src/share/vm/gc_implementation/shared/mutableNUMASpace.cpp

Mon, 28 Jul 2008 15:30:23 -0700

author
jmasa
date
Mon, 28 Jul 2008 15:30:23 -0700
changeset 704
850fdf70db2b
parent 631
d1605aabd0a1
parent 703
d6340ab4105b
child 808
06df86c2ec37
permissions
-rw-r--r--

Merge

duke@435 1
duke@435 2 /*
xdono@631 3 * Copyright 2006-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 5 *
duke@435 6 * This code is free software; you can redistribute it and/or modify it
duke@435 7 * under the terms of the GNU General Public License version 2 only, as
duke@435 8 * published by the Free Software Foundation.
duke@435 9 *
duke@435 10 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 13 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 14 * accompanied this code).
duke@435 15 *
duke@435 16 * You should have received a copy of the GNU General Public License version
duke@435 17 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 19 *
duke@435 20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 21 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 22 * have any questions.
duke@435 23 *
duke@435 24 */
duke@435 25
duke@435 26 # include "incls/_precompiled.incl"
duke@435 27 # include "incls/_mutableNUMASpace.cpp.incl"
duke@435 28
duke@435 29
duke@435 30 MutableNUMASpace::MutableNUMASpace() {
duke@435 31 _lgrp_spaces = new (ResourceObj::C_HEAP) GrowableArray<LGRPSpace*>(0, true);
duke@435 32 _page_size = os::vm_page_size();
duke@435 33 _adaptation_cycles = 0;
duke@435 34 _samples_count = 0;
duke@435 35 update_layout(true);
duke@435 36 }
duke@435 37
duke@435 38 MutableNUMASpace::~MutableNUMASpace() {
duke@435 39 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 40 delete lgrp_spaces()->at(i);
duke@435 41 }
duke@435 42 delete lgrp_spaces();
duke@435 43 }
duke@435 44
jmasa@698 45 #ifndef PRODUCT
duke@435 46 void MutableNUMASpace::mangle_unused_area() {
jmasa@698 47 // This method should do nothing.
jmasa@698 48 // It can be called on a numa space during a full compaction.
duke@435 49 }
jmasa@698 50 void MutableNUMASpace::mangle_unused_area_complete() {
jmasa@698 51 // This method should do nothing.
jmasa@698 52 // It can be called on a numa space during a full compaction.
jmasa@698 53 }
jmasa@698 54 void MutableNUMASpace::mangle_region(MemRegion mr) {
jmasa@698 55 // This method should do nothing because numa spaces are not mangled.
jmasa@698 56 }
jmasa@698 57 void MutableNUMASpace::set_top_for_allocations(HeapWord* v) {
jmasa@698 58 assert(false, "Do not mangle MutableNUMASpace's");
jmasa@698 59 }
jmasa@698 60 void MutableNUMASpace::set_top_for_allocations() {
jmasa@698 61 // This method should do nothing.
jmasa@698 62 }
jmasa@698 63 void MutableNUMASpace::check_mangled_unused_area(HeapWord* limit) {
jmasa@698 64 // This method should do nothing.
jmasa@698 65 }
jmasa@698 66 void MutableNUMASpace::check_mangled_unused_area_complete() {
jmasa@698 67 // This method should do nothing.
jmasa@698 68 }
jmasa@698 69 #endif // NOT_PRODUCT
duke@435 70
duke@435 71 // There may be unallocated holes in the middle chunks
duke@435 72 // that should be filled with dead objects to ensure parseability.
duke@435 73 void MutableNUMASpace::ensure_parsability() {
duke@435 74 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 75 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 76 MutableSpace *s = ls->space();
iveresov@579 77 if (s->top() < top()) { // For all spaces preceeding the one containing top()
duke@435 78 if (s->free_in_words() > 0) {
duke@435 79 SharedHeap::fill_region_with_object(MemRegion(s->top(), s->end()));
iveresov@579 80 size_t area_touched_words = pointer_delta(s->end(), s->top());
duke@435 81 #ifndef ASSERT
duke@435 82 if (!ZapUnusedHeapArea) {
duke@435 83 area_touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)),
duke@435 84 area_touched_words);
duke@435 85 }
duke@435 86 #endif
iveresov@576 87 if (!os::numa_has_static_binding()) {
iveresov@576 88 MemRegion invalid;
iveresov@576 89 HeapWord *crossing_start = (HeapWord*)round_to((intptr_t)s->top(), os::vm_page_size());
iveresov@576 90 HeapWord *crossing_end = (HeapWord*)round_to((intptr_t)(s->top() + area_touched_words),
iveresov@576 91 os::vm_page_size());
iveresov@576 92 if (crossing_start != crossing_end) {
iveresov@576 93 // If object header crossed a small page boundary we mark the area
iveresov@576 94 // as invalid rounding it to a page_size().
