src/share/vm/opto/escape.cpp

Fri, 07 Mar 2008 11:09:13 -0800

author
kvn
date
Fri, 07 Mar 2008 11:09:13 -0800
changeset 476
874b2c4f43d1
parent 474
76256d272075
child 500
99269dbf4ba8
permissions
-rw-r--r--

6667605: (Escape Analysis) inline java constructors when EA is on
Summary: java constructors should be inlined to be able scalar replace a new object
Reviewed-by: rasbold

duke@435 1 /*
duke@435 2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 uint PointsToNode::edge_target(uint e) const {
duke@435 29 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 30 return (_edges->at(e) >> EdgeShift);
duke@435 31 }
duke@435 32
duke@435 33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
duke@435 34 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 35 return (EdgeType) (_edges->at(e) & EdgeMask);
duke@435 36 }
duke@435 37
duke@435 38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 39 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 40 if (_edges == NULL) {
duke@435 41 Arena *a = Compile::current()->comp_arena();
duke@435 42 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 43 }
duke@435 44 _edges->append_if_missing(v);
duke@435 45 }
duke@435 46
duke@435 47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 48 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 49
duke@435 50 _edges->remove(v);
duke@435 51 }
duke@435 52
duke@435 53 #ifndef PRODUCT
duke@435 54 static char *node_type_names[] = {
duke@435 55 "UnknownType",
duke@435 56 "JavaObject",
duke@435 57 "LocalVar",
duke@435 58 "Field"
duke@435 59 };
duke@435 60
duke@435 61 static char *esc_names[] = {
duke@435 62 "UnknownEscape",
duke@435 63 "NoEscape ",
duke@435 64 "ArgEscape ",
duke@435 65 "GlobalEscape "
duke@435 66 };
duke@435 67
duke@435 68 static char *edge_type_suffix[] = {
duke@435 69 "?", // UnknownEdge
duke@435 70 "P", // PointsToEdge
duke@435 71 "D", // DeferredEdge
duke@435 72 "F" // FieldEdge
duke@435 73 };
duke@435 74
duke@435 75 void PointsToNode::dump() const {
duke@435 76 NodeType nt = node_type();
duke@435 77 EscapeState es = escape_state();
duke@435 78 tty->print("%s %s [[", node_type_names[(int) nt], esc_names[(int) es]);
duke@435 79 for (uint i = 0; i < edge_count(); i++) {
duke@435 80 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 81 }
duke@435 82 tty->print("]] ");
duke@435 83 if (_node == NULL)
duke@435 84 tty->print_cr("<null>");
duke@435 85 else
duke@435 86 _node->dump();
duke@435 87 }
duke@435 88 #endif
duke@435 89
duke@435 90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
duke@435 91 _collecting = true;
duke@435 92 this->_compile = C;
duke@435 93 const PointsToNode &dummy = PointsToNode();
duke@435 94 _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), (int) INITIAL_NODE_COUNT, 0, dummy);
duke@435 95 _phantom_object = C->top()->_idx;
duke@435 96 PointsToNode *phn = ptnode_adr(_phantom_object);
duke@435 97 phn->set_node_type(PointsToNode::JavaObject);
duke@435 98 phn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 99 }
duke@435 100
duke@435 101 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 102 PointsToNode *f = ptnode_adr(from_i);
duke@435 103 PointsToNode *t = ptnode_adr(to_i);
duke@435 104
duke@435 105 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 106 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 107 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 108 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 109 }
duke@435 110
duke@435 111 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 112 PointsToNode *f = ptnode_adr(from_i);
duke@435 113 PointsToNode *t = ptnode_adr(to_i);
duke@435 114
duke@435 115 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 116 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 117 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 118 // don't add a self-referential edge, this can occur during removal of
duke@435 119 // deferred edges
duke@435 120 if (from_i != to_i)
duke@435 121 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 122 }
duke@435 123
duke@435 124 int ConnectionGraph::type_to_offset(const Type *t) {
duke@435 125 const TypePtr *t_ptr = t->isa_ptr();
duke@435 126 assert(t_ptr != NULL, "must be a pointer type");
duke@435 127 return t_ptr->offset();
duke@435 128 }
duke@435 129
duke@435 130 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 131 PointsToNode *f = ptnode_adr(from_i);
duke@435 132 PointsToNode *t = ptnode_adr(to_i);
duke@435 133
duke@435 134 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 135 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 136 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 137 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 138 t->set_offset(offset);
duke@435 139
duke@435 140 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 141 }
duke@435 142
duke@435 143 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 144 PointsToNode *npt = ptnode_adr(ni);
duke@435 145 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 146 if (es > old_es)
duke@435 147 npt->set_escape_state(es);
duke@435 148 }
duke@435 149
duke@435 150 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 151 uint idx = n->_idx;
duke@435 152 PointsToNode::EscapeState es;
duke@435 153
duke@435 154 // If we are still collecting we don't know the answer yet
duke@435 155 if (_collecting)
duke@435 156 return PointsToNode::UnknownEscape;
duke@435 157
duke@435 158 // if the node was created after the escape computation, return
duke@435 159 // UnknownEscape
duke@435 160 if (idx >= (uint)_nodes->length())
duke@435 161 return PointsToNode::UnknownEscape;
duke@435 162
duke@435 163 es = _nodes->at_grow(idx).escape_state();
duke@435 164
duke@435 165 // if we have already computed a value, return it
duke@435 166 if (es != PointsToNode::UnknownEscape)
duke@435 167 return es;
duke@435 168
duke@435 169 // compute max escape state of anything this node could point to
duke@435 170 VectorSet ptset(Thread::current()->resource_area());
duke@435 171 PointsTo(ptset, n, phase);
duke@435 172 for( VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i ) {
duke@435 173 uint pt = i.elem;
duke@435 174 PointsToNode::EscapeState pes = _nodes->at(pt).escape_state();
duke@435 175 if (pes > es)
duke@435 176 es = pes;
duke@435 177 }
duke@435 178 // cache the computed escape state
duke@435 179 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
duke@435 180 _nodes->adr_at(idx)->set_escape_state(es);
duke@435 181 return es;
duke@435 182 }
duke@435 183
duke@435 184 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 185 VectorSet visited(Thread::current()->resource_area());
duke@435 186 GrowableArray<uint> worklist;
duke@435 187
duke@435 188 n = skip_casts(n);
duke@435 189 PointsToNode npt = _nodes->at_grow(n->_idx);
duke@435 190
duke@435 191 // If we have a JavaObject, return just that object
duke@435 192 if (npt.node_type() == PointsToNode::JavaObject) {
duke@435 193 ptset.set(n->_idx);
duke@435 194 return;
duke@435 195 }
duke@435 196 // we may have a Phi which has not been processed
duke@435 197 if (npt._node == NULL) {
duke@435 198 assert(n->is_Phi(), "unprocessed node must be a Phi");
duke@435 199 record_for_escape_analysis(n);
duke@435 200 npt = _nodes->at(n->_idx);
duke@435 201 }
duke@435 202 worklist.push(n->_idx);
duke@435 203 while(worklist.length() > 0) {
duke@435 204 int ni = worklist.pop();
duke@435 205 PointsToNode pn = _nodes->at_grow(ni);
duke@435 206 if (!visited.test(ni)) {
duke@435 207 visited.set(ni);
duke@435 208
duke@435 209 // ensure that all inputs of a Phi have been processed
duke@435 210 if (_collecting && pn._node->is_Phi()) {
duke@435 211 PhiNode *phi = pn._node->as_Phi();
duke@435 212 process_phi_escape(phi, phase);
duke@435 213 }
duke@435 214
duke@435 215 int edges_processed = 0;
duke@435 216 for (uint e = 0; e < pn.edge_count(); e++) {
duke@435 217 PointsToNode::EdgeType et = pn.edge_type(e);
duke@435 218 if (et == PointsToNode::PointsToEdge) {
duke@435 219 ptset.set(pn.edge_target(e));
duke@435 220 edges_processed++;
duke@435 221 } else if (et == PointsToNode::DeferredEdge) {
duke@435 222 worklist.push(pn.edge_target(e));
duke@435 223 edges_processed++;
duke@435 224 }
duke@435 225 }
duke@435 226 if (edges_processed == 0) {
duke@435 227 // no deferred or pointsto edges found. Assume the value was set outside
duke@435 228 // this method. Add the phantom object to the pointsto set.
