duke@435: /* duke@435: * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved. duke@435: * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. duke@435: * duke@435: * This code is free software; you can redistribute it and/or modify it duke@435: * under the terms of the GNU General Public License version 2 only, as duke@435: * published by the Free Software Foundation. duke@435: * duke@435: * This code is distributed in the hope that it will be useful, but WITHOUT duke@435: * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or duke@435: * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License duke@435: * version 2 for more details (a copy is included in the LICENSE file that duke@435: * accompanied this code). duke@435: * duke@435: * You should have received a copy of the GNU General Public License version duke@435: * 2 along with this work; if not, write to the Free Software Foundation, duke@435: * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. duke@435: * duke@435: * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, duke@435: * CA 95054 USA or visit www.sun.com if you need additional information or duke@435: * have any questions. duke@435: * duke@435: */ duke@435: duke@435: #include "incls/_precompiled.incl" duke@435: #include "incls/_escape.cpp.incl" duke@435: duke@435: uint PointsToNode::edge_target(uint e) const { duke@435: assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index"); duke@435: return (_edges->at(e) >> EdgeShift); duke@435: } duke@435: duke@435: PointsToNode::EdgeType PointsToNode::edge_type(uint e) const { duke@435: assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index"); duke@435: return (EdgeType) (_edges->at(e) & EdgeMask); duke@435: } duke@435: duke@435: void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) { duke@435: uint v = (targIdx << EdgeShift) + ((uint) et); duke@435: if (_edges == NULL) { duke@435: Arena *a = Compile::current()->comp_arena(); duke@435: _edges = new(a) GrowableArray(a, INITIAL_EDGE_COUNT, 0, 0); duke@435: } duke@435: _edges->append_if_missing(v); duke@435: } duke@435: duke@435: void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) { duke@435: uint v = (targIdx << EdgeShift) + ((uint) et); duke@435: duke@435: _edges->remove(v); duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: static char *node_type_names[] = { duke@435: "UnknownType", duke@435: "JavaObject", duke@435: "LocalVar", duke@435: "Field" duke@435: }; duke@435: duke@435: static char *esc_names[] = { duke@435: "UnknownEscape", duke@435: "NoEscape ", duke@435: "ArgEscape ", duke@435: "GlobalEscape " duke@435: }; duke@435: duke@435: static char *edge_type_suffix[] = { duke@435: "?", // UnknownEdge duke@435: "P", // PointsToEdge duke@435: "D", // DeferredEdge duke@435: "F" // FieldEdge duke@435: }; duke@435: duke@435: void PointsToNode::dump() const { duke@435: NodeType nt = node_type(); duke@435: EscapeState es = escape_state(); duke@435: tty->print("%s %s [[", node_type_names[(int) nt], esc_names[(int) es]); duke@435: for (uint i = 0; i < edge_count(); i++) { duke@435: tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]); duke@435: } duke@435: tty->print("]] "); duke@435: if (_node == NULL) duke@435: tty->print_cr(""); duke@435: else duke@435: _node->dump(); duke@435: } duke@435: #endif duke@435: duke@435: ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) { duke@435: _collecting = true; duke@435: this->_compile = C; duke@435: const PointsToNode &dummy = PointsToNode(); duke@435: _nodes = new(C->comp_arena()) GrowableArray(C->comp_arena(), (int) INITIAL_NODE_COUNT, 0, dummy); duke@435: _phantom_object = C->top()->_idx; duke@435: PointsToNode *phn = ptnode_adr(_phantom_object); duke@435: phn->set_node_type(PointsToNode::JavaObject); duke@435: phn->set_escape_state(PointsToNode::GlobalEscape); duke@435: } duke@435: duke@435: void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge"); duke@435: assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge"); duke@435: f->add_edge(to_i, PointsToNode::PointsToEdge); duke@435: } duke@435: duke@435: void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge"); duke@435: assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge"); duke@435: // don't add a self-referential edge, this can occur during removal of duke@435: // deferred edges duke@435: if (from_i != to_i) duke@435: f->add_edge(to_i, PointsToNode::DeferredEdge); duke@435: } duke@435: duke@435: int ConnectionGraph::type_to_offset(const Type *t) { duke@435: const TypePtr *t_ptr = t->isa_ptr(); duke@435: assert(t_ptr != NULL, "must be a pointer type"); duke@435: return t_ptr->offset(); duke@435: } duke@435: duke@435: void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) { duke@435: PointsToNode *f = ptnode_adr(from_i); duke@435: PointsToNode *t = ptnode_adr(to_i); duke@435: duke@435: assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set"); duke@435: assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge"); duke@435: assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge"); duke@435: assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets"); duke@435: t->set_offset(offset); duke@435: duke@435: f->add_edge(to_i, PointsToNode::FieldEdge); duke@435: } duke@435: duke@435: void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) { duke@435: PointsToNode *npt = ptnode_adr(ni); duke@435: PointsToNode::EscapeState old_es = npt->escape_state(); duke@435: if (es > old_es) duke@435: npt->set_escape_state(es); duke@435: } duke@435: duke@435: PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) { duke@435: uint idx = n->_idx; duke@435: PointsToNode::EscapeState es; duke@435: duke@435: // If we are still collecting we don't know the answer yet duke@435: if (_collecting) duke@435: return PointsToNode::UnknownEscape; duke@435: duke@435: // if the node was created after the escape computation, return duke@435: // UnknownEscape duke@435: if (idx >= (uint)_nodes->length()) duke@435: return PointsToNode::UnknownEscape; duke@435: duke@435: es = _nodes->at_grow(idx).escape_state(); duke@435: duke@435: // if we have already computed a value, return it duke@435: if (es != PointsToNode::UnknownEscape) duke@435: return es; duke@435: duke@435: // compute max escape state of anything this node could point to duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, n, phase); duke@435: for( VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i ) { duke@435: uint pt = i.elem; duke@435: PointsToNode::EscapeState pes = _nodes->at(pt).escape_state(); duke@435: if (pes > es) duke@435: es = pes; duke@435: } duke@435: // cache the computed escape state duke@435: assert(es != PointsToNode::UnknownEscape, "should have computed an escape state"); duke@435: _nodes->adr_at(idx)->set_escape_state(es); duke@435: return es; duke@435: } duke@435: duke@435: void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) { duke@435: VectorSet visited(Thread::current()->resource_area()); duke@435: GrowableArray worklist; duke@435: duke@435: n = skip_casts(n); duke@435: PointsToNode npt = _nodes->at_grow(n->_idx); duke@435: duke@435: // If we have a JavaObject, return just that object duke@435: if (npt.node_type() == PointsToNode::JavaObject) { duke@435: ptset.set(n->_idx); duke@435: return; duke@435: } duke@435: // we may have a Phi which has not been processed duke@435: if (npt._node == NULL) { duke@435: assert(n->is_Phi(), "unprocessed node must be a Phi"); duke@435: record_for_escape_analysis(n); duke@435: npt = _nodes->at(n->_idx); duke@435: } duke@435: worklist.push(n->_idx); duke@435: while(worklist.length() > 0) { duke@435: int ni = worklist.pop(); duke@435: PointsToNode pn = _nodes->at_grow(ni); duke@435: if (!visited.test(ni)) { duke@435: visited.set(ni); duke@435: duke@435: // ensure that all inputs of a Phi have been processed duke@435: if (_collecting && pn._node->is_Phi()) { duke@435: PhiNode *phi = pn._node->as_Phi(); duke@435: process_phi_escape(phi, phase); duke@435: } duke@435: duke@435: int edges_processed = 0; duke@435: for (uint e = 0; e < pn.edge_count(); e++) { duke@435: PointsToNode::EdgeType et = pn.edge_type(e); duke@435: if (et == PointsToNode::PointsToEdge) { duke@435: ptset.set(pn.edge_target(e)); duke@435: edges_processed++; duke@435: } else if (et == PointsToNode::DeferredEdge) { duke@435: worklist.push(pn.edge_target(e)); duke@435: edges_processed++; duke@435: } duke@435: } duke@435: if (edges_processed == 0) { duke@435: // no deferred or pointsto edges found. Assume the value was set outside duke@435: // this method. Add the phantom object to the pointsto set. duke@435: ptset.set(_phantom_object); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::remove_deferred(uint ni) { duke@435: VectorSet visited(Thread::current()->resource_area()); duke@435: duke@435: uint i = 0; duke@435: PointsToNode *ptn = ptnode_adr(ni); duke@435: duke@435: while(i < ptn->edge_count()) { duke@435: if (ptn->edge_type(i) != PointsToNode::DeferredEdge) { duke@435: i++; duke@435: } else { duke@435: uint t = ptn->edge_target(i); duke@435: PointsToNode *ptt = ptnode_adr(t); duke@435: ptn->remove_edge(t, PointsToNode::DeferredEdge); duke@435: if(!visited.test(t)) { duke@435: visited.set(t); duke@435: for (uint j = 0; j < ptt->edge_count(); j++) { duke@435: uint n1 = ptt->edge_target(j); duke@435: PointsToNode *pt1 = ptnode_adr(n1); duke@435: switch(ptt->edge_type(j)) { duke@435: case PointsToNode::PointsToEdge: duke@435: add_pointsto_edge(ni, n1); duke@435: break; duke@435: case PointsToNode::DeferredEdge: duke@435: add_deferred_edge(ni, n1); duke@435: break; duke@435: case PointsToNode::FieldEdge: duke@435: assert(false, "invalid connection graph"); duke@435: break; duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: duke@435: // Add an edge to node given by "to_i" from any field of adr_i whose offset duke@435: // matches "offset" A deferred edge is added if to_i is a LocalVar, and duke@435: // a pointsto edge is added if it is a JavaObject duke@435: duke@435: void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) { duke@435: PointsToNode an = _nodes->at_grow(adr_i); duke@435: PointsToNode to = _nodes->at_grow(to_i); duke@435: bool deferred = (to.node_type() == PointsToNode::LocalVar); duke@435: duke@435: for (uint fe = 0; fe < an.edge_count(); fe++) { duke@435: assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); duke@435: int fi = an.edge_target(fe); duke@435: PointsToNode pf = _nodes->at_grow(fi); duke@435: int po = pf.offset(); duke@435: if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { duke@435: if (deferred) duke@435: add_deferred_edge(fi, to_i); duke@435: else duke@435: add_pointsto_edge(fi, to_i); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // Add a deferred edge from node given by "from_i" to any field of adr_i whose offset duke@435: // matches "offset" duke@435: void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) { duke@435: PointsToNode an = _nodes->at_grow(adr_i); duke@435: for (uint fe = 0; fe < an.edge_count(); fe++) { duke@435: assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); duke@435: int fi = an.edge_target(fe); duke@435: PointsToNode pf = _nodes->at_grow(fi); duke@435: int po = pf.offset(); duke@435: if (pf.edge_count() == 0) { duke@435: // we have not seen any stores to this field, assume it was set outside this method duke@435: add_pointsto_edge(fi, _phantom_object); duke@435: } duke@435: if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { duke@435: add_deferred_edge(from_i, fi); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // duke@435: // Search memory chain of "mem" to find a MemNode whose address duke@435: // is the specified alias index. Returns the MemNode found or the duke@435: // first non-MemNode encountered. duke@435: // duke@435: Node *ConnectionGraph::find_mem(Node *mem, int alias_idx, PhaseGVN *igvn) { duke@435: if (mem == NULL) duke@435: return mem; duke@435: while (mem->is_Mem()) { duke@435: const Type *at = igvn->type(mem->in(MemNode::Address)); duke@435: if (at != Type::TOP) { duke@435: assert (at->isa_ptr() != NULL, "pointer type required."); duke@435: int idx = _compile->get_alias_index(at->is_ptr()); duke@435: if (idx == alias_idx) duke@435: break; duke@435: } duke@435: mem = mem->in(MemNode::Memory); duke@435: } duke@435: return mem; duke@435: } duke@435: duke@435: // duke@435: // Adjust the type and inputs of an AddP which computes the duke@435: // address of a field of an instance duke@435: // duke@435: void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) { duke@435: const TypeOopPtr *t = igvn->type(addp)->isa_oopptr(); duke@435: const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr(); duke@435: assert(t != NULL, "expecting oopptr"); duke@435: assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr"); duke@435: uint inst_id = base_t->instance_id(); duke@435: assert(!t->is_instance() || t->instance_id() == inst_id, duke@435: "old type must be non-instance or match new type"); duke@435: const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr(); duke@435: // ensure an alias index is allocated for the instance type duke@435: int alias_idx = _compile->get_alias_index(tinst); duke@435: igvn->set_type(addp, tinst); duke@435: // record the allocation in the node map duke@435: set_map(addp->_idx, get_map(base->_idx)); duke@435: // if the Address input is not the appropriate instance type (due to intervening duke@435: // casts,) insert a cast duke@435: Node *adr = addp->in(AddPNode::Address); duke@435: const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr(); duke@435: if (atype->instance_id() != inst_id) { duke@435: assert(!atype->is_instance(), "no conflicting instances"); duke@435: const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr(); duke@435: Node *acast = new (_compile, 2) CastPPNode(adr, new_atype); duke@435: acast->set_req(0, adr->in(0)); duke@435: igvn->set_type(acast, new_atype); duke@435: record_for_optimizer(acast); duke@435: Node *bcast = acast; duke@435: Node *abase = addp->in(AddPNode::Base); duke@435: if (abase != adr) { duke@435: bcast = new (_compile, 2) CastPPNode(abase, base_t); duke@435: bcast->set_req(0, abase->in(0)); duke@435: igvn->set_type(bcast, base_t); duke@435: record_for_optimizer(bcast); duke@435: } duke@435: igvn->hash_delete(addp); duke@435: addp->set_req(AddPNode::Base, bcast); duke@435: addp->set_req(AddPNode::Address, acast); duke@435: igvn->hash_insert(addp); duke@435: record_for_optimizer(addp); duke@435: } duke@435: } duke@435: duke@435: // duke@435: // Create a new version of orig_phi if necessary. Returns either the newly duke@435: // created phi or an existing phi. Sets create_new to indicate wheter a new duke@435: // phi was created. Cache the last newly created phi in the node map. duke@435: // duke@435: PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) { duke@435: Compile *C = _compile; duke@435: new_created = false; duke@435: int phi_alias_idx = C->get_alias_index(orig_phi->adr_type()); duke@435: // nothing to do if orig_phi is bottom memory or matches alias_idx duke@435: if (phi_alias_idx == Compile::AliasIdxBot || phi_alias_idx == alias_idx) { duke@435: return orig_phi; duke@435: } duke@435: // have we already created a Phi for this alias index? duke@435: PhiNode *result = get_map_phi(orig_phi->_idx); duke@435: const TypePtr *atype = C->get_adr_type(alias_idx); duke@435: if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) { duke@435: return result; duke@435: } kvn@473: if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) { kvn@473: if (C->do_escape_analysis() == true && !C->failing()) { kvn@473: // Retry compilation without escape analysis. kvn@473: // If this is the first failure, the sentinel string will "stick" kvn@473: // to the Compile object, and the C2Compiler will see it and retry. kvn@473: C->record_failure(C2Compiler::retry_no_escape_analysis()); kvn@473: } kvn@473: return NULL; kvn@473: } duke@435: duke@435: orig_phi_worklist.append_if_missing(orig_phi); duke@435: result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype); duke@435: set_map_phi(orig_phi->_idx, result); duke@435: igvn->set_type(result, result->bottom_type()); duke@435: record_for_optimizer(result); duke@435: new_created = true; duke@435: return result; duke@435: } duke@435: duke@435: // duke@435: // Return a new version of Memory Phi "orig_phi" with the inputs having the duke@435: // specified alias index. duke@435: // duke@435: PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray &orig_phi_worklist, PhaseGVN *igvn) { duke@435: duke@435: assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory"); duke@435: Compile *C = _compile; duke@435: bool new_phi_created; duke@435: PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created); duke@435: if (!new_phi_created) { duke@435: return result; duke@435: } duke@435: duke@435: GrowableArray phi_list; duke@435: GrowableArray cur_input; duke@435: duke@435: PhiNode *phi = orig_phi; duke@435: uint idx = 1; duke@435: bool finished = false; duke@435: while(!finished) { duke@435: while (idx < phi->req()) { duke@435: Node *mem = find_mem(phi->in(idx), alias_idx, igvn); duke@435: if (mem != NULL && mem->is_Phi()) { duke@435: PhiNode *nphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created); duke@435: if (new_phi_created) { duke@435: // found an phi for which we created a new split, push current one on worklist and begin duke@435: // processing new one duke@435: phi_list.push(phi); duke@435: cur_input.push(idx); duke@435: phi = mem->as_Phi(); duke@435: result = nphi; duke@435: idx = 1; duke@435: continue; duke@435: } else { duke@435: mem = nphi; duke@435: } duke@435: } kvn@473: if (C->failing()) { kvn@473: return NULL; kvn@473: } duke@435: result->set_req(idx++, mem); duke@435: } duke@435: #ifdef ASSERT duke@435: // verify that the new Phi has an input for each input of the original duke@435: assert( phi->req() == result->req(), "must have same number of inputs."); duke@435: assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match"); duke@435: for (uint i = 1; i < phi->req(); i++) { duke@435: assert((phi->in(i) == NULL) == (result->in(i) == NULL), "inputs must correspond."); duke@435: } duke@435: #endif duke@435: // we have finished processing a Phi, see if there are any more to do duke@435: finished = (phi_list.length() == 0 ); duke@435: if (!finished) { duke@435: phi = phi_list.pop(); duke@435: idx = cur_input.pop(); duke@435: PhiNode *prev_phi = get_map_phi(phi->_idx); duke@435: prev_phi->set_req(idx++, result); duke@435: result = prev_phi; duke@435: } duke@435: } duke@435: return result; duke@435: } duke@435: duke@435: // duke@435: // Convert the types of unescaped object to instance types where possible, duke@435: // propagate the new type information through the graph, and update memory duke@435: // edges and MergeMem inputs to reflect the new type. duke@435: // duke@435: // We start with allocations (and calls which may be allocations) on alloc_worklist. duke@435: // The processing is done in 4 phases: duke@435: // duke@435: // Phase 1: Process possible allocations from alloc_worklist. Create instance duke@435: // types for the CheckCastPP for allocations where possible. duke@435: // Propagate the the new types through users as follows: duke@435: // casts and Phi: push users on alloc_worklist duke@435: // AddP: cast Base and Address inputs to the instance type duke@435: // push any AddP users on alloc_worklist and push any memnode duke@435: // users onto memnode_worklist. duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // search the Memory chain