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
duke@435 142 if (only_phi == NULL) {
duke@435 143 only_phi = phi->as_Phi();
duke@435 144 } else {
duke@435 145 return NULL; // multiple phis
duke@435 146 }
duke@435 147 }
duke@435 148 }
duke@435 149
duke@435 150 return only_phi;
duke@435 151 }
duke@435 152
duke@435 153
duke@435 154 //------------------------------check_phi_clipping-----------------------------
duke@435 155 // Helper function for RegionNode's identification of FP clipping
duke@435 156 // Check inputs to the Phi
duke@435 157 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
duke@435 158 min = NULL;
duke@435 159 max = NULL;
duke@435 160 val = NULL;
duke@435 161 min_idx = 0;
duke@435 162 max_idx = 0;
duke@435 163 val_idx = 0;
duke@435 164 uint phi_max = phi->req();
duke@435 165 if( phi_max == 4 ) {
duke@435 166 for( uint j = 1; j < phi_max; ++j ) {
duke@435 167 Node *n = phi->in(j);
duke@435 168 int opcode = n->Opcode();
duke@435 169 switch( opcode ) {
duke@435 170 case Op_ConI:
duke@435 171 {
duke@435 172 if( min == NULL ) {
duke@435 173 min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
duke@435 174 min_idx = j;
duke@435 175 } else {
duke@435 176 max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
duke@435 177 max_idx = j;
duke@435 178 if( min->get_int() > max->get_int() ) {
duke@435 179 // Swap min and max
duke@435 180 ConNode *temp;
duke@435 181 uint temp_idx;
duke@435 182 temp = min; min = max; max = temp;
duke@435 183 temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
duke@435 184 }
duke@435 185 }
duke@435 186 }
duke@435 187 break;
duke@435 188 default:
duke@435 189 {
duke@435 190 val = n;
duke@435 191 val_idx = j;
duke@435 192 }
duke@435 193 break;
duke@435 194 }
duke@435 195 }
duke@435 196 }
duke@435 197 return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
duke@435 198 }
duke@435 199
duke@435 200
duke@435 201 //------------------------------check_if_clipping------------------------------
duke@435 202 // Helper function for RegionNode's identification of FP clipping
duke@435 203 // Check that inputs to Region come from two IfNodes,
duke@435 204 //
duke@435 205 // If
duke@435 206 // False True
duke@435 207 // If |
duke@435 208 // False True |
duke@435 209 // | | |
duke@435 210 // RegionNode_inputs
duke@435 211 //
duke@435 212 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
duke@435 213 top_if = NULL;
duke@435 214 bot_if = NULL;
duke@435 215
duke@435 216 // Check control structure above RegionNode for (if ( if ) )
duke@435 217 Node *in1 = region->in(1);
duke@435 218 Node *in2 = region->in(2);
duke@435 219 Node *in3 = region->in(3);
duke@435 220 // Check that all inputs are projections
duke@435 221 if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
duke@435 222 Node *in10 = in1->in(0);
duke@435 223 Node *in20 = in2->in(0);
duke@435 224 Node *in30 = in3->in(0);
duke@435 225 // Check that #1 and #2 are ifTrue and ifFalse from same If
duke@435 226 if( in10 != NULL && in10->is_If() &&
duke@435 227 in20 != NULL && in20->is_If() &&
duke@435 228 in30 != NULL && in30->is_If() && in10 == in20 &&
duke@435 229 (in1->Opcode() != in2->Opcode()) ) {
duke@435 230 Node *in100 = in10->in(0);
duke@435 231 Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
duke@435 232 // Check that control for in10 comes from other branch of IF from in3
duke@435 233 if( in1000 != NULL && in1000->is_If() &&
duke@435 234 in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
duke@435 235 // Control pattern checks
duke@435 236 top_if = (IfNode*)in1000;
duke@435 237 bot_if = (IfNode*)in10;
duke@435 238 }
duke@435 239 }
duke@435 240 }
duke@435 241
duke@435 242 return (top_if != NULL);
duke@435 243 }
duke@435 244
duke@435 245
duke@435 246 //------------------------------check_convf2i_clipping-------------------------
duke@435 247 // Helper function for RegionNode's identification of FP clipping
duke@435 248 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
duke@435 249 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
duke@435 250 convf2i = NULL;
duke@435 251
duke@435 252 // Check for the RShiftNode
duke@435 253 Node *rshift = phi->in(idx);
duke@435 254 assert( rshift, "Previous checks ensure phi input is present");
duke@435 255 if( rshift->Opcode() != Op_RShiftI ) { return false; }
duke@435 256
duke@435 257 // Check for the LShiftNode
duke@435 258 Node *lshift = rshift->in(1);
duke@435 259 assert( lshift, "Previous checks ensure phi input is present");
duke@435 260 if( lshift->Opcode() != Op_LShiftI ) { return false; }
duke@435 261
duke@435 262 // Check for the ConvF2INode
duke@435 263 Node *conv = lshift->in(1);
duke@435 264 if( conv->Opcode() != Op_ConvF2I ) { return false; }
duke@435 265
duke@435 266 // Check that shift amounts are only to get sign bits set after F2I
duke@435 267 jint max_cutoff = max->get_int();
duke@435 268 jint min_cutoff = min->get_int();
duke@435 269 jint left_shift = lshift->in(2)->get_int();
duke@435 270 jint right_shift = rshift->in(2)->get_int();
duke@435 271 jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
duke@435 272 if( left_shift != right_shift ||
duke@435 273 0 > left_shift || left_shift >= BitsPerJavaInteger ||
duke@435 274 max_post_shift < max_cutoff ||
duke@435 275 max_post_shift < -min_cutoff ) {
duke@435 276 // Shifts are necessary but current transformation eliminates them
duke@435 277 return false;
duke@435 278 }
duke@435 279
duke@435 280 // OK to return the result of ConvF2I without shifting
duke@435 281 convf2i = (ConvF2INode*)conv;
duke@435 282 return true;
duke@435 283 }
duke@435 284
duke@435 285
duke@435 286 //------------------------------check_compare_clipping-------------------------
duke@435 287 // Helper function for RegionNode's identification of FP clipping
duke@435 288 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
duke@435 289 Node *i1 = iff->in(1);
duke@435 290 if ( !i1->is_Bool() ) { return false; }
duke@435 291 BoolNode *bool1 = i1->as_Bool();
duke@435 292 if( less_than && bool1->_test._test != BoolTest::le ) { return false; }
duke@435 293 else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
duke@435 294 const Node *cmpF = bool1->in(1);
duke@435 295 if( cmpF->Opcode() != Op_CmpF ) { return false; }
duke@435 296 // Test that the float value being compared against
duke@435 297 // is equivalent to the int value used as a limit
duke@435 298 Node *nodef = cmpF->in(2);
duke@435 299 if( nodef->Opcode() != Op_ConF ) { return false; }
duke@435 300 jfloat conf = nodef->getf();
duke@435 301 jint coni = limit->get_int();
duke@435 302 if( ((int)conf) != coni ) { return false; }
duke@435 303 input = cmpF->in(1);
duke@435 304 return true;
duke@435 305 }
duke@435 306
duke@435 307 //------------------------------is_unreachable_region--------------------------
duke@435 308 // Find if the Region node is reachable from the root.
duke@435 309 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
duke@435 310 assert(req() == 2, "");
duke@435 311
duke@435 312 // First, cut the simple case of fallthrough region when NONE of
duke@435 313 // region's phis references itself directly or through a data node.
duke@435 314 uint max = outcnt();
duke@435 315 uint i;
duke@435 316 for (i = 0; i < max; i++) {
duke@435 317 Node* phi = raw_out(i);
duke@435 318 if (phi != NULL && phi->is_Phi()) {
duke@435 319 assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
duke@435 320 if (phi->outcnt() == 0)
duke@435 321 continue; // Safe case - no loops
duke@435 322 if (phi->outcnt() == 1) {
duke@435 323 Node* u = phi->raw_out(0);
duke@435 324 // Skip if only one use is an other Phi or Call or Uncommon trap.
duke@435 325 // It is safe to consider this case as fallthrough.
duke@435 326 if (u != NULL && (u->is_Phi() || u->is_CFG()))
duke@435 327 continue;
duke@435 328 }
duke@435 329 // Check when phi references itself directly or through an other node.
duke@435 330 if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
duke@435 331 break; // Found possible unsafe data loop.
duke@435 332 }
duke@435 333 }
duke@435 334 if (i >= max)
duke@435 335 return false; // An unsafe case was NOT found - don't need graph walk.
duke@435 336
duke@435 337 // Unsafe case - check if the Region node is reachable from root.
duke@435 338 ResourceMark rm;
duke@435 339
duke@435 340 Arena *a = Thread::current()->resource_area();
duke@435 341 Node_List nstack(a);
duke@435 342 VectorSet visited(a);
duke@435 343
duke@435 344 // Mark all control nodes reachable from root outputs
duke@435 345 Node *n = (Node*)phase->C->root();
duke@435 346 nstack.push(n);
duke@435 347 visited.set(n->_idx);
duke@435 348 while (nstack.size() != 0) {
duke@435 349 n = nstack.pop();
duke@435 350 uint max = n->outcnt();
duke@435 351 for (uint i = 0; i < max; i++) {
duke@435 352 Node* m = n->raw_out(i);
duke@435 353 if (m != NULL && m->is_CFG()) {
duke@435 354 if (phase->eqv(m, this)) {
duke@435 355 return false; // We reached the Region node - it is not dead.
duke@435 356 }
duke@435 357 if (!visited.test_set(m->_idx))
duke@435 358 nstack.push(m);
duke@435 359 }
duke@435 360 }
duke@435 361 }
duke@435 362
duke@435 363 return true; // The Region node is unreachable - it is dead.
duke@435 364 }
duke@435 365
roland@4409 366 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
roland@4409 367 // Incremental inlining + PhaseStringOpts sometimes produce:
roland@4409 368 //
roland@4409 369 // cmpP with 1 top input
roland@4409 370 // |
roland@4409 371 // If
roland@4409 372 // / \
roland@4409 373 // IfFalse IfTrue /- Some Node
roland@4409 374 // \ / / /
roland@4409 375 // Region / /-MergeMem
roland@4409 376 // \---Phi
roland@4409 377 //
roland@4409 378 //
roland@4409 379 // It's expected by PhaseStringOpts that the Region goes away and is
roland@4409 380 // replaced by If's control input but because there's still a Phi,
roland@4409 381 // the Region stays in the graph. The top input from the cmpP is
roland@4409 382 // propagated forward and a subgraph that is useful goes away. The
roland@4409 383 // code below replaces the Phi with the MergeMem so that the Region
roland@4409 384 // is simplified.
roland@4409 385
roland@4409 386 PhiNode* phi = has_unique_phi();
roland@4409 387 if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
roland@4409 388 MergeMemNode* m = NULL;
roland@4409 389 assert(phi->req() == 3, "same as region");
roland@4409 390 for (uint i = 1; i < 3; ++i) {
roland@4409 391 Node *mem = phi->in(i);
roland@4409 392 if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
roland@4409 393 // Nothing is control-dependent on path #i except the region itself.
roland@4409 394 m = mem->as_MergeMem();
roland@4409 395 uint j = 3 - i;
roland@4409 396 Node* other = phi->in(j);
roland@4409 397 if (other && other == m->base_memory()) {
roland@4409 398 // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
roland@4409 399 // This will allow the diamond to collapse completely.
roland@4409 400 phase->is_IterGVN()->replace_node(phi, m);
roland@4409 401 return true;
roland@4409 402 }
roland@4409 403 }
roland@4409 404 }
roland@4409 405 }
roland@4409 406 return false;
roland@4409 407 }
roland@4409 408
duke@435 409 //------------------------------Ideal------------------------------------------
duke@435 410 // Return a node which is more "ideal" than the current node. Must preserve
duke@435 411 // the CFG, but we can still strip out dead paths.
duke@435 412 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 413 if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy
duke@435 414 assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
duke@435 415
duke@435 416 // Check for RegionNode with no Phi users and both inputs come from either
duke@435 417 // arm of the same IF. If found, then the control-flow split is useless.
duke@435 418 bool has_phis = false;
duke@435 419 if (can_reshape) { // Need DU info to check for Phi users
duke@435 420 has_phis = (has_phi() != NULL); // Cache result
roland@4409 421 if (has_phis && try_clean_mem_phi(phase)) {
roland@4409 422 has_phis = false;
roland@4409 423 }
roland@4409 424
duke@435 425 if (!has_phis) { // No Phi users? Nothing merging?