iveresov@576 95 HeapWord *start = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
iveresov@576 96 HeapWord *end = MIN2((HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), page_size()),
iveresov@576 97 s->end());
iveresov@576 98 invalid = MemRegion(start, end);
iveresov@576 99 }
iveresov@576 100
iveresov@576 101 ls->add_invalid_region(invalid);
duke@435 102 }
duke@435 103 }
duke@435 104 } else {
iveresov@576 105 if (!os::numa_has_static_binding()) {
duke@435 106 #ifdef ASSERT
duke@435 107 MemRegion invalid(s->top(), s->end());
duke@435 108 ls->add_invalid_region(invalid);
iveresov@576 109 #else
iveresov@576 110 if (ZapUnusedHeapArea) {
iveresov@576 111 MemRegion invalid(s->top(), s->end());
iveresov@576 112 ls->add_invalid_region(invalid);
iveresov@579 113 } else {
iveresov@579 114 return;
iveresov@579 115 }
duke@435 116 #endif
iveresov@579 117 } else {
iveresov@579 118 return;
iveresov@576 119 }
duke@435 120 }
duke@435 121 }
duke@435 122 }
duke@435 123
duke@435 124 size_t MutableNUMASpace::used_in_words() const {
duke@435 125 size_t s = 0;
duke@435 126 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 127 s += lgrp_spaces()->at(i)->space()->used_in_words();
duke@435 128 }
duke@435 129 return s;
duke@435 130 }
duke@435 131
duke@435 132 size_t MutableNUMASpace::free_in_words() const {
duke@435 133 size_t s = 0;
duke@435 134 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 135 s += lgrp_spaces()->at(i)->space()->free_in_words();
duke@435 136 }
duke@435 137 return s;
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 size_t MutableNUMASpace::tlab_capacity(Thread *thr) const {
duke@435 142 guarantee(thr != NULL, "No thread");
duke@435 143 int lgrp_id = thr->lgrp_id();
iveresov@703 144 if (lgrp_id == -1) {
iveresov@703 145 // This case can occur after the topology of the system has
iveresov@703 146 // changed. Thread can change their location, the new home
iveresov@703 147 // group will be determined during the first allocation
iveresov@703 148 // attempt. For now we can safely assume that all spaces
iveresov@703 149 // have equal size because the whole space will be reinitialized.
iveresov@703 150 if (lgrp_spaces()->length() > 0) {
iveresov@703 151 return capacity_in_bytes() / lgrp_spaces()->length();
iveresov@703 152 } else {
iveresov@703 153 assert(false, "There should be at least one locality group");
iveresov@703 154 return 0;
iveresov@703 155 }
iveresov@703 156 }
iveresov@703 157 // That's the normal case, where we know the locality group of the thread.
duke@435 158 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 159 if (i == -1) {
duke@435 160 return 0;
duke@435 161 }
duke@435 162 return lgrp_spaces()->at(i)->space()->capacity_in_bytes();
duke@435 163 }
duke@435 164
duke@435 165 size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const {
iveresov@703 166 // Please see the comments for tlab_capacity().
duke@435 167 guarantee(thr != NULL, "No thread");
duke@435 168 int lgrp_id = thr->lgrp_id();
iveresov@703 169 if (lgrp_id == -1) {
iveresov@703 170 if (lgrp_spaces()->length() > 0) {
iveresov@703 171 return free_in_bytes() / lgrp_spaces()->length();
iveresov@703 172 } else {
iveresov@703 173 assert(false, "There should be at least one locality group");
iveresov@703 174 return 0;
iveresov@703 175 }
iveresov@703 176 }
duke@435 177 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 178 if (i == -1) {
duke@435 179 return 0;
duke@435 180 }
duke@435 181 return lgrp_spaces()->at(i)->space()->free_in_bytes();
duke@435 182 }
duke@435 183
duke@435 184 // Check if the NUMA topology has changed. Add and remove spaces if needed.
duke@435 185 // The update can be forced by setting the force parameter equal to true.
duke@435 186 bool MutableNUMASpace::update_layout(bool force) {
duke@435 187 // Check if the topology had changed.
duke@435 188 bool changed = os::numa_topology_changed();
duke@435 189 if (force || changed) {
duke@435 190 // Compute lgrp intersection. Add/remove spaces.
duke@435 191 int lgrp_limit = (int)os::numa_get_groups_num();
duke@435 192 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit);
duke@435 193 int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
duke@435 194 assert(lgrp_num > 0, "There should be at least one locality group");
duke@435 195 // Add new spaces for the new nodes
duke@435 196 for (int i = 0; i < lgrp_num; i++) {
duke@435 197 bool found = false;
duke@435 198 for (int j = 0; j < lgrp_spaces()->length(); j++) {
duke@435 199 if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) {
duke@435 200 found = true;
duke@435 201 break;
duke@435 202 }
duke@435 203 }
duke@435 204 if (!found) {
duke@435 205 lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i]));
duke@435 206 }
duke@435 207 }
duke@435 208
duke@435 209 // Remove spaces for the removed nodes.
duke@435 210 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 211 bool found = false;
duke@435 212 for (int j = 0; j < lgrp_num; j++) {
duke@435 213 if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) {
duke@435 214 found = true;
duke@435 215 break;
duke@435 216 }
duke@435 217 }
duke@435 218 if (!found) {
duke@435 219 delete lgrp_spaces()->at(i);
duke@435 220 lgrp_spaces()->remove_at(i);
duke@435 221 } else {
duke@435 222 i++;
duke@435 223 }
duke@435 224 }
duke@435 225
duke@435 226 FREE_C_HEAP_ARRAY(int, lgrp_ids);
duke@435 227
duke@435 228 if (changed) {
duke@435 229 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
duke@435 230 thread->set_lgrp_id(-1);
duke@435 231 }
duke@435 232 }
duke@435 233 return true;
duke@435 234 }
duke@435 235 return false;
duke@435 236 }
duke@435 237
duke@435 238 // Bias region towards the first-touching lgrp. Set the right page sizes.
