src/share/vm/memory/collectorPolicy.cpp

Sat, 23 Nov 2013 12:25:13 +0100

author
mgronlun
date
Sat, 23 Nov 2013 12:25:13 +0100
changeset 6131
86e6d691f2e1
parent 6091
236cecd9ec97
child 6641
1d01a7f3a336
permissions
-rw-r--r--

8028128: Add a type safe alternative for working with counter based data
Reviewed-by: dholmes, egahlin

duke@435 1 /*
jwilhelm@4554 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
stefank@2314 27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
stefank@2314 28 #include "gc_implementation/shared/vmGCOperations.hpp"
stefank@2314 29 #include "memory/cardTableRS.hpp"
stefank@2314 30 #include "memory/collectorPolicy.hpp"
stefank@2314 31 #include "memory/gcLocker.inline.hpp"
stefank@2314 32 #include "memory/genCollectedHeap.hpp"
stefank@2314 33 #include "memory/generationSpec.hpp"
stefank@2314 34 #include "memory/space.hpp"
stefank@2314 35 #include "memory/universe.hpp"
stefank@2314 36 #include "runtime/arguments.hpp"
stefank@2314 37 #include "runtime/globals_extension.hpp"
stefank@2314 38 #include "runtime/handles.inline.hpp"
stefank@2314 39 #include "runtime/java.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
stefank@2314 41 #include "runtime/vmThread.hpp"
jprovino@4542 42 #include "utilities/macros.hpp"
jprovino@4542 43 #if INCLUDE_ALL_GCS
stefank@2314 44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
stefank@2314 45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
jprovino@4542 46 #endif // INCLUDE_ALL_GCS
duke@435 47
duke@435 48 // CollectorPolicy methods.
duke@435 49
jwilhelm@6085 50 CollectorPolicy::CollectorPolicy() :
jwilhelm@6085 51 _space_alignment(0),
jwilhelm@6085 52 _heap_alignment(0),
jwilhelm@6085 53 _initial_heap_byte_size(InitialHeapSize),
jwilhelm@6085 54 _max_heap_byte_size(MaxHeapSize),
jwilhelm@6085 55 _min_heap_byte_size(Arguments::min_heap_size()),
jwilhelm@6085 56 _max_heap_size_cmdline(false),
jwilhelm@6085 57 _size_policy(NULL),
jwilhelm@6085 58 _should_clear_all_soft_refs(false),
jwilhelm@6085 59 _all_soft_refs_clear(false)
jwilhelm@6085 60 {}
jwilhelm@6085 61
jwilhelm@6085 62 #ifdef ASSERT
jwilhelm@6085 63 void CollectorPolicy::assert_flags() {
jwilhelm@6085 64 assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
jwilhelm@6085 65 assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
jwilhelm@6085 66 assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
jwilhelm@6085 67 }
jwilhelm@6085 68
jwilhelm@6085 69 void CollectorPolicy::assert_size_info() {
jwilhelm@6085 70 assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
jwilhelm@6085 71 assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
jwilhelm@6085 72 assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
jwilhelm@6085 73 assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
jwilhelm@6085 74 assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
jwilhelm@6085 75 assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
jwilhelm@6085 76 assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
jwilhelm@6085 77 assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
jwilhelm@6085 78 }
jwilhelm@6085 79 #endif // ASSERT
jwilhelm@6085 80
duke@435 81 void CollectorPolicy::initialize_flags() {
jwilhelm@6085 82 assert(_space_alignment != 0, "Space alignment not set up properly");
jwilhelm@6085 83 assert(_heap_alignment != 0, "Heap alignment not set up properly");
jwilhelm@6085 84 assert(_heap_alignment >= _space_alignment,
jwilhelm@6085 85 err_msg("heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
jwilhelm@6085 86 _heap_alignment, _space_alignment));
jwilhelm@6085 87 assert(_heap_alignment % _space_alignment == 0,
jwilhelm@6085 88 err_msg("heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
jwilhelm@6085 89 _heap_alignment, _space_alignment));
brutisso@5071 90
jwilhelm@6085 91 if (FLAG_IS_CMDLINE(MaxHeapSize)) {
jwilhelm@6085 92 if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
jwilhelm@6085 93 vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
jwilhelm@6085 94 }
jwilhelm@6085 95 if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
jwilhelm@6085 96 vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
jwilhelm@6085 97 }
jwilhelm@6085 98 _max_heap_size_cmdline = true;
tschatzl@5073 99 }
tschatzl@5073 100
jwilhelm@6085 101 // Check heap parameter properties
jwilhelm@6085 102 if (InitialHeapSize < M) {
jwilhelm@6085 103 vm_exit_during_initialization("Too small initial heap");
jwilhelm@6085 104 }
jwilhelm@6085 105 if (_min_heap_byte_size < M) {
jwilhelm@6085 106 vm_exit_during_initialization("Too small minimum heap");
jwilhelm@6085 107 }
jwilhelm@6085 108
jwilhelm@6085 109 // User inputs from -Xmx and -Xms must be aligned
jwilhelm@6085 110 _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
jwilhelm@6085 111 uintx aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
jwilhelm@6085 112 uintx aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
jwilhelm@6085 113
jwilhelm@6085 114 // Write back to flags if the values changed
jwilhelm@6085 115 if (aligned_initial_heap_size != InitialHeapSize) {
jwilhelm@6085 116 FLAG_SET_ERGO(uintx, InitialHeapSize, aligned_initial_heap_size);
jwilhelm@6085 117 }
jwilhelm@6085 118 if (aligned_max_heap_size != MaxHeapSize) {
jwilhelm@6085 119 FLAG_SET_ERGO(uintx, MaxHeapSize, aligned_max_heap_size);
jwilhelm@6085 120 }
jwilhelm@6085 121
jwilhelm@6085 122 if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
jwilhelm@6085 123 InitialHeapSize < _min_heap_byte_size) {
jwilhelm@6085 124 vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
jwilhelm@6085 125 }
jwilhelm@6085 126 if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
jwilhelm@6085 127 FLAG_SET_ERGO(uintx, MaxHeapSize, InitialHeapSize);
jwilhelm@6085 128 } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
jwilhelm@6085 129 FLAG_SET_ERGO(uintx, InitialHeapSize, MaxHeapSize);
jwilhelm@6085 130 if (InitialHeapSize < _min_heap_byte_size) {
jwilhelm@6085 131 _min_heap_byte_size = InitialHeapSize;
jwilhelm@6085 132 }
jwilhelm@6085 133 }
jwilhelm@6085 134
jwilhelm@6085 135 _initial_heap_byte_size = InitialHeapSize;
jwilhelm@6085 136 _max_heap_byte_size = MaxHeapSize;
jwilhelm@6085 137
jwilhelm@6085 138 FLAG_SET_ERGO(uintx, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
jwilhelm@6085 139
jwilhelm@6085 140 DEBUG_ONLY(CollectorPolicy::assert_flags();)
duke@435 141 }
duke@435 142
duke@435 143 void CollectorPolicy::initialize_size_info() {
jmasa@448 144 if (PrintGCDetails && Verbose) {
jmasa@448 145 gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT " Initial heap "
jmasa@448 146 SIZE_FORMAT " Maximum heap " SIZE_FORMAT,
jwilhelm@5855 147 _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
jmasa@448 148 }
jwilhelm@6085 149
jwilhelm@6085 150 DEBUG_ONLY(CollectorPolicy::assert_size_info();)
duke@435 151 }
duke@435 152
jmasa@1822 153 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
jmasa@1822 154 bool result = _should_clear_all_soft_refs;
jmasa@1822 155 set_should_clear_all_soft_refs(false);
jmasa@1822 156 return result;
jmasa@1822 157 }
duke@435 158
duke@435 159 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
duke@435 160 int max_covered_regions) {
jwilhelm@5818 161 return new CardTableRS(whole_heap, max_covered_regions);
duke@435 162 }
duke@435 163
jmasa@1822 164 void CollectorPolicy::cleared_all_soft_refs() {
jmasa@1822 165 // If near gc overhear limit, continue to clear SoftRefs. SoftRefs may
jmasa@1822 166 // have been cleared in the last collection but if the gc overhear
jmasa@1822 167 // limit continues to be near, SoftRefs should still be cleared.