duke@435 426 for (uint i = 1; i < req()-1; i++) {
duke@435 427 Node *if1 = in(i);
duke@435 428 if( !if1 ) continue;
duke@435 429 Node *iff = if1->in(0);
duke@435 430 if( !iff || !iff->is_If() ) continue;
duke@435 431 for( uint j=i+1; j<req(); j++ ) {
duke@435 432 if( in(j) && in(j)->in(0) == iff &&
duke@435 433 if1->Opcode() != in(j)->Opcode() ) {
duke@435 434 // Add the IF Projections to the worklist. They (and the IF itself)
duke@435 435 // will be eliminated if dead.
duke@435 436 phase->is_IterGVN()->add_users_to_worklist(iff);
duke@435 437 set_req(i, iff->in(0));// Skip around the useless IF diamond
duke@435 438 set_req(j, NULL);
duke@435 439 return this; // Record progress
duke@435 440 }
duke@435 441 }
duke@435 442 }
duke@435 443 }
duke@435 444 }
duke@435 445
duke@435 446 // Remove TOP or NULL input paths. If only 1 input path remains, this Region
duke@435 447 // degrades to a copy.
duke@435 448 bool add_to_worklist = false;
duke@435 449 int cnt = 0; // Count of values merging
duke@435 450 DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
duke@435 451 int del_it = 0; // The last input path we delete
duke@435 452 // For all inputs...
duke@435 453 for( uint i=1; i<req(); ++i ){// For all paths in
duke@435 454 Node *n = in(i); // Get the input
duke@435 455 if( n != NULL ) {
duke@435 456 // Remove useless control copy inputs
duke@435 457 if( n->is_Region() && n->as_Region()->is_copy() ) {
duke@435 458 set_req(i, n->nonnull_req());
duke@435 459 i--;
duke@435 460 continue;
duke@435 461 }
duke@435 462 if( n->is_Proj() ) { // Remove useless rethrows
duke@435 463 Node *call = n->in(0);
duke@435 464 if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
duke@435 465 set_req(i, call->in(0));
duke@435 466 i--;
duke@435 467 continue;
duke@435 468 }
duke@435 469 }
duke@435 470 if( phase->type(n) == Type::TOP ) {
duke@435 471 set_req(i, NULL); // Ignore TOP inputs
duke@435 472 i--;
duke@435 473 continue;
duke@435 474 }
duke@435 475 cnt++; // One more value merging
duke@435 476
duke@435 477 } else if (can_reshape) { // Else found dead path with DU info
duke@435 478 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 479 del_req(i); // Yank path from self
duke@435 480 del_it = i;
duke@435 481 uint max = outcnt();
duke@435 482 DUIterator j;
duke@435 483 bool progress = true;
duke@435 484 while(progress) { // Need to establish property over all users
duke@435 485 progress = false;
duke@435 486 for (j = outs(); has_out(j); j++) {
duke@435 487 Node *n = out(j);
duke@435 488 if( n->req() != req() && n->is_Phi() ) {
duke@435 489 assert( n->in(0) == this, "" );
duke@435 490 igvn->hash_delete(n); // Yank from hash before hacking edges
duke@435 491 n->set_req_X(i,NULL,igvn);// Correct DU info
duke@435 492 n->del_req(i); // Yank path from Phis
duke@435 493 if( max != outcnt() ) {
duke@435 494 progress = true;
duke@435 495 j = refresh_out_pos(j);
duke@435 496 max = outcnt();
duke@435 497 }
duke@435 498 }
duke@435 499 }
duke@435 500 }
duke@435 501 add_to_worklist = true;
duke@435 502 i--;
duke@435 503 }
duke@435 504 }
duke@435 505
duke@435 506 if (can_reshape && cnt == 1) {
duke@435 507 // Is it dead loop?
duke@435 508 // If it is LoopNopde it had 2 (+1 itself) inputs and
duke@435 509 // one of them was cut. The loop is dead if it was EntryContol.
kvn@3309 510 // Loop node may have only one input because entry path
kvn@3309 511 // is removed in PhaseIdealLoop::Dominators().
kvn@3309 512 assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
kvn@3309 513 if (this->is_Loop() && (del_it == LoopNode::EntryControl ||
kvn@3309 514 del_it == 0 && is_unreachable_region(phase)) ||
duke@435 515 !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
duke@435 516 // Yes, the region will be removed during the next step below.
duke@435 517 // Cut the backedge input and remove phis since no data paths left.
duke@435 518 // We don't cut outputs to other nodes here since we need to put them
duke@435 519 // on the worklist.
duke@435 520 del_req(1);
duke@435 521 cnt = 0;
duke@435 522 assert( req() == 1, "no more inputs expected" );
duke@435 523 uint max = outcnt();
duke@435 524 bool progress = true;
duke@435 525 Node *top = phase->C->top();
duke@435 526 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 527 DUIterator j;
duke@435 528 while(progress) {
duke@435 529 progress = false;
duke@435 530 for (j = outs(); has_out(j); j++) {
duke@435 531 Node *n = out(j);
duke@435 532 if( n->is_Phi() ) {
duke@435 533 assert( igvn->eqv(n->in(0), this), "" );
duke@435 534 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
duke@435 535 // Break dead loop data path.
duke@435 536 // Eagerly replace phis with top to avoid phis copies generation.
kvn@1976 537 igvn->replace_node(n, top);
duke@435 538 if( max != outcnt() ) {
duke@435 539 progress = true;
duke@435 540 j = refresh_out_pos(j);
duke@435 541 max = outcnt();
duke@435 542 }
duke@435 543 }
duke@435 544 }
duke@435 545 }
duke@435 546 add_to_worklist = true;
duke@435 547 }
duke@435 548 }
duke@435 549 if (add_to_worklist) {
duke@435 550 phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
duke@435 551 }
duke@435 552
duke@435 553 if( cnt <= 1 ) { // Only 1 path in?
duke@435 554 set_req(0, NULL); // Null control input for region copy
duke@435 555 if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
duke@435 556 // No inputs or all inputs are NULL.
duke@435 557 return NULL;
duke@435 558 } else if (can_reshape) { // Optimization phase - remove the node
duke@435 559 PhaseIterGVN *igvn = phase->is_IterGVN();
duke@435 560 Node *parent_ctrl;
duke@435 561 if( cnt == 0 ) {
duke@435 562 assert( req() == 1, "no inputs expected" );
duke@435 563 // During IGVN phase such region will be subsumed by TOP node
duke@435 564 // so region's phis will have TOP as control node.
duke@435 565 // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
duke@435 566 // Also set other user's input to top.
duke@435 567 parent_ctrl = phase->C->top();
duke@435 568 } else {
duke@435 569 // The fallthrough case since we already checked dead loops above.
duke@435 570 parent_ctrl = in(1);
duke@435 571 assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
duke@435 572 assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
duke@435 573 }
duke@435 574 if (!add_to_worklist)
duke@435 575 igvn->add_users_to_worklist(this); // Check for further allowed opts
duke@435 576 for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
duke@435 577 Node* n = last_out(i);
duke@435 578 igvn->hash_delete(n); // Remove from worklist before modifying edges
duke@435 579 if( n->is_Phi() ) { // Collapse all Phis
duke@435 580 // Eagerly replace phis to avoid copies generation.
kvn@1976 581 Node* in;
duke@435 582 if( cnt == 0 ) {
duke@435 583 assert( n->req() == 1, "No data inputs expected" );
kvn@1976 584 in = parent_ctrl; // replaced by top
duke@435 585 } else {
duke@435 586 assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
kvn@1976 587 in = n->in(1); // replaced by unique input
kvn@1976 588 if( n->as_Phi()->is_unsafe_data_reference(in) )
kvn@1976 589 in = phase->C->top(); // replaced by top
duke@435 590 }
kvn@1976 591 igvn->replace_node(n, in);
duke@435 592 }
duke@435 593 else if( n->is_Region() ) { // Update all incoming edges
duke@435 594 assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
duke@435 595 uint uses_found = 0;
duke@435 596 for( uint k=1; k < n->req(); k++ ) {
duke@435 597 if( n->in(k) == this ) {
duke@435 598 n->set_req(k, parent_ctrl);
duke@435 599 uses_found++;
duke@435 600 }
duke@435 601 }
duke@435 602 if( uses_found > 1 ) { // (--i) done at the end of the loop.
duke@435 603 i -= (uses_found - 1);
duke@435 604 }
duke@435 605 }
duke@435 606 else {
duke@435 607 assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
duke@435 608 n->set_req(0, parent_ctrl);
duke@435 609 }
duke@435 610 #ifdef ASSERT
duke@435 611 for( uint k=0; k < n->req(); k++ ) {
duke@435 612 assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
duke@435 613 }
duke@435 614 #endif
duke@435 615 }
duke@435 616 // Remove the RegionNode itself from DefUse info
duke@435 617 igvn->remove_dead_node(this);
duke@435 618 return NULL;
duke@435 619 }
duke@435 620 return this; // Record progress
duke@435 621 }
duke@435 622
duke@435 623
duke@435 624 // If a Region flows into a Region, merge into one big happy merge.
duke@435 625 if (can_reshape) {
duke@435 626 Node *m = merge_region(this, phase);
duke@435 627 if (m != NULL) return m;
duke@435 628 }
duke@435 629
duke@435 630 // Check if this region is the root of a clipping idiom on floats
duke@435 631 if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
duke@435 632 // Check that only one use is a Phi and that it simplifies to two constants +
duke@435 633 PhiNode* phi = has_unique_phi();
duke@435 634 if (phi != NULL) { // One Phi user
duke@435 635 // Check inputs to the Phi
duke@435 636 ConNode *min;
duke@435 637 ConNode *max;
duke@435 638 Node *val;
duke@435 639 uint min_idx;
duke@435 640 uint max_idx;
duke@435 641 uint val_idx;
duke@435 642 if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) {
duke@435 643 IfNode *top_if;
duke@435 644 IfNode *bot_if;
duke@435 645 if( check_if_clipping( this, bot_if, top_if ) ) {
duke@435 646 // Control pattern checks, now verify compares
duke@435 647 Node *top_in = NULL; // value being compared against
duke@435 648 Node *bot_in = NULL;
duke@435 649 if( check_compare_clipping( true, bot_if, min, bot_in ) &&
duke@435 650 check_compare_clipping( false, top_if, max, top_in ) ) {
duke@435 651 if( bot_in == top_in ) {
duke@435 652 PhaseIterGVN *gvn = phase->is_IterGVN();
duke@435 653 assert( gvn != NULL, "Only had DefUse info in IterGVN");
duke@435 654 // Only remaining check is that bot_in == top_in == (Phi's val + mods)
duke@435 655
duke@435 656 // Check for the ConvF2INode
duke@435 657 ConvF2INode *convf2i;
duke@435 658 if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
duke@435 659 convf2i->in(1) == bot_in ) {
duke@435 660 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
duke@435 661 // max test
kvn@4115 662 Node *cmp = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, min ));
kvn@4115 663 Node *boo = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::lt ));
kvn@4115 664 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
kvn@4115 665 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff));
kvn@4115 666 Node *ifF = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff));
duke@435 667 // min test
kvn@4115 668 cmp = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, max ));
kvn@4115 669 boo = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::gt ));
kvn@4115 670 iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
kvn@4115 671 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff));
kvn@4115 672 ifF = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff));
duke@435 673 // update input edges to region node
duke@435 674 set_req_X( min_idx, if_min, gvn );
duke@435 675 set_req_X( max_idx, if_max, gvn );
duke@435 676 set_req_X( val_idx, ifF, gvn );
duke@435 677 // remove unnecessary 'LShiftI; RShiftI' idiom
duke@435 678 gvn->hash_delete(phi);
duke@435 679 phi->set_req_X( val_idx, convf2i, gvn );
duke@435 680 gvn->hash_find_insert(phi);
duke@435 681 // Return transformed region node
duke@435 682 return this;
duke@435 683 }
duke@435 684 }
duke@435 685 }
duke@435 686 }
duke@435 687 }
duke@435 688 }
duke@435 689 }
duke@435 690
duke@435 691 return NULL;
duke@435 692 }
duke@435 693
duke@435 694
duke@435 695
duke@435 696 const RegMask &RegionNode::out_RegMask() const {
duke@435 697 return RegMask::Empty;
duke@435 698 }
duke@435 699
duke@435 700 // Find the one non-null required input. RegionNode only
duke@435 701 Node *Node::nonnull_req() const {
duke@435 702 assert( is_Region(), "" );
duke@435 703 for( uint i = 1; i < _cnt; i++ )
duke@435 704 if( in(i) )
duke@435 705 return in(i);
duke@435 706 ShouldNotReachHere();
duke@435 707 return NULL;
duke@435 708 }
duke@435 709
duke@435 710
duke@435 711 //=============================================================================
duke@435 712 // note that these functions assume that the _adr_type field is flattened
duke@435 713 uint PhiNode::hash() const {
duke@435 714 const Type* at = _adr_type;
duke@435 715 return TypeNode::hash() + (at ? at->hash() : 0);
duke@435 716 }
duke@435 717 uint PhiNode::cmp( const Node &n ) const {
duke@435 718 return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
duke@435 719 }
duke@435 720 static inline
duke@435 721 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
duke@435 722 if (at == NULL || at == TypePtr::BOTTOM) return at;
duke@435 723 return Compile::current()->alias_type(at)->adr_type();
duke@435 724 }
duke@435 725
duke@435 726 //----------------------------make---------------------------------------------
duke@435 727 // create a new phi with edges matching r and set (initially) to x
duke@435 728 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
duke@435 729 uint preds = r->req(); // Number of predecessor paths
duke@435 730 assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
kvn@4115 731 PhiNode* p = new (Compile::current()) PhiNode(r, t, at);
duke@435 732 for (uint j = 1; j < preds; j++) {
duke@435 733 // Fill in all inputs, except those which the region does not yet have
duke@435 734 if (r->in(j) != NULL)
duke@435 735 p->init_req(j, x);
duke@435 736 }
duke@435 737 return p;
duke@435 738 }
duke@435 739 PhiNode* PhiNode::make(Node* r, Node* x) {
duke@435 740 const Type* t = x->bottom_type();
duke@435 741 const TypePtr* at = NULL;
duke@435 742 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
duke@435 743 return make(r, x, t, at);
duke@435 744 }
duke@435 745 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
duke@435 746 const Type* t = x->bottom_type();
duke@435 747 const TypePtr* at = NULL;
duke@435 748 if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
kvn@4115 749 return new (Compile::current()) PhiNode(r, t, at);
duke@435 750 }
duke@435 751
duke@435 752
duke@435 753 //------------------------slice_memory-----------------------------------------
duke@435 754 // create a new phi with narrowed memory type
duke@435 755 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
duke@435 756 PhiNode* mem = (PhiNode*) clone();
duke@435 757 *(const TypePtr**)&mem->_adr_type = adr_type;
duke@435 758 // convert self-loops, or else we get a bad graph
duke@435 759 for (uint i = 1; i < req(); i++) {
duke@435 760 if ((const Node*)in(i) == this) mem->set_req(i, mem);
duke@435 761 }
duke@435 762 mem->verify_adr_type();
duke@435 763 return mem;
duke@435 764 }
duke@435 765
kvn@509 766 //------------------------split_out_instance-----------------------------------
kvn@509 767 // Split out an instance type from a bottom phi.