duke@435 229 ptset.set(_phantom_object);
duke@435 230 }
duke@435 231 }
duke@435 232 }
duke@435 233 }
duke@435 234
duke@435 235 void ConnectionGraph::remove_deferred(uint ni) {
duke@435 236 VectorSet visited(Thread::current()->resource_area());
duke@435 237
duke@435 238 uint i = 0;
duke@435 239 PointsToNode *ptn = ptnode_adr(ni);
duke@435 240
duke@435 241 while(i < ptn->edge_count()) {
duke@435 242 if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
duke@435 243 i++;
duke@435 244 } else {
duke@435 245 uint t = ptn->edge_target(i);
duke@435 246 PointsToNode *ptt = ptnode_adr(t);
duke@435 247 ptn->remove_edge(t, PointsToNode::DeferredEdge);
duke@435 248 if(!visited.test(t)) {
duke@435 249 visited.set(t);
duke@435 250 for (uint j = 0; j < ptt->edge_count(); j++) {
duke@435 251 uint n1 = ptt->edge_target(j);
duke@435 252 PointsToNode *pt1 = ptnode_adr(n1);
duke@435 253 switch(ptt->edge_type(j)) {
duke@435 254 case PointsToNode::PointsToEdge:
duke@435 255 add_pointsto_edge(ni, n1);
duke@435 256 break;
duke@435 257 case PointsToNode::DeferredEdge:
duke@435 258 add_deferred_edge(ni, n1);
duke@435 259 break;
duke@435 260 case PointsToNode::FieldEdge:
duke@435 261 assert(false, "invalid connection graph");
duke@435 262 break;
duke@435 263 }
duke@435 264 }
duke@435 265 }
duke@435 266 }
duke@435 267 }
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 272 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 273 // a pointsto edge is added if it is a JavaObject
duke@435 274
duke@435 275 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
duke@435 276 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 277 PointsToNode to = _nodes->at_grow(to_i);
duke@435 278 bool deferred = (to.node_type() == PointsToNode::LocalVar);
duke@435 279
duke@435 280 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 281 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 282 int fi = an.edge_target(fe);
duke@435 283 PointsToNode pf = _nodes->at_grow(fi);
duke@435 284 int po = pf.offset();
duke@435 285 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 286 if (deferred)
duke@435 287 add_deferred_edge(fi, to_i);
duke@435 288 else
duke@435 289 add_pointsto_edge(fi, to_i);
duke@435 290 }
duke@435 291 }
duke@435 292 }
duke@435 293
duke@435 294 // Add a deferred edge from node given by "from_i" to any field of adr_i whose offset
duke@435 295 // matches "offset"
duke@435 296 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
duke@435 297 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 298 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 299 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 300 int fi = an.edge_target(fe);
duke@435 301 PointsToNode pf = _nodes->at_grow(fi);
duke@435 302 int po = pf.offset();
duke@435 303 if (pf.edge_count() == 0) {
duke@435 304 // we have not seen any stores to this field, assume it was set outside this method
duke@435 305 add_pointsto_edge(fi, _phantom_object);
duke@435 306 }
duke@435 307 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 308 add_deferred_edge(from_i, fi);
duke@435 309 }
duke@435 310 }
duke@435 311 }
duke@435 312
duke@435 313 //
duke@435 314 // Search memory chain of "mem" to find a MemNode whose address
duke@435 315 // is the specified alias index. Returns the MemNode found or the
duke@435 316 // first non-MemNode encountered.
duke@435 317 //
duke@435 318 Node *ConnectionGraph::find_mem(Node *mem, int alias_idx, PhaseGVN *igvn) {
duke@435 319 if (mem == NULL)
duke@435 320 return mem;
duke@435 321 while (mem->is_Mem()) {
duke@435 322 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 323 if (at != Type::TOP) {
duke@435 324 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 325 int idx = _compile->get_alias_index(at->is_ptr());
duke@435 326 if (idx == alias_idx)
duke@435 327 break;
duke@435 328 }
duke@435 329 mem = mem->in(MemNode::Memory);
duke@435 330 }
duke@435 331 return mem;
duke@435 332 }
duke@435 333
duke@435 334 //
duke@435 335 // Adjust the type and inputs of an AddP which computes the
duke@435 336 // address of a field of an instance
duke@435 337 //
duke@435 338 void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
duke@435 339 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
duke@435 340 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
duke@435 341 assert(t != NULL, "expecting oopptr");
duke@435 342 assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
duke@435 343 uint inst_id = base_t->instance_id();
duke@435 344 assert(!t->is_instance() || t->instance_id() == inst_id,
duke@435 345 "old type must be non-instance or match new type");
duke@435 346 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
duke@435 347 // ensure an alias index is allocated for the instance type
duke@435 348 int alias_idx = _compile->get_alias_index(tinst);
duke@435 349 igvn->set_type(addp, tinst);
duke@435 350 // record the allocation in the node map
duke@435 351 set_map(addp->_idx, get_map(base->_idx));
duke@435 352 // if the Address input is not the appropriate instance type (due to intervening
duke@435 353 // casts,) insert a cast
duke@435 354 Node *adr = addp->in(AddPNode::Address);
duke@435 355 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
duke@435 356 if (atype->instance_id() != inst_id) {
duke@435 357 assert(!atype->is_instance(), "no conflicting instances");
duke@435 358 const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
duke@435 359 Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
duke@435 360 acast->set_req(0, adr->in(0));
duke@435 361 igvn->set_type(acast, new_atype);
duke@435 362 record_for_optimizer(acast);
duke@435 363 Node *bcast = acast;
duke@435 364 Node *abase = addp->in(AddPNode::Base);
duke@435 365 if (abase != adr) {
duke@435 366 bcast = new (_compile, 2) CastPPNode(abase, base_t);
duke@435 367 bcast->set_req(0, abase->in(0));
duke@435 368 igvn->set_type(bcast, base_t);
duke@435 369 record_for_optimizer(bcast);
duke@435 370 }
duke@435 371 igvn->hash_delete(addp);
duke@435 372 addp->set_req(AddPNode::Base, bcast);
duke@435 373 addp->set_req(AddPNode::Address, acast);
duke@435 374 igvn->hash_insert(addp);
duke@435 375 record_for_optimizer(addp);
duke@435 376 }
duke@435 377 }
duke@435 378
duke@435 379 //
duke@435 380 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 381 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 382 // phi was created. Cache the last newly created phi in the node map.
