src/share/vm/opto/memnode.hpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2314
f95d63e2154a
child 2694
f9424955eb18
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/multnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/opcodes.hpp"
stefank@2314 31 #include "opto/type.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 class MultiNode;
duke@435 36 class PhaseCCP;
duke@435 37 class PhaseTransform;
duke@435 38
duke@435 39 //------------------------------MemNode----------------------------------------
duke@435 40 // Load or Store, possibly throwing a NULL pointer exception
duke@435 41 class MemNode : public Node {
duke@435 42 protected:
duke@435 43 #ifdef ASSERT
duke@435 44 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 45 #endif
duke@435 46 virtual uint size_of() const; // Size is bigger (ASSERT only)
duke@435 47 public:
duke@435 48 enum { Control, // When is it safe to do this load?
duke@435 49 Memory, // Chunk of memory is being loaded from
duke@435 50 Address, // Actually address, derived from base
duke@435 51 ValueIn, // Value to store
duke@435 52 OopStore // Preceeding oop store, only in StoreCM
duke@435 53 };
duke@435 54 protected:
duke@435 55 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
duke@435 56 : Node(c0,c1,c2 ) {
duke@435 57 init_class_id(Class_Mem);
duke@435 58 debug_only(_adr_type=at; adr_type();)
duke@435 59 }
duke@435 60 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
duke@435 61 : Node(c0,c1,c2,c3) {
duke@435 62 init_class_id(Class_Mem);
duke@435 63 debug_only(_adr_type=at; adr_type();)
duke@435 64 }
duke@435 65 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
duke@435 66 : Node(c0,c1,c2,c3,c4) {
duke@435 67 init_class_id(Class_Mem);
duke@435 68 debug_only(_adr_type=at; adr_type();)
duke@435 69 }
duke@435 70
kvn@468 71 public:
duke@435 72 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 73 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 74 Node* p2, AllocateNode* a2,
duke@435 75 PhaseTransform* phase);
duke@435 76 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 77
kvn@509 78 static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
kvn@509 79 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
duke@435 80 // This one should probably be a phase-specific function:
kvn@520 81 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 82
kvn@598 83 // Find any cast-away of null-ness and keep its control.
kvn@598 84 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 85 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 86
duke@435 87 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 88
duke@435 89 // Shared code for Ideal methods:
duke@435 90 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 91
duke@435 92 // Helper function for adr_type() implementations.
duke@435 93 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 94
duke@435 95 // Raw access function, to allow copying of adr_type efficiently in
duke@435 96 // product builds and retain the debug info for debug builds.
duke@435 97 const TypePtr *raw_adr_type() const {
duke@435 98 #ifdef ASSERT
duke@435 99 return _adr_type;
duke@435 100 #else
duke@435 101 return 0;
duke@435 102 #endif
duke@435 103 }
duke@435 104
duke@435 105 // Map a load or store opcode to its corresponding store opcode.
duke@435 106 // (Return -1 if unknown.)
duke@435 107 virtual int store_Opcode() const { return -1; }
duke@435 108
duke@435 109 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 110 virtual BasicType memory_type() const = 0;
kvn@464 111 virtual int memory_size() const {
kvn@464 112 #ifdef ASSERT
kvn@464 113 return type2aelembytes(memory_type(), true);
kvn@464 114 #else
kvn@464 115 return type2aelembytes(memory_type());
kvn@464 116 #endif
kvn@464 117 }
duke@435 118
duke@435 119 // Search through memory states which precede this node (load or store).
duke@435 120 // Look for an exact match for the address, with no intervening
duke@435 121 // aliased stores.
duke@435 122 Node* find_previous_store(PhaseTransform* phase);
duke@435 123
duke@435 124 // Can this node (load or store) accurately see a stored value in
duke@435 125 // the given memory state? (The state may or may not be in(Memory).)
duke@435 126 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 127
duke@435 128 #ifndef PRODUCT
duke@435 129 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 130 virtual void dump_spec(outputStream *st) const;
duke@435 131 #endif
duke@435 132 };
duke@435 133
duke@435 134 //------------------------------LoadNode---------------------------------------
duke@435 135 // Load value; requires Memory and Address
duke@435 136 class LoadNode : public MemNode {
duke@435 137 protected:
duke@435 138 virtual uint cmp( const Node &n ) const;
duke@435 139 virtual uint size_of() const; // Size is bigger
duke@435 140 const Type* const _type; // What kind of value is loaded?
duke@435 141 public:
duke@435 142
duke@435 143 LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
duke@435 144 : MemNode(c,mem,adr,at), _type(rt) {
duke@435 145 init_class_id(Class_Load);
duke@435 146 }
duke@435 147
duke@435 148 // Polymorphic factory method:
coleenp@548 149 static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 150 const TypePtr* at, const Type *rt, BasicType bt );
duke@435 151
duke@435 152 virtual uint hash() const; // Check the type
duke@435 153
duke@435 154 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 155 // we are equivalent to. We look for Load of a Store.
duke@435 156 virtual Node *Identity( PhaseTransform *phase );
duke@435 157
duke@435 158 // If the load is from Field memory and the pointer is non-null, we can
duke@435 159 // zero out the control input.
duke@435 160 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 161
kvn@598 162 // Split instance field load through Phi.
kvn@598 163 Node* split_through_phi(PhaseGVN *phase);
kvn@598 164
never@452 165 // Recover original value from boxed values
never@452 166 Node *eliminate_autobox(PhaseGVN *phase);
never@452 167
duke@435 168 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 169 // then call the virtual add() to set the type.
duke@435 170 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 171
kvn@599 172 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 173 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 174 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 175
duke@435 176 virtual uint ideal_reg() const;
duke@435 177 virtual const Type *bottom_type() const;
duke@435 178 // Following method is copied from TypeNode:
duke@435 179 void set_type(const Type* t) {
duke@435 180 assert(t != NULL, "sanity");
duke@435 181 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 182 *(const Type**)&_type = t; // cast away const-ness
duke@435 183 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 184 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 185 }
duke@435 186 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 187
duke@435 188 // Do not match memory edge
duke@435 189 virtual uint match_edge(uint idx) const;
duke@435 190
duke@435 191 // Map a load opcode to its corresponding store opcode.