kvn@509 768 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
kvn@598 769 const TypeOopPtr *t_oop = at->isa_oopptr();
kvn@658 770 assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
kvn@598 771 const TypePtr *t = adr_type();
kvn@598 772 assert(type() == Type::MEMORY &&
kvn@598 773 (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
kvn@658 774 t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
kvn@682 775 t->is_oopptr()->cast_to_exactness(true)
kvn@682 776 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
kvn@682 777 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
kvn@598 778 "bottom or raw memory required");
kvn@509 779
kvn@509 780 // Check if an appropriate node already exists.
kvn@509 781 Node *region = in(0);
kvn@509 782 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
kvn@509 783 Node* use = region->fast_out(k);
kvn@509 784 if( use->is_Phi()) {
kvn@509 785 PhiNode *phi2 = use->as_Phi();
kvn@509 786 if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
kvn@509 787 return phi2;
kvn@509 788 }
kvn@509 789 }
kvn@509 790 }
kvn@509 791 Compile *C = igvn->C;
kvn@509 792 Arena *a = Thread::current()->resource_area();
kvn@509 793 Node_Array node_map = new Node_Array(a);
kvn@509 794 Node_Stack stack(a, C->unique() >> 4);
kvn@509 795 PhiNode *nphi = slice_memory(at);
kvn@509 796 igvn->register_new_node_with_optimizer( nphi );
kvn@509 797 node_map.map(_idx, nphi);
kvn@509 798 stack.push((Node *)this, 1);
kvn@509 799 while(!stack.is_empty()) {
kvn@509 800 PhiNode *ophi = stack.node()->as_Phi();
kvn@509 801 uint i = stack.index();
kvn@509 802 assert(i >= 1, "not control edge");
kvn@509 803 stack.pop();
kvn@509 804 nphi = node_map[ophi->_idx]->as_Phi();
kvn@509 805 for (; i < ophi->req(); i++) {
kvn@509 806 Node *in = ophi->in(i);
kvn@509 807 if (in == NULL || igvn->type(in) == Type::TOP)
kvn@509 808 continue;
kvn@509 809 Node *opt = MemNode::optimize_simple_memory_chain(in, at, igvn);
kvn@509 810 PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
kvn@509 811 if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
kvn@509 812 opt = node_map[optphi->_idx];
kvn@509 813 if (opt == NULL) {
kvn@509 814 stack.push(ophi, i);
kvn@509 815 nphi = optphi->slice_memory(at);
kvn@509 816 igvn->register_new_node_with_optimizer( nphi );
kvn@509 817 node_map.map(optphi->_idx, nphi);
kvn@509 818 ophi = optphi;
kvn@509 819 i = 0; // will get incremented at top of loop
kvn@509 820 continue;
kvn@509 821 }
kvn@509 822 }
kvn@509 823 nphi->set_req(i, opt);
kvn@509 824 }
kvn@509 825 }
kvn@509 826 return nphi;
kvn@509 827 }
kvn@509 828
duke@435 829 //------------------------verify_adr_type--------------------------------------
duke@435 830 #ifdef ASSERT
duke@435 831 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
duke@435 832 if (visited.test_set(_idx)) return; //already visited
duke@435 833
duke@435 834 // recheck constructor invariants:
duke@435 835 verify_adr_type(false);
duke@435 836
duke@435 837 // recheck local phi/phi consistency:
duke@435 838 assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
duke@435 839 "adr_type must be consistent across phi nest");
duke@435 840
duke@435 841 // walk around
duke@435 842 for (uint i = 1; i < req(); i++) {
duke@435 843 Node* n = in(i);
duke@435 844 if (n == NULL) continue;
duke@435 845 const Node* np = in(i);
duke@435 846 if (np->is_Phi()) {
duke@435 847 np->as_Phi()->verify_adr_type(visited, at);
duke@435 848 } else if (n->bottom_type() == Type::TOP
duke@435 849 || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
duke@435 850 // ignore top inputs
duke@435 851 } else {
duke@435 852 const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
duke@435 853 // recheck phi/non-phi consistency at leaves:
duke@435 854 assert((nat != NULL) == (at != NULL), "");
duke@435 855 assert(nat == at || nat == TypePtr::BOTTOM,
duke@435 856 "adr_type must be consistent at leaves of phi nest");
duke@435 857 }
duke@435 858 }
duke@435 859 }
duke@435 860
duke@435 861 // Verify a whole nest of phis rooted at this one.
duke@435 862 void PhiNode::verify_adr_type(bool recursive) const {
duke@435 863 if (is_error_reported()) return; // muzzle asserts when debugging an error
duke@435 864 if (Node::in_dump()) return; // muzzle asserts when printing
duke@435 865
duke@435 866 assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
duke@435 867
duke@435 868 if (!VerifyAliases) return; // verify thoroughly only if requested
duke@435 869
duke@435 870 assert(_adr_type == flatten_phi_adr_type(_adr_type),
duke@435 871 "Phi::adr_type must be pre-normalized");
duke@435 872
duke@435 873 if (recursive) {
duke@435 874 VectorSet visited(Thread::current()->resource_area());
duke@435 875 verify_adr_type(visited, _adr_type);
duke@435 876 }
duke@435 877 }
duke@435 878 #endif
duke@435 879
duke@435 880
duke@435 881 //------------------------------Value------------------------------------------
duke@435 882 // Compute the type of the PhiNode
duke@435 883 const Type *PhiNode::Value( PhaseTransform *phase ) const {
duke@435 884 Node *r = in(0); // RegionNode
duke@435 885 if( !r ) // Copy or dead
duke@435 886 return in(1) ? phase->type(in(1)) : Type::TOP;
duke@435 887
duke@435 888 // Note: During parsing, phis are often transformed before their regions.
duke@435 889 // This means we have to use type_or_null to defend against untyped regions.
duke@435 890 if( phase->type_or_null(r) == Type::TOP ) // Dead code?
duke@435 891 return Type::TOP;
duke@435 892
duke@435 893 // Check for trip-counted loop. If so, be smarter.
duke@435 894 CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
duke@435 895 if( l && l->can_be_counted_loop(phase) &&
duke@435 896 ((const Node*)l->phi() == this) ) { // Trip counted loop!
duke@435 897 // protect against init_trip() or limit() returning NULL
duke@435 898 const Node *init = l->init_trip();
duke@435 899 const Node *limit = l->limit();
duke@435 900 if( init != NULL && limit != NULL && l->stride_is_con() ) {
duke@435 901 const TypeInt *lo = init ->bottom_type()->isa_int();
duke@435 902 const TypeInt *hi = limit->bottom_type()->isa_int();
duke@435 903 if( lo && hi ) { // Dying loops might have TOP here
duke@435 904 int stride = l->stride_con();
duke@435 905 if( stride < 0 ) { // Down-counter loop
duke@435 906 const TypeInt *tmp = lo; lo = hi; hi = tmp;
duke@435 907 stride = -stride;
duke@435 908 }
duke@435 909 if( lo->_hi < hi->_lo ) // Reversed endpoints are well defined :-(
duke@435 910 return TypeInt::make(lo->_lo,hi->_hi,3);
duke@435 911 }
duke@435 912 }
duke@435 913 }
duke@435 914
duke@435 915 // Until we have harmony between classes and interfaces in the type
duke@435 916 // lattice, we must tread carefully around phis which implicitly
duke@435 917 // convert the one to the other.
kvn@656 918 const TypePtr* ttp = _type->make_ptr();
kvn@656 919 const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
never@990 920 const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
duke@435 921 bool is_intf = false;
duke@435 922 if (ttip != NULL) {
duke@435 923 ciKlass* k = ttip->klass();
duke@435 924 if (k->is_loaded() && k->is_interface())
duke@435 925 is_intf = true;
duke@435 926 }
never@990 927 if (ttkp != NULL) {
never@990 928 ciKlass* k = ttkp->klass();
never@990 929 if (k->is_loaded() && k->is_interface())
never@990 930 is_intf = true;
never@990 931 }
duke@435 932
duke@435 933 // Default case: merge all inputs
duke@435 934 const Type *t = Type::TOP; // Merged type starting value
duke@435 935 for (uint i = 1; i < req(); ++i) {// For all paths in
duke@435 936 // Reachable control path?
duke@435 937 if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
duke@435 938 const Type* ti = phase->type(in(i));
duke@435 939 // We assume that each input of an interface-valued Phi is a true
duke@435 940 // subtype of that interface. This might not be true of the meet
duke@435 941 // of all the input types. The lattice is not distributive in
duke@435 942 // such cases. Ward off asserts in type.cpp by refusing to do
duke@435 943 // meets between interfaces and proper classes.
kvn@656 944 const TypePtr* tip = ti->make_ptr();
kvn@656 945 const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
duke@435 946 if (tiip) {
duke@435 947 bool ti_is_intf = false;
duke@435 948 ciKlass* k = tiip->klass();
duke@435 949 if (k->is_loaded() && k->is_interface())
duke@435 950 ti_is_intf = true;
duke@435 951 if (is_intf != ti_is_intf)
duke@435 952 { t = _type; break; }
duke@435 953 }
duke@435 954 t = t->meet(ti);
duke@435 955 }
duke@435 956 }
duke@435 957
duke@435 958 // The worst-case type (from ciTypeFlow) should be consistent with "t".
duke@435 959 // That is, we expect that "t->higher_equal(_type)" holds true.
duke@435 960 // There are various exceptions:
duke@435 961 // - Inputs which are phis might in fact be widened unnecessarily.
duke@435 962 // For example, an input might be a widened int while the phi is a short.
duke@435 963 // - Inputs might be BotPtrs but this phi is dependent on a null check,
duke@435 964 // and postCCP has removed the cast which encodes the result of the check.
duke@435 965 // - The type of this phi is an interface, and the inputs are classes.
duke@435 966 // - Value calls on inputs might produce fuzzy results.