duke@435 383 //
duke@435 384 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 385 Compile *C = _compile;
duke@435 386 new_created = false;
duke@435 387 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 388 // nothing to do if orig_phi is bottom memory or matches alias_idx
duke@435 389 if (phi_alias_idx == Compile::AliasIdxBot || phi_alias_idx == alias_idx) {
duke@435 390 return orig_phi;
duke@435 391 }
duke@435 392 // have we already created a Phi for this alias index?
duke@435 393 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 394 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 395 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 396 return result;
duke@435 397 }
kvn@473 398 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 399 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 400 // Retry compilation without escape analysis.
kvn@473 401 // If this is the first failure, the sentinel string will "stick"
kvn@473 402 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 403 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 404 }
kvn@473 405 return NULL;
kvn@473 406 }
duke@435 407
duke@435 408 orig_phi_worklist.append_if_missing(orig_phi);
duke@435 409 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
duke@435 410 set_map_phi(orig_phi->_idx, result);
duke@435 411 igvn->set_type(result, result->bottom_type());
duke@435 412 record_for_optimizer(result);
duke@435 413 new_created = true;
duke@435 414 return result;
duke@435 415 }
duke@435 416
duke@435 417 //
duke@435 418 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 419 // specified alias index.
duke@435 420 //
duke@435 421 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 422
duke@435 423 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 424 Compile *C = _compile;
duke@435 425 bool new_phi_created;
duke@435 426 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 427 if (!new_phi_created) {
duke@435 428 return result;
duke@435 429 }
duke@435 430
duke@435 431 GrowableArray<PhiNode *> phi_list;
duke@435 432 GrowableArray<uint> cur_input;
duke@435 433
duke@435 434 PhiNode *phi = orig_phi;
duke@435 435 uint idx = 1;
duke@435 436 bool finished = false;
duke@435 437 while(!finished) {
duke@435 438 while (idx < phi->req()) {
duke@435 439 Node *mem = find_mem(phi->in(idx), alias_idx, igvn);
duke@435 440 if (mem != NULL && mem->is_Phi()) {
duke@435 441 PhiNode *nphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 442 if (new_phi_created) {
duke@435 443 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 444 // processing new one
duke@435 445 phi_list.push(phi);
duke@435 446 cur_input.push(idx);
duke@435 447 phi = mem->as_Phi();
duke@435 448 result = nphi;
duke@435 449 idx = 1;
duke@435 450 continue;
duke@435 451 } else {
duke@435 452 mem = nphi;
duke@435 453 }
duke@435 454 }
kvn@473 455 if (C->failing()) {
kvn@473 456 return NULL;
kvn@473 457 }
duke@435 458 result->set_req(idx++, mem);
duke@435 459 }
duke@435 460 #ifdef ASSERT
duke@435 461 // verify that the new Phi has an input for each input of the original
duke@435 462 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 463 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
duke@435 464 for (uint i = 1; i < phi->req(); i++) {
duke@435 465 assert((phi->in(i) == NULL) == (result->in(i) == NULL), "inputs must correspond.");
duke@435 466 }
duke@435 467 #endif
duke@435 468 // we have finished processing a Phi, see if there are any more to do
duke@435 469 finished = (phi_list.length() == 0 );
duke@435 470 if (!finished) {
duke@435 471 phi = phi_list.pop();
duke@435 472 idx = cur_input.pop();
duke@435 473 PhiNode *prev_phi = get_map_phi(phi->_idx);
duke@435 474 prev_phi->set_req(idx++, result);
duke@435 475 result = prev_phi;
duke@435 476 }
duke@435 477 }
duke@435 478 return result;
duke@435 479 }
duke@435 480
duke@435 481 //
duke@435 482 // Convert the types of unescaped object to instance types where possible,
duke@435 483 // propagate the new type information through the graph, and update memory
duke@435 484 // edges and MergeMem inputs to reflect the new type.
duke@435 485 //
duke@435 486 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 487 // The processing is done in 4 phases:
duke@435 488 //
duke@435 489 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 490 // types for the CheckCastPP for allocations where possible.
duke@435 491 // Propagate the the new types through users as follows:
duke@435 492 // casts and Phi: push users on alloc_worklist
duke@435 493 // AddP: cast Base and Address inputs to the instance type
duke@435 494 // push any AddP users on alloc_worklist and push any memnode
duke@435 495 // users onto memnode_worklist.
duke@435 496 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 497 // search the Memory chain for a store with the appropriate type
duke@435 498 // address type. If a Phi is found, create a new version with
duke@435 499 // the approriate memory slices from each of the Phi inputs.
duke@435 500 // For stores, process the users as follows:
duke@435 501 // MemNode: push on memnode_worklist
duke@435 502 // MergeMem: push on mergemem_worklist
duke@435 503 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 504 // moving the first node encountered of each instance type to the
duke@435 505 // the input corresponding to its alias index.
duke@435 506 // appropriate memory slice.
duke@435 507 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 508 //
duke@435 509 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 510 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 511 // instance type.
duke@435 512 //
duke@435 513 // We start with:
duke@435 514 //
duke@435 515 // 7 Parm #memory
duke@435 516 // 10 ConI "12"
duke@435 517 // 19 CheckCastPP "Foo"
duke@435 518 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 519 // 29 CheckCastPP "Foo"
duke@435 520 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 521 //
duke@435 522 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 523 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 524 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 525 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 526 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 527 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 528 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 529 //
duke@435 530 //
duke@435 531 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 532 // and creating a new alias index for node 30. This gives:
duke@435 533 //
duke@435 534 // 7 Parm #memory
duke@435 535 // 10 ConI "12"
duke@435 536 // 19 CheckCastPP "Foo"
duke@435 537 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 538 // 29 CheckCastPP "Foo" iid=24
duke@435 539 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 540 //
duke@435 541 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 542 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 543 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 544 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 545 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 546 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 547 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 548 //
duke@435 549 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 550 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 551 // node 80 are updated and then the memory nodes are updated with the
duke@435 552 // values computed in phase 2. This results in:
duke@435 553 //
duke@435 554 // 7 Parm #memory
duke@435 555 // 10 ConI "12"
duke@435 556 // 19 CheckCastPP "Foo"
duke@435 557 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 558 // 29 CheckCastPP "Foo" iid=24
duke@435 559 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 560 //
duke@435 561 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 562 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 563 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 564 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 565 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 566 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 567 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 568 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 569 //
duke@435 570 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 571 GrowableArray<Node *> memnode_worklist;
duke@435 572 GrowableArray<Node *> mergemem_worklist;
duke@435 573 GrowableArray<PhiNode *> orig_phis;
duke@435 574 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 575 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 576 VectorSet visited(Thread::current()->resource_area());
duke@435 577 VectorSet ptset(Thread::current()->resource_area());
duke@435 578
duke@435 579 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 580 // types for the CheckCastPP for allocations where possible.