duke@435 192 virtual int store_Opcode() const = 0;
duke@435 193
kvn@499 194 // Check if the load's memory input is a Phi node with the same control.
kvn@499 195 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 196
duke@435 197 #ifndef PRODUCT
duke@435 198 virtual void dump_spec(outputStream *st) const;
duke@435 199 #endif
kvn@1964 200 #ifdef ASSERT
kvn@1964 201 // Helper function to allow a raw load without control edge for some cases
kvn@1964 202 static bool is_immutable_value(Node* adr);
kvn@1964 203 #endif
duke@435 204 protected:
duke@435 205 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 206 ciKlass* klass) const;
duke@435 207 };
duke@435 208
duke@435 209 //------------------------------LoadBNode--------------------------------------
duke@435 210 // Load a byte (8bits signed) from memory
duke@435 211 class LoadBNode : public LoadNode {
duke@435 212 public:
duke@435 213 LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
duke@435 214 : LoadNode(c,mem,adr,at,ti) {}
duke@435 215 virtual int Opcode() const;
duke@435 216 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 217 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 218 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 219 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 220 };
duke@435 221
twisti@1059 222 //------------------------------LoadUBNode-------------------------------------
twisti@1059 223 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 224 class LoadUBNode : public LoadNode {
twisti@1059 225 public:
twisti@1059 226 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
twisti@1059 227 : LoadNode(c, mem, adr, at, ti) {}
twisti@1059 228 virtual int Opcode() const;
twisti@1059 229 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 230 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
twisti@1059 231 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 232 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 233 };
twisti@1059 234
twisti@993 235 //------------------------------LoadUSNode-------------------------------------
twisti@993 236 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 237 class LoadUSNode : public LoadNode {
duke@435 238 public:
twisti@993 239 LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
duke@435 240 : LoadNode(c,mem,adr,at,ti) {}
duke@435 241 virtual int Opcode() const;
duke@435 242 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 243 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 244 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 245 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 246 };
duke@435 247
duke@435 248 //------------------------------LoadINode--------------------------------------
duke@435 249 // Load an integer from memory
duke@435 250 class LoadINode : public LoadNode {
duke@435 251 public:
duke@435 252 LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
duke@435 253 : LoadNode(c,mem,adr,at,ti) {}
duke@435 254 virtual int Opcode() const;
duke@435 255 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 256 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 257 virtual BasicType memory_type() const { return T_INT; }
duke@435 258 };
duke@435 259
twisti@1059 260 //------------------------------LoadUI2LNode-----------------------------------
twisti@1059 261 // Load an unsigned integer into long from memory
twisti@1059 262 class LoadUI2LNode : public LoadNode {
twisti@1059 263 public:
twisti@1059 264 LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
twisti@1059 265 : LoadNode(c, mem, adr, at, t) {}
twisti@1059 266 virtual int Opcode() const;
twisti@1059 267 virtual uint ideal_reg() const { return Op_RegL; }
twisti@1059 268 virtual int store_Opcode() const { return Op_StoreL; }
twisti@1059 269 virtual BasicType memory_type() const { return T_LONG; }
twisti@1059 270 };
twisti@1059 271
duke@435 272 //------------------------------LoadRangeNode----------------------------------
duke@435 273 // Load an array length from the array
duke@435 274 class LoadRangeNode : public LoadINode {
duke@435 275 public:
duke@435 276 LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
duke@435 277 : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
duke@435 278 virtual int Opcode() const;
duke@435 279 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 280 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 281 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 282 };
duke@435 283
duke@435 284 //------------------------------LoadLNode--------------------------------------
duke@435 285 // Load a long from memory
duke@435 286 class LoadLNode : public LoadNode {
duke@435 287 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 288 virtual uint cmp( const Node &n ) const {
duke@435 289 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 290 && LoadNode::cmp(n);
duke@435 291 }
duke@435 292 virtual uint size_of() const { return sizeof(*this); }
duke@435 293 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 294
duke@435 295 public:
duke@435 296 LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
duke@435 297 const TypeLong *tl = TypeLong::LONG,
duke@435 298 bool require_atomic_access = false )
duke@435 299 : LoadNode(c,mem,adr,at,tl)
duke@435 300 , _require_atomic_access(require_atomic_access)
duke@435 301 {}
duke@435 302 virtual int Opcode() const;
duke@435 303 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 304 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 305 virtual BasicType memory_type() const { return T_LONG; }
duke@435 306 bool require_atomic_access() { return _require_atomic_access; }
duke@435 307 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
duke@435 308 #ifndef PRODUCT
duke@435 309 virtual void dump_spec(outputStream *st) const {
duke@435 310 LoadNode::dump_spec(st);
duke@435 311 if (_require_atomic_access) st->print(" Atomic!");
duke@435 312 }
duke@435 313 #endif
duke@435 314 };
duke@435 315
duke@435 316 //------------------------------LoadL_unalignedNode----------------------------
duke@435 317 // Load a long from unaligned memory
duke@435 318 class LoadL_unalignedNode : public LoadLNode {
duke@435 319 public:
duke@435 320 LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 321 : LoadLNode(c,mem,adr,at) {}
duke@435 322 virtual int Opcode() const;
duke@435 323 };
duke@435 324
duke@435 325 //------------------------------LoadFNode--------------------------------------
duke@435 326 // Load a float (64 bits) from memory
duke@435 327 class LoadFNode : public LoadNode {
duke@435 328 public:
duke@435 329 LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
duke@435 330 : LoadNode(c,mem,adr,at,t) {}
duke@435 331 virtual int Opcode() const;
duke@435 332 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 333 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 334 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 335 };
duke@435 336
duke@435 337 //------------------------------LoadDNode--------------------------------------
duke@435 338 // Load a double (64 bits) from memory
duke@435 339 class LoadDNode : public LoadNode {
duke@435 340 public:
duke@435 341 LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
duke@435 342 : LoadNode(c,mem,adr,at,t) {}
duke@435 343 virtual int Opcode() const;
duke@435 344 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 345 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 346 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 347 };
duke@435 348
duke@435 349 //------------------------------LoadD_unalignedNode----------------------------
duke@435 350 // Load a double from unaligned memory
duke@435 351 class LoadD_unalignedNode : public LoadDNode {
duke@435 352 public:
duke@435 353 LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 354 : LoadDNode(c,mem,adr,at) {}
duke@435 355 virtual int Opcode() const;
duke@435 356 };
duke@435 357
duke@435 358 //------------------------------LoadPNode--------------------------------------
duke@435 359 // Load a pointer from memory (either object or array)
duke@435 360 class LoadPNode : public LoadNode {
duke@435 361 public:
duke@435 362 LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
duke@435 363 : LoadNode(c,mem,adr,at,t) {}
duke@435 364 virtual int Opcode() const;
duke@435 365 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 366 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 367 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 368 // depends_only_on_test is almost always true, and needs to be almost always
duke@435 369 // true to enable key hoisting & commoning optimizations. However, for the
duke@435 370 // special case of RawPtr loads from TLS top & end, the control edge carries
duke@435 371 // the dependence preventing hoisting past a Safepoint instead of the memory
duke@435 372 // edge. (An unfortunate consequence of having Safepoints not set Raw
duke@435 373 // Memory; itself an unfortunate consequence of having Nodes which produce
duke@435 374 // results (new raw memory state) inside of loops preventing all manner of
duke@435 375 // other optimizations). Basically, it's ugly but so is the alternative.