duke@435 967 // (Occurrences of this case suggest improvements to Value methods.)
duke@435 968 //
duke@435 969 // It is not possible to see Type::BOTTOM values as phi inputs,
duke@435 970 // because the ciTypeFlow pre-pass produces verifier-quality types.
duke@435 971 const Type* ft = t->filter(_type); // Worst case type
duke@435 972
duke@435 973 #ifdef ASSERT
duke@435 974 // The following logic has been moved into TypeOopPtr::filter.
duke@435 975 const Type* jt = t->join(_type);
duke@435 976 if( jt->empty() ) { // Emptied out???
duke@435 977
duke@435 978 // Check for evil case of 't' being a class and '_type' expecting an
duke@435 979 // interface. This can happen because the bytecodes do not contain
duke@435 980 // enough type info to distinguish a Java-level interface variable
duke@435 981 // from a Java-level object variable. If we meet 2 classes which
duke@435 982 // both implement interface I, but their meet is at 'j/l/O' which
duke@435 983 // doesn't implement I, we have no way to tell if the result should
duke@435 984 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
duke@435 985 // into a Phi which "knows" it's an Interface type we'll have to
duke@435 986 // uplift the type.
duke@435 987 if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
duke@435 988 { assert(ft == _type, ""); } // Uplift to interface
never@990 989 else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
never@990 990 { assert(ft == _type, ""); } // Uplift to interface
duke@435 991 // Otherwise it's something stupid like non-overlapping int ranges
duke@435 992 // found on dying counted loops.
duke@435 993 else
duke@435 994 { assert(ft == Type::TOP, ""); } // Canonical empty value
duke@435 995 }
duke@435 996
duke@435 997 else {
duke@435 998
duke@435 999 // If we have an interface-typed Phi and we narrow to a class type, the join
duke@435 1000 // should report back the class. However, if we have a J/L/Object
duke@435 1001 // class-typed Phi and an interface flows in, it's possible that the meet &
duke@435 1002 // join report an interface back out. This isn't possible but happens
duke@435 1003 // because the type system doesn't interact well with interfaces.
kvn@656 1004 const TypePtr *jtp = jt->make_ptr();
kvn@656 1005 const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
never@990 1006 const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
duke@435 1007 if( jtip && ttip ) {
duke@435 1008 if( jtip->is_loaded() && jtip->klass()->is_interface() &&
coleenp@548 1009 ttip->is_loaded() && !ttip->klass()->is_interface() ) {
duke@435 1010 // Happens in a CTW of rt.jar, 320-341, no extra flags
coleenp@548 1011 assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
kvn@656 1012 ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
coleenp@548 1013 jt = ft;
coleenp@548 1014 }
duke@435 1015 }
never@990 1016 if( jtkp && ttkp ) {
never@990 1017 if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
kvn@1770 1018 !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
never@990 1019 ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
never@990 1020 assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
never@990 1021 ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
never@990 1022 jt = ft;
never@990 1023 }
never@990 1024 }
duke@435 1025 if (jt != ft && jt->base() == ft->base()) {
duke@435 1026 if (jt->isa_int() &&
duke@435 1027 jt->is_int()->_lo == ft->is_int()->_lo &&
duke@435 1028 jt->is_int()->_hi == ft->is_int()->_hi)
duke@435 1029 jt = ft;
duke@435 1030 if (jt->isa_long() &&
duke@435 1031 jt->is_long()->_lo == ft->is_long()->_lo &&
duke@435 1032 jt->is_long()->_hi == ft->is_long()->_hi)
duke@435 1033 jt = ft;
duke@435 1034 }
duke@435 1035 if (jt != ft) {
duke@435 1036 tty->print("merge type: "); t->dump(); tty->cr();
duke@435 1037 tty->print("kill type: "); _type->dump(); tty->cr();
duke@435 1038 tty->print("join type: "); jt->dump(); tty->cr();
duke@435 1039 tty->print("filter type: "); ft->dump(); tty->cr();
duke@435 1040 }
duke@435 1041 assert(jt == ft, "");
duke@435 1042 }
duke@435 1043 #endif //ASSERT
duke@435 1044
duke@435 1045 // Deal with conversion problems found in data loops.
duke@435 1046 ft = phase->saturate(ft, phase->type_or_null(this), _type);
duke@435 1047
duke@435 1048 return ft;
duke@435 1049 }
duke@435 1050
duke@435 1051
duke@435 1052 //------------------------------is_diamond_phi---------------------------------
duke@435 1053 // Does this Phi represent a simple well-shaped diamond merge? Return the
duke@435 1054 // index of the true path or 0 otherwise.
roland@4409 1055 // If check_control_only is true, do not inspect the If node at the
roland@4409 1056 // top, and return -1 (not an edge number) on success.
roland@4409 1057 int PhiNode::is_diamond_phi(bool check_control_only) const {
duke@435 1058 // Check for a 2-path merge
duke@435 1059 Node *region = in(0);
duke@435 1060 if( !region ) return 0;
duke@435 1061 if( region->req() != 3 ) return 0;
duke@435 1062 if( req() != 3 ) return 0;
duke@435 1063 // Check that both paths come from the same If
duke@435 1064 Node *ifp1 = region->in(1);
duke@435 1065 Node *ifp2 = region->in(2);
duke@435 1066 if( !ifp1 || !ifp2 ) return 0;
duke@435 1067 Node *iff = ifp1->in(0);
duke@435 1068 if( !iff || !iff->is_If() ) return 0;
duke@435 1069 if( iff != ifp2->in(0) ) return 0;
roland@4409 1070 if (check_control_only) return -1;
duke@435 1071 // Check for a proper bool/cmp
duke@435 1072 const Node *b = iff->in(1);
duke@435 1073 if( !b->is_Bool() ) return 0;
duke@435 1074 const Node *cmp = b->in(1);
duke@435 1075 if( !cmp->is_Cmp() ) return 0;
duke@435 1076
duke@435 1077 // Check for branching opposite expected
duke@435 1078 if( ifp2->Opcode() == Op_IfTrue ) {
duke@435 1079 assert( ifp1->Opcode() == Op_IfFalse, "" );
duke@435 1080 return 2;
duke@435 1081 } else {
duke@435 1082 assert( ifp1->Opcode() == Op_IfTrue, "" );
duke@435 1083 return 1;
duke@435 1084 }
duke@435 1085 }
duke@435 1086
duke@435 1087 //----------------------------check_cmove_id-----------------------------------
duke@435 1088 // Check for CMove'ing a constant after comparing against the constant.
duke@435 1089 // Happens all the time now, since if we compare equality vs a constant in
duke@435 1090 // the parser, we "know" the variable is constant on one path and we force
duke@435 1091 // it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
duke@435 1092 // conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
duke@435 1093 // general in that we don't need constants. Since CMove's are only inserted
duke@435 1094 // in very special circumstances, we do it here on generic Phi's.
duke@435 1095 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
duke@435 1096 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1097
duke@435 1098 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1099 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1100 Node* region = in(0);
duke@435 1101 Node* iff = region->in(1)->in(0);
duke@435 1102 BoolNode* b = iff->in(1)->as_Bool();
duke@435 1103 Node* cmp = b->in(1);
duke@435 1104 Node* tval = in(true_path);
duke@435 1105 Node* fval = in(3-true_path);
duke@435 1106 Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
duke@435 1107 if (id == NULL)
duke@435 1108 return NULL;
duke@435 1109
duke@435 1110 // Either value might be a cast that depends on a branch of 'iff'.
duke@435 1111 // Since the 'id' value will float free of the diamond, either
duke@435 1112 // decast or return failure.
duke@435 1113 Node* ctl = id->in(0);
duke@435 1114 if (ctl != NULL && ctl->in(0) == iff) {
duke@435 1115 if (id->is_ConstraintCast()) {
duke@435 1116 return id->in(1);
duke@435 1117 } else {
duke@435 1118 // Don't know how to disentangle this value.
duke@435 1119 return NULL;
duke@435 1120 }
duke@435 1121 }
duke@435 1122
duke@435 1123 return id;
duke@435 1124 }
duke@435 1125
duke@435 1126 //------------------------------Identity---------------------------------------
duke@435 1127 // Check for Region being Identity.
duke@435 1128 Node *PhiNode::Identity( PhaseTransform *phase ) {
duke@435 1129 // Check for no merging going on
duke@435 1130 // (There used to be special-case code here when this->region->is_Loop.
duke@435 1131 // It would check for a tributary phi on the backedge that the main phi
duke@435 1132 // trivially, perhaps with a single cast. The unique_input method
duke@435 1133 // does all this and more, by reducing such tributaries to 'this'.)
duke@435 1134 Node* uin = unique_input(phase);
duke@435 1135 if (uin != NULL) {
duke@435 1136 return uin;
duke@435 1137 }
duke@435 1138
duke@435 1139 int true_path = is_diamond_phi();
duke@435 1140 if (true_path != 0) {
duke@435 1141 Node* id = is_cmove_id(phase, true_path);
duke@435 1142 if (id != NULL) return id;
duke@435 1143 }
duke@435 1144
duke@435 1145 return this; // No identity
duke@435 1146 }
duke@435 1147
duke@435 1148 //-----------------------------unique_input------------------------------------
duke@435 1149 // Find the unique value, discounting top, self-loops, and casts.
duke@435 1150 // Return top if there are no inputs, and self if there are multiple.
duke@435 1151 Node* PhiNode::unique_input(PhaseTransform* phase) {
duke@435 1152 // 1) One unique direct input, or
duke@435 1153 // 2) some of the inputs have an intervening ConstraintCast and
duke@435 1154 // the type of input is the same or sharper (more specific)
duke@435 1155 // than the phi's type.
duke@435 1156 // 3) an input is a self loop
duke@435 1157 //
duke@435 1158 // 1) input or 2) input or 3) input __
duke@435 1159 // / \ / \ \ / \
duke@435 1160 // \ / | cast phi cast
duke@435 1161 // phi \ / / \ /
duke@435 1162 // phi / --
duke@435 1163
duke@435 1164 Node* r = in(0); // RegionNode
duke@435 1165 if (r == NULL) return in(1); // Already degraded to a Copy
duke@435 1166 Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
duke@435 1167 Node* direct_input = NULL; // The unique direct input
duke@435 1168
duke@435 1169 for (uint i = 1, cnt = req(); i < cnt; ++i) {
duke@435 1170 Node* rc = r->in(i);
duke@435 1171 if (rc == NULL || phase->type(rc) == Type::TOP)
duke@435 1172 continue; // ignore unreachable control path
duke@435 1173 Node* n = in(i);
kvn@682 1174 if (n == NULL)
kvn@682 1175 continue;
duke@435 1176 Node* un = n->uncast();
duke@435 1177 if (un == NULL || un == this || phase->type(un) == Type::TOP) {
duke@435 1178 continue; // ignore if top, or in(i) and "this" are in a data cycle
duke@435 1179 }
duke@435 1180 // Check for a unique uncasted input
duke@435 1181 if (uncasted_input == NULL) {
duke@435 1182 uncasted_input = un;
duke@435 1183 } else if (uncasted_input != un) {
duke@435 1184 uncasted_input = NodeSentinel; // no unique uncasted input
duke@435 1185 }
duke@435 1186 // Check for a unique direct input
duke@435 1187 if (direct_input == NULL) {
duke@435 1188 direct_input = n;
duke@435 1189 } else if (direct_input != n) {
duke@435 1190 direct_input = NodeSentinel; // no unique direct input
duke@435 1191 }
duke@435 1192 }
duke@435 1193 if (direct_input == NULL) {
duke@435 1194 return phase->C->top(); // no inputs
duke@435 1195 }
duke@435 1196 assert(uncasted_input != NULL,"");
duke@435 1197
duke@435 1198 if (direct_input != NodeSentinel) {
duke@435 1199 return direct_input; // one unique direct input
duke@435 1200 }
duke@435 1201 if (uncasted_input != NodeSentinel &&
duke@435 1202 phase->type(uncasted_input)->higher_equal(type())) {
duke@435 1203 return uncasted_input; // one unique uncasted input
duke@435 1204 }
duke@435 1205
duke@435 1206 // Nothing.
duke@435 1207 return NULL;
duke@435 1208 }
duke@435 1209
duke@435 1210 //------------------------------is_x2logic-------------------------------------
duke@435 1211 // Check for simple convert-to-boolean pattern
duke@435 1212 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
duke@435 1213 // Convert Phi to an ConvIB.
duke@435 1214 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
duke@435 1215 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1216 // Convert the true/false index into an expected 0/1 return.
duke@435 1217 // Map 2->0 and 1->1.