jmasa@1822 168 if (size_policy() != NULL) {
jmasa@1822 169 _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
jmasa@1822 170 }
jmasa@1822 171 _all_soft_refs_clear = true;
jmasa@1822 172 }
jmasa@1822 173
jwilhelm@6085 174 size_t CollectorPolicy::compute_heap_alignment() {
tschatzl@5701 175 // The card marking array and the offset arrays for old generations are
tschatzl@5701 176 // committed in os pages as well. Make sure they are entirely full (to
tschatzl@5701 177 // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
tschatzl@5701 178 // byte entry and the os page size is 4096, the maximum heap size should
tschatzl@5701 179 // be 512*4096 = 2MB aligned.
tschatzl@5701 180
tschatzl@5701 181 // There is only the GenRemSet in Hotspot and only the GenRemSet::CardTable
tschatzl@5701 182 // is supported.
tschatzl@5701 183 // Requirements of any new remembered set implementations must be added here.
tschatzl@5701 184 size_t alignment = GenRemSet::max_alignment_constraint(GenRemSet::CardTable);
tschatzl@5701 185
tschatzl@5701 186 // Parallel GC does its own alignment of the generations to avoid requiring a
tschatzl@5701 187 // large page (256M on some platforms) for the permanent generation. The
tschatzl@5701 188 // other collectors should also be updated to do their own alignment and then
tschatzl@5701 189 // this use of lcm() should be removed.
tschatzl@5701 190 if (UseLargePages && !UseParallelGC) {
tschatzl@5701 191 // in presence of large pages we have to make sure that our
tschatzl@5701 192 // alignment is large page aware
tschatzl@5701 193 alignment = lcm(os::large_page_size(), alignment);
tschatzl@5701 194 }
tschatzl@5701 195
tschatzl@5701 196 return alignment;
tschatzl@5701 197 }
jmasa@1822 198
duke@435 199 // GenCollectorPolicy methods.
duke@435 200
jwilhelm@6085 201 GenCollectorPolicy::GenCollectorPolicy() :
jwilhelm@6085 202 _min_gen0_size(0),
jwilhelm@6085 203 _initial_gen0_size(0),
jwilhelm@6085 204 _max_gen0_size(0),
jwilhelm@6085 205 _gen_alignment(0),
jwilhelm@6085 206 _generations(NULL)
jwilhelm@6085 207 {}
jwilhelm@6085 208
jmasa@448 209 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
jwilhelm@6085 210 return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
jmasa@448 211 }
jmasa@448 212
jmasa@448 213 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
jmasa@448 214 size_t maximum_size) {
jwilhelm@6085 215 size_t max_minus = maximum_size - _gen_alignment;
jmasa@448 216 return desired_size < max_minus ? desired_size : max_minus;
jmasa@448 217 }
jmasa@448 218
jmasa@448 219
duke@435 220 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
duke@435 221 size_t init_promo_size,
duke@435 222 size_t init_survivor_size) {
jwilhelm@6084 223 const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
duke@435 224 _size_policy = new AdaptiveSizePolicy(init_eden_size,
duke@435 225 init_promo_size,
duke@435 226 init_survivor_size,
tamao@4613 227 max_gc_pause_sec,
duke@435 228 GCTimeRatio);
duke@435 229 }
duke@435 230
jwilhelm@6085 231 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
jwilhelm@6085 232 // The young generation must be aligned and have room for eden + two survivors
jwilhelm@6085 233 return align_size_up(3 * _space_alignment, _gen_alignment);
jwilhelm@6085 234 }
jwilhelm@6085 235
jwilhelm@6085 236 #ifdef ASSERT
jwilhelm@6085 237 void GenCollectorPolicy::assert_flags() {
jwilhelm@6085 238 CollectorPolicy::assert_flags();
jwilhelm@6085 239 assert(NewSize >= _min_gen0_size, "Ergonomics decided on a too small young gen size");
jwilhelm@6085 240 assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
jwilhelm@6085 241 assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
jwilhelm@6085 242 assert(NewSize % _gen_alignment == 0, "NewSize alignment");
jwilhelm@6085 243 assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
jwilhelm@6085 244 }
jwilhelm@6085 245
jwilhelm@6085 246 void TwoGenerationCollectorPolicy::assert_flags() {
jwilhelm@6085 247 GenCollectorPolicy::assert_flags();
jwilhelm@6085 248 assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
jwilhelm@6085 249 assert(OldSize % _gen_alignment == 0, "OldSize alignment");
jwilhelm@6085 250 }
jwilhelm@6085 251
jwilhelm@6085 252 void GenCollectorPolicy::assert_size_info() {
jwilhelm@6085 253 CollectorPolicy::assert_size_info();
jwilhelm@6085 254 // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
jwilhelm@6085 255 assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
jwilhelm@6085 256 assert(NewSize == _initial_gen0_size, "Discrepancy between NewSize flag and local storage");
jwilhelm@6085 257 assert(MaxNewSize == _max_gen0_size, "Discrepancy between MaxNewSize flag and local storage");
jwilhelm@6085 258 assert(_min_gen0_size <= _initial_gen0_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
jwilhelm@6085 259 assert(_initial_gen0_size <= _max_gen0_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
jwilhelm@6085 260 assert(_min_gen0_size % _gen_alignment == 0, "_min_gen0_size alignment");