duke@435 376 // See comment in macro.cpp, around line 125 expand_allocate_common().
duke@435 377 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
duke@435 378 };
duke@435 379
coleenp@548 380
coleenp@548 381 //------------------------------LoadNNode--------------------------------------
coleenp@548 382 // Load a narrow oop from memory (either object or array)
coleenp@548 383 class LoadNNode : public LoadNode {
coleenp@548 384 public:
coleenp@548 385 LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
coleenp@548 386 : LoadNode(c,mem,adr,at,t) {}
coleenp@548 387 virtual int Opcode() const;
coleenp@548 388 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 389 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 390 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 391 // depends_only_on_test is almost always true, and needs to be almost always
coleenp@548 392 // true to enable key hoisting & commoning optimizations. However, for the
coleenp@548 393 // special case of RawPtr loads from TLS top & end, the control edge carries
coleenp@548 394 // the dependence preventing hoisting past a Safepoint instead of the memory
coleenp@548 395 // edge. (An unfortunate consequence of having Safepoints not set Raw
coleenp@548 396 // Memory; itself an unfortunate consequence of having Nodes which produce
coleenp@548 397 // results (new raw memory state) inside of loops preventing all manner of
coleenp@548 398 // other optimizations). Basically, it's ugly but so is the alternative.
coleenp@548 399 // See comment in macro.cpp, around line 125 expand_allocate_common().
coleenp@548 400 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
coleenp@548 401 };
coleenp@548 402
duke@435 403 //------------------------------LoadKlassNode----------------------------------
duke@435 404 // Load a Klass from an object
duke@435 405 class LoadKlassNode : public LoadPNode {
duke@435 406 public:
kvn@599 407 LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
duke@435 408 : LoadPNode(c,mem,adr,at,tk) {}
duke@435 409 virtual int Opcode() const;
duke@435 410 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 411 virtual Node *Identity( PhaseTransform *phase );
duke@435 412 virtual bool depends_only_on_test() const { return true; }
kvn@599 413
kvn@599 414 // Polymorphic factory method:
kvn@599 415 static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
kvn@599 416 const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
duke@435 417 };
duke@435 418
kvn@599 419 //------------------------------LoadNKlassNode---------------------------------
kvn@599 420 // Load a narrow Klass from an object.
kvn@599 421 class LoadNKlassNode : public LoadNNode {
kvn@599 422 public:
kvn@599 423 LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
kvn@599 424 : LoadNNode(c,mem,adr,at,tk) {}
kvn@599 425 virtual int Opcode() const;
kvn@599 426 virtual uint ideal_reg() const { return Op_RegN; }
kvn@599 427 virtual int store_Opcode() const { return Op_StoreN; }
kvn@599 428 virtual BasicType memory_type() const { return T_NARROWOOP; }
kvn@599 429
kvn@599 430 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 431 virtual Node *Identity( PhaseTransform *phase );
kvn@599 432 virtual bool depends_only_on_test() const { return true; }
kvn@599 433 };
kvn@599 434
kvn@599 435
duke@435 436 //------------------------------LoadSNode--------------------------------------
duke@435 437 // Load a short (16bits signed) from memory
duke@435 438 class LoadSNode : public LoadNode {
duke@435 439 public:
duke@435 440 LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
duke@435 441 : LoadNode(c,mem,adr,at,ti) {}
duke@435 442 virtual int Opcode() const;
duke@435 443 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 444 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 445 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 446 virtual BasicType memory_type() const { return T_SHORT; }
duke@435 447 };
duke@435 448
duke@435 449 //------------------------------StoreNode--------------------------------------
duke@435 450 // Store value; requires Store, Address and Value
duke@435 451 class StoreNode : public MemNode {
duke@435 452 protected:
duke@435 453 virtual uint cmp( const Node &n ) const;
duke@435 454 virtual bool depends_only_on_test() const { return false; }
duke@435 455
duke@435 456 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 457 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 458
duke@435 459 public:
duke@435 460 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
duke@435 461 : MemNode(c,mem,adr,at,val) {
duke@435 462 init_class_id(Class_Store);
duke@435 463 }
duke@435 464 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
duke@435 465 : MemNode(c,mem,adr,at,val,oop_store) {
duke@435 466 init_class_id(Class_Store);
duke@435 467 }
duke@435 468
duke@435 469 // Polymorphic factory method:
coleenp@548 470 static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 471 const TypePtr* at, Node *val, BasicType bt );
duke@435 472
duke@435 473 virtual uint hash() const; // Check the type
duke@435 474
duke@435 475 // If the store is to Field memory and the pointer is non-null, we can
duke@435 476 // zero out the control input.