iveresov@576 239 void MutableNUMASpace::bias_region(MemRegion mr, int lgrp_id) {
duke@435 240 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 241 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 242 if (end > start) {
duke@435 243 MemRegion aligned_region(start, end);
duke@435 244 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 245 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 246 assert(region().contains(aligned_region), "Sanity");
iveresov@576 247 // First we tell the OS which page size we want in the given range. The underlying
iveresov@576 248 // large page can be broken down if we require small pages.
iveresov@576 249 os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size());
iveresov@576 250 // Then we uncommit the pages in the range.
duke@435 251 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size());
iveresov@576 252 // And make them local/first-touch biased.
iveresov@576 253 os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size(), lgrp_id);
duke@435 254 }
duke@435 255 }
duke@435 256
duke@435 257 // Free all pages in the region.
duke@435 258 void MutableNUMASpace::free_region(MemRegion mr) {
duke@435 259 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size());
duke@435 260 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size());
duke@435 261 if (end > start) {
duke@435 262 MemRegion aligned_region(start, end);
duke@435 263 assert((intptr_t)aligned_region.start() % page_size() == 0 &&
duke@435 264 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment");
duke@435 265 assert(region().contains(aligned_region), "Sanity");
duke@435 266 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size());
duke@435 267 }
duke@435 268 }
duke@435 269
duke@435 270 // Update space layout. Perform adaptation.
duke@435 271 void MutableNUMASpace::update() {
duke@435 272 if (update_layout(false)) {
duke@435 273 // If the topology has changed, make all chunks zero-sized.
iveresov@703 274 // And clear the alloc-rate statistics.
iveresov@703 275 // In future we may want to handle this more gracefully in order
iveresov@703 276 // to avoid the reallocation of the pages as much as possible.
duke@435 277 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@703 278 LGRPSpace *ls = lgrp_spaces()->at(i);
iveresov@703 279 MutableSpace *s = ls->space();
duke@435 280 s->set_end(s->bottom());
duke@435 281 s->set_top(s->bottom());
iveresov@703 282 ls->clear_alloc_rate();
duke@435 283 }
jmasa@698 284 // A NUMA space is never mangled
jmasa@698 285 initialize(region(),
jmasa@698 286 SpaceDecorator::Clear,
jmasa@698 287 SpaceDecorator::DontMangle);
duke@435 288 } else {
duke@435 289 bool should_initialize = false;
iveresov@576 290 if (!os::numa_has_static_binding()) {
iveresov@576 291 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@576 292 if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) {
iveresov@576 293 should_initialize = true;
iveresov@576 294 break;
iveresov@576 295 }
duke@435 296 }
duke@435 297 }
duke@435 298
duke@435 299 if (should_initialize ||
duke@435 300 (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) {
jmasa@698 301 // A NUMA space is never mangled
jmasa@698 302 initialize(region(),
jmasa@698 303 SpaceDecorator::Clear,
jmasa@698 304 SpaceDecorator::DontMangle);
duke@435 305 }
duke@435 306 }
duke@435 307
duke@435 308 if (NUMAStats) {
duke@435 309 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 310 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 311 }
duke@435 312 }
duke@435 313
duke@435 314 scan_pages(NUMAPageScanRate);
duke@435 315 }
duke@435 316
duke@435 317 // Scan pages. Free pages that have smaller size or wrong placement.
duke@435 318 void MutableNUMASpace::scan_pages(size_t page_count)
duke@435 319 {
duke@435 320 size_t pages_per_chunk = page_count / lgrp_spaces()->length();
duke@435 321 if (pages_per_chunk > 0) {
duke@435 322 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 323 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 324 ls->scan_pages(page_size(), pages_per_chunk);
duke@435 325 }
duke@435 326 }
duke@435 327 }
duke@435 328
duke@435 329 // Accumulate statistics about the allocation rate of each lgrp.
duke@435 330 void MutableNUMASpace::accumulate_statistics() {
duke@435 331 if (UseAdaptiveNUMAChunkSizing) {
duke@435 332 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 333 lgrp_spaces()->at(i)->sample();
duke@435 334 }
duke@435 335 increment_samples_count();
duke@435 336 }
duke@435 337
duke@435 338 if (NUMAStats) {
duke@435 339 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 340 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
duke@435 341 }
duke@435 342 }
duke@435 343 }
duke@435 344
duke@435 345 // Get the current size of a chunk.
duke@435 346 // This function computes the size of the chunk based on the
duke@435 347 // difference between chunk ends. This allows it to work correctly in
duke@435 348 // case the whole space is resized and during the process of adaptive
duke@435 349 // chunk resizing.
duke@435 350 size_t MutableNUMASpace::current_chunk_size(int i) {
duke@435 351 HeapWord *cur_end, *prev_end;
duke@435 352 if (i == 0) {
duke@435 353 prev_end = bottom();
duke@435 354 } else {
duke@435 355 prev_end = lgrp_spaces()->at(i - 1)->space()->end();
duke@435 356 }
duke@435 357 if (i == lgrp_spaces()->length() - 1) {
duke@435 358 cur_end = end();
duke@435 359 } else {
duke@435 360 cur_end = lgrp_spaces()->at(i)->space()->end();
duke@435 361 }
duke@435 362 if (cur_end > prev_end) {
duke@435 363 return pointer_delta(cur_end, prev_end, sizeof(char));
duke@435 364 }
duke@435 365 return 0;
duke@435 366 }
duke@435 367
duke@435 368 // Return the default chunk size by equally diving the space.