jwilhelm@6085 261 assert(_initial_gen0_size % _gen_alignment == 0, "_initial_gen0_size alignment");
jwilhelm@6085 262 assert(_max_gen0_size % _gen_alignment == 0, "_max_gen0_size alignment");
jwilhelm@6085 263 }
jwilhelm@6085 264
jwilhelm@6085 265 void TwoGenerationCollectorPolicy::assert_size_info() {
jwilhelm@6085 266 GenCollectorPolicy::assert_size_info();
jwilhelm@6085 267 assert(OldSize == _initial_gen1_size, "Discrepancy between OldSize flag and local storage");
jwilhelm@6085 268 assert(_min_gen1_size <= _initial_gen1_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
jwilhelm@6085 269 assert(_initial_gen1_size <= _max_gen1_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
jwilhelm@6085 270 assert(_max_gen1_size % _gen_alignment == 0, "_max_gen1_size alignment");
jwilhelm@6085 271 assert(_initial_gen1_size % _gen_alignment == 0, "_initial_gen1_size alignment");
jwilhelm@6085 272 assert(_max_heap_byte_size <= (_max_gen0_size + _max_gen1_size), "Total maximum heap sizes must be sum of generation maximum sizes");
jwilhelm@6085 273 }
jwilhelm@6085 274 #endif // ASSERT
jwilhelm@6085 275
duke@435 276 void GenCollectorPolicy::initialize_flags() {
duke@435 277 CollectorPolicy::initialize_flags();
duke@435 278
jwilhelm@6085 279 assert(_gen_alignment != 0, "Generation alignment not set up properly");
jwilhelm@6085 280 assert(_heap_alignment >= _gen_alignment,
jwilhelm@6085 281 err_msg("heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
jwilhelm@6085 282 _heap_alignment, _gen_alignment));
jwilhelm@6085 283 assert(_gen_alignment % _space_alignment == 0,
jwilhelm@6085 284 err_msg("gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
jwilhelm@6085 285 _gen_alignment, _space_alignment));
jwilhelm@6085 286 assert(_heap_alignment % _gen_alignment == 0,
jwilhelm@6085 287 err_msg("heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
jwilhelm@6085 288 _heap_alignment, _gen_alignment));
duke@435 289
jwilhelm@6085 290 // All generational heaps have a youngest gen; handle those flags here
jwilhelm@6085 291
jwilhelm@6085 292 // Make sure the heap is large enough for two generations
jwilhelm@6085 293 uintx smallest_new_size = young_gen_size_lower_bound();
jwilhelm@6085 294 uintx smallest_heap_size = align_size_up(smallest_new_size + align_size_up(_space_alignment, _gen_alignment),
jwilhelm@6085 295 _heap_alignment);
jwilhelm@6085 296 if (MaxHeapSize < smallest_heap_size) {
jwilhelm@6085 297 FLAG_SET_ERGO(uintx, MaxHeapSize, smallest_heap_size);
jwilhelm@6085 298 _max_heap_byte_size = MaxHeapSize;
jwilhelm@6085 299 }
jwilhelm@6085 300 // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
jwilhelm@6085 301 if (_min_heap_byte_size < smallest_heap_size) {
jwilhelm@6085 302 _min_heap_byte_size = smallest_heap_size;
jwilhelm@6085 303 if (InitialHeapSize < _min_heap_byte_size) {
jwilhelm@6085 304 FLAG_SET_ERGO(uintx, InitialHeapSize, smallest_heap_size);
jwilhelm@6085 305 _initial_heap_byte_size = smallest_heap_size;
jwilhelm@6085 306 }
jwilhelm@6085 307 }
jwilhelm@6085 308
jwilhelm@6085 309 // Now take the actual NewSize into account. We will silently increase NewSize
jwilhelm@6085 310 // if the user specified a smaller value.
jwilhelm@6085 311 smallest_new_size = MAX2(smallest_new_size, (uintx)align_size_down(NewSize, _gen_alignment));
jwilhelm@6085 312 if (smallest_new_size != NewSize) {
jwilhelm@6085 313 FLAG_SET_ERGO(uintx, NewSize, smallest_new_size);
jwilhelm@6085 314 }
jwilhelm@6085 315 _initial_gen0_size = NewSize;
jwilhelm@6085 316
jwilhelm@6085 317 if (!FLAG_IS_DEFAULT(MaxNewSize)) {
jwilhelm@6085 318 uintx min_new_size = MAX2(_gen_alignment, _min_gen0_size);
jwilhelm@6085 319
jwilhelm@6085 320 if (MaxNewSize >= MaxHeapSize) {
jwilhelm@6085 321 // Make sure there is room for an old generation
jwilhelm@6085 322 uintx smaller_max_new_size = MaxHeapSize - _gen_alignment;
jwilhelm@6085 323 if (FLAG_IS_CMDLINE(MaxNewSize)) {
jwilhelm@6085 324 warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
jwilhelm@6085 325 "heap (" SIZE_FORMAT "k). A new max generation size of " SIZE_FORMAT "k will be used.",
jwilhelm@6085 326 MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
jwilhelm@6085 327 }
jwilhelm@6085 328 FLAG_SET_ERGO(uintx, MaxNewSize, smaller_max_new_size);
jwilhelm@6085 329 if (NewSize > MaxNewSize) {
jwilhelm@6085 330 FLAG_SET_ERGO(uintx, NewSize, MaxNewSize);
jwilhelm@6085 331 _initial_gen0_size = NewSize;
jwilhelm@6085 332 }
jwilhelm@6085 333 } else if (MaxNewSize < min_new_size) {
jwilhelm@6085 334 FLAG_SET_ERGO(uintx, MaxNewSize, min_new_size);
jwilhelm@6085 335 } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
jwilhelm@6085 336 FLAG_SET_ERGO(uintx, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
jwilhelm@6085 337 }
jwilhelm@6085 338 _max_gen0_size = MaxNewSize;
jwilhelm@6085 339 }
jwilhelm@6085 340
duke@435 341 if (NewSize > MaxNewSize) {
jwilhelm@6085 342 // At this point this should only happen if the user specifies a large NewSize and/or
jwilhelm@6085 343 // a small (but not too small) MaxNewSize.