duke@435 477 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 478
duke@435 479 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 480 // then call the virtual add() to set the type.
duke@435 481 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 482
duke@435 483 // Check for identity function on memory (Load then Store at same address)
duke@435 484 virtual Node *Identity( PhaseTransform *phase );
duke@435 485
duke@435 486 // Do not match memory edge
duke@435 487 virtual uint match_edge(uint idx) const;
duke@435 488
duke@435 489 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 490
duke@435 491 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 492 virtual int store_Opcode() const { return Opcode(); }
duke@435 493
duke@435 494 // have all possible loads of the value stored been optimized away?
duke@435 495 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 496 };
duke@435 497
duke@435 498 //------------------------------StoreBNode-------------------------------------
duke@435 499 // Store byte to memory
duke@435 500 class StoreBNode : public StoreNode {
duke@435 501 public:
duke@435 502 StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 503 virtual int Opcode() const;
duke@435 504 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 505 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 506 };
duke@435 507
duke@435 508 //------------------------------StoreCNode-------------------------------------
duke@435 509 // Store char/short to memory
duke@435 510 class StoreCNode : public StoreNode {
duke@435 511 public:
duke@435 512 StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 513 virtual int Opcode() const;
duke@435 514 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 515 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 516 };
duke@435 517
duke@435 518 //------------------------------StoreINode-------------------------------------
duke@435 519 // Store int to memory
duke@435 520 class StoreINode : public StoreNode {
duke@435 521 public:
duke@435 522 StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 523 virtual int Opcode() const;
duke@435 524 virtual BasicType memory_type() const { return T_INT; }
duke@435 525 };
duke@435 526
duke@435 527 //------------------------------StoreLNode-------------------------------------
duke@435 528 // Store long to memory
duke@435 529 class StoreLNode : public StoreNode {
duke@435 530 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 531 virtual uint cmp( const Node &n ) const {
duke@435 532 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 533 && StoreNode::cmp(n);
duke@435 534 }
duke@435 535 virtual uint size_of() const { return sizeof(*this); }
duke@435 536 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 537
duke@435 538 public:
duke@435 539 StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
duke@435 540 bool require_atomic_access = false )
duke@435 541 : StoreNode(c,mem,adr,at,val)
duke@435 542 , _require_atomic_access(require_atomic_access)
duke@435 543 {}
duke@435 544 virtual int Opcode() const;
duke@435 545 virtual BasicType memory_type() const { return T_LONG; }
duke@435 546 bool require_atomic_access() { return _require_atomic_access; }
duke@435 547 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
duke@435 548 #ifndef PRODUCT
duke@435 549 virtual void dump_spec(outputStream *st) const {
duke@435 550 StoreNode::dump_spec(st);
duke@435 551 if (_require_atomic_access) st->print(" Atomic!");
duke@435 552 }
duke@435 553 #endif
duke@435 554 };
duke@435 555
duke@435 556 //------------------------------StoreFNode-------------------------------------
duke@435 557 // Store float to memory
duke@435 558 class StoreFNode : public StoreNode {
duke@435 559 public:
duke@435 560 StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 561 virtual int Opcode() const;
duke@435 562 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 563 };
duke@435 564
duke@435 565 //------------------------------StoreDNode-------------------------------------
duke@435 566 // Store double to memory
duke@435 567 class StoreDNode : public StoreNode {
duke@435 568 public:
duke@435 569 StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 570 virtual int Opcode() const;
duke@435 571 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 572 };
duke@435 573
duke@435 574 //------------------------------StorePNode-------------------------------------
duke@435 575 // Store pointer to memory
duke@435 576 class StorePNode : public StoreNode {
duke@435 577 public:
duke@435 578 StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 579 virtual int Opcode() const;
duke@435 580 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 581 };
duke@435 582
coleenp@548 583 //------------------------------StoreNNode-------------------------------------
coleenp@548 584 // Store narrow oop to memory
coleenp@548 585 class StoreNNode : public StoreNode {
coleenp@548 586 public:
coleenp@548 587 StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
coleenp@548 588 virtual int Opcode() const;
coleenp@548 589 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 590 };
coleenp@548 591
duke@435 592 //------------------------------StoreCMNode-----------------------------------
duke@435 593 // Store card-mark byte to memory for CM
duke@435 594 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 595 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 596 class StoreCMNode : public StoreNode {
cfang@1420 597 private:
never@1633 598 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 599 virtual uint cmp( const Node &n ) const {
never@1633 600 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 601 && StoreNode::cmp(n);
never@1633 602 }
never@1633 603 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 604 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 605
duke@435 606 public:
never@1633 607 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
never@1633 608 StoreNode(c,mem,adr,at,val,oop_store),
never@1633 609 _oop_alias_idx(oop_alias_idx) {
never@1633 610 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 611 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 612 "bad oop alias idx");
never@1633 613 }
duke@435 614 virtual int Opcode() const;
duke@435 615 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 616 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 617 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 618 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 619 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 620 };
duke@435 621
duke@435 622 //------------------------------LoadPLockedNode---------------------------------
duke@435 623 // Load-locked a pointer from memory (either object or array).
duke@435 624 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 625 // On PowerPC and friends it's a real load-locked.
duke@435 626 class LoadPLockedNode : public LoadPNode {
duke@435 627 public:
duke@435 628 LoadPLockedNode( Node *c, Node *mem, Node *adr )
duke@435 629 : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
duke@435 630 virtual int Opcode() const;
duke@435 631 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 632 virtual bool depends_only_on_test() const { return true; }
duke@435 633 };
duke@435 634
duke@435 635 //------------------------------LoadLLockedNode---------------------------------
duke@435 636 // Load-locked a pointer from memory (either object or array).