duke@435 1218 int flipped = 2-true_path;
duke@435 1219
duke@435 1220 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1221 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1222 Node *region = phi->in(0);
duke@435 1223 Node *iff = region->in(1)->in(0);
duke@435 1224 BoolNode *b = (BoolNode*)iff->in(1);
duke@435 1225 const CmpNode *cmp = (CmpNode*)b->in(1);
duke@435 1226
duke@435 1227 Node *zero = phi->in(1);
duke@435 1228 Node *one = phi->in(2);
duke@435 1229 const Type *tzero = phase->type( zero );
duke@435 1230 const Type *tone = phase->type( one );
duke@435 1231
duke@435 1232 // Check for compare vs 0
duke@435 1233 const Type *tcmp = phase->type(cmp->in(2));
duke@435 1234 if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
duke@435 1235 // Allow cmp-vs-1 if the other input is bounded by 0-1
duke@435 1236 if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
duke@435 1237 return NULL;
duke@435 1238 flipped = 1-flipped; // Test is vs 1 instead of 0!
duke@435 1239 }
duke@435 1240
duke@435 1241 // Check for setting zero/one opposite expected
duke@435 1242 if( tzero == TypeInt::ZERO ) {
duke@435 1243 if( tone == TypeInt::ONE ) {
duke@435 1244 } else return NULL;
duke@435 1245 } else if( tzero == TypeInt::ONE ) {
duke@435 1246 if( tone == TypeInt::ZERO ) {
duke@435 1247 flipped = 1-flipped;
duke@435 1248 } else return NULL;
duke@435 1249 } else return NULL;
duke@435 1250
duke@435 1251 // Check for boolean test backwards
duke@435 1252 if( b->_test._test == BoolTest::ne ) {
duke@435 1253 } else if( b->_test._test == BoolTest::eq ) {
duke@435 1254 flipped = 1-flipped;
duke@435 1255 } else return NULL;
duke@435 1256
duke@435 1257 // Build int->bool conversion
kvn@4115 1258 Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
duke@435 1259 if( flipped )
kvn@4115 1260 n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
duke@435 1261
duke@435 1262 return n;
duke@435 1263 }
duke@435 1264
duke@435 1265 //------------------------------is_cond_add------------------------------------
duke@435 1266 // Check for simple conditional add pattern: "(P < Q) ? X+Y : X;"
duke@435 1267 // To be profitable the control flow has to disappear; there can be no other
duke@435 1268 // values merging here. We replace the test-and-branch with:
duke@435 1269 // "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by
duke@435 1270 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
duke@435 1271 // Then convert Y to 0-or-Y and finally add.
duke@435 1272 // This is a key transform for SpecJava _201_compress.
duke@435 1273 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
duke@435 1274 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1275
duke@435 1276 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1277 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1278 RegionNode *region = (RegionNode*)phi->in(0);
duke@435 1279 Node *iff = region->in(1)->in(0);
duke@435 1280 BoolNode* b = iff->in(1)->as_Bool();
duke@435 1281 const CmpNode *cmp = (CmpNode*)b->in(1);
duke@435 1282
duke@435 1283 // Make sure only merging this one phi here
duke@435 1284 if (region->has_unique_phi() != phi) return NULL;
duke@435 1285
duke@435 1286 // Make sure each arm of the diamond has exactly one output, which we assume
duke@435 1287 // is the region. Otherwise, the control flow won't disappear.
duke@435 1288 if (region->in(1)->outcnt() != 1) return NULL;
duke@435 1289 if (region->in(2)->outcnt() != 1) return NULL;
duke@435 1290
duke@435 1291 // Check for "(P < Q)" of type signed int
duke@435 1292 if (b->_test._test != BoolTest::lt) return NULL;
duke@435 1293 if (cmp->Opcode() != Op_CmpI) return NULL;
duke@435 1294
duke@435 1295 Node *p = cmp->in(1);
duke@435 1296 Node *q = cmp->in(2);
duke@435 1297 Node *n1 = phi->in( true_path);
duke@435 1298 Node *n2 = phi->in(3-true_path);
duke@435 1299
duke@435 1300 int op = n1->Opcode();
duke@435 1301 if( op != Op_AddI // Need zero as additive identity
duke@435 1302 /*&&op != Op_SubI &&
duke@435 1303 op != Op_AddP &&
duke@435 1304 op != Op_XorI &&
duke@435 1305 op != Op_OrI*/ )
duke@435 1306 return NULL;
duke@435 1307
duke@435 1308 Node *x = n2;
drchase@4944 1309 Node *y = NULL;
drchase@4944 1310 if( x == n1->in(1) ) {
duke@435 1311 y = n1->in(2);
drchase@4944 1312 } else if( x == n1->in(2) ) {
drchase@4944 1313 y = n1->in(1);
duke@435 1314 } else return NULL;
duke@435 1315
duke@435 1316 // Not so profitable if compare and add are constants
duke@435 1317 if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
duke@435 1318 return NULL;
duke@435 1319
kvn@4115 1320 Node *cmplt = phase->transform( new (phase->C) CmpLTMaskNode(p,q) );
kvn@4115 1321 Node *j_and = phase->transform( new (phase->C) AndINode(cmplt,y) );
kvn@4115 1322 return new (phase->C) AddINode(j_and,x);
duke@435 1323 }
duke@435 1324
duke@435 1325 //------------------------------is_absolute------------------------------------
duke@435 1326 // Check for absolute value.
duke@435 1327 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
duke@435 1328 assert(true_path !=0, "only diamond shape graph expected");
duke@435 1329
duke@435 1330 int cmp_zero_idx = 0; // Index of compare input where to look for zero
duke@435 1331 int phi_x_idx = 0; // Index of phi input where to find naked x
duke@435 1332
duke@435 1333 // ABS ends with the merge of 2 control flow paths.
duke@435 1334 // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
duke@435 1335 int false_path = 3 - true_path;
duke@435 1336
duke@435 1337 // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
duke@435 1338 // phi->region->if_proj->ifnode->bool->cmp
duke@435 1339 BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
duke@435 1340
duke@435 1341 // Check bool sense
duke@435 1342 switch( bol->_test._test ) {
duke@435 1343 case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break;
duke@435 1344 case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
duke@435 1345 case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break;
duke@435 1346 case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
duke@435 1347 default: return NULL; break;
duke@435 1348 }
duke@435 1349
duke@435 1350 // Test is next
duke@435 1351 Node *cmp = bol->in(1);
duke@435 1352 const Type *tzero = NULL;
duke@435 1353 switch( cmp->Opcode() ) {
duke@435 1354 case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS
duke@435 1355 case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS
duke@435 1356 default: return NULL;
duke@435 1357 }
duke@435 1358
duke@435 1359 // Find zero input of compare; the other input is being abs'd
duke@435 1360 Node *x = NULL;
duke@435 1361 bool flip = false;
duke@435 1362 if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
duke@435 1363 x = cmp->in(3 - cmp_zero_idx);
duke@435 1364 } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
duke@435 1365 // The test is inverted, we should invert the result...
duke@435 1366 x = cmp->in(cmp_zero_idx);
duke@435 1367 flip = true;
duke@435 1368 } else {
duke@435 1369 return NULL;
duke@435 1370 }
duke@435 1371
duke@435 1372 // Next get the 2 pieces being selected, one is the original value
duke@435 1373 // and the other is the negated value.
duke@435 1374 if( phi_root->in(phi_x_idx) != x ) return NULL;
duke@435 1375
duke@435 1376 // Check other phi input for subtract node
duke@435 1377 Node *sub = phi_root->in(3 - phi_x_idx);
duke@435 1378
duke@435 1379 // Allow only Sub(0,X) and fail out for all others; Neg is not OK
duke@435 1380 if( tzero == TypeF::ZERO ) {
duke@435 1381 if( sub->Opcode() != Op_SubF ||
duke@435 1382 sub->in(2) != x ||
duke@435 1383 phase->type(sub->in(1)) != tzero ) return NULL;
kvn@4115 1384 x = new (phase->C) AbsFNode(x);
duke@435 1385 if (flip) {
kvn@4115 1386 x = new (phase->C) SubFNode(sub->in(1), phase->transform(x));
duke@435 1387 }
duke@435 1388 } else {
duke@435 1389 if( sub->Opcode() != Op_SubD ||
duke@435 1390 sub->in(2) != x ||
duke@435 1391 phase->type(sub->in(1)) != tzero ) return NULL;
kvn@4115 1392 x = new (phase->C) AbsDNode(x);
duke@435 1393 if (flip) {
kvn@4115 1394 x = new (phase->C) SubDNode(sub->in(1), phase->transform(x));
duke@435 1395 }
duke@435 1396 }
duke@435 1397
duke@435 1398 return x;
duke@435 1399 }
duke@435 1400
duke@435 1401 //------------------------------split_once-------------------------------------
duke@435 1402 // Helper for split_flow_path
duke@435 1403 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
duke@435 1404 igvn->hash_delete(n); // Remove from hash before hacking edges
duke@435 1405
duke@435 1406 uint j = 1;
kvn@2727 1407 for (uint i = phi->req()-1; i > 0; i--) {
kvn@2727 1408 if (phi->in(i) == val) { // Found a path with val?
duke@435 1409 // Add to NEW Region/Phi, no DU info
duke@435 1410 newn->set_req( j++, n->in(i) );
duke@435 1411 // Remove from OLD Region/Phi
duke@435 1412 n->del_req(i);
duke@435 1413 }
duke@435 1414 }
duke@435 1415
duke@435 1416 // Register the new node but do not transform it. Cannot transform until the
twisti@1040 1417 // entire Region/Phi conglomerate has been hacked as a single huge transform.
duke@435 1418 igvn->register_new_node_with_optimizer( newn );
kvn@2727 1419
duke@435 1420 // Now I can point to the new node.
duke@435 1421 n->add_req(newn);
duke@435 1422 igvn->_worklist.push(n);
duke@435 1423 }
duke@435 1424
duke@435 1425 //------------------------------split_flow_path--------------------------------
duke@435 1426 // Check for merging identical values and split flow paths
duke@435 1427 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
duke@435 1428 BasicType bt = phi->type()->basic_type();
duke@435 1429 if( bt == T_ILLEGAL || type2size[bt] <= 0 )
duke@435 1430 return NULL; // Bail out on funny non-value stuff
duke@435 1431 if( phi->req() <= 3 ) // Need at least 2 matched inputs and a
duke@435 1432 return NULL; // third unequal input to be worth doing
duke@435 1433
duke@435 1434 // Scan for a constant
duke@435 1435 uint i;
duke@435 1436 for( i = 1; i < phi->req()-1; i++ ) {
duke@435 1437 Node *n = phi->in(i);
duke@435 1438 if( !n ) return NULL;
duke@435 1439 if( phase->type(n) == Type::TOP ) return NULL;
roland@4159 1440 if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
duke@435 1441 break;
duke@435 1442 }
duke@435 1443 if( i >= phi->req() ) // Only split for constants
duke@435 1444 return NULL;
duke@435 1445
duke@435 1446 Node *val = phi->in(i); // Constant to split for
duke@435 1447 uint hit = 0; // Number of times it occurs
kvn@3043 1448 Node *r = phi->region();
duke@435 1449
twisti@1040 1450 for( ; i < phi->req(); i++ ){ // Count occurrences of constant
duke@435 1451 Node *n = phi->in(i);
duke@435 1452 if( !n ) return NULL;
duke@435 1453 if( phase->type(n) == Type::TOP ) return NULL;
kvn@3043 1454 if( phi->in(i) == val ) {
duke@435 1455 hit++;
kvn@3043 1456 if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
kvn@3043 1457 return NULL; // don't split loop entry path
kvn@3043 1458 }
kvn@3043 1459 }
duke@435 1460 }
duke@435 1461
duke@435 1462 if( hit <= 1 || // Make sure we find 2 or more
duke@435 1463 hit == phi->req()-1 ) // and not ALL the same value
duke@435 1464 return NULL;
duke@435 1465
duke@435 1466 // Now start splitting out the flow paths that merge the same value.
duke@435 1467 // Split first the RegionNode.