jwilhelm@6085 344 if (FLAG_IS_CMDLINE(MaxNewSize)) {
jwilhelm@6085 345 warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
jwilhelm@6085 346 "A new max generation size of " SIZE_FORMAT "k will be used.",
jwilhelm@6085 347 NewSize/K, MaxNewSize/K, NewSize/K);
jwilhelm@6085 348 }
jwilhelm@6085 349 FLAG_SET_ERGO(uintx, MaxNewSize, NewSize);
jwilhelm@6085 350 _max_gen0_size = MaxNewSize;
duke@435 351 }
jwilhelm@6084 352
duke@435 353 if (SurvivorRatio < 1 || NewRatio < 1) {
jwilhelm@5856 354 vm_exit_during_initialization("Invalid young gen ratio specified");
duke@435 355 }
jwilhelm@6085 356
jwilhelm@6085 357 DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
duke@435 358 }
duke@435 359
duke@435 360 void TwoGenerationCollectorPolicy::initialize_flags() {
duke@435 361 GenCollectorPolicy::initialize_flags();
duke@435 362
jwilhelm@6085 363 if (!is_size_aligned(OldSize, _gen_alignment)) {
jwilhelm@6085 364 FLAG_SET_ERGO(uintx, OldSize, align_size_down(OldSize, _gen_alignment));
jwilhelm@6085 365 }
jwilhelm@4554 366
jwilhelm@6085 367 if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
jwilhelm@4554 368 // NewRatio will be used later to set the young generation size so we use
jwilhelm@4554 369 // it to calculate how big the heap should be based on the requested OldSize
jwilhelm@4554 370 // and NewRatio.
jwilhelm@4554 371 assert(NewRatio > 0, "NewRatio should have been set up earlier");
jwilhelm@4554 372 size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
jwilhelm@4554 373
jwilhelm@6085 374 calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
jwilhelm@6085 375 FLAG_SET_ERGO(uintx, MaxHeapSize, calculated_heapsize);
jwilhelm@6085 376 _max_heap_byte_size = MaxHeapSize;
jwilhelm@6085 377 FLAG_SET_ERGO(uintx, InitialHeapSize, calculated_heapsize);
jwilhelm@6085 378 _initial_heap_byte_size = InitialHeapSize;
jwilhelm@4554 379 }
duke@435 380
tschatzl@5073 381 // adjust max heap size if necessary
tschatzl@5073 382 if (NewSize + OldSize > MaxHeapSize) {
jwilhelm@6085 383 if (_max_heap_size_cmdline) {
tschatzl@5073 384 // somebody set a maximum heap size with the intention that we should not
tschatzl@5073 385 // exceed it. Adjust New/OldSize as necessary.
tschatzl@5073 386 uintx calculated_size = NewSize + OldSize;
tschatzl@5073 387 double shrink_factor = (double) MaxHeapSize / calculated_size;
jwilhelm@6085 388 uintx smaller_new_size = align_size_down((uintx)(NewSize * shrink_factor), _gen_alignment);
jwilhelm@6085 389 FLAG_SET_ERGO(uintx, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
jwilhelm@6085 390 _initial_gen0_size = NewSize;
jwilhelm@6085 391
tschatzl@5073 392 // OldSize is already aligned because above we aligned MaxHeapSize to
jwilhelm@6085 393 // _heap_alignment, and we just made sure that NewSize is aligned to
jwilhelm@6085 394 // _gen_alignment. In initialize_flags() we verified that _heap_alignment
jwilhelm@6085 395 // is a multiple of _gen_alignment.
jwilhelm@6085 396 FLAG_SET_ERGO(uintx, OldSize, MaxHeapSize - NewSize);
tschatzl@5073 397 } else {
jwilhelm@6085 398 FLAG_SET_ERGO(uintx, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
jwilhelm@6085 399 _max_heap_byte_size = MaxHeapSize;
tschatzl@5073 400 }
tschatzl@5073 401 }
tschatzl@5116 402
duke@435 403 always_do_update_barrier = UseConcMarkSweepGC;
duke@435 404
jwilhelm@6085 405 DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_flags();)
duke@435 406 }
duke@435 407
jmasa@448 408 // Values set on the command line win over any ergonomically
jmasa@448 409 // set command line parameters.
jmasa@448 410 // Ergonomic choice of parameters are done before this
jmasa@448 411 // method is called. Values for command line parameters such as NewSize
jmasa@448 412 // and MaxNewSize feed those ergonomic choices into this method.
jmasa@448 413 // This method makes the final generation sizings consistent with
jmasa@448 414 // themselves and with overall heap sizings.
jmasa@448 415 // In the absence of explicitly set command line flags, policies
jmasa@448 416 // such as the use of NewRatio are used to size the generation.
duke@435 417 void GenCollectorPolicy::initialize_size_info() {
duke@435 418 CollectorPolicy::initialize_size_info();
duke@435 419
jwilhelm@6085 420 // _space_alignment is used for alignment within a generation.
jmasa@448 421 // There is additional alignment done down stream for some
jmasa@448 422 // collectors that sometimes causes unwanted rounding up of
jmasa@448 423 // generations sizes.
jmasa@448 424
jmasa@448 425 // Determine maximum size of gen0
jmasa@448 426
jmasa@448 427 size_t max_new_size = 0;
jwilhelm@6085 428 if (!FLAG_IS_DEFAULT(MaxNewSize)) {
jwilhelm@6085 429 max_new_size = MaxNewSize;
duke@435 430 } else {
jwilhelm@5855 431 max_new_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
jmasa@448 432 // Bound the maximum size by NewSize below (since it historically
duke@435 433 // would have been NewSize and because the NewRatio calculation could
duke@435 434 // yield a size that is too small) and bound it by MaxNewSize above.
jmasa@448 435 // Ergonomics plays here by previously calculating the desired
jmasa@448 436 // NewSize and MaxNewSize.
jmasa@448 437 max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
jmasa@448 438 }
jmasa@448 439 assert(max_new_size > 0, "All paths should set max_new_size");
jmasa@448 440
jmasa@448 441 // Given the maximum gen0 size, determine the initial and
ysr@2650 442 // minimum gen0 sizes.
jmasa@448 443
jwilhelm@5855 444 if (_max_heap_byte_size == _min_heap_byte_size) {
jmasa@448 445 // The maximum and minimum heap sizes are the same so
jmasa@448 446 // the generations minimum and initial must be the
jmasa@448 447 // same as its maximum.
jwilhelm@5855 448 _min_gen0_size = max_new_size;
jwilhelm@5855 449 _initial_gen0_size = max_new_size;
jwilhelm@5855 450 _max_gen0_size = max_new_size;
jmasa@448 451 } else {
jmasa@448 452 size_t desired_new_size = 0;
jmasa@448 453 if (!FLAG_IS_DEFAULT(NewSize)) {
jmasa@448 454 // If NewSize is set ergonomically (for example by cms), it
jmasa@448 455 // would make sense to use it. If it is used, also use it
jmasa@448 456 // to set the initial size. Although there is no reason
jmasa@448 457 // the minimum size and the initial size have to be the same,
jmasa@448 458 // the current implementation gets into trouble during the calculation
jmasa@448 459 // of the tenured generation sizes if they are different.
jmasa@448 460 // Note that this makes the initial size and the minimum size
jmasa@448 461 // generally small compared to the NewRatio calculation.
jmasa@448 462 _min_gen0_size = NewSize;
jmasa@448 463 desired_new_size = NewSize;
jmasa@448 464 max_new_size = MAX2(max_new_size, NewSize);
jmasa@448 465 } else {
jmasa@448 466 // For the case where NewSize is the default, use NewRatio
jmasa@448 467 // to size the minimum and initial generation sizes.