duke@435 581 while (alloc_worklist.length() != 0) {
duke@435 582 Node *n = alloc_worklist.pop();
duke@435 583 uint ni = n->_idx;
duke@435 584 if (n->is_Call()) {
duke@435 585 CallNode *alloc = n->as_Call();
duke@435 586 // copy escape information to call node
duke@435 587 PointsToNode ptn = _nodes->at(alloc->_idx);
duke@435 588 PointsToNode::EscapeState es = escape_state(alloc, igvn);
duke@435 589 alloc->_escape_state = es;
duke@435 590 // find CheckCastPP of call return value
duke@435 591 n = alloc->proj_out(TypeFunc::Parms);
duke@435 592 if (n != NULL && n->outcnt() == 1) {
duke@435 593 n = n->unique_out();
duke@435 594 if (n->Opcode() != Op_CheckCastPP) {
duke@435 595 continue;
duke@435 596 }
duke@435 597 } else {
duke@435 598 continue;
duke@435 599 }
duke@435 600 // we have an allocation or call which returns a Java object, see if it is unescaped
duke@435 601 if (es != PointsToNode::NoEscape || !ptn._unique_type) {
duke@435 602 continue; // can't make a unique type
duke@435 603 }
kvn@474 604 if (alloc->is_Allocate()) {
kvn@474 605 // Set the scalar_replaceable flag before the next check.
kvn@474 606 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@474 607 }
kvn@474 608
duke@435 609 set_map(alloc->_idx, n);
duke@435 610 set_map(n->_idx, alloc);
duke@435 611 const TypeInstPtr *t = igvn->type(n)->isa_instptr();
duke@435 612 // Unique types which are arrays are not currently supported.
duke@435 613 // The check for AllocateArray is needed in case an array
duke@435 614 // allocation is immediately cast to Object
duke@435 615 if (t == NULL || alloc->is_AllocateArray())
duke@435 616 continue; // not a TypeInstPtr
duke@435 617 const TypeOopPtr *tinst = t->cast_to_instance(ni);
duke@435 618 igvn->hash_delete(n);
duke@435 619 igvn->set_type(n, tinst);
duke@435 620 n->raise_bottom_type(tinst);
duke@435 621 igvn->hash_insert(n);
duke@435 622 } else if (n->is_AddP()) {
duke@435 623 ptset.Clear();
duke@435 624 PointsTo(ptset, n->in(AddPNode::Address), igvn);
duke@435 625 assert(ptset.Size() == 1, "AddP address is unique");
duke@435 626 Node *base = get_map(ptset.getelem());
duke@435 627 split_AddP(n, base, igvn);
duke@435 628 } else if (n->is_Phi() || n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
duke@435 629 if (visited.test_set(n->_idx)) {
duke@435 630 assert(n->is_Phi(), "loops only through Phi's");
duke@435 631 continue; // already processed
duke@435 632 }
duke@435 633 ptset.Clear();
duke@435 634 PointsTo(ptset, n, igvn);
duke@435 635 if (ptset.Size() == 1) {
duke@435 636 TypeNode *tn = n->as_Type();
duke@435 637 Node *val = get_map(ptset.getelem());
duke@435 638 const TypeInstPtr *val_t = igvn->type(val)->isa_instptr();;
duke@435 639 assert(val_t != NULL && val_t->is_instance(), "instance type expected.");
duke@435 640 const TypeInstPtr *tn_t = igvn->type(tn)->isa_instptr();;
duke@435 641
duke@435 642 if (tn_t != NULL && val_t->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
duke@435 643 igvn->hash_delete(tn);
duke@435 644 igvn->set_type(tn, val_t);
duke@435 645 tn->set_type(val_t);
duke@435 646 igvn->hash_insert(tn);
duke@435 647 }
duke@435 648 }
duke@435 649 } else {
duke@435 650 continue;
duke@435 651 }
duke@435 652 // push users on appropriate worklist
duke@435 653 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 654 Node *use = n->fast_out(i);
duke@435 655 if(use->is_Mem() && use->in(MemNode::Address) == n) {
duke@435 656 memnode_worklist.push(use);
duke@435 657 } else if (use->is_AddP() || use->is_Phi() || use->Opcode() == Op_CastPP || use->Opcode() == Op_CheckCastPP) {
duke@435 658 alloc_worklist.push(use);
duke@435 659 }
duke@435 660 }
duke@435 661
duke@435 662 }
duke@435 663 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 664
duke@435 665 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 666 // compute new values for Memory inputs (the Memory inputs are not
duke@435 667 // actually updated until phase 4.)
duke@435 668 if (memnode_worklist.length() == 0)
duke@435 669 return; // nothing to do
duke@435 670
duke@435 671
duke@435 672 while (memnode_worklist.length() != 0) {
duke@435 673 Node *n = memnode_worklist.pop();
duke@435 674 if (n->is_Phi()) {
duke@435 675 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 676 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 677 // this Phi before
duke@435 678 if (visited.test_set(n->_idx))
duke@435 679 continue;
duke@435 680 } else {
duke@435 681 assert(n->is_Mem(), "memory node required.");
duke@435 682 Node *addr = n->in(MemNode::Address);
duke@435 683 const Type *addr_t = igvn->type(addr);
duke@435 684 if (addr_t == Type::TOP)
duke@435 685 continue;
duke@435 686 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 687 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
duke@435 688 Node *mem = find_mem(n->in(MemNode::Memory), alias_idx, igvn);
duke@435 689 if (mem->is_Phi()) {
duke@435 690 mem = split_memory_phi(mem->as_Phi(), alias_idx, orig_phis, igvn);
duke@435 691 }
kvn@473 692 if (_compile->failing()) {
kvn@473 693 return;
kvn@473 694 }
duke@435 695 if (mem != n->in(MemNode::Memory))
duke@435 696 set_map(n->_idx, mem);
duke@435 697 if (n->is_Load()) {
duke@435 698 continue; // don't push users
duke@435 699 } else if (n->is_LoadStore()) {
duke@435 700 // get the memory projection
duke@435 701 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 702 Node *use = n->fast_out(i);
duke@435 703 if (use->Opcode() == Op_SCMemProj) {
duke@435 704 n = use;
duke@435 705 break;
duke@435 706 }
duke@435 707 }
duke@435 708 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 709 }
duke@435 710 }
duke@435 711 // push user on appropriate worklist
duke@435 712 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 713 Node *use = n->fast_out(i);
duke@435 714 if (use->is_Phi()) {
duke@435 715 memnode_worklist.push(use);
duke@435 716 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
duke@435 717 memnode_worklist.push(use);
duke@435 718 } else if (use->is_MergeMem()) {
duke@435 719 mergemem_worklist.push(use);
duke@435 720 }
duke@435 721 }
duke@435 722 }
duke@435 723
duke@435 724 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 725 // moving the first node encountered of each instance type to the
duke@435 726 // the input corresponding to its alias index.