duke@435 1468 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@4115 1469 RegionNode *newr = new (phase->C) RegionNode(hit+1);
duke@435 1470 split_once(igvn, phi, val, r, newr);
duke@435 1471
duke@435 1472 // Now split all other Phis than this one
duke@435 1473 for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
duke@435 1474 Node* phi2 = r->fast_out(k);
duke@435 1475 if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
duke@435 1476 PhiNode *newphi = PhiNode::make_blank(newr, phi2);
duke@435 1477 split_once(igvn, phi, val, phi2, newphi);
duke@435 1478 }
duke@435 1479 }
duke@435 1480
duke@435 1481 // Clean up this guy
duke@435 1482 igvn->hash_delete(phi);
duke@435 1483 for( i = phi->req()-1; i > 0; i-- ) {
duke@435 1484 if( phi->in(i) == val ) {
duke@435 1485 phi->del_req(i);
duke@435 1486 }
duke@435 1487 }
duke@435 1488 phi->add_req(val);
duke@435 1489
duke@435 1490 return phi;
duke@435 1491 }
duke@435 1492
duke@435 1493 //=============================================================================
duke@435 1494 //------------------------------simple_data_loop_check-------------------------
twisti@1040 1495 // Try to determining if the phi node in a simple safe/unsafe data loop.
duke@435 1496 // Returns:
duke@435 1497 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
duke@435 1498 // Safe - safe case when the phi and it's inputs reference only safe data
duke@435 1499 // nodes;
duke@435 1500 // Unsafe - the phi and it's inputs reference unsafe data nodes but there
duke@435 1501 // is no reference back to the phi - need a graph walk
duke@435 1502 // to determine if it is in a loop;
duke@435 1503 // UnsafeLoop - unsafe case when the phi references itself directly or through
duke@435 1504 // unsafe data node.
duke@435 1505 // Note: a safe data node is a node which could/never reference itself during
duke@435 1506 // GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
duke@435 1507 // I mark Phi nodes as safe node not only because they can reference itself
duke@435 1508 // but also to prevent mistaking the fallthrough case inside an outer loop
duke@435 1509 // as dead loop when the phi references itselfs through an other phi.
duke@435 1510 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
duke@435 1511 // It is unsafe loop if the phi node references itself directly.
duke@435 1512 if (in == (Node*)this)
duke@435 1513 return UnsafeLoop; // Unsafe loop
duke@435 1514 // Unsafe loop if the phi node references itself through an unsafe data node.
duke@435 1515 // Exclude cases with null inputs or data nodes which could reference
duke@435 1516 // itself (safe for dead loops).
duke@435 1517 if (in != NULL && !in->is_dead_loop_safe()) {
duke@435 1518 // Check inputs of phi's inputs also.
duke@435 1519 // It is much less expensive then full graph walk.
duke@435 1520 uint cnt = in->req();
kvn@561 1521 uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1;
kvn@561 1522 for (; i < cnt; ++i) {
duke@435 1523 Node* m = in->in(i);
duke@435 1524 if (m == (Node*)this)
duke@435 1525 return UnsafeLoop; // Unsafe loop
duke@435 1526 if (m != NULL && !m->is_dead_loop_safe()) {
duke@435 1527 // Check the most common case (about 30% of all cases):
duke@435 1528 // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
duke@435 1529 Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
duke@435 1530 if (m1 == (Node*)this)
duke@435 1531 return UnsafeLoop; // Unsafe loop
duke@435 1532 if (m1 != NULL && m1 == m->in(2) &&
duke@435 1533 m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
duke@435 1534 continue; // Safe case
duke@435 1535 }
duke@435 1536 // The phi references an unsafe node - need full analysis.
duke@435 1537 return Unsafe;
duke@435 1538 }
duke@435 1539 }
duke@435 1540 }
duke@435 1541 return Safe; // Safe case - we can optimize the phi node.
duke@435 1542 }
duke@435 1543
duke@435 1544 //------------------------------is_unsafe_data_reference-----------------------
duke@435 1545 // If phi can be reached through the data input - it is data loop.
duke@435 1546 bool PhiNode::is_unsafe_data_reference(Node *in) const {
duke@435 1547 assert(req() > 1, "");
duke@435 1548 // First, check simple cases when phi references itself directly or
duke@435 1549 // through an other node.
duke@435 1550 LoopSafety safety = simple_data_loop_check(in);
duke@435 1551 if (safety == UnsafeLoop)
duke@435 1552 return true; // phi references itself - unsafe loop
duke@435 1553 else if (safety == Safe)
duke@435 1554 return false; // Safe case - phi could be replaced with the unique input.
duke@435 1555
duke@435 1556 // Unsafe case when we should go through data graph to determine
duke@435 1557 // if the phi references itself.
duke@435 1558
duke@435 1559 ResourceMark rm;
duke@435 1560
duke@435 1561 Arena *a = Thread::current()->resource_area();
duke@435 1562 Node_List nstack(a);
duke@435 1563 VectorSet visited(a);
duke@435 1564
duke@435 1565 nstack.push(in); // Start with unique input.
duke@435 1566 visited.set(in->_idx);
duke@435 1567 while (nstack.size() != 0) {
duke@435 1568 Node* n = nstack.pop();
duke@435 1569 uint cnt = n->req();
kvn@561 1570 uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
kvn@561 1571 for (; i < cnt; i++) {
duke@435 1572 Node* m = n->in(i);
duke@435 1573 if (m == (Node*)this) {
duke@435 1574 return true; // Data loop
duke@435 1575 }
duke@435 1576 if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
duke@435 1577 if (!visited.test_set(m->_idx))
duke@435 1578 nstack.push(m);
duke@435 1579 }
duke@435 1580 }
duke@435 1581 }
duke@435 1582 return false; // The phi is not reachable from its inputs
duke@435 1583 }
duke@435 1584
duke@435 1585
duke@435 1586 //------------------------------Ideal------------------------------------------
duke@435 1587 // Return a node which is more "ideal" than the current node. Must preserve
duke@435 1588 // the CFG, but we can still strip out dead paths.
duke@435 1589 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 1590 // The next should never happen after 6297035 fix.
duke@435 1591 if( is_copy() ) // Already degraded to a Copy ?
duke@435 1592 return NULL; // No change
duke@435 1593
duke@435 1594 Node *r = in(0); // RegionNode
duke@435 1595 assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
duke@435 1596
duke@435 1597 // Note: During parsing, phis are often transformed before their regions.
duke@435 1598 // This means we have to use type_or_null to defend against untyped regions.
duke@435 1599 if( phase->type_or_null(r) == Type::TOP ) // Dead code?
duke@435 1600 return NULL; // No change
duke@435 1601
duke@435 1602 Node *top = phase->C->top();
kvn@1448 1603 bool new_phi = (outcnt() == 0); // transforming new Phi
kvn@2930 1604 // No change for igvn if new phi is not hooked
kvn@2930 1605 if (new_phi && can_reshape)
kvn@2930 1606 return NULL;
duke@435 1607
duke@435 1608 // The are 2 situations when only one valid phi's input is left
duke@435 1609 // (in addition to Region input).
duke@435 1610 // One: region is not loop - replace phi with this input.
duke@435 1611 // Two: region is loop - replace phi with top since this data path is dead
duke@435 1612 // and we need to break the dead data loop.
duke@435 1613 Node* progress = NULL; // Record if any progress made
duke@435 1614 for( uint j = 1; j < req(); ++j ){ // For all paths in
duke@435 1615 // Check unreachable control paths
duke@435 1616 Node* rc = r->in(j);
duke@435 1617 Node* n = in(j); // Get the input
duke@435 1618 if (rc == NULL || phase->type(rc) == Type::TOP) {
duke@435 1619 if (n != top) { // Not already top?
roland@4357 1620 PhaseIterGVN *igvn = phase->is_IterGVN();
roland@4357 1621 if (can_reshape && igvn != NULL) {
roland@4357 1622 igvn->_worklist.push(r);
roland@4357 1623 }
duke@435 1624 set_req(j, top); // Nuke it down
duke@435 1625 progress = this; // Record progress
duke@435 1626 }
duke@435 1627 }
duke@435 1628 }
duke@435 1629
kvn@1448 1630 if (can_reshape && outcnt() == 0) {
kvn@1448 1631 // set_req() above may kill outputs if Phi is referenced
kvn@1448 1632 // only by itself on the dead (top) control path.
kvn@1448 1633 return top;
kvn@1448 1634 }
kvn@1448 1635
duke@435 1636 Node* uin = unique_input(phase);
duke@435 1637 if (uin == top) { // Simplest case: no alive inputs.
duke@435 1638 if (can_reshape) // IGVN transformation
duke@435 1639 return top;
duke@435 1640 else
duke@435 1641 return NULL; // Identity will return TOP
duke@435 1642 } else if (uin != NULL) {
duke@435 1643 // Only one not-NULL unique input path is left.
duke@435 1644 // Determine if this input is backedge of a loop.
duke@435 1645 // (Skip new phis which have no uses and dead regions).
kvn@3309 1646 if (outcnt() > 0 && r->in(0) != NULL) {
duke@435 1647 // First, take the short cut when we know it is a loop and
duke@435 1648 // the EntryControl data path is dead.
kvn@3309 1649 // Loop node may have only one input because entry path
kvn@3309 1650 // is removed in PhaseIdealLoop::Dominators().
kvn@3309 1651 assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
kvn@3309 1652 bool is_loop = (r->is_Loop() && r->req() == 3);
duke@435 1653 // Then, check if there is a data loop when phi references itself directly
duke@435 1654 // or through other data nodes.
kvn@3407 1655 if (is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl)) ||
kvn@3309 1656 !is_loop && is_unsafe_data_reference(uin)) {
duke@435 1657 // Break this data loop to avoid creation of a dead loop.
duke@435 1658 if (can_reshape) {
duke@435 1659 return top;
duke@435 1660 } else {
duke@435 1661 // We can't return top if we are in Parse phase - cut inputs only
duke@435 1662 // let Identity to handle the case.
duke@435 1663 replace_edge(uin, top);
duke@435 1664 return NULL;
duke@435 1665 }
duke@435 1666 }
duke@435 1667 }
duke@435 1668
duke@435 1669 // One unique input.
duke@435 1670 debug_only(Node* ident = Identity(phase));
duke@435 1671 // The unique input must eventually be detected by the Identity call.
duke@435 1672 #ifdef ASSERT
duke@435 1673 if (ident != uin && !ident->is_top()) {
duke@435 1674 // print this output before failing assert
duke@435 1675 r->dump(3);
duke@435 1676 this->dump(3);
duke@435 1677 ident->dump();
duke@435 1678 uin->dump();
duke@435 1679 }
duke@435 1680 #endif
duke@435 1681 assert(ident == uin || ident->is_top(), "Identity must clean this up");
duke@435 1682 return NULL;
duke@435 1683 }
duke@435 1684
duke@435 1685
duke@435 1686 Node* opt = NULL;
duke@435 1687 int true_path = is_diamond_phi();
duke@435 1688 if( true_path != 0 ) {
duke@435 1689 // Check for CMove'ing identity. If it would be unsafe,
duke@435 1690 // handle it here. In the safe case, let Identity handle it.
duke@435 1691 Node* unsafe_id = is_cmove_id(phase, true_path);
duke@435 1692 if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
duke@435 1693 opt = unsafe_id;
duke@435 1694
duke@435 1695 // Check for simple convert-to-boolean pattern
duke@435 1696 if( opt == NULL )
duke@435 1697 opt = is_x2logic(phase, this, true_path);
duke@435 1698
duke@435 1699 // Check for absolute value
duke@435 1700 if( opt == NULL )
duke@435 1701 opt = is_absolute(phase, this, true_path);
duke@435 1702
duke@435 1703 // Check for conditional add
duke@435 1704 if( opt == NULL && can_reshape )
duke@435 1705 opt = is_cond_add(phase, this, true_path);
duke@435 1706
duke@435 1707 // These 4 optimizations could subsume the phi:
duke@435 1708 // have to check for a dead data loop creation.
duke@435 1709 if( opt != NULL ) {
duke@435 1710 if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
duke@435 1711 // Found dead loop.
duke@435 1712 if( can_reshape )
duke@435 1713 return top;
duke@435 1714 // We can't return top if we are in Parse phase - cut inputs only
duke@435 1715 // to stop further optimizations for this phi. Identity will return TOP.
duke@435 1716 assert(req() == 3, "only diamond merge phi here");
duke@435 1717 set_req(1, top);
duke@435 1718 set_req(2, top);
duke@435 1719 return NULL;
duke@435 1720 } else {
duke@435 1721 return opt;
duke@435 1722 }
duke@435 1723 }
duke@435 1724 }
duke@435 1725
duke@435 1726 // Check for merging identical values and split flow paths
duke@435 1727 if (can_reshape) {
duke@435 1728 opt = split_flow_path(phase, this);
duke@435 1729 // This optimization only modifies phi - don't need to check for dead loop.