duke@435 369 // page_size() aligned.
duke@435 370 size_t MutableNUMASpace::default_chunk_size() {
duke@435 371 return base_space_size() / lgrp_spaces()->length() * page_size();
duke@435 372 }
duke@435 373
duke@435 374 // Produce a new chunk size. page_size() aligned.
duke@435 375 size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) {
duke@435 376 size_t pages_available = base_space_size();
duke@435 377 for (int j = 0; j < i; j++) {
duke@435 378 pages_available -= round_down(current_chunk_size(j), page_size()) / page_size();
duke@435 379 }
duke@435 380 pages_available -= lgrp_spaces()->length() - i - 1;
duke@435 381 assert(pages_available > 0, "No pages left");
duke@435 382 float alloc_rate = 0;
duke@435 383 for (int j = i; j < lgrp_spaces()->length(); j++) {
duke@435 384 alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average();
duke@435 385 }
duke@435 386 size_t chunk_size = 0;
duke@435 387 if (alloc_rate > 0) {
duke@435 388 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 389 chunk_size = (size_t)(ls->alloc_rate()->average() * pages_available / alloc_rate) * page_size();
duke@435 390 }
duke@435 391 chunk_size = MAX2(chunk_size, page_size());
duke@435 392
duke@435 393 if (limit > 0) {
duke@435 394 limit = round_down(limit, page_size());
duke@435 395 if (chunk_size > current_chunk_size(i)) {
duke@435 396 chunk_size = MIN2((off_t)chunk_size, (off_t)current_chunk_size(i) + (off_t)limit);
duke@435 397 } else {
duke@435 398 chunk_size = MAX2((off_t)chunk_size, (off_t)current_chunk_size(i) - (off_t)limit);
duke@435 399 }
duke@435 400 }
duke@435 401 assert(chunk_size <= pages_available * page_size(), "Chunk size out of range");
duke@435 402 return chunk_size;
duke@435 403 }
duke@435 404
duke@435 405
duke@435 406 // Return the bottom_region and the top_region. Align them to page_size() boundary.
duke@435 407 // |------------------new_region---------------------------------|
duke@435 408 // |----bottom_region--|---intersection---|------top_region------|
duke@435 409 void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection,
duke@435 410 MemRegion* bottom_region, MemRegion *top_region) {
duke@435 411 // Is there bottom?
duke@435 412 if (new_region.start() < intersection.start()) { // Yes
duke@435 413 // Try to coalesce small pages into a large one.
duke@435 414 if (UseLargePages && page_size() >= os::large_page_size()) {
duke@435 415 HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), os::large_page_size());
duke@435 416 if (new_region.contains(p)
duke@435 417 && pointer_delta(p, new_region.start(), sizeof(char)) >= os::large_page_size()) {
duke@435 418 if (intersection.contains(p)) {
duke@435 419 intersection = MemRegion(p, intersection.end());
duke@435 420 } else {
duke@435 421 intersection = MemRegion(p, p);
duke@435 422 }
duke@435 423 }
duke@435 424 }
duke@435 425 *bottom_region = MemRegion(new_region.start(), intersection.start());
duke@435 426 } else {
duke@435 427 *bottom_region = MemRegion();
duke@435 428 }
duke@435 429
duke@435 430 // Is there top?
duke@435 431 if (intersection.end() < new_region.end()) { // Yes
duke@435 432 // Try to coalesce small pages into a large one.
duke@435 433 if (UseLargePages && page_size() >= os::large_page_size()) {
duke@435 434 HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), os::large_page_size());
duke@435 435 if (new_region.contains(p)
duke@435 436 && pointer_delta(new_region.end(), p, sizeof(char)) >= os::large_page_size()) {
duke@435 437 if (intersection.contains(p)) {
duke@435 438 intersection = MemRegion(intersection.start(), p);
duke@435 439 } else {
duke@435 440 intersection = MemRegion(p, p);
duke@435 441 }
duke@435 442 }
duke@435 443 }
duke@435 444 *top_region = MemRegion(intersection.end(), new_region.end());
duke@435 445 } else {
duke@435 446 *top_region = MemRegion();
duke@435 447 }
duke@435 448 }
duke@435 449
duke@435 450 // Try to merge the invalid region with the bottom or top region by decreasing
duke@435 451 // the intersection area. Return the invalid_region aligned to the page_size()
duke@435 452 // boundary if it's inside the intersection. Return non-empty invalid_region
duke@435 453 // if it lies inside the intersection (also page-aligned).
duke@435 454 // |------------------new_region---------------------------------|
duke@435 455 // |----------------|-------invalid---|--------------------------|
duke@435 456 // |----bottom_region--|---intersection---|------top_region------|
duke@435 457 void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection,
duke@435 458 MemRegion *invalid_region) {
duke@435 459 if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) {
duke@435 460 *intersection = MemRegion(invalid_region->end(), intersection->end());
duke@435 461 *invalid_region = MemRegion();
duke@435 462 } else
duke@435 463 if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) {
duke@435 464 *intersection = MemRegion(intersection->start(), invalid_region->start());
duke@435 465 *invalid_region = MemRegion();
duke@435 466 } else
duke@435 467 if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) {
duke@435 468 *intersection = MemRegion(new_region.start(), new_region.start());
duke@435 469 *invalid_region = MemRegion();
duke@435 470 } else
duke@435 471 if (intersection->contains(invalid_region)) {
duke@435 472 // That's the only case we have to make an additional bias_region() call.