jmasa@448 468 // Use the default NewSize as the floor for these values. If
jmasa@448 469 // NewRatio is overly large, the resulting sizes can be too
jmasa@448 470 // small.
jwilhelm@5855 471 _min_gen0_size = MAX2(scale_by_NewRatio_aligned(_min_heap_byte_size), NewSize);
jmasa@448 472 desired_new_size =
jwilhelm@5855 473 MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize);
jmasa@448 474 }
jmasa@448 475
jmasa@448 476 assert(_min_gen0_size > 0, "Sanity check");
jwilhelm@5855 477 _initial_gen0_size = desired_new_size;
jwilhelm@5855 478 _max_gen0_size = max_new_size;
jmasa@448 479
jmasa@448 480 // At this point the desirable initial and minimum sizes have been
jmasa@448 481 // determined without regard to the maximum sizes.
jmasa@448 482
jmasa@448 483 // Bound the sizes by the corresponding overall heap sizes.
jwilhelm@5855 484 _min_gen0_size = bound_minus_alignment(_min_gen0_size, _min_heap_byte_size);
jwilhelm@5855 485 _initial_gen0_size = bound_minus_alignment(_initial_gen0_size, _initial_heap_byte_size);
jwilhelm@5855 486 _max_gen0_size = bound_minus_alignment(_max_gen0_size, _max_heap_byte_size);
jmasa@448 487
jmasa@448 488 // At this point all three sizes have been checked against the
jmasa@448 489 // maximum sizes but have not been checked for consistency
ysr@777 490 // among the three.
jmasa@448 491
jmasa@448 492 // Final check min <= initial <= max
jwilhelm@5855 493 _min_gen0_size = MIN2(_min_gen0_size, _max_gen0_size);
jwilhelm@5855 494 _initial_gen0_size = MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size);
jwilhelm@5855 495 _min_gen0_size = MIN2(_min_gen0_size, _initial_gen0_size);
duke@435 496 }
duke@435 497
jwilhelm@6085 498 // Write back to flags if necessary
jwilhelm@6085 499 if (NewSize != _initial_gen0_size) {
jwilhelm@6085 500 FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
jwilhelm@6085 501 }
jwilhelm@6085 502
jwilhelm@6085 503 if (MaxNewSize != _max_gen0_size) {
jwilhelm@6085 504 FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
jwilhelm@6085 505 }
jwilhelm@6085 506
jmasa@448 507 if (PrintGCDetails && Verbose) {
ysr@2650 508 gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 509 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jwilhelm@5855 510 _min_gen0_size, _initial_gen0_size, _max_gen0_size);
jmasa@448 511 }
jwilhelm@6085 512
jwilhelm@6085 513 DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
jmasa@448 514 }
duke@435 515
jmasa@448 516 // Call this method during the sizing of the gen1 to make
jmasa@448 517 // adjustments to gen0 because of gen1 sizing policy. gen0 initially has
jmasa@448 518 // the most freedom in sizing because it is done before the
jmasa@448 519 // policy for gen1 is applied. Once gen1 policies have been applied,
jmasa@448 520 // there may be conflicts in the shape of the heap and this method
jmasa@448 521 // is used to make the needed adjustments. The application of the
jmasa@448 522 // policies could be more sophisticated (iterative for example) but
jmasa@448 523 // keeping it simple also seems a worthwhile goal.
jmasa@448 524 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
jmasa@448 525 size_t* gen1_size_ptr,
jwilhelm@6091 526 const size_t heap_size) {
jmasa@448 527 bool result = false;
jwilhelm@4554 528
jwilhelm@6091 529 if ((*gen0_size_ptr + *gen1_size_ptr) > heap_size) {
jwilhelm@6085 530 uintx smallest_new_size = young_gen_size_lower_bound();
jwilhelm@6091 531 if ((heap_size < (*gen0_size_ptr + _min_gen1_size)) &&
jwilhelm@6091 532 (heap_size >= _min_gen1_size + smallest_new_size)) {
jwilhelm@6091 533 // Adjust gen0 down to accommodate _min_gen1_size
jwilhelm@6091 534 *gen0_size_ptr = align_size_down_bounded(heap_size - _min_gen1_size, _gen_alignment);
jmasa@448 535 result = true;
jmasa@448 536 } else {
jwilhelm@6085 537 *gen1_size_ptr = align_size_down_bounded(heap_size - *gen0_size_ptr, _gen_alignment);
jmasa@448 538 }
jmasa@448 539 }
jmasa@448 540 return result;
jmasa@448 541 }
duke@435 542
jmasa@448 543 // Minimum sizes of the generations may be different than
jmasa@448 544 // the initial sizes. An inconsistently is permitted here
jmasa@448 545 // in the total size that can be specified explicitly by
jmasa@448 546 // command line specification of OldSize and NewSize and
jmasa@448 547 // also a command line specification of -Xms. Issue a warning
jmasa@448 548 // but allow the values to pass.
duke@435 549
duke@435 550 void TwoGenerationCollectorPolicy::initialize_size_info() {
duke@435 551 GenCollectorPolicy::initialize_size_info();
duke@435 552
jmasa@448 553 // At this point the minimum, initial and maximum sizes
jmasa@448 554 // of the overall heap and of gen0 have been determined.
jmasa@448 555 // The maximum gen1 size can be determined from the maximum gen0
ysr@2650 556 // and maximum heap size since no explicit flags exits
jmasa@448 557 // for setting the gen1 maximum.
jwilhelm@6085 558 _max_gen1_size = MAX2(_max_heap_byte_size - _max_gen0_size, _gen_alignment);
jwilhelm@6085 559
jmasa@448 560 // If no explicit command line flag has been set for the
jmasa@448 561 // gen1 size, use what is left for gen1.
jwilhelm@6085 562 if (!FLAG_IS_CMDLINE(OldSize)) {
jwilhelm@6085 563 // The user has not specified any value but the ergonomics
jwilhelm@6085 564 // may have chosen a value (which may or may not be consistent
jmasa@448 565 // with the overall heap size). In either case make
jmasa@448 566 // the minimum, maximum and initial sizes consistent
jmasa@448 567 // with the gen0 sizes and the overall heap sizes.
jwilhelm@6085 568 _min_gen1_size = MAX2(_min_heap_byte_size - _min_gen0_size, _gen_alignment);
jwilhelm@6085 569 _initial_gen1_size = MAX2(_initial_heap_byte_size - _initial_gen0_size, _gen_alignment);
jwilhelm@6085 570 // _max_gen1_size has already been made consistent above
jwilhelm@6085 571 FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
jmasa@448 572 } else {
jmasa@448 573 // It's been explicitly set on the command line. Use the
jmasa@448 574 // OldSize and then determine the consequences.