duke@435 1730 assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
duke@435 1731 if (opt != NULL) return opt;
duke@435 1732 }
duke@435 1733
kvn@1897 1734 if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
kvn@1897 1735 // Try to undo Phi of AddP:
kvn@1897 1736 // (Phi (AddP base base y) (AddP base2 base2 y))
kvn@1897 1737 // becomes:
kvn@1897 1738 // newbase := (Phi base base2)
kvn@1897 1739 // (AddP newbase newbase y)
kvn@1897 1740 //
kvn@1897 1741 // This occurs as a result of unsuccessful split_thru_phi and
kvn@1897 1742 // interferes with taking advantage of addressing modes. See the
kvn@1897 1743 // clone_shift_expressions code in matcher.cpp
kvn@1897 1744 Node* addp = in(1);
kvn@1897 1745 const Type* type = addp->in(AddPNode::Base)->bottom_type();
kvn@1897 1746 Node* y = addp->in(AddPNode::Offset);
kvn@1897 1747 if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
kvn@1897 1748 // make sure that all the inputs are similar to the first one,
kvn@1897 1749 // i.e. AddP with base == address and same offset as first AddP
kvn@1897 1750 bool doit = true;
kvn@1897 1751 for (uint i = 2; i < req(); i++) {
kvn@1897 1752 if (in(i) == NULL ||
kvn@1897 1753 in(i)->Opcode() != Op_AddP ||
kvn@1897 1754 in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
kvn@1897 1755 in(i)->in(AddPNode::Offset) != y) {
kvn@1897 1756 doit = false;
kvn@1897 1757 break;
kvn@1897 1758 }
kvn@1897 1759 // Accumulate type for resulting Phi
kvn@1897 1760 type = type->meet(in(i)->in(AddPNode::Base)->bottom_type());
kvn@1897 1761 }
kvn@1897 1762 Node* base = NULL;
kvn@1897 1763 if (doit) {
kvn@1897 1764 // Check for neighboring AddP nodes in a tree.
kvn@1897 1765 // If they have a base, use that it.
kvn@1897 1766 for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
kvn@1897 1767 Node* u = this->fast_out(k);
kvn@1897 1768 if (u->is_AddP()) {
kvn@1897 1769 Node* base2 = u->in(AddPNode::Base);
kvn@1897 1770 if (base2 != NULL && !base2->is_top()) {
kvn@1897 1771 if (base == NULL)
kvn@1897 1772 base = base2;
kvn@1897 1773 else if (base != base2)
kvn@1897 1774 { doit = false; break; }
kvn@1897 1775 }
kvn@1897 1776 }
kvn@1897 1777 }
kvn@1897 1778 }
kvn@1897 1779 if (doit) {
kvn@1897 1780 if (base == NULL) {
kvn@4115 1781 base = new (phase->C) PhiNode(in(0), type, NULL);
kvn@1897 1782 for (uint i = 1; i < req(); i++) {
kvn@1897 1783 base->init_req(i, in(i)->in(AddPNode::Base));
kvn@1897 1784 }
kvn@1897 1785 phase->is_IterGVN()->register_new_node_with_optimizer(base);
kvn@1897 1786 }
kvn@4115 1787 return new (phase->C) AddPNode(base, base, y);
kvn@1897 1788 }
kvn@1897 1789 }
kvn@1897 1790 }
kvn@1897 1791
duke@435 1792 // Split phis through memory merges, so that the memory merges will go away.
duke@435 1793 // Piggy-back this transformation on the search for a unique input....
duke@435 1794 // It will be as if the merged memory is the unique value of the phi.
duke@435 1795 // (Do not attempt this optimization unless parsing is complete.
duke@435 1796 // It would make the parser's memory-merge logic sick.)
duke@435 1797 // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
duke@435 1798 if (progress == NULL && can_reshape && type() == Type::MEMORY) {
duke@435 1799 // see if this phi should be sliced
duke@435 1800 uint merge_width = 0;
duke@435 1801 bool saw_self = false;
duke@435 1802 for( uint i=1; i<req(); ++i ) {// For all paths in
duke@435 1803 Node *ii = in(i);
duke@435 1804 if (ii->is_MergeMem()) {
duke@435 1805 MergeMemNode* n = ii->as_MergeMem();
duke@435 1806 merge_width = MAX2(merge_width, n->req());
duke@435 1807 saw_self = saw_self || phase->eqv(n->base_memory(), this);
duke@435 1808 }
duke@435 1809 }
duke@435 1810
duke@435 1811 // This restriction is temporarily necessary to ensure termination:
duke@435 1812 if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0;
duke@435 1813
duke@435 1814 if (merge_width > Compile::AliasIdxRaw) {
duke@435 1815 // found at least one non-empty MergeMem
duke@435 1816 const TypePtr* at = adr_type();
duke@435 1817 if (at != TypePtr::BOTTOM) {
duke@435 1818 // Patch the existing phi to select an input from the merge:
duke@435 1819 // Phi:AT1(...MergeMem(m0, m1, m2)...) into
duke@435 1820 // Phi:AT1(...m1...)
duke@435 1821 int alias_idx = phase->C->get_alias_index(at);
duke@435 1822 for (uint i=1; i<req(); ++i) {
duke@435 1823 Node *ii = in(i);
duke@435 1824 if (ii->is_MergeMem()) {
duke@435 1825 MergeMemNode* n = ii->as_MergeMem();
duke@435 1826 // compress paths and change unreachable cycles to TOP
duke@435 1827 // If not, we can update the input infinitely along a MergeMem cycle
duke@435 1828 // Equivalent code is in MemNode::Ideal_common
never@802 1829 Node *m = phase->transform(n);
never@802 1830 if (outcnt() == 0) { // Above transform() may kill us!
kvn@1448 1831 return top;
never@802 1832 }
twisti@1040 1833 // If transformed to a MergeMem, get the desired slice
duke@435 1834 // Otherwise the returned node represents memory for every slice
duke@435 1835 Node *new_mem = (m->is_MergeMem()) ?
duke@435 1836 m->as_MergeMem()->memory_at(alias_idx) : m;
duke@435 1837 // Update input if it is progress over what we have now
duke@435 1838 if (new_mem != ii) {
duke@435 1839 set_req(i, new_mem);
duke@435 1840 progress = this;
duke@435 1841 }
duke@435 1842 }
duke@435 1843 }
duke@435 1844 } else {
duke@435 1845 // We know that at least one MergeMem->base_memory() == this
duke@435 1846 // (saw_self == true). If all other inputs also references this phi
duke@435 1847 // (directly or through data nodes) - it is dead loop.
duke@435 1848 bool saw_safe_input = false;
duke@435 1849 for (uint j = 1; j < req(); ++j) {
duke@435 1850 Node *n = in(j);
duke@435 1851 if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
duke@435 1852 continue; // skip known cases
duke@435 1853 if (!is_unsafe_data_reference(n)) {
duke@435 1854 saw_safe_input = true; // found safe input
duke@435 1855 break;
duke@435 1856 }
duke@435 1857 }
duke@435 1858 if (!saw_safe_input)
duke@435 1859 return top; // all inputs reference back to this phi - dead loop
duke@435 1860
duke@435 1861 // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
duke@435 1862 // MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
duke@435 1863 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@4115 1864 Node* hook = new (phase->C) Node(1);
duke@435 1865 PhiNode* new_base = (PhiNode*) clone();
duke@435 1866 // Must eagerly register phis, since they participate in loops.
duke@435 1867 if (igvn) {
duke@435 1868 igvn->register_new_node_with_optimizer(new_base);
duke@435 1869 hook->add_req(new_base);
duke@435 1870 }
duke@435 1871 MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
duke@435 1872 for (uint i = 1; i < req(); ++i) {
duke@435 1873 Node *ii = in(i);
duke@435 1874 if (ii->is_MergeMem()) {
duke@435 1875 MergeMemNode* n = ii->as_MergeMem();
duke@435 1876 for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
duke@435 1877 // If we have not seen this slice yet, make a phi for it.
duke@435 1878 bool made_new_phi = false;
duke@435 1879 if (mms.is_empty()) {
duke@435 1880 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
duke@435 1881 made_new_phi = true;
duke@435 1882 if (igvn) {
duke@435 1883 igvn->register_new_node_with_optimizer(new_phi);
duke@435 1884 hook->add_req(new_phi);
duke@435 1885 }
duke@435 1886 mms.set_memory(new_phi);
duke@435 1887 }
duke@435 1888 Node* phi = mms.memory();
duke@435 1889 assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
duke@435 1890 phi->set_req(i, mms.memory2());
duke@435 1891 }
duke@435 1892 }
duke@435 1893 }
duke@435 1894 // Distribute all self-loops.
duke@435 1895 { // (Extra braces to hide mms.)
duke@435 1896 for (MergeMemStream mms(result); mms.next_non_empty(); ) {
duke@435 1897 Node* phi = mms.memory();
duke@435 1898 for (uint i = 1; i < req(); ++i) {
duke@435 1899 if (phi->in(i) == this) phi->set_req(i, phi);
duke@435 1900 }
duke@435 1901 }
duke@435 1902 }
duke@435 1903 // now transform the new nodes, and return the mergemem
duke@435 1904 for (MergeMemStream mms(result); mms.next_non_empty(); ) {
duke@435 1905 Node* phi = mms.memory();
duke@435 1906 mms.set_memory(phase->transform(phi));
duke@435 1907 }
duke@435 1908 if (igvn) { // Unhook.
duke@435 1909 igvn->hash_delete(hook);
duke@435 1910 for (uint i = 1; i < hook->req(); i++) {
duke@435 1911 hook->set_req(i, NULL);
duke@435 1912 }
duke@435 1913 }
duke@435 1914 // Replace self with the result.
duke@435 1915 return result;
duke@435 1916 }
duke@435 1917 }
kvn@509 1918 //
kvn@509 1919 // Other optimizations on the memory chain
kvn@509 1920 //
kvn@509 1921 const TypePtr* at = adr_type();
kvn@509 1922 for( uint i=1; i<req(); ++i ) {// For all paths in
kvn@509 1923 Node *ii = in(i);
kvn@509 1924 Node *new_in = MemNode::optimize_memory_chain(ii, at, phase);
kvn@509 1925 if (ii != new_in ) {
kvn@509 1926 set_req(i, new_in);
kvn@509 1927 progress = this;
kvn@509 1928 }
kvn@509 1929 }
duke@435 1930 }
duke@435 1931
kvn@803 1932 #ifdef _LP64
roland@4159 1933 // Push DecodeN/DecodeNKlass down through phi.
kvn@803 1934 // The rest of phi graph will transform by split EncodeP node though phis up.
roland@4159 1935 if ((UseCompressedOops || UseCompressedKlassPointers) && can_reshape && progress == NULL) {
kvn@803 1936 bool may_push = true;
kvn@803 1937 bool has_decodeN = false;
roland@4159 1938 bool is_decodeN = false;
kvn@803 1939 for (uint i=1; i<req(); ++i) {// For all paths in
kvn@803 1940 Node *ii = in(i);
roland@4159 1941 if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
kvn@1334 1942 // Do optimization if a non dead path exist.
kvn@1288 1943 if (ii->in(1)->bottom_type() != Type::TOP) {
kvn@1288 1944 has_decodeN = true;
roland@4159 1945 is_decodeN = ii->is_DecodeN();
kvn@1288 1946 }
kvn@803 1947 } else if (!ii->is_Phi()) {
kvn@803 1948 may_push = false;
kvn@803 1949 }
kvn@803 1950 }
kvn@803 1951
kvn@803 1952 if (has_decodeN && may_push) {
kvn@803 1953 PhaseIterGVN *igvn = phase->is_IterGVN();
kvn@1334 1954 // Make narrow type for new phi.