duke@435 473 HeapWord* start = invalid_region->start();
duke@435 474 HeapWord* end = invalid_region->end();
duke@435 475 if (UseLargePages && page_size() >= os::large_page_size()) {
duke@435 476 HeapWord *p = (HeapWord*)round_down((intptr_t) start, os::large_page_size());
duke@435 477 if (new_region.contains(p)) {
duke@435 478 start = p;
duke@435 479 }
duke@435 480 p = (HeapWord*)round_to((intptr_t) end, os::large_page_size());
duke@435 481 if (new_region.contains(end)) {
duke@435 482 end = p;
duke@435 483 }
duke@435 484 }
duke@435 485 if (intersection->start() > start) {
duke@435 486 *intersection = MemRegion(start, intersection->end());
duke@435 487 }
duke@435 488 if (intersection->end() < end) {
duke@435 489 *intersection = MemRegion(intersection->start(), end);
duke@435 490 }
duke@435 491 *invalid_region = MemRegion(start, end);
duke@435 492 }
duke@435 493 }
duke@435 494
jmasa@698 495 void MutableNUMASpace::initialize(MemRegion mr,
jmasa@698 496 bool clear_space,
jmasa@698 497 bool mangle_space) {
duke@435 498 assert(clear_space, "Reallocation will destory data!");
duke@435 499 assert(lgrp_spaces()->length() > 0, "There should be at least one space");
duke@435 500
duke@435 501 MemRegion old_region = region(), new_region;
duke@435 502 set_bottom(mr.start());
duke@435 503 set_end(mr.end());
jmasa@698 504 // Must always clear the space
jmasa@698 505 clear(SpaceDecorator::DontMangle);
duke@435 506
duke@435 507 // Compute chunk sizes
duke@435 508 size_t prev_page_size = page_size();
duke@435 509 set_page_size(UseLargePages ? os::large_page_size() : os::vm_page_size());
duke@435 510 HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 511 HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 512 size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 513
duke@435 514 // Try small pages if the chunk size is too small
duke@435 515 if (base_space_size_pages / lgrp_spaces()->length() == 0
duke@435 516 && page_size() > (size_t)os::vm_page_size()) {
duke@435 517 set_page_size(os::vm_page_size());
duke@435 518 rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size());
duke@435 519 rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size());
duke@435 520 base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size();
duke@435 521 }
duke@435 522 guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small");
duke@435 523 set_base_space_size(base_space_size_pages);
duke@435 524
duke@435 525 // Handle space resize
duke@435 526 MemRegion top_region, bottom_region;
duke@435 527 if (!old_region.equals(region())) {
duke@435 528 new_region = MemRegion(rounded_bottom, rounded_end);
duke@435 529 MemRegion intersection = new_region.intersection(old_region);
duke@435 530 if (intersection.start() == NULL ||
duke@435 531 intersection.end() == NULL ||
duke@435 532 prev_page_size > page_size()) { // If the page size got smaller we have to change
duke@435 533 // the page size preference for the whole space.
duke@435 534 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 535 }
duke@435 536 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 537 bias_region(bottom_region, lgrp_spaces()->at(0)->lgrp_id());
iveresov@576 538 bias_region(top_region, lgrp_spaces()->at(lgrp_spaces()->length() - 1)->lgrp_id());
duke@435 539 }
duke@435 540
duke@435 541 // Check if the space layout has changed significantly?
duke@435 542 // This happens when the space has been resized so that either head or tail
duke@435 543 // chunk became less than a page.
duke@435 544 bool layout_valid = UseAdaptiveNUMAChunkSizing &&
duke@435 545 current_chunk_size(0) > page_size() &&
duke@435 546 current_chunk_size(lgrp_spaces()->length() - 1) > page_size();
duke@435 547
duke@435 548
duke@435 549 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 550 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 551 MutableSpace *s = ls->space();
duke@435 552 old_region = s->region();
duke@435 553
duke@435 554 size_t chunk_byte_size = 0, old_chunk_byte_size = 0;
duke@435 555 if (i < lgrp_spaces()->length() - 1) {
duke@435 556 if (!UseAdaptiveNUMAChunkSizing ||
duke@435 557 (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) ||
duke@435 558 samples_count() < AdaptiveSizePolicyReadyThreshold) {
duke@435 559 // No adaptation. Divide the space equally.
duke@435 560 chunk_byte_size = default_chunk_size();
duke@435 561 } else
duke@435 562 if (!layout_valid || NUMASpaceResizeRate == 0) {
duke@435 563 // Fast adaptation. If no space resize rate is set, resize
duke@435 564 // the chunks instantly.
duke@435 565 chunk_byte_size = adaptive_chunk_size(i, 0);
duke@435 566 } else {
duke@435 567 // Slow adaptation. Resize the chunks moving no more than
duke@435 568 // NUMASpaceResizeRate bytes per collection.