jwilhelm@6085 575 _min_gen1_size = MIN2(OldSize, _min_heap_byte_size - _min_gen0_size);
jwilhelm@5855 576 _initial_gen1_size = OldSize;
jmasa@448 577
jmasa@448 578 // If the user has explicitly set an OldSize that is inconsistent
jmasa@448 579 // with other command line flags, issue a warning.
duke@435 580 // The generation minimums and the overall heap mimimum should
jwilhelm@6085 581 // be within one generation alignment.
jwilhelm@6085 582 if ((_min_gen1_size + _min_gen0_size + _gen_alignment) < _min_heap_byte_size) {
duke@435 583 warning("Inconsistency between minimum heap size and minimum "
jwilhelm@5855 584 "generation sizes: using minimum heap = " SIZE_FORMAT,
jwilhelm@5855 585 _min_heap_byte_size);
duke@435 586 }
jwilhelm@6084 587 if (OldSize > _max_gen1_size) {
jmasa@448 588 warning("Inconsistency between maximum heap size and maximum "
jwilhelm@5855 589 "generation sizes: using maximum heap = " SIZE_FORMAT
jwilhelm@5855 590 " -XX:OldSize flag is being ignored",
jwilhelm@5855 591 _max_heap_byte_size);
ysr@2650 592 }
jmasa@448 593 // If there is an inconsistency between the OldSize and the minimum and/or
jmasa@448 594 // initial size of gen0, since OldSize was explicitly set, OldSize wins.
jwilhelm@6091 595 if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size, _min_heap_byte_size)) {
jmasa@448 596 if (PrintGCDetails && Verbose) {
ysr@2650 597 gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 598 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jwilhelm@5855 599 _min_gen0_size, _initial_gen0_size, _max_gen0_size);
jmasa@448 600 }
jmasa@448 601 }
jmasa@448 602 // Initial size
jmasa@448 603 if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
jwilhelm@6091 604 _initial_heap_byte_size)) {
jmasa@448 605 if (PrintGCDetails && Verbose) {
ysr@2650 606 gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT " Initial gen0 "
jmasa@448 607 SIZE_FORMAT " Maximum gen0 " SIZE_FORMAT,
jwilhelm@5855 608 _min_gen0_size, _initial_gen0_size, _max_gen0_size);
jmasa@448 609 }
jmasa@448 610 }
jmasa@448 611 }
jmasa@448 612 // Enforce the maximum gen1 size.
jwilhelm@5855 613 _min_gen1_size = MIN2(_min_gen1_size, _max_gen1_size);
duke@435 614
jmasa@448 615 // Check that min gen1 <= initial gen1 <= max gen1
jwilhelm@5855 616 _initial_gen1_size = MAX2(_initial_gen1_size, _min_gen1_size);
jwilhelm@5855 617 _initial_gen1_size = MIN2(_initial_gen1_size, _max_gen1_size);
jmasa@448 618
jwilhelm@6085 619 // Write back to flags if necessary
jwilhelm@6085 620 if (NewSize != _initial_gen0_size) {
jwilhelm@6090 621 FLAG_SET_ERGO(uintx, NewSize, _initial_gen0_size);
jwilhelm@6085 622 }
jwilhelm@6085 623
jwilhelm@6085 624 if (MaxNewSize != _max_gen0_size) {
jwilhelm@6085 625 FLAG_SET_ERGO(uintx, MaxNewSize, _max_gen0_size);
jwilhelm@6085 626 }
jwilhelm@6085 627
jwilhelm@6085 628 if (OldSize != _initial_gen1_size) {
jwilhelm@6085 629 FLAG_SET_ERGO(uintx, OldSize, _initial_gen1_size);
jwilhelm@6085 630 }
jwilhelm@6085 631
jmasa@448 632 if (PrintGCDetails && Verbose) {
jmasa@448 633 gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT " Initial gen1 "
jmasa@448 634 SIZE_FORMAT " Maximum gen1 " SIZE_FORMAT,
jwilhelm@5855 635 _min_gen1_size, _initial_gen1_size, _max_gen1_size);
jmasa@448 636 }
jwilhelm@6085 637
jwilhelm@6085 638 DEBUG_ONLY(TwoGenerationCollectorPolicy::assert_size_info();)
duke@435 639 }
duke@435 640
duke@435 641 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
duke@435 642 bool is_tlab,
duke@435 643 bool* gc_overhead_limit_was_exceeded) {
duke@435 644 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 645
duke@435 646 debug_only(gch->check_for_valid_allocation_state());
duke@435 647 assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
jmasa@1822 648
jmasa@1822 649 // In general gc_overhead_limit_was_exceeded should be false so
jmasa@1822 650 // set it so here and reset it to true only if the gc time
jmasa@1822 651 // limit is being exceeded as checked below.
jmasa@1822 652 *gc_overhead_limit_was_exceeded = false;
jmasa@1822 653
duke@435 654 HeapWord* result = NULL;
duke@435 655
duke@435 656 // Loop until the allocation is satisified,
duke@435 657 // or unsatisfied after GC.
mgerdin@4853 658 for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
duke@435 659 HandleMark hm; // discard any handles allocated in each iteration
duke@435 660
duke@435 661 // First allocation attempt is lock-free.
duke@435 662 Generation *gen0 = gch->get_gen(0);
duke@435 663 assert(gen0->supports_inline_contig_alloc(),
duke@435 664 "Otherwise, must do alloc within heap lock");
duke@435 665 if (gen0->should_allocate(size, is_tlab)) {
duke@435 666 result = gen0->par_allocate(size, is_tlab);
duke@435 667 if (result != NULL) {
duke@435 668 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 669 return result;
duke@435 670 }
duke@435 671 }
duke@435 672 unsigned int gc_count_before; // read inside the Heap_lock locked region
duke@435 673 {
duke@435 674 MutexLocker ml(Heap_lock);
duke@435 675 if (PrintGC && Verbose) {
duke@435 676 gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
duke@435 677 " attempting locked slow path allocation");
duke@435 678 }
duke@435 679 // Note that only large objects get a shot at being
duke@435 680 // allocated in later generations.
duke@435 681 bool first_only = ! should_try_older_generation_allocation(size);
duke@435 682
duke@435 683 result = gch->attempt_allocation(size, is_tlab, first_only);
duke@435 684 if (result != NULL) {
duke@435 685 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 686 return result;
duke@435 687 }
duke@435 688
duke@435 689 if (GC_locker::is_active_and_needs_gc()) {
duke@435 690 if (is_tlab) {
duke@435 691 return NULL; // Caller will retry allocating individual object
duke@435 692 }
duke@435 693 if (!gch->is_maximal_no_gc()) {
duke@435 694 // Try and expand heap to satisfy request
duke@435 695 result = expand_heap_and_allocate(size, is_tlab);
duke@435 696 // result could be null if we are out of space
duke@435 697 if (result != NULL) {
duke@435 698 return result;
duke@435 699 }
duke@435 700 }
duke@435 701
mgerdin@4853 702 if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
mgerdin@4853 703 return NULL; // we didn't get to do a GC and we didn't get any memory
mgerdin@4853 704 }
mgerdin@4853 705
duke@435 706 // If this thread is not in a jni critical section, we stall
duke@435 707 // the requestor until the critical section has cleared and
duke@435 708 // GC allowed. When the critical section clears, a GC is
duke@435 709 // initiated by the last thread exiting the critical section; so
duke@435 710 // we retry the allocation sequence from the beginning of the loop,
duke@435 711 // rather than causing more, now probably unnecessary, GC attempts.