roland@4159 1955 const Type* narrow_t;
roland@4159 1956 if (is_decodeN) {
roland@4159 1957 narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
roland@4159 1958 } else {
roland@4159 1959 narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
roland@4159 1960 }
kvn@4115 1961 PhiNode* new_phi = new (phase->C) PhiNode(r, narrow_t);
kvn@803 1962 uint orig_cnt = req();
kvn@803 1963 for (uint i=1; i<req(); ++i) {// For all paths in
kvn@803 1964 Node *ii = in(i);
kvn@803 1965 Node* new_ii = NULL;
roland@4159 1966 if (ii->is_DecodeNarrowPtr()) {
kvn@803 1967 assert(ii->bottom_type() == bottom_type(), "sanity");
kvn@803 1968 new_ii = ii->in(1);
kvn@803 1969 } else {
kvn@803 1970 assert(ii->is_Phi(), "sanity");
kvn@803 1971 if (ii->as_Phi() == this) {
kvn@803 1972 new_ii = new_phi;
kvn@803 1973 } else {
roland@4159 1974 if (is_decodeN) {
roland@4159 1975 new_ii = new (phase->C) EncodePNode(ii, narrow_t);
roland@4159 1976 } else {
roland@4159 1977 new_ii = new (phase->C) EncodePKlassNode(ii, narrow_t);
roland@4159 1978 }
kvn@803 1979 igvn->register_new_node_with_optimizer(new_ii);
kvn@803 1980 }
kvn@803 1981 }
kvn@803 1982 new_phi->set_req(i, new_ii);
kvn@803 1983 }
kvn@803 1984 igvn->register_new_node_with_optimizer(new_phi, this);
roland@4159 1985 if (is_decodeN) {
roland@4159 1986 progress = new (phase->C) DecodeNNode(new_phi, bottom_type());
roland@4159 1987 } else {
roland@4159 1988 progress = new (phase->C) DecodeNKlassNode(new_phi, bottom_type());
roland@4159 1989 }
kvn@803 1990 }
kvn@803 1991 }
kvn@803 1992 #endif
kvn@803 1993
duke@435 1994 return progress; // Return any progress
duke@435 1995 }
duke@435 1996
kvn@835 1997 //------------------------------is_tripcount-----------------------------------
kvn@835 1998 bool PhiNode::is_tripcount() const {
kvn@835 1999 return (in(0) != NULL && in(0)->is_CountedLoop() &&
kvn@835 2000 in(0)->as_CountedLoop()->phi() == this);
kvn@835 2001 }
kvn@835 2002
duke@435 2003 //------------------------------out_RegMask------------------------------------
duke@435 2004 const RegMask &PhiNode::in_RegMask(uint i) const {
duke@435 2005 return i ? out_RegMask() : RegMask::Empty;
duke@435 2006 }
duke@435 2007
duke@435 2008 const RegMask &PhiNode::out_RegMask() const {
coleenp@4037 2009 uint ideal_reg = _type->ideal_reg();
duke@435 2010 assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
duke@435 2011 if( ideal_reg == 0 ) return RegMask::Empty;
duke@435 2012 return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
duke@435 2013 }
duke@435 2014
duke@435 2015 #ifndef PRODUCT
duke@435 2016 void PhiNode::dump_spec(outputStream *st) const {
duke@435 2017 TypeNode::dump_spec(st);
kvn@835 2018 if (is_tripcount()) {
duke@435 2019 st->print(" #tripcount");
duke@435 2020 }
duke@435 2021 }
duke@435 2022 #endif
duke@435 2023
duke@435 2024
duke@435 2025 //=============================================================================
duke@435 2026 const Type *GotoNode::Value( PhaseTransform *phase ) const {
duke@435 2027 // If the input is reachable, then we are executed.
duke@435 2028 // If the input is not reachable, then we are not executed.
duke@435 2029 return phase->type(in(0));
duke@435 2030 }
duke@435 2031
duke@435 2032 Node *GotoNode::Identity( PhaseTransform *phase ) {
duke@435 2033 return in(0); // Simple copy of incoming control
duke@435 2034 }
duke@435 2035
duke@435 2036 const RegMask &GotoNode::out_RegMask() const {
duke@435 2037 return RegMask::Empty;
duke@435 2038 }
duke@435 2039
duke@435 2040 //=============================================================================
duke@435 2041 const RegMask &JumpNode::out_RegMask() const {
duke@435 2042 return RegMask::Empty;
duke@435 2043 }
duke@435 2044
duke@435 2045 //=============================================================================
duke@435 2046 const RegMask &JProjNode::out_RegMask() const {
duke@435 2047 return RegMask::Empty;
duke@435 2048 }
duke@435 2049
duke@435 2050 //=============================================================================
duke@435 2051 const RegMask &CProjNode::out_RegMask() const {
duke@435 2052 return RegMask::Empty;
duke@435 2053 }
duke@435 2054
duke@435 2055
duke@435 2056
duke@435 2057 //=============================================================================
duke@435 2058
duke@435 2059 uint PCTableNode::hash() const { return Node::hash() + _size; }
duke@435 2060 uint PCTableNode::cmp( const Node &n ) const
duke@435 2061 { return _size == ((PCTableNode&)n)._size; }
duke@435 2062
duke@435 2063 const Type *PCTableNode::bottom_type() const {
duke@435 2064 const Type** f = TypeTuple::fields(_size);
duke@435 2065 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
duke@435 2066 return TypeTuple::make(_size, f);
duke@435 2067 }
duke@435 2068
duke@435 2069 //------------------------------Value------------------------------------------
duke@435 2070 // Compute the type of the PCTableNode. If reachable it is a tuple of
duke@435 2071 // Control, otherwise the table targets are not reachable
duke@435 2072 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
duke@435 2073 if( phase->type(in(0)) == Type::CONTROL )
duke@435 2074 return bottom_type();
duke@435 2075 return Type::TOP; // All paths dead? Then so are we
duke@435 2076 }
duke@435 2077
duke@435 2078 //------------------------------Ideal------------------------------------------
duke@435 2079 // Return a node which is more "ideal" than the current node. Strip out
duke@435 2080 // control copies
duke@435 2081 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
duke@435 2082 return remove_dead_region(phase, can_reshape) ? this : NULL;
duke@435 2083 }
duke@435 2084
duke@435 2085 //=============================================================================
duke@435 2086 uint JumpProjNode::hash() const {
duke@435 2087 return Node::hash() + _dest_bci;
duke@435 2088 }
duke@435 2089
duke@435 2090 uint JumpProjNode::cmp( const Node &n ) const {
duke@435 2091 return ProjNode::cmp(n) &&
duke@435 2092 _dest_bci == ((JumpProjNode&)n)._dest_bci;
duke@435 2093 }
duke@435 2094
duke@435 2095 #ifndef PRODUCT
duke@435 2096 void JumpProjNode::dump_spec(outputStream *st) const {
duke@435 2097 ProjNode::dump_spec(st);
duke@435 2098 st->print("@bci %d ",_dest_bci);
duke@435 2099 }
duke@435 2100 #endif
duke@435 2101
duke@435 2102 //=============================================================================
duke@435 2103 //------------------------------Value------------------------------------------
duke@435 2104 // Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot
duke@435 2105 // have the default "fall_through_index" path.
duke@435 2106 const Type *CatchNode::Value( PhaseTransform *phase ) const {
duke@435 2107 // Unreachable? Then so are all paths from here.
duke@435 2108 if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
duke@435 2109 // First assume all paths are reachable
duke@435 2110 const Type** f = TypeTuple::fields(_size);
duke@435 2111 for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
duke@435 2112 // Identify cases that will always throw an exception
duke@435 2113 // () rethrow call
duke@435 2114 // () virtual or interface call with NULL receiver
duke@435 2115 // () call is a check cast with incompatible arguments
duke@435 2116 if( in(1)->is_Proj() ) {
duke@435 2117 Node *i10 = in(1)->in(0);
duke@435 2118 if( i10->is_Call() ) {
duke@435 2119 CallNode *call = i10->as_Call();
duke@435 2120 // Rethrows always throw exceptions, never return
duke@435 2121 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
duke@435 2122 f[CatchProjNode::fall_through_index] = Type::TOP;
duke@435 2123 } else if( call->req() > TypeFunc::Parms ) {
duke@435 2124 const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
twisti@1040 2125 // Check for null receiver to virtual or interface calls
duke@435 2126 if( call->is_CallDynamicJava() &&
duke@435 2127 arg0->higher_equal(TypePtr::NULL_PTR) ) {
duke@435 2128 f[CatchProjNode::fall_through_index] = Type::TOP;
duke@435 2129 }
duke@435 2130 } // End of if not a runtime stub
duke@435 2131 } // End of if have call above me
duke@435 2132 } // End of slot 1 is not a projection
duke@435 2133 return TypeTuple::make(_size, f);
duke@435 2134 }
duke@435 2135
duke@435 2136 //=============================================================================
duke@435 2137 uint CatchProjNode::hash() const {
duke@435 2138 return Node::hash() + _handler_bci;
duke@435 2139 }
duke@435 2140
duke@435 2141
duke@435 2142 uint CatchProjNode::cmp( const Node &n ) const {
duke@435 2143 return ProjNode::cmp(n) &&
duke@435 2144 _handler_bci == ((CatchProjNode&)n)._handler_bci;
duke@435 2145 }
duke@435 2146
duke@435 2147
duke@435 2148 //------------------------------Identity---------------------------------------
duke@435 2149 // If only 1 target is possible, choose it if it is the main control
duke@435 2150 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
duke@435 2151 // If my value is control and no other value is, then treat as ID
duke@435 2152 const TypeTuple *t = phase->type(in(0))->is_tuple();
duke@435 2153 if (t->field_at(_con) != Type::CONTROL) return this;
duke@435 2154 // If we remove the last CatchProj and elide the Catch/CatchProj, then we
duke@435 2155 // also remove any exception table entry. Thus we must know the call
duke@435 2156 // feeding the Catch will not really throw an exception. This is ok for
duke@435 2157 // the main fall-thru control (happens when we know a call can never throw
twisti@1040 2158 // an exception) or for "rethrow", because a further optimization will
duke@435 2159 // yank the rethrow (happens when we inline a function that can throw an
duke@435 2160 // exception and the caller has no handler). Not legal, e.g., for passing
duke@435 2161 // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
duke@435 2162 // These cases MUST throw an exception via the runtime system, so the VM
duke@435 2163 // will be looking for a table entry.
duke@435 2164 Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode
duke@435 2165 CallNode *call;
duke@435 2166 if (_con != TypeFunc::Control && // Bail out if not the main control.
duke@435 2167 !(proj->is_Proj() && // AND NOT a rethrow
duke@435 2168 proj->in(0)->is_Call() &&
duke@435 2169 (call = proj->in(0)->as_Call()) &&
duke@435 2170 call->entry_point() == OptoRuntime::rethrow_stub()))
duke@435 2171 return this;
duke@435 2172
duke@435 2173 // Search for any other path being control
duke@435 2174 for (uint i = 0; i < t->cnt(); i++) {
duke@435 2175 if (i != _con && t->field_at(i) == Type::CONTROL)
duke@435 2176 return this;
duke@435 2177 }
duke@435 2178 // Only my path is possible; I am identity on control to the jump
duke@435 2179 return in(0)->in(0);
duke@435 2180 }
duke@435 2181
duke@435 2182
duke@435 2183 #ifndef PRODUCT
duke@435 2184 void CatchProjNode::dump_spec(outputStream *st) const {
duke@435 2185 ProjNode::dump_spec(st);
duke@435 2186 st->print("@bci %d ",_handler_bci);
duke@435 2187 }
duke@435 2188 #endif
duke@435 2189
duke@435 2190 //=============================================================================
duke@435 2191 //------------------------------Identity---------------------------------------
duke@435 2192 // Check for CreateEx being Identity.
duke@435 2193 Node *CreateExNode::Identity( PhaseTransform *phase ) {
duke@435 2194 if( phase->type(in(1)) == Type::TOP ) return in(1);
duke@435 2195 if( phase->type(in(0)) == Type::TOP ) return in(0);
duke@435 2196 // We only come from CatchProj, unless the CatchProj goes away.
duke@435 2197 // If the CatchProj is optimized away, then we just carry the
duke@435 2198 // exception oop through.
duke@435 2199 CallNode *call = in(1)->in(0)->as_Call();
duke@435 2200
duke@435 2201 return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
duke@435 2202 ? this
duke@435 2203 : call->in(TypeFunc::Parms);
duke@435 2204 }
duke@435 2205
duke@435 2206 //=============================================================================
never@562 2207 //------------------------------Value------------------------------------------
never@562 2208 // Check for being unreachable.
never@562 2209 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
never@562 2210 if (!in(0) || in(0)->is_top()) return Type::TOP;
never@562 2211 return bottom_type();
never@562 2212 }
never@562 2213
never@562 2214 //------------------------------Ideal------------------------------------------
never@562 2215 // Check for no longer being part of a loop
never@562 2216 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
never@562 2217 if (can_reshape && !in(0)->is_Loop()) {
never@562 2218 // Dead code elimination can sometimes delete this projection so
never@562 2219 // if it's not there, there's nothing to do.
never@562 2220 Node* fallthru = proj_out(0);
never@562 2221 if (fallthru != NULL) {
kvn@1976 2222 phase->is_IterGVN()->replace_node(fallthru, in(0));
never@562 2223 }
never@562 2224 return phase->C->top();
never@562 2225 }
never@562 2226 return NULL;
never@562 2227 }
never@562 2228
duke@435 2229 #ifndef PRODUCT
duke@435 2230 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
duke@435 2231 st->print("%s", Name());
duke@435 2232 }
duke@435 2233 #endif

mercurial