duke@435 569 size_t limit = NUMASpaceResizeRate /
duke@435 570 (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2);
duke@435 571 chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size()));
duke@435 572 }
duke@435 573
duke@435 574 assert(chunk_byte_size >= page_size(), "Chunk size too small");
duke@435 575 assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check");
duke@435 576 }
duke@435 577
duke@435 578 if (i == 0) { // Bottom chunk
duke@435 579 if (i != lgrp_spaces()->length() - 1) {
duke@435 580 new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize));
duke@435 581 } else {
duke@435 582 new_region = MemRegion(bottom(), end());
duke@435 583 }
duke@435 584 } else
duke@435 585 if (i < lgrp_spaces()->length() - 1) { // Middle chunks
duke@435 586 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 587 new_region = MemRegion(ps->end(),
duke@435 588 ps->end() + (chunk_byte_size >> LogHeapWordSize));
duke@435 589 } else { // Top chunk
duke@435 590 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space();
duke@435 591 new_region = MemRegion(ps->end(), end());
duke@435 592 }
duke@435 593 guarantee(region().contains(new_region), "Region invariant");
duke@435 594
duke@435 595
duke@435 596 // The general case:
duke@435 597 // |---------------------|--invalid---|--------------------------|
duke@435 598 // |------------------new_region---------------------------------|
duke@435 599 // |----bottom_region--|---intersection---|------top_region------|
duke@435 600 // |----old_region----|
duke@435 601 // The intersection part has all pages in place we don't need to migrate them.
duke@435 602 // Pages for the top and bottom part should be freed and then reallocated.
duke@435 603
duke@435 604 MemRegion intersection = old_region.intersection(new_region);
duke@435 605
duke@435 606 if (intersection.start() == NULL || intersection.end() == NULL) {
duke@435 607 intersection = MemRegion(new_region.start(), new_region.start());
duke@435 608 }
duke@435 609
iveresov@576 610 if (!os::numa_has_static_binding()) {
iveresov@576 611 MemRegion invalid_region = ls->invalid_region().intersection(new_region);
iveresov@576 612 // Invalid region is a range of memory that could've possibly
iveresov@576 613 // been allocated on the other node. That's relevant only on Solaris where
iveresov@576 614 // there is no static memory binding.
iveresov@576 615 if (!invalid_region.is_empty()) {
iveresov@576 616 merge_regions(new_region, &intersection, &invalid_region);
iveresov@576 617 free_region(invalid_region);
iveresov@576 618 ls->set_invalid_region(MemRegion());
iveresov@576 619 }
duke@435 620 }
iveresov@576 621
duke@435 622 select_tails(new_region, intersection, &bottom_region, &top_region);
iveresov@576 623
iveresov@576 624 if (!os::numa_has_static_binding()) {
iveresov@576 625 // If that's a system with the first-touch policy then it's enough
iveresov@576 626 // to free the pages.
iveresov@576 627 free_region(bottom_region);
iveresov@576 628 free_region(top_region);
iveresov@576 629 } else {
iveresov@576 630 // In a system with static binding we have to change the bias whenever
iveresov@576 631 // we reshape the heap.
iveresov@576 632 bias_region(bottom_region, ls->lgrp_id());
iveresov@576 633 bias_region(top_region, ls->lgrp_id());
iveresov@576 634 }
duke@435 635
jmasa@698 636 // Clear space (set top = bottom) but never mangle.
jmasa@698 637 s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle);
duke@435 638
duke@435 639 set_adaptation_cycles(samples_count());
duke@435 640 }
duke@435 641 }
duke@435 642
duke@435 643 // Set the top of the whole space.
duke@435 644 // Mark the the holes in chunks below the top() as invalid.
duke@435 645 void MutableNUMASpace::set_top(HeapWord* value) {
duke@435 646 bool found_top = false;
iveresov@625 647 for (int i = 0; i < lgrp_spaces()->length();) {
duke@435 648 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 649 MutableSpace *s = ls->space();
duke@435 650 HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom());
duke@435 651
duke@435 652 if (s->contains(value)) {
iveresov@625 653 // Check if setting the chunk's top to a given value would create a hole less than
iveresov@625 654 // a minimal object; assuming that's not the last chunk in which case we don't care.
iveresov@625 655 if (i < lgrp_spaces()->length() - 1) {
iveresov@625 656 size_t remainder = pointer_delta(s->end(), value);
iveresov@625 657 const size_t minimal_object_size = oopDesc::header_size();
iveresov@625 658 if (remainder < minimal_object_size && remainder > 0) {
iveresov@625 659 // Add a filler object of a minimal size, it will cross the chunk boundary.
iveresov@625 660 SharedHeap::fill_region_with_object(MemRegion(value, minimal_object_size));
iveresov@625 661 value += minimal_object_size;
iveresov@625 662 assert(!s->contains(value), "Should be in the next chunk");
iveresov@625 663 // Restart the loop from the same chunk, since the value has moved
iveresov@625 664 // to the next one.
iveresov@625 665 continue;
iveresov@625 666 }
iveresov@625 667 }
iveresov@625 668
iveresov@576 669 if (!os::numa_has_static_binding() && top < value && top < s->end()) {
duke@435 670 ls->add_invalid_region(MemRegion(top, value));
duke@435 671 }
duke@435 672 s->set_top(value);
duke@435 673 found_top = true;
duke@435 674 } else {
duke@435 675 if (found_top) {
duke@435 676 s->set_top(s->bottom());
duke@435 677 } else {
iveresov@576 678 if (!os::numa_has_static_binding() && top < s->end()) {
iveresov@576 679 ls->add_invalid_region(MemRegion(top, s->end()));
iveresov@576 680 }
iveresov@576 681 s->set_top(s->end());
duke@435 682 }
duke@435 683 }
iveresov@625 684 i++;
duke@435 685 }
duke@435 686 MutableSpace::set_top(value);
duke@435 687 }
duke@435 688
jmasa@698 689 void MutableNUMASpace::clear(bool mangle_space) {
duke@435 690 MutableSpace::set_top(bottom());
duke@435 691 for (int i = 0; i < lgrp_spaces()->length(); i++) {
jmasa@698 692 // Never mangle NUMA spaces because the mangling will
jmasa@698 693 // bind the memory to a possibly unwanted lgroup.