duke@435 637 // On Sparc & Intel this is implemented as a normal long load.
duke@435 638 class LoadLLockedNode : public LoadLNode {
duke@435 639 public:
duke@435 640 LoadLLockedNode( Node *c, Node *mem, Node *adr )
duke@435 641 : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
duke@435 642 virtual int Opcode() const;
duke@435 643 virtual int store_Opcode() const { return Op_StoreLConditional; }
duke@435 644 };
duke@435 645
duke@435 646 //------------------------------SCMemProjNode---------------------------------------
duke@435 647 // This class defines a projection of the memory state of a store conditional node.
duke@435 648 // These nodes return a value, but also update memory.
duke@435 649 class SCMemProjNode : public ProjNode {
duke@435 650 public:
duke@435 651 enum {SCMEMPROJCON = (uint)-2};
duke@435 652 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 653 virtual int Opcode() const;
duke@435 654 virtual bool is_CFG() const { return false; }
duke@435 655 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 656 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 657 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 658 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 659 #ifndef PRODUCT
duke@435 660 virtual void dump_spec(outputStream *st) const {};
duke@435 661 #endif
duke@435 662 };
duke@435 663
duke@435 664 //------------------------------LoadStoreNode---------------------------
kvn@688 665 // Note: is_Mem() method returns 'true' for this class.
duke@435 666 class LoadStoreNode : public Node {
duke@435 667 public:
duke@435 668 enum {
duke@435 669 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 670 };
duke@435 671 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 672 virtual bool depends_only_on_test() const { return false; }
duke@435 673 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
duke@435 674 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 675 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
duke@435 676 };
duke@435 677
duke@435 678 //------------------------------StorePConditionalNode---------------------------
duke@435 679 // Conditionally store pointer to memory, if no change since prior
duke@435 680 // load-locked. Sets flags for success or failure of the store.
duke@435 681 class StorePConditionalNode : public LoadStoreNode {
duke@435 682 public:
duke@435 683 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 684 virtual int Opcode() const;
duke@435 685 // Produces flags
duke@435 686 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 687 };
duke@435 688
kvn@855 689 //------------------------------StoreIConditionalNode---------------------------
kvn@855 690 // Conditionally store int to memory, if no change since prior
kvn@855 691 // load-locked. Sets flags for success or failure of the store.
kvn@855 692 class StoreIConditionalNode : public LoadStoreNode {
kvn@855 693 public:
kvn@855 694 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
kvn@855 695 virtual int Opcode() const;
kvn@855 696 // Produces flags
kvn@855 697 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 698 };
kvn@855 699
duke@435 700 //------------------------------StoreLConditionalNode---------------------------
duke@435 701 // Conditionally store long to memory, if no change since prior
duke@435 702 // load-locked. Sets flags for success or failure of the store.
duke@435 703 class StoreLConditionalNode : public LoadStoreNode {
duke@435 704 public:
duke@435 705 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 706 virtual int Opcode() const;
kvn@855 707 // Produces flags
kvn@855 708 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 709 };
duke@435 710
duke@435 711
duke@435 712 //------------------------------CompareAndSwapLNode---------------------------
duke@435 713 class CompareAndSwapLNode : public LoadStoreNode {
duke@435 714 public:
duke@435 715 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 716 virtual int Opcode() const;
duke@435 717 };
duke@435 718
duke@435 719
duke@435 720 //------------------------------CompareAndSwapINode---------------------------
duke@435 721 class CompareAndSwapINode : public LoadStoreNode {
duke@435 722 public:
duke@435 723 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 724 virtual int Opcode() const;
duke@435 725 };
duke@435 726
duke@435 727
duke@435 728 //------------------------------CompareAndSwapPNode---------------------------
duke@435 729 class CompareAndSwapPNode : public LoadStoreNode {
duke@435 730 public:
duke@435 731 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 732 virtual int Opcode() const;
duke@435 733 };
duke@435 734
coleenp@548 735 //------------------------------CompareAndSwapNNode---------------------------
coleenp@548 736 class CompareAndSwapNNode : public LoadStoreNode {
coleenp@548 737 public:
coleenp@548 738 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
coleenp@548 739 virtual int Opcode() const;
coleenp@548 740 };
coleenp@548 741
duke@435 742 //------------------------------ClearArray-------------------------------------
duke@435 743 class ClearArrayNode: public Node {
duke@435 744 public:
kvn@1535 745 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 746 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 747 init_class_id(Class_ClearArray);
kvn@1535 748 }
duke@435 749 virtual int Opcode() const;
duke@435 750 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 751 // ClearArray modifies array elements, and so affects only the
duke@435 752 // array memory addressed by the bottom_type of its base address.
duke@435 753 virtual const class TypePtr *adr_type() const;
duke@435 754 virtual Node *Identity( PhaseTransform *phase );
duke@435 755 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 756 virtual uint match_edge(uint idx) const;
duke@435 757
duke@435 758 // Clear the given area of an object or array.
duke@435 759 // The start offset must always be aligned mod BytesPerInt.
duke@435 760 // The end offset must always be aligned mod BytesPerLong.
duke@435 761 // Return the new memory.
duke@435 762 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 763 intptr_t start_offset,
duke@435 764 intptr_t end_offset,
duke@435 765 PhaseGVN* phase);
duke@435 766 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 767 intptr_t start_offset,
duke@435 768 Node* end_offset,
duke@435 769 PhaseGVN* phase);
duke@435 770 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 771 Node* start_offset,
duke@435 772 Node* end_offset,
duke@435 773 PhaseGVN* phase);
kvn@1535 774 // Return allocation input memory edge if it is different instance
kvn@1535 775 // or itself if it is the one we are looking for.