duke@435 712 JavaThread* jthr = JavaThread::current();
duke@435 713 if (!jthr->in_critical()) {
duke@435 714 MutexUnlocker mul(Heap_lock);
duke@435 715 // Wait for JNI critical section to be exited
duke@435 716 GC_locker::stall_until_clear();
mgerdin@4853 717 gclocker_stalled_count += 1;
duke@435 718 continue;
duke@435 719 } else {
duke@435 720 if (CheckJNICalls) {
duke@435 721 fatal("Possible deadlock due to allocating while"
duke@435 722 " in jni critical section");
duke@435 723 }
duke@435 724 return NULL;
duke@435 725 }
duke@435 726 }
duke@435 727
duke@435 728 // Read the gc count while the heap lock is held.
duke@435 729 gc_count_before = Universe::heap()->total_collections();
duke@435 730 }
duke@435 731
jwilhelm@6084 732 VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
duke@435 733 VMThread::execute(&op);
duke@435 734 if (op.prologue_succeeded()) {
duke@435 735 result = op.result();
duke@435 736 if (op.gc_locked()) {
duke@435 737 assert(result == NULL, "must be NULL if gc_locked() is true");
duke@435 738 continue; // retry and/or stall as necessary
duke@435 739 }
jmasa@1822 740
jmasa@1822 741 // Allocation has failed and a collection
jmasa@1822 742 // has been done. If the gc time limit was exceeded the
jmasa@1822 743 // this time, return NULL so that an out-of-memory
jmasa@1822 744 // will be thrown. Clear gc_overhead_limit_exceeded
jmasa@1822 745 // so that the overhead exceeded does not persist.
jmasa@1822 746
jmasa@1822 747 const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
jmasa@1822 748 const bool softrefs_clear = all_soft_refs_clear();
jmasa@4743 749
jmasa@1822 750 if (limit_exceeded && softrefs_clear) {
jmasa@1822 751 *gc_overhead_limit_was_exceeded = true;
jmasa@1822 752 size_policy()->set_gc_overhead_limit_exceeded(false);
jmasa@1822 753 if (op.result() != NULL) {
jmasa@1822 754 CollectedHeap::fill_with_object(op.result(), size);
jmasa@1822 755 }
jmasa@1822 756 return NULL;
jmasa@1822 757 }
duke@435 758 assert(result == NULL || gch->is_in_reserved(result),
duke@435 759 "result not in heap");
duke@435 760 return result;
duke@435 761 }
duke@435 762
duke@435 763 // Give a warning if we seem to be looping forever.
duke@435 764 if ((QueuedAllocationWarningCount > 0) &&
duke@435 765 (try_count % QueuedAllocationWarningCount == 0)) {
duke@435 766 warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
duke@435 767 " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
duke@435 768 }
duke@435 769 }
duke@435 770 }
duke@435 771
duke@435 772 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
duke@435 773 bool is_tlab) {
duke@435 774 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 775 HeapWord* result = NULL;
duke@435 776 for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
duke@435 777 Generation *gen = gch->get_gen(i);
duke@435 778 if (gen->should_allocate(size, is_tlab)) {
duke@435 779 result = gen->expand_and_allocate(size, is_tlab);
duke@435 780 }
duke@435 781 }
duke@435 782 assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
duke@435 783 return result;
duke@435 784 }
duke@435 785
duke@435 786 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
duke@435 787 bool is_tlab) {
duke@435 788 GenCollectedHeap *gch = GenCollectedHeap::heap();
duke@435 789 GCCauseSetter x(gch, GCCause::_allocation_failure);
duke@435 790 HeapWord* result = NULL;
duke@435 791
duke@435 792 assert(size != 0, "Precondition violated");
duke@435 793 if (GC_locker::is_active_and_needs_gc()) {
duke@435 794 // GC locker is active; instead of a collection we will attempt
duke@435 795 // to expand the heap, if there's room for expansion.
duke@435 796 if (!gch->is_maximal_no_gc()) {
duke@435 797 result = expand_heap_and_allocate(size, is_tlab);
duke@435 798 }
duke@435 799 return result; // could be null if we are out of space
ysr@2336 800 } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
duke@435 801 // Do an incremental collection.
duke@435 802 gch->do_collection(false /* full */,
duke@435 803 false /* clear_all_soft_refs */,
duke@435 804 size /* size */,
duke@435 805 is_tlab /* is_tlab */,
duke@435 806 number_of_generations() - 1 /* max_level */);
duke@435 807 } else {
ysr@2336 808 if (Verbose && PrintGCDetails) {
ysr@2336 809 gclog_or_tty->print(" :: Trying full because partial may fail :: ");
ysr@2336 810 }
duke@435 811 // Try a full collection; see delta for bug id 6266275
duke@435 812 // for the original code and why this has been simplified
duke@435 813 // with from-space allocation criteria modified and
duke@435 814 // such allocation moved out of the safepoint path.
duke@435 815 gch->do_collection(true /* full */,
duke@435 816 false /* clear_all_soft_refs */,
duke@435 817 size /* size */,
duke@435 818 is_tlab /* is_tlab */,
duke@435 819 number_of_generations() - 1 /* max_level */);
duke@435 820 }
duke@435 821
duke@435 822 result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
duke@435 823
duke@435 824 if (result != NULL) {
duke@435 825 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 826 return result;
duke@435 827 }
duke@435 828
duke@435 829 // OK, collection failed, try expansion.
duke@435 830 result = expand_heap_and_allocate(size, is_tlab);
duke@435 831 if (result != NULL) {
duke@435 832 return result;
duke@435 833 }
duke@435 834
duke@435 835 // If we reach this point, we're really out of memory. Try every trick
duke@435 836 // we can to reclaim memory. Force collection of soft references. Force
duke@435 837 // a complete compaction of the heap. Any additional methods for finding
duke@435 838 // free memory should be here, especially if they are expensive. If this
duke@435 839 // attempt fails, an OOM exception will be thrown.