jmasa@698 694 lgrp_spaces()->at(i)->space()->clear(SpaceDecorator::DontMangle);
duke@435 695 }
duke@435 696 }
duke@435 697
iveresov@576 698 /*
iveresov@576 699 Linux supports static memory binding, therefore the most part of the
iveresov@576 700 logic dealing with the possible invalid page allocation is effectively
iveresov@576 701 disabled. Besides there is no notion of the home node in Linux. A
iveresov@576 702 thread is allowed to migrate freely. Although the scheduler is rather
iveresov@576 703 reluctant to move threads between the nodes. We check for the current
iveresov@576 704 node every allocation. And with a high probability a thread stays on
iveresov@576 705 the same node for some time allowing local access to recently allocated
iveresov@576 706 objects.
iveresov@576 707 */
iveresov@576 708
duke@435 709 HeapWord* MutableNUMASpace::allocate(size_t size) {
iveresov@576 710 Thread* thr = Thread::current();
iveresov@576 711 int lgrp_id = thr->lgrp_id();
iveresov@576 712 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 713 lgrp_id = os::numa_get_group_id();
iveresov@576 714 thr->set_lgrp_id(lgrp_id);
duke@435 715 }
duke@435 716
duke@435 717 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 718
duke@435 719 // It is possible that a new CPU has been hotplugged and
duke@435 720 // we haven't reshaped the space accordingly.
duke@435 721 if (i == -1) {
duke@435 722 i = os::random() % lgrp_spaces()->length();
duke@435 723 }
duke@435 724
duke@435 725 MutableSpace *s = lgrp_spaces()->at(i)->space();
duke@435 726 HeapWord *p = s->allocate(size);
duke@435 727
iveresov@579 728 if (p != NULL) {
iveresov@579 729 size_t remainder = s->free_in_words();
iveresov@579 730 if (remainder < (size_t)oopDesc::header_size() && remainder > 0) {
iveresov@579 731 s->set_top(s->top() - size);
iveresov@579 732 p = NULL;
iveresov@579 733 }
duke@435 734 }
duke@435 735 if (p != NULL) {
duke@435 736 if (top() < s->top()) { // Keep _top updated.
duke@435 737 MutableSpace::set_top(s->top());
duke@435 738 }
duke@435 739 }
iveresov@576 740 // Make the page allocation happen here if there is no static binding..
iveresov@576 741 if (p != NULL && !os::numa_has_static_binding()) {
duke@435 742 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 743 *(int*)i = 0;
duke@435 744 }
duke@435 745 }
duke@435 746 return p;
duke@435 747 }
duke@435 748
duke@435 749 // This version is lock-free.
duke@435 750 HeapWord* MutableNUMASpace::cas_allocate(size_t size) {
iveresov@576 751 Thread* thr = Thread::current();
iveresov@576 752 int lgrp_id = thr->lgrp_id();
iveresov@576 753 if (lgrp_id == -1 || !os::numa_has_group_homing()) {
duke@435 754 lgrp_id = os::numa_get_group_id();
iveresov@576 755 thr->set_lgrp_id(lgrp_id);
duke@435 756 }
duke@435 757
duke@435 758 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals);
duke@435 759 // It is possible that a new CPU has been hotplugged and
duke@435 760 // we haven't reshaped the space accordingly.
duke@435 761 if (i == -1) {
duke@435 762 i = os::random() % lgrp_spaces()->length();
duke@435 763 }
duke@435 764 MutableSpace *s = lgrp_spaces()->at(i)->space();
duke@435 765 HeapWord *p = s->cas_allocate(size);
iveresov@579 766 if (p != NULL) {
iveresov@625 767 size_t remainder = pointer_delta(s->end(), p + size);
iveresov@579 768 if (remainder < (size_t)oopDesc::header_size() && remainder > 0) {
iveresov@579 769 if (s->cas_deallocate(p, size)) {
iveresov@579 770 // We were the last to allocate and created a fragment less than
iveresov@579 771 // a minimal object.
iveresov@579 772 p = NULL;
iveresov@625 773 } else {
iveresov@625 774 guarantee(false, "Deallocation should always succeed");
iveresov@579 775 }
duke@435 776 }
duke@435 777 }
duke@435 778 if (p != NULL) {
duke@435 779 HeapWord* cur_top, *cur_chunk_top = p + size;
duke@435 780 while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated.
duke@435 781 if (Atomic::cmpxchg_ptr(cur_chunk_top, top_addr(), cur_top) == cur_top) {
duke@435 782 break;
duke@435 783 }
duke@435 784 }
duke@435 785 }
duke@435 786
iveresov@576 787 // Make the page allocation happen here if there is no static binding.
iveresov@576 788 if (p != NULL && !os::numa_has_static_binding() ) {
duke@435 789 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) {
duke@435 790 *(int*)i = 0;
duke@435 791 }
duke@435 792 }
duke@435 793 return p;
duke@435 794 }
duke@435 795
duke@435 796 void MutableNUMASpace::print_short_on(outputStream* st) const {
duke@435 797 MutableSpace::print_short_on(st);
duke@435 798 st->print(" (");
duke@435 799 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 800 st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id());
duke@435 801 lgrp_spaces()->at(i)->space()->print_short_on(st);
duke@435 802 if (i < lgrp_spaces()->length() - 1) {
duke@435 803 st->print(", ");
duke@435 804 }
duke@435 805 }
duke@435 806 st->print(")");
duke@435 807 }
duke@435 808
duke@435 809 void MutableNUMASpace::print_on(outputStream* st) const {
duke@435 810 MutableSpace::print_on(st);
duke@435 811 for (int i = 0; i < lgrp_spaces()->length(); i++) {
duke@435 812 LGRPSpace *ls = lgrp_spaces()->at(i);
duke@435 813 st->print(" lgrp %d", ls->lgrp_id());
duke@435 814 ls->space()->print_on(st);
duke@435 815 if (NUMAStats) {
iveresov@579 816 for (int i = 0; i < lgrp_spaces()->length(); i++) {
iveresov@579 817 lgrp_spaces()->at(i)->accumulate_statistics(page_size());
iveresov@579 818 }
duke@435 819 st->print(" local/remote/unbiased/uncommitted: %dK/%dK/%dK/%dK, large/small pages: %d/%d\n",
duke@435 820 ls->space_stats()->_local_space / K,
duke@435 821 ls->space_stats()->_remote_space / K,
duke@435 822 ls->space_stats()->_unbiased_space / K,
duke@435 823 ls->space_stats()->_uncommited_space / K,
duke@435 824 ls->space_stats()->_large_pages,
duke@435 825 ls->space_stats()->_small_pages);
duke@435 826 }
duke@435 827 }
duke@435 828 }
duke@435 829
iveresov@625 830 void MutableNUMASpace::verify(bool allow_dirty) {
iveresov@625 831 // This can be called after setting an arbitary value to the space's top,
iveresov@625 832 // so an object can cross the chunk boundary. We ensure the parsablity
iveresov@625 833 // of the space and just walk the objects in linear fashion.
iveresov@625 834 ensure_parsability();
iveresov@625 835 MutableSpace::verify(allow_dirty);
duke@435 836 }
duke@435 837
duke@435 838 // Scan pages and gather stats about page placement and size.
duke@435 839 void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) {
duke@435 840 clear_space_stats();
duke@435 841 char *start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 842 char* end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 843 if (start < end) {
duke@435 844 for (char *p = start; p < end;) {
duke@435 845 os::page_info info;
duke@435 846 if (os::get_page_info(p, &info)) {
duke@435 847 if (info.size > 0) {
duke@435 848 if (info.size > (size_t)os::vm_page_size()) {
duke@435 849 space_stats()->_large_pages++;
duke@435 850 } else {
duke@435 851 space_stats()->_small_pages++;
duke@435 852 }
duke@435 853 if (info.lgrp_id == lgrp_id()) {
duke@435 854 space_stats()->_local_space += info.size;
duke@435 855 } else {
duke@435 856 space_stats()->_remote_space += info.size;
duke@435 857 }
duke@435 858 p += info.size;
duke@435 859 } else {
duke@435 860 p += os::vm_page_size();
duke@435 861 space_stats()->_uncommited_space += os::vm_page_size();
duke@435 862 }
duke@435 863 } else {
duke@435 864 return;
duke@435 865 }
duke@435 866 }
duke@435 867 }
duke@435 868 space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) +
duke@435 869 pointer_delta(space()->end(), end, sizeof(char));
duke@435 870
duke@435 871 }
duke@435 872
duke@435 873 // Scan page_count pages and verify if they have the right size and right placement.
duke@435 874 // If invalid pages are found they are freed in hope that subsequent reallocation
duke@435 875 // will be more successful.
duke@435 876 void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count)
duke@435 877 {
duke@435 878 char* range_start = (char*)round_to((intptr_t) space()->bottom(), page_size);
duke@435 879 char* range_end = (char*)round_down((intptr_t) space()->end(), page_size);
duke@435 880
duke@435 881 if (range_start > last_page_scanned() || last_page_scanned() >= range_end) {
duke@435 882 set_last_page_scanned(range_start);
duke@435 883 }
duke@435 884
duke@435 885 char *scan_start = last_page_scanned();
duke@435 886 char* scan_end = MIN2(scan_start + page_size * page_count, range_end);
duke@435 887
duke@435 888 os::page_info page_expected, page_found;
duke@435 889 page_expected.size = page_size;
duke@435 890 page_expected.lgrp_id = lgrp_id();
duke@435 891
duke@435 892 char *s = scan_start;
duke@435 893 while (s < scan_end) {
duke@435 894 char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found);
duke@435 895 if (e == NULL) {
duke@435 896 break;
duke@435 897 }
duke@435 898 if (e != scan_end) {
duke@435 899 if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id())
duke@435 900 && page_expected.size != 0) {
duke@435 901 os::free_memory(s, pointer_delta(e, s, sizeof(char)));
duke@435 902 }
duke@435 903 page_expected = page_found;
duke@435 904 }
duke@435 905 s = e;
duke@435 906 }
duke@435 907
duke@435 908 set_last_page_scanned(scan_end);
duke@435 909 }

mercurial