duke@435 727 while (mergemem_worklist.length() != 0) {
duke@435 728 Node *n = mergemem_worklist.pop();
duke@435 729 assert(n->is_MergeMem(), "MergeMem node required.");
duke@435 730 MergeMemNode *nmm = n->as_MergeMem();
duke@435 731 // Note: we don't want to use MergeMemStream here because we only want to
duke@435 732 // scan inputs which exist at the start, not ones we add during processing
duke@435 733 uint nslices = nmm->req();
duke@435 734 igvn->hash_delete(nmm);
duke@435 735 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
duke@435 736 Node * mem = nmm->in(i);
duke@435 737 Node * cur = NULL;
duke@435 738 if (mem == NULL || mem->is_top())
duke@435 739 continue;
duke@435 740 while (mem->is_Mem()) {
duke@435 741 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 742 if (at != Type::TOP) {
duke@435 743 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 744 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 745 if (idx == i) {
duke@435 746 if (cur == NULL)
duke@435 747 cur = mem;
duke@435 748 } else {
duke@435 749 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 750 nmm->set_memory_at(idx, mem);
duke@435 751 }
duke@435 752 }
duke@435 753 }
duke@435 754 mem = mem->in(MemNode::Memory);
duke@435 755 }
duke@435 756 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
duke@435 757 if (mem->is_Phi()) {
duke@435 758 // We have encountered a Phi, we need to split the Phi for
duke@435 759 // any instance of the current type if we haven't encountered
duke@435 760 // a value of the instance along the chain.
duke@435 761 for (uint ni = new_index_start; ni < new_index_end; ni++) {
duke@435 762 if((uint)_compile->get_general_index(ni) == i) {
duke@435 763 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
duke@435 764 if (nmm->is_empty_memory(m)) {
kvn@473 765 m = split_memory_phi(mem->as_Phi(), ni, orig_phis, igvn);
kvn@473 766 if (_compile->failing()) {
kvn@473 767 return;
kvn@473 768 }
kvn@473 769 nmm->set_memory_at(ni, m);
duke@435 770 }
duke@435 771 }
duke@435 772 }
duke@435 773 }
duke@435 774 }
duke@435 775 igvn->hash_insert(nmm);
duke@435 776 record_for_optimizer(nmm);
duke@435 777 }
duke@435 778
duke@435 779 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes
duke@435 780 //
duke@435 781 // First update the inputs of any non-instance Phi's from
duke@435 782 // which we split out an instance Phi. Note we don't have
duke@435 783 // to recursively process Phi's encounted on the input memory
duke@435 784 // chains as is done in split_memory_phi() since they will
duke@435 785 // also be processed here.
duke@435 786 while (orig_phis.length() != 0) {
duke@435 787 PhiNode *phi = orig_phis.pop();
duke@435 788 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 789 igvn->hash_delete(phi);
duke@435 790 for (uint i = 1; i < phi->req(); i++) {
duke@435 791 Node *mem = phi->in(i);
duke@435 792 Node *new_mem = find_mem(mem, alias_idx, igvn);
duke@435 793 if (mem != new_mem) {
duke@435 794 phi->set_req(i, new_mem);
duke@435 795 }
duke@435 796 }
duke@435 797 igvn->hash_insert(phi);
duke@435 798 record_for_optimizer(phi);
duke@435 799 }
duke@435 800
duke@435 801 // Update the memory inputs of MemNodes with the value we computed
duke@435 802 // in Phase 2.
duke@435 803 for (int i = 0; i < _nodes->length(); i++) {
duke@435 804 Node *nmem = get_map(i);
duke@435 805 if (nmem != NULL) {
duke@435 806 Node *n = _nodes->at(i)._node;
duke@435 807 if (n != NULL && n->is_Mem()) {
duke@435 808 igvn->hash_delete(n);
duke@435 809 n->set_req(MemNode::Memory, nmem);
duke@435 810 igvn->hash_insert(n);
duke@435 811 record_for_optimizer(n);
duke@435 812 }
duke@435 813 }
duke@435 814 }
duke@435 815 }
duke@435 816
duke@435 817 void ConnectionGraph::compute_escape() {
duke@435 818 GrowableArray<int> worklist;
duke@435 819 GrowableArray<Node *> alloc_worklist;
duke@435 820 VectorSet visited(Thread::current()->resource_area());
duke@435 821 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 822
duke@435 823 // process Phi nodes from the deferred list, they may not have
duke@435 824 while(_deferred.size() > 0) {
duke@435 825 Node * n = _deferred.pop();
duke@435 826 PhiNode * phi = n->as_Phi();
duke@435 827
duke@435 828 process_phi_escape(phi, igvn);
duke@435 829 }
duke@435 830
duke@435 831 VectorSet ptset(Thread::current()->resource_area());
duke@435 832
duke@435 833 // remove deferred edges from the graph and collect
duke@435 834 // information we will need for type splitting
duke@435 835 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
duke@435 836 PointsToNode * ptn = _nodes->adr_at(ni);
duke@435 837 PointsToNode::NodeType nt = ptn->node_type();
duke@435 838
duke@435 839 if (nt == PointsToNode::UnknownType) {
duke@435 840 continue; // not a node we are interested in
duke@435 841 }
duke@435 842 Node *n = ptn->_node;
duke@435 843 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
duke@435 844 remove_deferred(ni);
duke@435 845 if (n->is_AddP()) {
duke@435 846 // if this AddP computes an address which may point to more that one
duke@435 847 // object, nothing the address points to can be a unique type.
duke@435 848 Node *base = n->in(AddPNode::Base);
duke@435 849 ptset.Clear();
duke@435 850 PointsTo(ptset, base, igvn);
duke@435 851 if (ptset.Size() > 1) {
duke@435 852 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 853 PointsToNode *ptaddr = _nodes->adr_at(j.elem);
duke@435 854 ptaddr->_unique_type = false;
duke@435 855 }
duke@435 856 }
duke@435 857 }
duke@435 858 } else if (n->is_Call()) {
duke@435 859 // initialize _escape_state of calls to GlobalEscape
duke@435 860 n->as_Call()->_escape_state = PointsToNode::GlobalEscape;
duke@435 861 // push call on alloc_worlist (alocations are calls)
duke@435 862 // for processing by split_unique_types()
duke@435 863 alloc_worklist.push(n);
duke@435 864 }
duke@435 865 }
duke@435 866 // push all GlobalEscape nodes on the worklist
duke@435 867 for (uint nj = 0; nj < (uint)_nodes->length(); nj++) {
duke@435 868 if (_nodes->at(nj).escape_state() == PointsToNode::GlobalEscape) {
duke@435 869 worklist.append(nj);
duke@435 870 }
duke@435 871 }
duke@435 872 // mark all node reachable from GlobalEscape nodes
duke@435 873 while(worklist.length() > 0) {
duke@435 874 PointsToNode n = _nodes->at(worklist.pop());
duke@435 875 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 876 uint npi = n.edge_target(ei);
duke@435 877 PointsToNode *np = ptnode_adr(npi);
duke@435 878 if (np->escape_state() != PointsToNode::GlobalEscape) {
duke@435 879 np->set_escape_state(PointsToNode::GlobalEscape);
duke@435 880 worklist.append_if_missing(npi);
duke@435 881 }
duke@435 882 }
duke@435 883 }
duke@435 884
duke@435 885 // push all ArgEscape nodes on the worklist
duke@435 886 for (uint nk = 0; nk < (uint)_nodes->length(); nk++) {
duke@435 887 if (_nodes->at(nk).escape_state() == PointsToNode::ArgEscape)
duke@435 888 worklist.push(nk);
duke@435 889 }
duke@435 890 // mark all node reachable from ArgEscape nodes
duke@435 891 while(worklist.length() > 0) {
duke@435 892 PointsToNode n = _nodes->at(worklist.pop());
duke@435 893
duke@435 894 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 895 uint npi = n.edge_target(ei);
duke@435 896 PointsToNode *np = ptnode_adr(npi);
duke@435 897 if (np->escape_state() != PointsToNode::ArgEscape) {
duke@435 898 np->set_escape_state(PointsToNode::ArgEscape);
duke@435 899 worklist.append_if_missing(npi);
duke@435 900 }
duke@435 901 }
duke@435 902 }
duke@435 903 _collecting = false;
duke@435 904
duke@435 905 // Now use the escape information to create unique types for
duke@435 906 // unescaped objects
duke@435 907 split_unique_types(alloc_worklist);
kvn@473 908 if (_compile->failing()) return;
kvn@473 909
kvn@473 910 // Clean up after split unique types.