kvn@1535 776 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 777 };
duke@435 778
duke@435 779 //------------------------------StrComp-------------------------------------
duke@435 780 class StrCompNode: public Node {
duke@435 781 public:
kvn@1421 782 StrCompNode(Node* control, Node* char_array_mem,
kvn@1421 783 Node* s1, Node* c1,
kvn@1421 784 Node* s2, Node* c2): Node(control, char_array_mem,
kvn@1421 785 s1, c1,
kvn@1421 786 s2, c2) {};
duke@435 787 virtual int Opcode() const;
duke@435 788 virtual bool depends_only_on_test() const { return false; }
duke@435 789 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@1421 790 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 791 virtual uint match_edge(uint idx) const;
duke@435 792 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 793 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 794 };
duke@435 795
cfang@1116 796 //------------------------------StrEquals-------------------------------------
cfang@1116 797 class StrEqualsNode: public Node {
cfang@1116 798 public:
kvn@1421 799 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@1421 800 Node* s1, Node* s2, Node* c): Node(control, char_array_mem,
kvn@1421 801 s1, s2, c) {};
cfang@1116 802 virtual int Opcode() const;
cfang@1116 803 virtual bool depends_only_on_test() const { return false; }
cfang@1116 804 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
kvn@1421 805 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
cfang@1116 806 virtual uint match_edge(uint idx) const;
cfang@1116 807 virtual uint ideal_reg() const { return Op_RegI; }
cfang@1116 808 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
cfang@1116 809 };
cfang@1116 810
cfang@1116 811 //------------------------------StrIndexOf-------------------------------------
cfang@1116 812 class StrIndexOfNode: public Node {
cfang@1116 813 public:
kvn@1421 814 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@1421 815 Node* s1, Node* c1,
kvn@1421 816 Node* s2, Node* c2): Node(control, char_array_mem,
kvn@1421 817 s1, c1,
kvn@1421 818 s2, c2) {};
cfang@1116 819 virtual int Opcode() const;
cfang@1116 820 virtual bool depends_only_on_test() const { return false; }
cfang@1116 821 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@1421 822 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
cfang@1116 823 virtual uint match_edge(uint idx) const;
cfang@1116 824 virtual uint ideal_reg() const { return Op_RegI; }
cfang@1116 825 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
cfang@1116 826 };
cfang@1116 827
rasbold@604 828 //------------------------------AryEq---------------------------------------
rasbold@604 829 class AryEqNode: public Node {
rasbold@604 830 public:
kvn@1421 831 AryEqNode(Node* control, Node* char_array_mem,
kvn@1421 832 Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) {};
rasbold@604 833 virtual int Opcode() const;
rasbold@604 834 virtual bool depends_only_on_test() const { return false; }
rasbold@604 835 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 836 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
kvn@1421 837 virtual uint match_edge(uint idx) const;
rasbold@604 838 virtual uint ideal_reg() const { return Op_RegI; }
rasbold@604 839 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
rasbold@604 840 };
rasbold@604 841
duke@435 842 //------------------------------MemBar-----------------------------------------
duke@435 843 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 844 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 845 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 846 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 847 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 848 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 849 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 850 // separate it from any following volatile-load.
duke@435 851 class MemBarNode: public MultiNode {
duke@435 852 virtual uint hash() const ; // { return NO_HASH; }
duke@435 853 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 854
duke@435 855 virtual uint size_of() const { return sizeof(*this); }
duke@435 856 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 857 const TypePtr* _adr_type;
duke@435 858
duke@435 859 public:
duke@435 860 enum {
duke@435 861 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 862 };
duke@435 863 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 864 virtual int Opcode() const = 0;
duke@435 865 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 866 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 867 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 868 virtual uint match_edge(uint idx) const { return 0; }
duke@435 869 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 870 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 871 // Factory method. Builds a wide or narrow membar.
duke@435 872 // Optional 'precedent' becomes an extra edge if not null.
duke@435 873 static MemBarNode* make(Compile* C, int opcode,
duke@435 874 int alias_idx = Compile::AliasIdxBot,
duke@435 875 Node* precedent = NULL);
duke@435 876 };
duke@435 877
duke@435 878 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 879 // follow, like an early Load stalled in cache). Requires multi-cpu
duke@435 880 // visibility. Inserted after a volatile load or FastLock.
duke@435 881 class MemBarAcquireNode: public MemBarNode {
duke@435 882 public:
duke@435 883 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 884 : MemBarNode(C, alias_idx, precedent) {}
duke@435 885 virtual int Opcode() const;
duke@435 886 };
duke@435 887
duke@435 888 // "Release" - no earlier ref can move after (but later refs can move
duke@435 889 // up, like a speculative pipelined cache-hitting Load). Requires
duke@435 890 // multi-cpu visibility. Inserted before a volatile store or FastUnLock.
duke@435 891 class MemBarReleaseNode: public MemBarNode {
duke@435 892 public:
duke@435 893 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 894 : MemBarNode(C, alias_idx, precedent) {}
duke@435 895 virtual int Opcode() const;
duke@435 896 };
duke@435 897
duke@435 898 // Ordering between a volatile store and a following volatile load.
duke@435 899 // Requires multi-CPU visibility?
duke@435 900 class MemBarVolatileNode: public MemBarNode {
duke@435 901 public:
duke@435 902 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 903 : MemBarNode(C, alias_idx, precedent) {}
duke@435 904 virtual int Opcode() const;
duke@435 905 };
duke@435 906
duke@435 907 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 908 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 909 // compiler because the CPU does all the ordering for us.
duke@435 910 class MemBarCPUOrderNode: public MemBarNode {
duke@435 911 public:
duke@435 912 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 913 : MemBarNode(C, alias_idx, precedent) {}
duke@435 914 virtual int Opcode() const;
duke@435 915 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 916 };
duke@435 917
duke@435 918 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 919 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 920 class InitializeNode: public MemBarNode {
duke@435 921 friend class AllocateNode;
duke@435 922
duke@435 923 bool _is_complete;
duke@435 924
duke@435 925 public:
duke@435 926 enum {
duke@435 927 Control = TypeFunc::Control,
duke@435 928 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 929 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 930 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 931 };
duke@435 932
duke@435 933 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 934 virtual int Opcode() const;
duke@435 935 virtual uint size_of() const { return sizeof(*this); }
duke@435 936 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 937 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 938
duke@435 939 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 940 Node* memory(uint alias_idx);
duke@435 941
duke@435 942 // The raw memory edge coming directly from the Allocation.