duke@435 840 {
tschatzl@5119 841 UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
duke@435 842
duke@435 843 gch->do_collection(true /* full */,
duke@435 844 true /* clear_all_soft_refs */,
duke@435 845 size /* size */,
duke@435 846 is_tlab /* is_tlab */,
duke@435 847 number_of_generations() - 1 /* max_level */);
duke@435 848 }
duke@435 849
duke@435 850 result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
duke@435 851 if (result != NULL) {
duke@435 852 assert(gch->is_in_reserved(result), "result not in heap");
duke@435 853 return result;
duke@435 854 }
duke@435 855
jmasa@1822 856 assert(!should_clear_all_soft_refs(),
jmasa@1822 857 "Flag should have been handled and cleared prior to this point");
jmasa@1822 858
duke@435 859 // What else? We might try synchronous finalization later. If the total
duke@435 860 // space available is large enough for the allocation, then a more
duke@435 861 // complete compaction phase than we've tried so far might be
duke@435 862 // appropriate.
duke@435 863 return NULL;
duke@435 864 }
duke@435 865
coleenp@4037 866 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
coleenp@4037 867 ClassLoaderData* loader_data,
coleenp@4037 868 size_t word_size,
coleenp@4037 869 Metaspace::MetadataType mdtype) {
coleenp@4037 870 uint loop_count = 0;
coleenp@4037 871 uint gc_count = 0;
coleenp@4037 872 uint full_gc_count = 0;
coleenp@4037 873
jmasa@4234 874 assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
jmasa@4234 875
coleenp@4037 876 do {
jmasa@4064 877 MetaWord* result = NULL;
jmasa@4064 878 if (GC_locker::is_active_and_needs_gc()) {
jmasa@4064 879 // If the GC_locker is active, just expand and allocate.
jmasa@4064 880 // If that does not succeed, wait if this thread is not
jmasa@4064 881 // in a critical section itself.
jmasa@4064 882 result =
jmasa@4064 883 loader_data->metaspace_non_null()->expand_and_allocate(word_size,
jmasa@4064 884 mdtype);
jmasa@4064 885 if (result != NULL) {
jmasa@4064 886 return result;
jmasa@4064 887 }
jmasa@4064 888 JavaThread* jthr = JavaThread::current();
jmasa@4064 889 if (!jthr->in_critical()) {
jmasa@4064 890 // Wait for JNI critical section to be exited
jmasa@4064 891 GC_locker::stall_until_clear();
jmasa@4064 892 // The GC invoked by the last thread leaving the critical
jmasa@4064 893 // section will be a young collection and a full collection
jmasa@4064 894 // is (currently) needed for unloading classes so continue
jmasa@4064 895 // to the next iteration to get a full GC.
jmasa@4064 896 continue;
jmasa@4064 897 } else {
jmasa@4064 898 if (CheckJNICalls) {
jmasa@4064 899 fatal("Possible deadlock due to allocating while"
jmasa@4064 900 " in jni critical section");
jmasa@4064 901 }
jmasa@4064 902 return NULL;
jmasa@4064 903 }
jmasa@4064 904 }
jmasa@4064 905
coleenp@4037 906 { // Need lock to get self consistent gc_count's
coleenp@4037 907 MutexLocker ml(Heap_lock);
coleenp@4037 908 gc_count = Universe::heap()->total_collections();
coleenp@4037 909 full_gc_count = Universe::heap()->total_full_collections();
coleenp@4037 910 }
coleenp@4037 911
coleenp@4037 912 // Generate a VM operation
coleenp@4037 913 VM_CollectForMetadataAllocation op(loader_data,
coleenp@4037 914 word_size,
coleenp@4037 915 mdtype,
coleenp@4037 916 gc_count,
coleenp@4037 917 full_gc_count,
coleenp@4037 918 GCCause::_metadata_GC_threshold);
coleenp@4037 919 VMThread::execute(&op);
jmasa@4382 920
jmasa@4382 921 // If GC was locked out, try again. Check
jmasa@4382 922 // before checking success because the prologue
jmasa@4382 923 // could have succeeded and the GC still have
jmasa@4382 924 // been locked out.
jmasa@4382 925 if (op.gc_locked()) {
jmasa@4382 926 continue;
jmasa@4382 927 }
jmasa@4382 928
coleenp@4037 929 if (op.prologue_succeeded()) {
coleenp@4037 930 return op.result();
coleenp@4037 931 }
coleenp@4037 932 loop_count++;
coleenp@4037 933 if ((QueuedAllocationWarningCount > 0) &&
coleenp@4037 934 (loop_count % QueuedAllocationWarningCount == 0)) {
coleenp@4037 935 warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
coleenp@4037 936 " size=%d", loop_count, word_size);
coleenp@4037 937 }
coleenp@4037 938 } while (true); // Until a GC is done
coleenp@4037 939 }
coleenp@4037 940
duke@435 941 // Return true if any of the following is true:
duke@435 942 // . the allocation won't fit into the current young gen heap
duke@435 943 // . gc locker is occupied (jni critical section)
duke@435 944 // . heap memory is tight -- the most recent previous collection
duke@435 945 // was a full collection because a partial collection (would
duke@435 946 // have) failed and is likely to fail again
duke@435 947 bool GenCollectorPolicy::should_try_older_generation_allocation(
duke@435 948 size_t word_size) const {
duke@435 949 GenCollectedHeap* gch = GenCollectedHeap::heap();
duke@435 950 size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
duke@435 951 return (word_size > heap_word_size(gen0_capacity))
ysr@2243 952 || GC_locker::is_active_and_needs_gc()
ysr@2243 953 || gch->incremental_collection_failed();
duke@435 954 }
duke@435 955
duke@435 956
duke@435 957 //
duke@435 958 // MarkSweepPolicy methods
duke@435 959 //
duke@435 960
jwilhelm@6085 961 void MarkSweepPolicy::initialize_alignments() {
jwilhelm@6085 962 _space_alignment = _gen_alignment = (uintx)Generation::GenGrain;
jwilhelm@6085 963 _heap_alignment = compute_heap_alignment();
duke@435 964 }
duke@435 965
duke@435 966 void MarkSweepPolicy::initialize_generations() {
minqi@5103 967 _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
jwilhelm@6084 968 if (_generations == NULL) {
duke@435 969 vm_exit_during_initialization("Unable to allocate gen spec");
jwilhelm@6084 970 }
duke@435 971
brutisso@4387 972 if (UseParNewGC) {
duke@435 973 _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
duke@435 974 } else {
duke@435 975 _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
duke@435 976 }
duke@435 977 _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
duke@435 978
jwilhelm@6084 979 if (_generations[0] == NULL || _generations[1] == NULL) {
duke@435 980 vm_exit_during_initialization("Unable to allocate gen spec");
jwilhelm@6084 981 }
duke@435 982 }
duke@435 983
duke@435 984 void MarkSweepPolicy::initialize_gc_policy_counters() {
duke@435 985 // initialize the policy counters - 2 collectors, 3 generations
brutisso@4387 986 if (UseParNewGC) {
duke@435 987 _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
brutisso@4387 988 } else {
duke@435 989 _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
duke@435 990 }
duke@435 991 }

mercurial