kvn@473 911 ResourceMark rm;
kvn@473 912 PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
duke@435 913 }
duke@435 914
duke@435 915 Node * ConnectionGraph::skip_casts(Node *n) {
duke@435 916 while(n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
duke@435 917 n = n->in(1);
duke@435 918 }
duke@435 919 return n;
duke@435 920 }
duke@435 921
duke@435 922 void ConnectionGraph::process_phi_escape(PhiNode *phi, PhaseTransform *phase) {
duke@435 923
duke@435 924 if (phi->type()->isa_oopptr() == NULL)
duke@435 925 return; // nothing to do if not an oop
duke@435 926
duke@435 927 PointsToNode *ptadr = ptnode_adr(phi->_idx);
duke@435 928 int incount = phi->req();
duke@435 929 int non_null_inputs = 0;
duke@435 930
duke@435 931 for (int i = 1; i < incount ; i++) {
duke@435 932 if (phi->in(i) != NULL)
duke@435 933 non_null_inputs++;
duke@435 934 }
duke@435 935 if (non_null_inputs == ptadr->_inputs_processed)
duke@435 936 return; // no new inputs since the last time this node was processed,
duke@435 937 // the current information is valid
duke@435 938
duke@435 939 ptadr->_inputs_processed = non_null_inputs; // prevent recursive processing of this node
duke@435 940 for (int j = 1; j < incount ; j++) {
duke@435 941 Node * n = phi->in(j);
duke@435 942 if (n == NULL)
duke@435 943 continue; // ignore NULL
duke@435 944 n = skip_casts(n);
duke@435 945 if (n->is_top() || n == phi)
duke@435 946 continue; // ignore top or inputs which go back this node
duke@435 947 int nopc = n->Opcode();
duke@435 948 PointsToNode npt = _nodes->at(n->_idx);
duke@435 949 if (_nodes->at(n->_idx).node_type() == PointsToNode::JavaObject) {
duke@435 950 add_pointsto_edge(phi->_idx, n->_idx);
duke@435 951 } else {
duke@435 952 add_deferred_edge(phi->_idx, n->_idx);
duke@435 953 }
duke@435 954 }
duke@435 955 }
duke@435 956
duke@435 957 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 958
duke@435 959 _processed.set(call->_idx);
duke@435 960 switch (call->Opcode()) {
duke@435 961
duke@435 962 // arguments to allocation and locking don't escape
duke@435 963 case Op_Allocate:
duke@435 964 case Op_AllocateArray:
duke@435 965 case Op_Lock:
duke@435 966 case Op_Unlock:
duke@435 967 break;
duke@435 968
duke@435 969 case Op_CallStaticJava:
duke@435 970 // For a static call, we know exactly what method is being called.
duke@435 971 // Use bytecode estimator to record the call's escape affects
duke@435 972 {
duke@435 973 ciMethod *meth = call->as_CallJava()->method();
duke@435 974 if (meth != NULL) {
duke@435 975 const TypeTuple * d = call->tf()->domain();
duke@435 976 BCEscapeAnalyzer call_analyzer(meth);
duke@435 977 VectorSet ptset(Thread::current()->resource_area());
duke@435 978 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 979 const Type* at = d->field_at(i);
duke@435 980 int k = i - TypeFunc::Parms;
duke@435 981
duke@435 982 if (at->isa_oopptr() != NULL) {
duke@435 983 Node *arg = skip_casts(call->in(i));
duke@435 984
duke@435 985 if (!call_analyzer.is_arg_stack(k)) {
duke@435 986 // The argument global escapes, mark everything it could point to
duke@435 987 ptset.Clear();
duke@435 988 PointsTo(ptset, arg, phase);
duke@435 989 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 990 uint pt = j.elem;
duke@435 991
duke@435 992 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 993 }
duke@435 994 } else if (!call_analyzer.is_arg_local(k)) {
duke@435 995 // The argument itself doesn't escape, but any fields might
duke@435 996 ptset.Clear();
duke@435 997 PointsTo(ptset, arg, phase);
duke@435 998 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 999 uint pt = j.elem;
duke@435 1000 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
duke@435 1001 }
duke@435 1002 }
duke@435 1003 }
duke@435 1004 }
duke@435 1005 call_analyzer.copy_dependencies(C()->dependencies());
duke@435 1006 break;
duke@435 1007 }
duke@435 1008 // fall-through if not a Java method
duke@435 1009 }
duke@435 1010
duke@435 1011 default:
duke@435 1012 // Some other type of call, assume the worst case: all arguments
duke@435 1013 // globally escape.
duke@435 1014 {
duke@435 1015 // adjust escape state for outgoing arguments
duke@435 1016 const TypeTuple * d = call->tf()->domain();
duke@435 1017 VectorSet ptset(Thread::current()->resource_area());
duke@435 1018 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1019 const Type* at = d->field_at(i);
duke@435 1020
duke@435 1021 if (at->isa_oopptr() != NULL) {
duke@435 1022 Node *arg = skip_casts(call->in(i));
duke@435 1023 ptset.Clear();
duke@435 1024 PointsTo(ptset, arg, phase);
duke@435 1025 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1026 uint pt = j.elem;
duke@435 1027
duke@435 1028 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 1029 }
duke@435 1030 }
duke@435 1031 }
duke@435 1032 }
duke@435 1033 }
duke@435 1034 }
duke@435 1035 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
duke@435 1036 CallNode *call = resproj->in(0)->as_Call();
duke@435 1037
duke@435 1038 PointsToNode *ptadr = ptnode_adr(resproj->_idx);
duke@435 1039
duke@435 1040 ptadr->_node = resproj;
duke@435 1041 ptadr->set_node_type(PointsToNode::LocalVar);
duke@435 1042 set_escape_state(resproj->_idx, PointsToNode::UnknownEscape);
duke@435 1043 _processed.set(resproj->_idx);
duke@435 1044
duke@435 1045 switch (call->Opcode()) {
duke@435 1046 case Op_Allocate:
duke@435 1047 {
duke@435 1048 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1049 const TypeKlassPtr *kt;
duke@435 1050 if (k->Opcode() == Op_LoadKlass) {
duke@435 1051 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1052 } else {
duke@435 1053 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1054 }
duke@435 1055 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1056 ciKlass* cik = kt->klass();
duke@435 1057 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1058
duke@435 1059 PointsToNode *ptadr = ptnode_adr(call->_idx);
duke@435 1060 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1061 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
duke@435 1062 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1063 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1064 } else {
duke@435 1065 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1066 add_pointsto_edge(resproj->_idx, call->_idx);
duke@435 1067 }
duke@435 1068 _processed.set(call->_idx);
duke@435 1069 break;
duke@435 1070 }
duke@435 1071
duke@435 1072 case Op_AllocateArray:
duke@435 1073 {
duke@435 1074 PointsToNode *ptadr = ptnode_adr(call->_idx);
duke@435 1075 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1076 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1077 _processed.set(call->_idx);
duke@435 1078 add_pointsto_edge(resproj->_idx, call->_idx);
duke@435 1079 break;
duke@435 1080 }
duke@435 1081
duke@435 1082 case Op_Lock:
duke@435 1083 case Op_Unlock:
duke@435 1084 break;
duke@435 1085
duke@435 1086 case Op_CallStaticJava:
duke@435 1087 // For a static call, we know exactly what method is being called.
duke@435 1088 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1089 {
duke@435 1090 const TypeTuple *r = call->tf()->range();
duke@435 1091 const Type* ret_type = NULL;
duke@435 1092
duke@435 1093 if (r->cnt() > TypeFunc::Parms)
duke@435 1094 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1095
duke@435 1096 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1097 // _multianewarray functions return a TypeRawPtr.
duke@435 1098 if (ret_type == NULL || ret_type->isa_ptr() == NULL)
duke@435 1099 break; // doesn't return a pointer type
duke@435 1100
duke@435 1101 ciMethod *meth = call->as_CallJava()->method();
duke@435 1102 if (meth == NULL) {
duke@435 1103 // not a Java method, assume global escape
duke@435 1104 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1105 if (resproj != NULL)
duke@435 1106 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1107 } else {
duke@435 1108 BCEscapeAnalyzer call_analyzer(meth);
duke@435 1109 VectorSet ptset(Thread::current()->resource_area());
duke@435 1110
duke@435 1111 if (call_analyzer.is_return_local() && resproj != NULL) {
duke@435 1112 // determine whether any arguments are returned
duke@435 1113 const TypeTuple * d = call->tf()->domain();
duke@435 1114 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1115 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1116 const Type* at = d->field_at(i);
duke@435 1117
duke@435 1118 if (at->isa_oopptr() != NULL) {
duke@435 1119 Node *arg = skip_casts(call->in(i));
duke@435 1120
duke@435 1121 if (call_analyzer.is_arg_returned(i - TypeFunc::Parms)) {
duke@435 1122 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
duke@435 1123 if (arg_esp->node_type() == PointsToNode::JavaObject)
duke@435 1124 add_pointsto_edge(resproj->_idx, arg->_idx);
duke@435 1125 else
duke@435 1126 add_deferred_edge(resproj->_idx, arg->_idx);
duke@435 1127 arg_esp->_hidden_alias = true;
duke@435 1128 }
duke@435 1129 }
duke@435 1130 }
duke@435 1131 } else {
duke@435 1132 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1133 if (resproj != NULL)
duke@435 1134 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1135 }
duke@435 1136 call_analyzer.copy_dependencies(C()->dependencies());
duke@435 1137 }
duke@435 1138 break;
duke@435 1139 }
duke@435 1140
duke@435 1141 default:
duke@435 1142 // Some other type of call, assume the worst case that the
duke@435 1143 // returned value, if any, globally escapes.
duke@435 1144 {
duke@435 1145 const TypeTuple *r = call->tf()->range();
duke@435 1146
duke@435 1147 if (r->cnt() > TypeFunc::Parms) {
duke@435 1148 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1149
duke@435 1150 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1151 // _multianewarray functions return a TypeRawPtr.
duke@435 1152 if (ret_type->isa_ptr() != NULL) {
duke@435 1153 PointsToNode *ptadr = ptnode_adr(call->_idx);
duke@435 1154 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1155 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1156 if (resproj != NULL)
duke@435 1157 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1158 }
duke@435 1159 }
duke@435 1160 }
duke@435 1161 }
duke@435 1162 }
duke@435 1163
duke@435 1164 void ConnectionGraph::record_for_escape_analysis(Node *n) {
duke@435 1165 if (_collecting) {
duke@435 1166 if (n->is_Phi()) {
duke@435 1167 PhiNode *phi = n->as_Phi();
duke@435 1168 const Type *pt = phi->type();
duke@435 1169 if ((pt->isa_oopptr() != NULL) || pt == TypePtr::NULL_PTR) {
duke@435 1170 PointsToNode *ptn = ptnode_adr(phi->_idx);
duke@435 1171 ptn->set_node_type(PointsToNode::LocalVar);
duke@435 1172 ptn->_node = n;
duke@435 1173 _deferred.push(n);
duke@435 1174 }
duke@435 1175 }
duke@435 1176 }
duke@435 1177 }
duke@435 1178
duke@435 1179 void ConnectionGraph::record_escape_work(Node *n, PhaseTransform *phase) {
duke@435 1180
duke@435 1181 int opc = n->Opcode();
duke@435 1182 PointsToNode *ptadr = ptnode_adr(n->_idx);
duke@435 1183
duke@435 1184 if (_processed.test(n->_idx))
duke@435 1185 return;
duke@435 1186
duke@435 1187 ptadr->_node = n;
duke@435 1188 if (n->is_Call()) {
duke@435 1189 CallNode *call = n->as_Call();
duke@435 1190 process_call_arguments(call, phase);
duke@435 1191 return;
duke@435 1192 }
duke@435 1193
duke@435 1194 switch (opc) {
duke@435 1195 case Op_AddP:
duke@435 1196 {
duke@435 1197 Node *base = skip_casts(n->in(AddPNode::Base));
duke@435 1198 ptadr->set_node_type(PointsToNode::Field);
duke@435 1199
duke@435 1200 // create a field edge to this node from everything adr could point to
duke@435 1201 VectorSet ptset(Thread::current()->resource_area());
duke@435 1202 PointsTo(ptset, base, phase);
duke@435 1203 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 1204 uint pt = i.elem;
duke@435 1205 add_field_edge(pt, n->_idx, type_to_offset(phase->type(n)));
duke@435 1206 }
duke@435 1207 break;
duke@435 1208 }
duke@435 1209 case Op_Parm:
duke@435 1210 {
duke@435 1211 ProjNode *nproj = n->as_Proj();
duke@435 1212 uint con = nproj->_con;
duke@435 1213 if (con < TypeFunc::Parms)
duke@435 1214 return;
duke@435 1215 const Type *t = nproj->in(0)->as_Start()->_domain->field_at(con);
duke@435 1216 if (t->isa_ptr() == NULL)
duke@435 1217 return;
duke@435 1218 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1219 if (t->isa_oopptr() != NULL) {
duke@435 1220 set_escape_state(n->_idx, PointsToNode::ArgEscape);
duke@435 1221 } else {
duke@435 1222 // this must be the incoming state of an OSR compile, we have to assume anything
duke@435 1223 // passed in globally escapes
duke@435 1224 assert(_compile->is_osr_compilation(), "bad argument type for non-osr compilation");
duke@435 1225 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
duke@435 1226 }
duke@435 1227 _processed.set(n->_idx);
duke@435 1228 break;
duke@435 1229 }
duke@435 1230 case Op_Phi:
duke@435 1231 {
duke@435 1232 PhiNode *phi = n->as_Phi();