duke@435 943 // The contents of this memory are *always* all-zero-bits.
duke@435 944 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 945
duke@435 946 // Return the corresponding allocation for this initialization (or null if none).
duke@435 947 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 948 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 949 AllocateNode* allocation();
duke@435 950
duke@435 951 // Anything other than zeroing in this init?
duke@435 952 bool is_non_zero();
duke@435 953
duke@435 954 // An InitializeNode must completed before macro expansion is done.
duke@435 955 // Completion requires that the AllocateNode must be followed by
duke@435 956 // initialization of the new memory to zero, then to any initializers.
duke@435 957 bool is_complete() { return _is_complete; }
duke@435 958
duke@435 959 // Mark complete. (Must not yet be complete.)
duke@435 960 void set_complete(PhaseGVN* phase);
duke@435 961
duke@435 962 #ifdef ASSERT
duke@435 963 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 964 bool stores_are_sane(PhaseTransform* phase);
duke@435 965 #endif //ASSERT
duke@435 966
duke@435 967 // See if this store can be captured; return offset where it initializes.
duke@435 968 // Return 0 if the store cannot be moved (any sort of problem).
duke@435 969 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
duke@435 970
duke@435 971 // Capture another store; reformat it to write my internal raw memory.
duke@435 972 // Return the captured copy, else NULL if there is some sort of problem.
duke@435 973 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
duke@435 974
duke@435 975 // Find captured store which corresponds to the range [start..start+size).
duke@435 976 // Return my own memory projection (meaning the initial zero bits)
duke@435 977 // if there is no such store. Return NULL if there is a problem.
duke@435 978 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 979
duke@435 980 // Called when the associated AllocateNode is expanded into CFG.
duke@435 981 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 982 intptr_t header_size, Node* size_in_bytes,
duke@435 983 PhaseGVN* phase);
duke@435 984
duke@435 985 private:
duke@435 986 void remove_extra_zeroes();
duke@435 987
duke@435 988 // Find out where a captured store should be placed (or already is placed).
duke@435 989 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 990 PhaseTransform* phase);
duke@435 991
duke@435 992 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 993
duke@435 994 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 995
duke@435 996 bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
duke@435 997
duke@435 998 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 999 PhaseGVN* phase);
duke@435 1000
duke@435 1001 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 1002 };
duke@435 1003
duke@435 1004 //------------------------------MergeMem---------------------------------------
duke@435 1005 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 1006 class MergeMemNode: public Node {
duke@435 1007 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1008 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1009 friend class MergeMemStream;
duke@435 1010 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 1011
duke@435 1012 public:
duke@435 1013 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1014 // Otherwise, make a new memory state with just that base memory input.
duke@435 1015 // In either case, the result is a newly created MergeMem.
duke@435 1016 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1017
duke@435 1018 virtual int Opcode() const;
duke@435 1019 virtual Node *Identity( PhaseTransform *phase );
duke@435 1020 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1021 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1022 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1023 virtual const RegMask &out_RegMask() const;
duke@435 1024 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1025 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1026 // sparse accessors
duke@435 1027 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1028 // (Caller should clone it if it is a phi-nest.)
duke@435 1029 Node* memory_at(uint alias_idx) const;
duke@435 1030 // set the memory, regardless of its previous value
duke@435 1031 void set_memory_at(uint alias_idx, Node* n);
duke@435 1032 // the "base" is the memory that provides the non-finite support
duke@435 1033 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1034 // warning: setting the base can implicitly set any of the other slices too
duke@435 1035 void set_base_memory(Node* def);
duke@435 1036 // sentinel value which denotes a copy of the base memory:
duke@435 1037 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1038 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1039 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1040 // hook for the iterator, to perform any necessary setup
duke@435 1041 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1042 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1043 void grow_to_match(const MergeMemNode* other);
duke@435 1044 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1045 #ifndef PRODUCT
duke@435 1046 virtual void dump_spec(outputStream *st) const;
duke@435 1047 #endif
duke@435 1048 };
duke@435 1049
duke@435 1050 class MergeMemStream : public StackObj {
duke@435 1051 private:
duke@435 1052 MergeMemNode* _mm;
duke@435 1053 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1054 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1055 int _idx;
duke@435 1056 int _cnt;
duke@435 1057 Node* _mem;
duke@435 1058 Node* _mem2;
duke@435 1059 int _cnt2;
duke@435 1060
duke@435 1061 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1062 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1063 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1064 // the raw edge will update to base, although it should be top.
duke@435 1065 // This iterator will recognize either top or base_memory as an
duke@435 1066 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1067 //
duke@435 1068 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1069 // As long as access to a MergeMem goes through this iterator
duke@435 1070 // or the memory_at accessor, flaws in the sparseness will
duke@435 1071 // never be observed.
duke@435 1072 //
duke@435 1073 // Also, iteration_setup repairs sparseness.