for a store with the appropriate type duke@435: // address type. If a Phi is found, create a new version with duke@435: // the approriate memory slices from each of the Phi inputs. duke@435: // For stores, process the users as follows: duke@435: // MemNode: push on memnode_worklist duke@435: // MergeMem: push on mergemem_worklist duke@435: // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice duke@435: // moving the first node encountered of each instance type to the duke@435: // the input corresponding to its alias index. duke@435: // appropriate memory slice. duke@435: // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes. duke@435: // duke@435: // In the following example, the CheckCastPP nodes are the cast of allocation duke@435: // results and the allocation of node 29 is unescaped and eligible to be an duke@435: // instance type. duke@435: // duke@435: // We start with: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=4 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=4 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=4 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=4 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // duke@435: // Phase 1 creates an instance type for node 29 assigning it an instance id of 24 duke@435: // and creating a new alias index for node 30. This gives: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 40 30 ... alias_index=6 duke@435: // 60 StoreP 45 50 20 ... alias_index=4 duke@435: // 70 LoadP _ 60 30 ... alias_index=6 duke@435: // 80 Phi 75 50 60 Memory alias_index=4 duke@435: // 90 LoadP _ 80 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: // In phase 2, new memory inputs are computed for the loads and stores, duke@435: // And a new version of the phi is created. In phase 4, the inputs to duke@435: // node 80 are updated and then the memory nodes are updated with the duke@435: // values computed in phase 2. This results in: duke@435: // duke@435: // 7 Parm #memory duke@435: // 10 ConI "12" duke@435: // 19 CheckCastPP "Foo" duke@435: // 20 AddP _ 19 19 10 Foo+12 alias_index=4 duke@435: // 29 CheckCastPP "Foo" iid=24 duke@435: // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24 duke@435: // duke@435: // 40 StoreP 25 7 20 ... alias_index=4 duke@435: // 50 StoreP 35 7 30 ... alias_index=6 duke@435: // 60 StoreP 45 40 20 ... alias_index=4 duke@435: // 70 LoadP _ 50 30 ... alias_index=6 duke@435: // 80 Phi 75 40 60 Memory alias_index=4 duke@435: // 120 Phi 75 50 50 Memory alias_index=6 duke@435: // 90 LoadP _ 120 30 ... alias_index=6 duke@435: // 100 LoadP _ 80 20 ... alias_index=4 duke@435: // duke@435: void ConnectionGraph::split_unique_types(GrowableArray &alloc_worklist) { duke@435: GrowableArray memnode_worklist; duke@435: GrowableArray mergemem_worklist; duke@435: GrowableArray orig_phis; duke@435: PhaseGVN *igvn = _compile->initial_gvn(); duke@435: uint new_index_start = (uint) _compile->num_alias_types(); duke@435: VectorSet visited(Thread::current()->resource_area()); duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: duke@435: // Phase 1: Process possible allocations from alloc_worklist. Create instance duke@435: // types for the CheckCastPP for allocations where possible. duke@435: while (alloc_worklist.length() != 0) { duke@435: Node *n = alloc_worklist.pop(); duke@435: uint ni = n->_idx; duke@435: if (n->is_Call()) { duke@435: CallNode *alloc = n->as_Call(); duke@435: // copy escape information to call node duke@435: PointsToNode ptn = _nodes->at(alloc->_idx); duke@435: PointsToNode::EscapeState es = escape_state(alloc, igvn); duke@435: alloc->_escape_state = es; duke@435: // find CheckCastPP of call return value duke@435: n = alloc->proj_out(TypeFunc::Parms); duke@435: if (n != NULL && n->outcnt() == 1) { duke@435: n = n->unique_out(); duke@435: if (n->Opcode() != Op_CheckCastPP) { duke@435: continue; duke@435: } duke@435: } else { duke@435: continue; duke@435: } duke@435: // we have an allocation or call which returns a Java object, see if it is unescaped duke@435: if (es != PointsToNode::NoEscape || !ptn._unique_type) { duke@435: continue; // can't make a unique type duke@435: } kvn@474: if (alloc->is_Allocate()) { kvn@474: // Set the scalar_replaceable flag before the next check. kvn@474: alloc->as_Allocate()->_is_scalar_replaceable = true; kvn@474: } kvn@474: duke@435: set_map(alloc->_idx, n); duke@435: set_map(n->_idx, alloc); duke@435: const TypeInstPtr *t = igvn->type(n)->isa_instptr(); duke@435: // Unique types which are arrays are not currently supported. duke@435: // The check for AllocateArray is needed in case an array duke@435: // allocation is immediately cast to Object duke@435: if (t == NULL || alloc->is_AllocateArray()) duke@435: continue; // not a TypeInstPtr duke@435: const TypeOopPtr *tinst = t->cast_to_instance(ni); duke@435: igvn->hash_delete(n); duke@435: igvn->set_type(n, tinst); duke@435: n->raise_bottom_type(tinst); duke@435: igvn->hash_insert(n); duke@435: } else if (n->is_AddP()) { duke@435: ptset.Clear(); duke@435: PointsTo(ptset, n->in(AddPNode::Address), igvn); duke@435: assert(ptset.Size() == 1, "AddP address is unique"); duke@435: Node *base = get_map(ptset.getelem()); duke@435: split_AddP(n, base, igvn); duke@435: } else if (n->is_Phi() || n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) { duke@435: if (visited.test_set(n->_idx)) { duke@435: assert(n->is_Phi(), "loops only through Phi's"); duke@435: continue; // already processed duke@435: } duke@435: ptset.Clear(); duke@435: PointsTo(ptset, n, igvn); duke@435: if (ptset.Size() == 1) { duke@435: TypeNode *tn = n->as_Type(); duke@435: Node *val = get_map(ptset.getelem()); duke@435: const TypeInstPtr *val_t = igvn->type(val)->isa_instptr();; duke@435: assert(val_t != NULL && val_t->is_instance(), "instance type expected."); duke@435: const TypeInstPtr *tn_t = igvn->type(tn)->isa_instptr();; duke@435: duke@435: if (tn_t != NULL && val_t->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) { duke@435: igvn->hash_delete(tn); duke@435: igvn->set_type(tn, val_t); duke@435: tn->set_type(val_t); duke@435: igvn->hash_insert(tn); duke@435: } duke@435: } duke@435: } else { duke@435: continue; duke@435: } duke@435: // push users on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if(use->is_Mem() && use->in(MemNode::Address) == n) { duke@435: memnode_worklist.push(use); duke@435: } else if (use->is_AddP() || use->is_Phi() || use->Opcode() == Op_CastPP || use->Opcode() == Op_CheckCastPP) { duke@435: alloc_worklist.push(use); duke@435: } duke@435: } duke@435: duke@435: } duke@435: uint new_index_end = (uint) _compile->num_alias_types(); duke@435: duke@435: // Phase 2: Process MemNode's from memnode_worklist. compute new address type and duke@435: // compute new values for Memory inputs (the Memory inputs are not duke@435: // actually updated until phase 4.) duke@435: if (memnode_worklist.length() == 0) duke@435: return; // nothing to do duke@435: duke@435: duke@435: while (memnode_worklist.length() != 0) { duke@435: Node *n = memnode_worklist.pop(); duke@435: if (n->is_Phi()) { duke@435: assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required"); duke@435: // we don't need to do anything, but the users must be pushed if we haven't processed duke@435: // this Phi before duke@435: if (visited.test_set(n->_idx)) duke@435: continue; duke@435: } else { duke@435: assert(n->is_Mem(), "memory node required."); duke@435: Node *addr = n->in(MemNode::Address); duke@435: const Type *addr_t = igvn->type(addr); duke@435: if (addr_t == Type::TOP) duke@435: continue; duke@435: assert (addr_t->isa_ptr() != NULL, "pointer type required."); duke@435: int alias_idx = _compile->get_alias_index(addr_t->is_ptr()); duke@435: Node *mem = find_mem(n->in(MemNode::Memory), alias_idx, igvn); duke@435: if (mem->is_Phi()) { duke@435: mem = split_memory_phi(mem->as_Phi(), alias_idx, orig_phis, igvn); duke@435: } kvn@473: if (_compile->failing()) { kvn@473: return; kvn@473: } duke@435: if (mem != n->in(MemNode::Memory)) duke@435: set_map(n->_idx, mem); duke@435: if (n->is_Load()) { duke@435: continue; // don't push users duke@435: } else if (n->is_LoadStore()) { duke@435: // get the memory projection duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if (use->Opcode() == Op_SCMemProj) { duke@435: n = use; duke@435: break; duke@435: } duke@435: } duke@435: assert(n->Opcode() == Op_SCMemProj, "memory projection required"); duke@435: } duke@435: } duke@435: // push user on appropriate worklist duke@435: for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { duke@435: Node *use = n->fast_out(i); duke@435: if (use->is_Phi()) { duke@435: memnode_worklist.push(use); duke@435: } else if(use->is_Mem() && use->in(MemNode::Memory) == n) { duke@435: memnode_worklist.push(use); duke@435: } else if (use->is_MergeMem()) { duke@435: mergemem_worklist.push(use); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice duke@435: // moving the first node encountered of each instance type to the duke@435: // the input corresponding to its alias index. duke@435: while (mergemem_worklist.length() != 0) { duke@435: Node *n = mergemem_worklist.pop(); duke@435: assert(n->is_MergeMem(), "MergeMem node required."); duke@435: MergeMemNode *nmm = n->as_MergeMem(); duke@435: // Note: we don't want to use MergeMemStream here because we only want to duke@435: // scan inputs which exist at the start, not ones we add during processing duke@435: uint nslices = nmm->req(); duke@435: igvn->hash_delete(nmm); duke@435: for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) { duke@435: Node * mem = nmm->in(i); duke@435: Node * cur = NULL; duke@435: if (mem == NULL || mem->is_top()) duke@435: continue; duke@435: while (mem->is_Mem()) { duke@435: const Type *at = igvn->type(mem->in(MemNode::Address)); duke@435: if (at != Type::TOP) { duke@435: assert (at->isa_ptr() != NULL, "pointer type required."); duke@435: uint idx = (uint)_compile->get_alias_index(at->is_ptr()); duke@435: if (idx == i) { duke@435: if (cur == NULL) duke@435: cur = mem; duke@435: } else { duke@435: if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) { duke@435: nmm->set_memory_at(idx, mem); duke@435: } duke@435: } duke@435: } duke@435: mem = mem->in(MemNode::Memory); duke@435: } duke@435: nmm->set_memory_at(i, (cur != NULL) ? cur : mem); duke@435: if (mem->is_Phi()) { duke@435: // We have encountered a Phi, we need to split the Phi for duke@435: // any instance of the current type if we haven't encountered duke@435: // a value of the instance along the chain. duke@435: for (uint ni = new_index_start; ni < new_index_end; ni++) { duke@435: if((uint)_compile->get_general_index(ni) == i) { duke@435: Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni); duke@435: if (nmm->is_empty_memory(m)) { kvn@473: m = split_memory_phi(mem->as_Phi(), ni, orig_phis, igvn); kvn@473: if (_compile->failing()) { kvn@473: return; kvn@473: } kvn@473: nmm->set_memory_at(ni, m); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: igvn->hash_insert(nmm); duke@435: record_for_optimizer(nmm); duke@435: } duke@435: duke@435: // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes duke@435: // duke@435: // First update the inputs of any non-instance Phi's from duke@435: // which we split out an instance Phi. Note we don't have duke@435: // to recursively process Phi's encounted on the input memory duke@435: // chains as is done in split_memory_phi() since they will duke@435: // also be processed here. duke@435: while (orig_phis.length() != 0) { duke@435: PhiNode *phi = orig_phis.pop(); duke@435: int alias_idx = _compile->get_alias_index(phi->adr_type()); duke@435: igvn->hash_delete(phi); duke@435: for (uint i = 1; i < phi->req(); i++) { duke@435: Node *mem = phi->in(i); duke@435: Node *new_mem = find_mem(mem, alias_idx, igvn); duke@435: if (mem != new_mem) { duke@435: phi->set_req(i, new_mem); duke@435: } duke@435: } duke@435: igvn->hash_insert(phi); duke@435: record_for_optimizer(phi); duke@435: } duke@435: duke@435: // Update the memory inputs of MemNodes with the value we computed duke@435: // in Phase 2. duke@435: for (int i = 0; i < _nodes->length(); i++) { duke@435: Node *nmem = get_map(i); duke@435: if (nmem != NULL) { duke@435: Node *n = _nodes->at(i)._node; duke@435: if (n != NULL && n->is_Mem()) { duke@435: igvn->hash_delete(n); duke@435: n->set_req(MemNode::Memory, nmem); duke@435: igvn->hash_insert(n); duke@435: record_for_optimizer(n); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::compute_escape() { duke@435: GrowableArray worklist; duke@435: GrowableArray alloc_worklist; duke@435: VectorSet visited(Thread::current()->resource_area()); duke@435: PhaseGVN *igvn = _compile->initial_gvn(); duke@435: duke@435: // process Phi nodes from the deferred list, they may not have duke@435: while(_deferred.size() > 0) { duke@435: Node * n = _deferred.pop(); duke@435: PhiNode * phi = n->as_Phi(); duke@435: duke@435: process_phi_escape(phi, igvn); duke@435: } duke@435: duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: duke@435: // remove deferred edges from the graph and collect duke@435: // information we will need for type splitting duke@435: for (uint ni = 0; ni < (uint)_nodes->length(); ni++) { duke@435: PointsToNode * ptn = _nodes->adr_at(ni); duke@435: PointsToNode::NodeType nt = ptn->node_type(); duke@435: duke@435: if (nt == PointsToNode::UnknownType) { duke@435: continue; // not a node we are interested in duke@435: } duke@435: Node *n = ptn->_node; duke@435: if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) { duke@435: remove_deferred(ni); duke@435: if (n->is_AddP()) { duke@435: // if this AddP computes an address which may point to more that one duke@435: // object, nothing the address points to can be a unique type. duke@435: Node *base = n->in(AddPNode::Base); duke@435: ptset.Clear(); duke@435: PointsTo(ptset, base, igvn); duke@435: if (ptset.Size() > 1) { duke@435: for( VectorSetI j(&ptset); j.test(); ++j ) { duke@435: PointsToNode *ptaddr = _nodes->adr_at(j.elem); duke@435: ptaddr->_unique_type = false; duke@435: } duke@435: } duke@435: } duke@435: } else if (n->is_Call()) { duke@435: // initialize _escape_state of calls to GlobalEscape duke@435: n->as_Call()->_escape_state = PointsToNode::GlobalEscape; duke@435: // push call on alloc_worlist (alocations are calls) duke@435: // for processing by split_unique_types() duke@435: alloc_worklist.push(n); duke@435: } duke@435: } duke@435: // push all GlobalEscape nodes on the worklist duke@435: for (uint nj = 0; nj < (uint)_nodes->length(); nj++) { duke@435: if (_nodes->at(nj).escape_state() == PointsToNode::GlobalEscape) { duke@435: worklist.append(nj); duke@435: } duke@435: } duke@435: // mark all node reachable from GlobalEscape nodes duke@435: while(worklist.length() > 0) { duke@435: PointsToNode n = _nodes->at(worklist.pop()); duke@435: for (uint ei = 0; ei < n.edge_count(); ei++) { duke@435: uint npi = n.edge_target(ei); duke@435: PointsToNode *np = ptnode_adr(npi); duke@435: if (np->escape_state() != PointsToNode::GlobalEscape) { duke@435: np->set_escape_state(PointsToNode::GlobalEscape); duke@435: worklist.append_if_missing(npi); duke@435: } duke@435: } duke@435: } duke@435: duke@435: // push all ArgEscape nodes on the worklist duke@435: for (uint nk = 0; nk < (uint)_nodes->length(); nk++) { duke@435: if (_nodes->at(nk).escape_state() == PointsToNode::ArgEscape) duke@435: worklist.push(nk); duke@435: } duke@435: // mark all node reachable from ArgEscape nodes duke@435: while(worklist.length() > 0) { duke@435: PointsToNode n = _nodes->at(worklist.pop()); duke@435: duke@435: for (uint ei = 0; ei < n.edge_count(); ei++) { duke@435: uint npi = n.edge_target(ei); duke@435: PointsToNode *np = ptnode_adr(npi); duke@435: if (np->escape_state() != PointsToNode::ArgEscape) { duke@435: np->set_escape_state(PointsToNode::ArgEscape); duke@435: worklist.append_if_missing(npi); duke@435: } duke@435: } duke@435: } duke@435: _collecting = false; duke@435: duke@435: // Now use the escape information to create unique types for duke@435: // unescaped objects duke@435: split_unique_types(alloc_worklist); kvn@473: if (_compile->failing()) return; kvn@473: kvn@473: // Clean up after split unique types. kvn@473: ResourceMark rm; kvn@473: PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn()); duke@435: } duke@435: duke@435: Node * ConnectionGraph::skip_casts(Node *n) { duke@435: while(n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) { duke@435: n = n->in(1); duke@435: } duke@435: return n; duke@435: } duke@435: duke@435: void ConnectionGraph::process_phi_escape(PhiNode *phi, PhaseTransform *phase) { duke@435: duke@435: if (phi->type()->isa_oopptr() == NULL) duke@435: return; // nothing to do if not an oop duke@435: duke@435: PointsToNode *ptadr = ptnode_adr(phi->_idx); duke@435: int incount = phi->req(); duke@435: int non_null_inputs = 0; duke@435: duke@435: for (int i = 1; i < incount ; i++) { duke@435: if (phi->in(i) != NULL) duke@435: non_null_inputs++; duke@435: } duke@435: if (non_null_inputs == ptadr->_inputs_processed) duke@435: return; // no new inputs since the last time this node was processed, duke@435: // the current information is valid duke@435: duke@435: ptadr->_inputs_processed = non_null_inputs; // prevent recursive processing of this node duke@435: for (int j = 1; j < incount ; j++) { duke@435: Node * n = phi->in(j); duke@435: if (n == NULL) duke@435: continue; // ignore NULL duke@435: n = skip_casts(n); duke@435: if (n->is_top() || n == phi) duke@435: continue; // ignore top or inputs which go back this node duke@435: int nopc = n->Opcode(); duke@435: PointsToNode npt = _nodes->at(n->_idx); duke@435: if (_nodes->at(n->_idx).node_type() == PointsToNode::JavaObject) { duke@435: add_pointsto_edge(phi->_idx, n->_idx); duke@435: } else { duke@435: add_deferred_edge(phi->_idx, n->_idx); duke@435: } duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) { duke@435: duke@435: _processed.set(call->_idx); duke@435: switch (call->Opcode()) { duke@435: duke@435: // arguments to allocation and locking don't escape duke@435: case Op_Allocate: duke@435: case Op_AllocateArray: duke@435: case Op_Lock: duke@435: case Op_Unlock: duke@435: break; duke@435: duke@435: case Op_CallStaticJava: duke@435: // For a static call, we know exactly what method is being called. duke@435: // Use bytecode estimator to record the call's escape affects duke@435: { duke@435: ciMethod *meth = call->as_CallJava()->method(); duke@435: if (meth != NULL) { duke@435: const TypeTuple * d = call->tf()->domain(); duke@435: BCEscapeAnalyzer call_analyzer(meth); duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: int k = i - TypeFunc::Parms; duke@435: duke@435: if (at->isa_oopptr() != NULL) { duke@435: Node *arg = skip_casts(call->in(i)); duke@435: duke@435: if (!call_analyzer.is_arg_stack(k)) { duke@435: // The argument global escapes, mark everything it could point to duke@435: ptset.Clear(); duke@435: PointsTo(ptset, arg, phase); duke@435: for( VectorSetI j(&ptset); j.test(); ++j ) { duke@435: uint pt = j.elem; duke@435: duke@435: set_escape_state(pt, PointsToNode::GlobalEscape); duke@435: } duke@435: } else if (!call_analyzer.is_arg_local(k)) { duke@435: // The argument itself doesn't escape, but any fields might duke@435: ptset.Clear(); duke@435: PointsTo(ptset, arg, phase); duke@435: for( VectorSetI j(&ptset); j.test(); ++j ) { duke@435: uint pt = j.elem; duke@435: add_edge_from_fields(pt, _phantom_object, Type::OffsetBot); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: call_analyzer.copy_dependencies(C()->dependencies()); duke@435: break; duke@435: } duke@435: // fall-through if not a Java method duke@435: } duke@435: duke@435: default: duke@435: // Some other type of call, assume the worst case: all arguments duke@435: // globally escape. duke@435: { duke@435: // adjust escape state for outgoing arguments duke@435: const TypeTuple * d = call->tf()->domain(); duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: duke@435: if (at->isa_oopptr() != NULL) { duke@435: Node *arg = skip_casts(call->in(i)); duke@435: ptset.Clear(); duke@435: PointsTo(ptset, arg, phase); duke@435: for( VectorSetI j(&ptset); j.test(); ++j ) { duke@435: uint pt = j.elem; duke@435: duke@435: set_escape_state(pt, PointsToNode::GlobalEscape); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) { duke@435: CallNode *call = resproj->in(0)->as_Call(); duke@435: duke@435: PointsToNode *ptadr = ptnode_adr(resproj->_idx); duke@435: duke@435: ptadr->_node = resproj; duke@435: ptadr->set_node_type(PointsToNode::LocalVar); duke@435: set_escape_state(resproj->_idx, PointsToNode::UnknownEscape); duke@435: _processed.set(resproj->_idx); duke@435: duke@435: switch (call->Opcode()) { duke@435: case Op_Allocate: duke@435: { duke@435: Node *k = call->in(AllocateNode::KlassNode); duke@435: const TypeKlassPtr *kt; duke@435: if (k->Opcode() == Op_LoadKlass) { duke@435: kt = k->as_Load()->type()->isa_klassptr(); duke@435: } else { duke@435: kt = k->as_Type()->type()->isa_klassptr(); duke@435: } duke@435: assert(kt != NULL, "TypeKlassPtr required."); duke@435: ciKlass* cik = kt->klass(); duke@435: ciInstanceKlass* ciik = cik->as_instance_klass(); duke@435: duke@435: PointsToNode *ptadr = ptnode_adr(call->_idx); duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) { duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); duke@435: } else { duke@435: set_escape_state(call->_idx, PointsToNode::NoEscape); duke@435: add_pointsto_edge(resproj->_idx, call->_idx); duke@435: } duke@435: _processed.set(call->_idx); duke@435: break; duke@435: } duke@435: duke@435: case Op_AllocateArray: duke@435: { duke@435: PointsToNode *ptadr = ptnode_adr(call->_idx); duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: set_escape_state(call->_idx, PointsToNode::NoEscape); duke@435: _processed.set(call->_idx); duke@435: add_pointsto_edge(resproj->_idx, call->_idx); duke@435: break; duke@435: } duke@435: duke@435: case Op_Lock: duke@435: case Op_Unlock: duke@435: break; duke@435: duke@435: case Op_CallStaticJava: duke@435: // For a static call, we know exactly what method is being called. duke@435: // Use bytecode estimator to record whether the call's return value escapes duke@435: { duke@435: const TypeTuple *r = call->tf()->range(); duke@435: const Type* ret_type = NULL; duke@435: duke@435: if (r->cnt() > TypeFunc::Parms) duke@435: ret_type = r->field_at(TypeFunc::Parms); duke@435: duke@435: // Note: we use isa_ptr() instead of isa_oopptr() here because the duke@435: // _multianewarray functions return a TypeRawPtr. duke@435: if (ret_type == NULL || ret_type->isa_ptr() == NULL) duke@435: break; // doesn't return a pointer type duke@435: duke@435: ciMethod *meth = call->as_CallJava()->method(); duke@435: if (meth == NULL) { duke@435: // not a Java method, assume global escape duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: if (resproj != NULL) duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); duke@435: } else { duke@435: BCEscapeAnalyzer call_analyzer(meth); duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: duke@435: if (call_analyzer.is_return_local() && resproj != NULL) { duke@435: // determine whether any arguments are returned duke@435: const TypeTuple * d = call->tf()->domain(); duke@435: set_escape_state(call->_idx, PointsToNode::NoEscape); duke@435: for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { duke@435: const Type* at = d->field_at(i); duke@435: duke@435: if (at->isa_oopptr() != NULL) { duke@435: Node *arg = skip_casts(call->in(i)); duke@435: duke@435: if (call_analyzer.is_arg_returned(i - TypeFunc::Parms)) { duke@435: PointsToNode *arg_esp = _nodes->adr_at(arg->_idx); duke@435: if (arg_esp->node_type() == PointsToNode::JavaObject) duke@435: add_pointsto_edge(resproj->_idx, arg->_idx); duke@435: else duke@435: add_deferred_edge(resproj->_idx, arg->_idx); duke@435: arg_esp->_hidden_alias = true; duke@435: } duke@435: } duke@435: } duke@435: } else { duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: if (resproj != NULL) duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); duke@435: } duke@435: call_analyzer.copy_dependencies(C()->dependencies()); duke@435: } duke@435: break; duke@435: } duke@435: duke@435: default: duke@435: // Some other type of call, assume the worst case that the duke@435: // returned value, if any, globally escapes. duke@435: { duke@435: const TypeTuple *r = call->tf()->range(); duke@435: duke@435: if (r->cnt() > TypeFunc::Parms) { duke@435: const Type* ret_type = r->field_at(TypeFunc::Parms); duke@435: duke@435: // Note: we use isa_ptr() instead of isa_oopptr() here because the duke@435: // _multianewarray functions return a TypeRawPtr. duke@435: if (ret_type->isa_ptr() != NULL) { duke@435: PointsToNode *ptadr = ptnode_adr(call->_idx); duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: set_escape_state(call->_idx, PointsToNode::GlobalEscape); duke@435: if (resproj != NULL) duke@435: add_pointsto_edge(resproj->_idx, _phantom_object); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::record_for_escape_analysis(Node *n) { duke@435: if (_collecting) { duke@435: if (n->is_Phi()) { duke@435: PhiNode *phi = n->as_Phi(); duke@435: const Type *pt = phi->type(); duke@435: if ((pt->isa_oopptr() != NULL) || pt == TypePtr::NULL_PTR) { duke@435: PointsToNode *ptn = ptnode_adr(phi->_idx); duke@435: ptn->set_node_type(PointsToNode::LocalVar); duke@435: ptn->_node = n; duke@435: _deferred.push(n); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::record_escape_work(Node *n, PhaseTransform *phase) { duke@435: duke@435: int opc = n->Opcode(); duke@435: PointsToNode *ptadr = ptnode_adr(n->_idx); duke@435: duke@435: if (_processed.test(n->_idx)) duke@435: return; duke@435: duke@435: ptadr->_node = n; duke@435: if (n->is_Call()) { duke@435: CallNode *call = n->as_Call(); duke@435: process_call_arguments(call, phase); duke@435: return; duke@435: } duke@435: duke@435: switch (opc) { duke@435: case Op_AddP: duke@435: { duke@435: Node *base = skip_casts(n->in(AddPNode::Base)); duke@435: ptadr->set_node_type(PointsToNode::Field); duke@435: duke@435: // create a field edge to this node from everything adr could point to duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, base, phase); duke@435: for( VectorSetI i(&ptset); i.test(); ++i ) { duke@435: uint pt = i.elem; duke@435: add_field_edge(pt, n->_idx, type_to_offset(phase->type(n))); duke@435: } duke@435: break; duke@435: } duke@435: case Op_Parm: duke@435: { duke@435: ProjNode *nproj = n->as_Proj(); duke@435: uint con = nproj->_con; duke@435: if (con < TypeFunc::Parms) duke@435: return; duke@435: const Type *t = nproj->in(0)->as_Start()->_domain->field_at(con); duke@435: if (t->isa_ptr() == NULL) duke@435: return; duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: if (t->isa_oopptr() != NULL) { duke@435: set_escape_state(n->_idx, PointsToNode::ArgEscape); duke@435: } else { duke@435: // this must be the incoming state of an OSR compile, we have to assume anything duke@435: // passed in globally escapes duke@435: assert(_compile->is_osr_compilation(), "bad argument type for non-osr compilation"); duke@435: set_escape_state(n->_idx, PointsToNode::GlobalEscape); duke@435: } duke@435: _processed.set(n->_idx); duke@435: break; duke@435: } duke@435: case Op_Phi: duke@435: { duke@435: PhiNode *phi = n->as_Phi(); duke@435: if (phi->type()->isa_oopptr() == NULL) duke@435: return; // nothing to do if not an oop duke@435: ptadr->set_node_type(PointsToNode::LocalVar); duke@435: process_phi_escape(phi, phase); duke@435: break; duke@435: } duke@435: case Op_CreateEx: duke@435: { duke@435: // assume that all exception objects globally escape duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: set_escape_state(n->_idx, PointsToNode::GlobalEscape); duke@435: _processed.set(n->_idx); duke@435: break; duke@435: } duke@435: case Op_ConP: duke@435: { duke@435: const Type *t = phase->type(n); duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: // assume all pointer constants globally escape except for null duke@435: if (t == TypePtr::NULL_PTR) duke@435: set_escape_state(n->_idx, PointsToNode::NoEscape); duke@435: else duke@435: set_escape_state(n->_idx, PointsToNode::GlobalEscape); duke@435: _processed.set(n->_idx); duke@435: break; duke@435: } duke@435: case Op_LoadKlass: duke@435: { duke@435: ptadr->set_node_type(PointsToNode::JavaObject); duke@435: set_escape_state(n->_idx, PointsToNode::GlobalEscape); duke@435: _processed.set(n->_idx); duke@435: break; duke@435: } duke@435: case Op_LoadP: duke@435: { duke@435: const Type *t = phase->type(n); duke@435: if (!t->isa_oopptr()) duke@435: return; duke@435: ptadr->set_node_type(PointsToNode::LocalVar); duke@435: set_escape_state(n->_idx, PointsToNode::UnknownEscape); duke@435: duke@435: Node *adr = skip_casts(n->in(MemNode::Address)); duke@435: const Type *adr_type = phase->type(adr); duke@435: Node *adr_base = skip_casts((adr->Opcode() == Op_AddP) ? adr->in(AddPNode::Base) : adr); duke@435: duke@435: // For everything "adr" could point to, create a deferred edge from duke@435: // this node to each field with the same offset as "adr_type" duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, adr_base, phase); duke@435: // If ptset is empty, then this value must have been set outside duke@435: // this method, so we add the phantom node duke@435: if (ptset.Size() == 0) duke@435: ptset.set(_phantom_object); duke@435: for( VectorSetI i(&ptset); i.test(); ++i ) { duke@435: uint pt = i.elem; duke@435: add_deferred_edge_to_fields(n->_idx, pt, type_to_offset(adr_type)); duke@435: } duke@435: break; duke@435: } duke@435: case Op_StoreP: duke@435: case Op_StorePConditional: duke@435: case Op_CompareAndSwapP: duke@435: { duke@435: Node *adr = n->in(MemNode::Address); duke@435: Node *val = skip_casts(n->in(MemNode::ValueIn)); duke@435: const Type *adr_type = phase->type(adr); duke@435: if (!adr_type->isa_oopptr()) duke@435: return; duke@435: duke@435: assert(adr->Opcode() == Op_AddP, "expecting an AddP"); duke@435: Node *adr_base = adr->in(AddPNode::Base); duke@435: duke@435: // For everything "adr_base" could point to, create a deferred edge to "val" from each field duke@435: // with the same offset as "adr_type" duke@435: VectorSet ptset(Thread::current()->resource_area()); duke@435: PointsTo(ptset, adr_base, phase); duke@435: for( VectorSetI i(&ptset); i.test(); ++i ) { duke@435: uint pt = i.elem; duke@435: add_edge_from_fields(pt, val->_idx, type_to_offset(adr_type)); duke@435: } duke@435: break; duke@435: } duke@435: case Op_Proj: duke@435: { duke@435: ProjNode *nproj = n->as_Proj(); duke@435: Node *n0 = nproj->in(0); duke@435: // we are only interested in the result projection from a call duke@435: if (nproj->_con == TypeFunc::Parms && n0->is_Call() ) { duke@435: process_call_result(nproj, phase); duke@435: } duke@435: duke@435: break; duke@435: } duke@435: case Op_CastPP: duke@435: case Op_CheckCastPP: duke@435: { duke@435: ptadr->set_node_type(PointsToNode::LocalVar); duke@435: int ti = n->in(1)->_idx; duke@435: if (_nodes->at(ti).node_type() == PointsToNode::JavaObject) { duke@435: add_pointsto_edge(n->_idx, ti); duke@435: } else { duke@435: add_deferred_edge(n->_idx, ti); duke@435: } duke@435: break; duke@435: } duke@435: default: duke@435: ; duke@435: // nothing to do duke@435: } duke@435: } duke@435: duke@435: void ConnectionGraph::record_escape(Node *n, PhaseTransform *phase) { duke@435: if (_collecting) duke@435: record_escape_work(n, phase); duke@435: } duke@435: duke@435: #ifndef PRODUCT duke@435: void ConnectionGraph::dump() { duke@435: PhaseGVN *igvn = _compile->initial_gvn(); duke@435: bool first = true; duke@435: duke@435: for (uint ni = 0; ni < (uint)_nodes->length(); ni++) { duke@435: PointsToNode *esp = _nodes->adr_at(ni); duke@435: if (esp->node_type() == PointsToNode::UnknownType || esp->_node == NULL) duke@435: continue; duke@435: PointsToNode::EscapeState es = escape_state(esp->_node, igvn); duke@435: if (es == PointsToNode::NoEscape || (Verbose && duke@435: (es != PointsToNode::UnknownEscape || esp->edge_count() != 0))) { duke@435: // don't print null pointer node which almost every method has duke@435: if (esp->_node->Opcode() != Op_ConP || igvn->type(esp->_node) != TypePtr::NULL_PTR) { duke@435: if (first) { duke@435: tty->print("======== Connection graph for "); duke@435: C()->method()->print_short_name(); duke@435: tty->cr(); duke@435: first = false; duke@435: } duke@435: tty->print("%4d ", ni); duke@435: esp->dump(); duke@435: } duke@435: } duke@435: } duke@435: } duke@435: #endif