duke@435 1233 if (phi->type()->isa_oopptr() == NULL)
duke@435 1234 return; // nothing to do if not an oop
duke@435 1235 ptadr->set_node_type(PointsToNode::LocalVar);
duke@435 1236 process_phi_escape(phi, phase);
duke@435 1237 break;
duke@435 1238 }
duke@435 1239 case Op_CreateEx:
duke@435 1240 {
duke@435 1241 // assume that all exception objects globally escape
duke@435 1242 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1243 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
duke@435 1244 _processed.set(n->_idx);
duke@435 1245 break;
duke@435 1246 }
duke@435 1247 case Op_ConP:
duke@435 1248 {
duke@435 1249 const Type *t = phase->type(n);
duke@435 1250 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1251 // assume all pointer constants globally escape except for null
duke@435 1252 if (t == TypePtr::NULL_PTR)
duke@435 1253 set_escape_state(n->_idx, PointsToNode::NoEscape);
duke@435 1254 else
duke@435 1255 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
duke@435 1256 _processed.set(n->_idx);
duke@435 1257 break;
duke@435 1258 }
duke@435 1259 case Op_LoadKlass:
duke@435 1260 {
duke@435 1261 ptadr->set_node_type(PointsToNode::JavaObject);
duke@435 1262 set_escape_state(n->_idx, PointsToNode::GlobalEscape);
duke@435 1263 _processed.set(n->_idx);
duke@435 1264 break;
duke@435 1265 }
duke@435 1266 case Op_LoadP:
duke@435 1267 {
duke@435 1268 const Type *t = phase->type(n);
duke@435 1269 if (!t->isa_oopptr())
duke@435 1270 return;
duke@435 1271 ptadr->set_node_type(PointsToNode::LocalVar);
duke@435 1272 set_escape_state(n->_idx, PointsToNode::UnknownEscape);
duke@435 1273
duke@435 1274 Node *adr = skip_casts(n->in(MemNode::Address));
duke@435 1275 const Type *adr_type = phase->type(adr);
duke@435 1276 Node *adr_base = skip_casts((adr->Opcode() == Op_AddP) ? adr->in(AddPNode::Base) : adr);
duke@435 1277
duke@435 1278 // For everything "adr" could point to, create a deferred edge from
duke@435 1279 // this node to each field with the same offset as "adr_type"
duke@435 1280 VectorSet ptset(Thread::current()->resource_area());
duke@435 1281 PointsTo(ptset, adr_base, phase);
duke@435 1282 // If ptset is empty, then this value must have been set outside
duke@435 1283 // this method, so we add the phantom node
duke@435 1284 if (ptset.Size() == 0)
duke@435 1285 ptset.set(_phantom_object);
duke@435 1286 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 1287 uint pt = i.elem;
duke@435 1288 add_deferred_edge_to_fields(n->_idx, pt, type_to_offset(adr_type));
duke@435 1289 }
duke@435 1290 break;
duke@435 1291 }
duke@435 1292 case Op_StoreP:
duke@435 1293 case Op_StorePConditional:
duke@435 1294 case Op_CompareAndSwapP:
duke@435 1295 {
duke@435 1296 Node *adr = n->in(MemNode::Address);
duke@435 1297 Node *val = skip_casts(n->in(MemNode::ValueIn));
duke@435 1298 const Type *adr_type = phase->type(adr);
duke@435 1299 if (!adr_type->isa_oopptr())
duke@435 1300 return;
duke@435 1301
duke@435 1302 assert(adr->Opcode() == Op_AddP, "expecting an AddP");
duke@435 1303 Node *adr_base = adr->in(AddPNode::Base);
duke@435 1304
duke@435 1305 // For everything "adr_base" could point to, create a deferred edge to "val" from each field
duke@435 1306 // with the same offset as "adr_type"
duke@435 1307 VectorSet ptset(Thread::current()->resource_area());
duke@435 1308 PointsTo(ptset, adr_base, phase);
duke@435 1309 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 1310 uint pt = i.elem;
duke@435 1311 add_edge_from_fields(pt, val->_idx, type_to_offset(adr_type));
duke@435 1312 }
duke@435 1313 break;
duke@435 1314 }
duke@435 1315 case Op_Proj:
duke@435 1316 {
duke@435 1317 ProjNode *nproj = n->as_Proj();
duke@435 1318 Node *n0 = nproj->in(0);
duke@435 1319 // we are only interested in the result projection from a call
duke@435 1320 if (nproj->_con == TypeFunc::Parms && n0->is_Call() ) {
duke@435 1321 process_call_result(nproj, phase);
duke@435 1322 }
duke@435 1323
duke@435 1324 break;
duke@435 1325 }
duke@435 1326 case Op_CastPP:
duke@435 1327 case Op_CheckCastPP:
duke@435 1328 {
duke@435 1329 ptadr->set_node_type(PointsToNode::LocalVar);
duke@435 1330 int ti = n->in(1)->_idx;
duke@435 1331 if (_nodes->at(ti).node_type() == PointsToNode::JavaObject) {
duke@435 1332 add_pointsto_edge(n->_idx, ti);
duke@435 1333 } else {
duke@435 1334 add_deferred_edge(n->_idx, ti);
duke@435 1335 }
duke@435 1336 break;
duke@435 1337 }
duke@435 1338 default:
duke@435 1339 ;
duke@435 1340 // nothing to do
duke@435 1341 }
duke@435 1342 }
duke@435 1343
duke@435 1344 void ConnectionGraph::record_escape(Node *n, PhaseTransform *phase) {
duke@435 1345 if (_collecting)
duke@435 1346 record_escape_work(n, phase);
duke@435 1347 }
duke@435 1348
duke@435 1349 #ifndef PRODUCT
duke@435 1350 void ConnectionGraph::dump() {
duke@435 1351 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 1352 bool first = true;
duke@435 1353
duke@435 1354 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
duke@435 1355 PointsToNode *esp = _nodes->adr_at(ni);
duke@435 1356 if (esp->node_type() == PointsToNode::UnknownType || esp->_node == NULL)
duke@435 1357 continue;
duke@435 1358 PointsToNode::EscapeState es = escape_state(esp->_node, igvn);
duke@435 1359 if (es == PointsToNode::NoEscape || (Verbose &&
duke@435 1360 (es != PointsToNode::UnknownEscape || esp->edge_count() != 0))) {
duke@435 1361 // don't print null pointer node which almost every method has
duke@435 1362 if (esp->_node->Opcode() != Op_ConP || igvn->type(esp->_node) != TypePtr::NULL_PTR) {
duke@435 1363 if (first) {
duke@435 1364 tty->print("======== Connection graph for ");
duke@435 1365 C()->method()->print_short_name();
duke@435 1366 tty->cr();
duke@435 1367 first = false;
duke@435 1368 }
duke@435 1369 tty->print("%4d ", ni);
duke@435 1370 esp->dump();
duke@435 1371 }
duke@435 1372 }
duke@435 1373 }
duke@435 1374 }
duke@435 1375 #endif

mercurial