duke@435 1074 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1075 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1076
duke@435 1077 _mm = mm;
duke@435 1078 _mm_base = mm->base_memory();
duke@435 1079 _mm2 = mm2;
duke@435 1080 _cnt = mm->req();
duke@435 1081 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1082 _mem = NULL;
duke@435 1083 _mem2 = NULL;
duke@435 1084 }
duke@435 1085
duke@435 1086 #ifdef ASSERT
duke@435 1087 Node* check_memory() const {
duke@435 1088 if (at_base_memory())
duke@435 1089 return _mm->base_memory();
duke@435 1090 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1091 return _mm->memory_at(_idx);
duke@435 1092 else
duke@435 1093 return _mm_base;
duke@435 1094 }
duke@435 1095 Node* check_memory2() const {
duke@435 1096 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1097 }
duke@435 1098 #endif
duke@435 1099
duke@435 1100 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1101 void assert_synch() const {
duke@435 1102 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1103 "no side-effects except through the stream");
duke@435 1104 }
duke@435 1105
duke@435 1106 public:
duke@435 1107
duke@435 1108 // expected usages:
duke@435 1109 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1110 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1111
duke@435 1112 // iterate over one merge
duke@435 1113 MergeMemStream(MergeMemNode* mm) {
duke@435 1114 mm->iteration_setup();
duke@435 1115 init(mm);
duke@435 1116 debug_only(_cnt2 = 999);
duke@435 1117 }
duke@435 1118 // iterate in parallel over two merges
duke@435 1119 // only iterates through non-empty elements of mm2
duke@435 1120 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1121 assert(mm2, "second argument must be a MergeMem also");
duke@435 1122 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1123 mm->iteration_setup(mm2);
duke@435 1124 init(mm, mm2);
duke@435 1125 _cnt2 = mm2->req();
duke@435 1126 }
duke@435 1127 #ifdef ASSERT
duke@435 1128 ~MergeMemStream() {
duke@435 1129 assert_synch();
duke@435 1130 }
duke@435 1131 #endif
duke@435 1132
duke@435 1133 MergeMemNode* all_memory() const {
duke@435 1134 return _mm;
duke@435 1135 }
duke@435 1136 Node* base_memory() const {
duke@435 1137 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1138 return _mm_base;
duke@435 1139 }
duke@435 1140 const MergeMemNode* all_memory2() const {
duke@435 1141 assert(_mm2 != NULL, "");
duke@435 1142 return _mm2;
duke@435 1143 }
duke@435 1144 bool at_base_memory() const {
duke@435 1145 return _idx == Compile::AliasIdxBot;
duke@435 1146 }
duke@435 1147 int alias_idx() const {
duke@435 1148 assert(_mem, "must call next 1st");
duke@435 1149 return _idx;
duke@435 1150 }
duke@435 1151
duke@435 1152 const TypePtr* adr_type() const {
duke@435 1153 return Compile::current()->get_adr_type(alias_idx());
duke@435 1154 }
duke@435 1155
duke@435 1156 const TypePtr* adr_type(Compile* C) const {
duke@435 1157 return C->get_adr_type(alias_idx());
duke@435 1158 }
duke@435 1159 bool is_empty() const {
duke@435 1160 assert(_mem, "must call next 1st");
duke@435 1161 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1162 return _mem->is_top();
duke@435 1163 }
duke@435 1164 bool is_empty2() const {
duke@435 1165 assert(_mem2, "must call next 1st");
duke@435 1166 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1167 return _mem2->is_top();
duke@435 1168 }
duke@435 1169 Node* memory() const {
duke@435 1170 assert(!is_empty(), "must not be empty");
duke@435 1171 assert_synch();
duke@435 1172 return _mem;
duke@435 1173 }
duke@435 1174 // get the current memory, regardless of empty or non-empty status
duke@435 1175 Node* force_memory() const {
duke@435 1176 assert(!is_empty() || !at_base_memory(), "");
duke@435 1177 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1178 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1179 assert(mem == check_memory(), "");
duke@435 1180 return mem;
duke@435 1181 }
duke@435 1182 Node* memory2() const {
duke@435 1183 assert(_mem2 == check_memory2(), "");
duke@435 1184 return _mem2;
duke@435 1185 }
duke@435 1186 void set_memory(Node* mem) {
duke@435 1187 if (at_base_memory()) {
duke@435 1188 // Note that this does not change the invariant _mm_base.
duke@435 1189 _mm->set_base_memory(mem);
duke@435 1190 } else {
duke@435 1191 _mm->set_memory_at(_idx, mem);
duke@435 1192 }
duke@435 1193 _mem = mem;
duke@435 1194 assert_synch();
duke@435 1195 }
duke@435 1196
duke@435 1197 // Recover from a side effect to the MergeMemNode.
duke@435 1198 void set_memory() {
duke@435 1199 _mem = _mm->in(_idx);
duke@435 1200 }
duke@435 1201
duke@435 1202 bool next() { return next(false); }
duke@435 1203 bool next2() { return next(true); }
duke@435 1204
duke@435 1205 bool next_non_empty() { return next_non_empty(false); }
duke@435 1206 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1207 // next_non_empty2 can yield states where is_empty() is true
duke@435 1208
duke@435 1209 private:
duke@435 1210 // find the next item, which might be empty
duke@435 1211 bool next(bool have_mm2) {
duke@435 1212 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1213 assert_synch();
duke@435 1214 if (++_idx < _cnt) {
duke@435 1215 // Note: This iterator allows _mm to be non-sparse.
duke@435 1216 // It behaves the same whether _mem is top or base_memory.
duke@435 1217 _mem = _mm->in(_idx);
duke@435 1218 if (have_mm2)
duke@435 1219 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1220 return true;
duke@435 1221 }
duke@435 1222 return false;
duke@435 1223 }
duke@435 1224
duke@435 1225 // find the next non-empty item
duke@435 1226 bool next_non_empty(bool have_mm2) {
duke@435 1227 while (next(have_mm2)) {
duke@435 1228 if (!is_empty()) {
duke@435 1229 // make sure _mem2 is filled in sensibly
duke@435 1230 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1231 return true;
duke@435 1232 } else if (have_mm2 && !is_empty2()) {
duke@435 1233 return true; // is_empty() == true
duke@435 1234 }
duke@435 1235 }
duke@435 1236 return false;
duke@435 1237 }
duke@435 1238 };
duke@435 1239
duke@435 1240 //------------------------------Prefetch---------------------------------------
duke@435 1241
duke@435 1242 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1243 class PrefetchReadNode : public Node {
duke@435 1244 public:
duke@435 1245 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1246 virtual int Opcode() const;
duke@435 1247 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1248 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1249 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1250 };
duke@435 1251
duke@435 1252 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1253 class PrefetchWriteNode : public Node {
duke@435 1254 public:
duke@435 1255 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1256 virtual int Opcode() const;
duke@435 1257 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1258 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@1802 1259 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
duke@435 1260 };
stefank@2314 1261
stefank@2314 1262 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial