src/share/vm/opto/callnode.hpp

Fri, 11 Mar 2011 07:50:51 -0800

author
kvn
date
Fri, 11 Mar 2011 07:50:51 -0800
changeset 2636
83f08886981c
parent 2314
f95d63e2154a
child 3040
c7b60b601eb4
permissions
-rw-r--r--

7026631: field _klass is incorrectly set for dual type of TypeAryPtr::OOPS
Summary: add missing check this->dual() != TypeAryPtr::OOPS into TypeAryPtr::klass().
Reviewed-by: never

duke@435 1 /*
stefank@2314 2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_CALLNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/connode.hpp"
stefank@2314 29 #include "opto/mulnode.hpp"
stefank@2314 30 #include "opto/multnode.hpp"
stefank@2314 31 #include "opto/opcodes.hpp"
stefank@2314 32 #include "opto/phaseX.hpp"
stefank@2314 33 #include "opto/type.hpp"
stefank@2314 34
duke@435 35 // Portions of code courtesy of Clifford Click
duke@435 36
duke@435 37 // Optimization - Graph Style
duke@435 38
duke@435 39 class Chaitin;
duke@435 40 class NamedCounter;
duke@435 41 class MultiNode;
duke@435 42 class SafePointNode;
duke@435 43 class CallNode;
duke@435 44 class CallJavaNode;
duke@435 45 class CallStaticJavaNode;
duke@435 46 class CallDynamicJavaNode;
duke@435 47 class CallRuntimeNode;
duke@435 48 class CallLeafNode;
duke@435 49 class CallLeafNoFPNode;
duke@435 50 class AllocateNode;
kvn@468 51 class AllocateArrayNode;
duke@435 52 class LockNode;
duke@435 53 class UnlockNode;
duke@435 54 class JVMState;
duke@435 55 class OopMap;
duke@435 56 class State;
duke@435 57 class StartNode;
duke@435 58 class MachCallNode;
duke@435 59 class FastLockNode;
duke@435 60
duke@435 61 //------------------------------StartNode--------------------------------------
duke@435 62 // The method start node
duke@435 63 class StartNode : public MultiNode {
duke@435 64 virtual uint cmp( const Node &n ) const;
duke@435 65 virtual uint size_of() const; // Size is bigger
duke@435 66 public:
duke@435 67 const TypeTuple *_domain;
duke@435 68 StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
duke@435 69 init_class_id(Class_Start);
duke@435 70 init_flags(Flag_is_block_start);
duke@435 71 init_req(0,this);
duke@435 72 init_req(1,root);
duke@435 73 }
duke@435 74 virtual int Opcode() const;
duke@435 75 virtual bool pinned() const { return true; };
duke@435 76 virtual const Type *bottom_type() const;
duke@435 77 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 78 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 79 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 80 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
duke@435 81 virtual const RegMask &in_RegMask(uint) const;
duke@435 82 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 83 virtual uint ideal_reg() const { return 0; }
duke@435 84 #ifndef PRODUCT
duke@435 85 virtual void dump_spec(outputStream *st) const;
duke@435 86 #endif
duke@435 87 };
duke@435 88
duke@435 89 //------------------------------StartOSRNode-----------------------------------
duke@435 90 // The method start node for on stack replacement code
duke@435 91 class StartOSRNode : public StartNode {
duke@435 92 public:
duke@435 93 StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
duke@435 94 virtual int Opcode() const;
duke@435 95 static const TypeTuple *osr_domain();
duke@435 96 };
duke@435 97
duke@435 98
duke@435 99 //------------------------------ParmNode---------------------------------------
duke@435 100 // Incoming parameters
duke@435 101 class ParmNode : public ProjNode {
duke@435 102 static const char * const names[TypeFunc::Parms+1];
duke@435 103 public:
kvn@468 104 ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
kvn@468 105 init_class_id(Class_Parm);
kvn@468 106 }
duke@435 107 virtual int Opcode() const;
duke@435 108 virtual bool is_CFG() const { return (_con == TypeFunc::Control); }
duke@435 109 virtual uint ideal_reg() const;
duke@435 110 #ifndef PRODUCT
duke@435 111 virtual void dump_spec(outputStream *st) const;
duke@435 112 #endif
duke@435 113 };
duke@435 114
duke@435 115
duke@435 116 //------------------------------ReturnNode-------------------------------------
duke@435 117 // Return from subroutine node
duke@435 118 class ReturnNode : public Node {
duke@435 119 public:
duke@435 120 ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
duke@435 121 virtual int Opcode() const;
duke@435 122 virtual bool is_CFG() const { return true; }
duke@435 123 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 124 virtual bool depends_only_on_test() const { return false; }
duke@435 125 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 126 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 127 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 128 virtual uint match_edge(uint idx) const;
duke@435 129 #ifndef PRODUCT
duke@435 130 virtual void dump_req() const;
duke@435 131 #endif
duke@435 132 };
duke@435 133
duke@435 134
duke@435 135 //------------------------------RethrowNode------------------------------------
duke@435 136 // Rethrow of exception at call site. Ends a procedure before rethrowing;
duke@435 137 // ends the current basic block like a ReturnNode. Restores registers and
duke@435 138 // unwinds stack. Rethrow happens in the caller's method.
duke@435 139 class RethrowNode : public Node {
duke@435 140 public:
duke@435 141 RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
duke@435 142 virtual int Opcode() const;
duke@435 143 virtual bool is_CFG() const { return true; }
duke@435 144 virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
duke@435 145 virtual bool depends_only_on_test() const { return false; }
duke@435 146 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 147 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 148 virtual uint match_edge(uint idx) const;
duke@435 149 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 150 #ifndef PRODUCT
duke@435 151 virtual void dump_req() const;
duke@435 152 #endif
duke@435 153 };
duke@435 154
duke@435 155
duke@435 156 //------------------------------TailCallNode-----------------------------------
duke@435 157 // Pop stack frame and jump indirect
duke@435 158 class TailCallNode : public ReturnNode {
duke@435 159 public:
duke@435 160 TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
duke@435 161 : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
duke@435 162 init_req(TypeFunc::Parms, target);
duke@435 163 init_req(TypeFunc::Parms+1, moop);
duke@435 164 }
duke@435 165
duke@435 166 virtual int Opcode() const;
duke@435 167 virtual uint match_edge(uint idx) const;
duke@435 168 };
duke@435 169
duke@435 170 //------------------------------TailJumpNode-----------------------------------
duke@435 171 // Pop stack frame and jump indirect
duke@435 172 class TailJumpNode : public ReturnNode {
duke@435 173 public:
duke@435 174 TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
duke@435 175 : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
duke@435 176 init_req(TypeFunc::Parms, target);
duke@435 177 init_req(TypeFunc::Parms+1, ex_oop);
duke@435 178 }
duke@435 179
duke@435 180 virtual int Opcode() const;
duke@435 181 virtual uint match_edge(uint idx) const;
duke@435 182 };
duke@435 183
duke@435 184 //-------------------------------JVMState-------------------------------------
duke@435 185 // A linked list of JVMState nodes captures the whole interpreter state,
duke@435 186 // plus GC roots, for all active calls at some call site in this compilation
duke@435 187 // unit. (If there is no inlining, then the list has exactly one link.)
duke@435 188 // This provides a way to map the optimized program back into the interpreter,
duke@435 189 // or to let the GC mark the stack.
duke@435 190 class JVMState : public ResourceObj {
cfang@1335 191 public:
cfang@1335 192 typedef enum {
cfang@1335 193 Reexecute_Undefined = -1, // not defined -- will be translated into false later
cfang@1335 194 Reexecute_False = 0, // false -- do not reexecute
cfang@1335 195 Reexecute_True = 1 // true -- reexecute the bytecode
cfang@1335 196 } ReexecuteState; //Reexecute State
cfang@1335 197
duke@435 198 private:
duke@435 199 JVMState* _caller; // List pointer for forming scope chains
duke@435 200 uint _depth; // One mroe than caller depth, or one.
duke@435 201 uint _locoff; // Offset to locals in input edge mapping
duke@435 202 uint _stkoff; // Offset to stack in input edge mapping
duke@435 203 uint _monoff; // Offset to monitors in input edge mapping
kvn@498 204 uint _scloff; // Offset to fields of scalar objs in input edge mapping
duke@435 205 uint _endoff; // Offset to end of input edge mapping
duke@435 206 uint _sp; // Jave Expression Stack Pointer for this state
duke@435 207 int _bci; // Byte Code Index of this JVM point
cfang@1335 208 ReexecuteState _reexecute; // Whether this bytecode need to be re-executed
duke@435 209 ciMethod* _method; // Method Pointer
duke@435 210 SafePointNode* _map; // Map node associated with this scope
duke@435 211 public:
duke@435 212 friend class Compile;
cfang@1335 213 friend class PreserveReexecuteState;
duke@435 214
duke@435 215 // Because JVMState objects live over the entire lifetime of the
duke@435 216 // Compile object, they are allocated into the comp_arena, which
duke@435 217 // does not get resource marked or reset during the compile process
duke@435 218 void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
duke@435 219 void operator delete( void * ) { } // fast deallocation
duke@435 220
duke@435 221 // Create a new JVMState, ready for abstract interpretation.
duke@435 222 JVMState(ciMethod* method, JVMState* caller);
duke@435 223 JVMState(int stack_size); // root state; has a null method
duke@435 224
duke@435 225 // Access functions for the JVM
duke@435 226 uint locoff() const { return _locoff; }
duke@435 227 uint stkoff() const { return _stkoff; }
duke@435 228 uint argoff() const { return _stkoff + _sp; }
duke@435 229 uint monoff() const { return _monoff; }
kvn@498 230 uint scloff() const { return _scloff; }
duke@435 231 uint endoff() const { return _endoff; }
duke@435 232 uint oopoff() const { return debug_end(); }
duke@435 233
duke@435 234 int loc_size() const { return _stkoff - _locoff; }
duke@435 235 int stk_size() const { return _monoff - _stkoff; }
kvn@498 236 int mon_size() const { return _scloff - _monoff; }
kvn@498 237 int scl_size() const { return _endoff - _scloff; }
duke@435 238
duke@435 239 bool is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
duke@435 240 bool is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
kvn@498 241 bool is_mon(uint i) const { return i >= _monoff && i < _scloff; }
kvn@498 242 bool is_scl(uint i) const { return i >= _scloff && i < _endoff; }
duke@435 243
cfang@1335 244 uint sp() const { return _sp; }
cfang@1335 245 int bci() const { return _bci; }
cfang@1335 246 bool should_reexecute() const { return _reexecute==Reexecute_True; }
cfang@1335 247 bool is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
cfang@1335 248 bool has_method() const { return _method != NULL; }
cfang@1335 249 ciMethod* method() const { assert(has_method(), ""); return _method; }
cfang@1335 250 JVMState* caller() const { return _caller; }
cfang@1335 251 SafePointNode* map() const { return _map; }
cfang@1335 252 uint depth() const { return _depth; }
cfang@1335 253 uint debug_start() const; // returns locoff of root caller
cfang@1335 254 uint debug_end() const; // returns endoff of self
cfang@1335 255 uint debug_size() const {
kvn@498 256 return loc_size() + sp() + mon_size() + scl_size();
kvn@498 257 }
duke@435 258 uint debug_depth() const; // returns sum of debug_size values at all depths
duke@435 259
duke@435 260 // Returns the JVM state at the desired depth (1 == root).
duke@435 261 JVMState* of_depth(int d) const;
duke@435 262
duke@435 263 // Tells if two JVM states have the same call chain (depth, methods, & bcis).
duke@435 264 bool same_calls_as(const JVMState* that) const;
duke@435 265
duke@435 266 // Monitors (monitors are stored as (boxNode, objNode) pairs
duke@435 267 enum { logMonitorEdges = 1 };
duke@435 268 int nof_monitors() const { return mon_size() >> logMonitorEdges; }
duke@435 269 int monitor_depth() const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
duke@435 270 int monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
duke@435 271 int monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
duke@435 272 bool is_monitor_box(uint off) const {
duke@435 273 assert(is_mon(off), "should be called only for monitor edge");
duke@435 274 return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
duke@435 275 }
duke@435 276 bool is_monitor_use(uint off) const { return (is_mon(off)
duke@435 277 && is_monitor_box(off))
duke@435 278 || (caller() && caller()->is_monitor_use(off)); }
duke@435 279
duke@435 280 // Initialization functions for the JVM
duke@435 281 void set_locoff(uint off) { _locoff = off; }
duke@435 282 void set_stkoff(uint off) { _stkoff = off; }
duke@435 283 void set_monoff(uint off) { _monoff = off; }
kvn@498 284 void set_scloff(uint off) { _scloff = off; }
duke@435 285 void set_endoff(uint off) { _endoff = off; }
kvn@498 286 void set_offsets(uint off) {
kvn@498 287 _locoff = _stkoff = _monoff = _scloff = _endoff = off;
kvn@498 288 }
duke@435 289 void set_map(SafePointNode *map) { _map = map; }
duke@435 290 void set_sp(uint sp) { _sp = sp; }
cfang@1335 291 // _reexecute is initialized to "undefined" for a new bci
cfang@1335 292 void set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
cfang@1335 293 void set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
duke@435 294
duke@435 295 // Miscellaneous utility functions
duke@435 296 JVMState* clone_deep(Compile* C) const; // recursively clones caller chain
duke@435 297 JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
duke@435 298
duke@435 299 #ifndef PRODUCT
duke@435 300 void format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
duke@435 301 void dump_spec(outputStream *st) const;
duke@435 302 void dump_on(outputStream* st) const;
duke@435 303 void dump() const {
duke@435 304 dump_on(tty);
duke@435 305 }
duke@435 306 #endif
duke@435 307 };
duke@435 308
duke@435 309 //------------------------------SafePointNode----------------------------------
duke@435 310 // A SafePointNode is a subclass of a MultiNode for convenience (and
duke@435 311 // potential code sharing) only - conceptually it is independent of
duke@435 312 // the Node semantics.
duke@435 313 class SafePointNode : public MultiNode {
duke@435 314 virtual uint cmp( const Node &n ) const;
duke@435 315 virtual uint size_of() const; // Size is bigger
duke@435 316
duke@435 317 public:
duke@435 318 SafePointNode(uint edges, JVMState* jvms,
duke@435 319 // A plain safepoint advertises no memory effects (NULL):
duke@435 320 const TypePtr* adr_type = NULL)
duke@435 321 : MultiNode( edges ),
duke@435 322 _jvms(jvms),
duke@435 323 _oop_map(NULL),
duke@435 324 _adr_type(adr_type)
duke@435 325 {
duke@435 326 init_class_id(Class_SafePoint);
duke@435 327 }
duke@435 328
duke@435 329 OopMap* _oop_map; // Array of OopMap info (8-bit char) for GC
duke@435 330 JVMState* const _jvms; // Pointer to list of JVM State objects
duke@435 331 const TypePtr* _adr_type; // What type of memory does this node produce?
duke@435 332
duke@435 333 // Many calls take *all* of memory as input,
duke@435 334 // but some produce a limited subset of that memory as output.
duke@435 335 // The adr_type reports the call's behavior as a store, not a load.
duke@435 336
duke@435 337 virtual JVMState* jvms() const { return _jvms; }
duke@435 338 void set_jvms(JVMState* s) {
duke@435 339 *(JVMState**)&_jvms = s; // override const attribute in the accessor
duke@435 340 }
duke@435 341 OopMap *oop_map() const { return _oop_map; }
duke@435 342 void set_oop_map(OopMap *om) { _oop_map = om; }
duke@435 343
duke@435 344 // Functionality from old debug nodes which has changed
duke@435 345 Node *local(JVMState* jvms, uint idx) const {
duke@435 346 assert(verify_jvms(jvms), "jvms must match");
duke@435 347 return in(jvms->locoff() + idx);
duke@435 348 }
duke@435 349 Node *stack(JVMState* jvms, uint idx) const {
duke@435 350 assert(verify_jvms(jvms), "jvms must match");
duke@435 351 return in(jvms->stkoff() + idx);
duke@435 352 }
duke@435 353 Node *argument(JVMState* jvms, uint idx) const {
duke@435 354 assert(verify_jvms(jvms), "jvms must match");
duke@435 355 return in(jvms->argoff() + idx);
duke@435 356 }
duke@435 357 Node *monitor_box(JVMState* jvms, uint idx) const {
duke@435 358 assert(verify_jvms(jvms), "jvms must match");
duke@435 359 return in(jvms->monitor_box_offset(idx));
duke@435 360 }
duke@435 361 Node *monitor_obj(JVMState* jvms, uint idx) const {
duke@435 362 assert(verify_jvms(jvms), "jvms must match");
duke@435 363 return in(jvms->monitor_obj_offset(idx));
duke@435 364 }
duke@435 365
duke@435 366 void set_local(JVMState* jvms, uint idx, Node *c);
duke@435 367
duke@435 368 void set_stack(JVMState* jvms, uint idx, Node *c) {
duke@435 369 assert(verify_jvms(jvms), "jvms must match");
duke@435 370 set_req(jvms->stkoff() + idx, c);
duke@435 371 }
duke@435 372 void set_argument(JVMState* jvms, uint idx, Node *c) {
duke@435 373 assert(verify_jvms(jvms), "jvms must match");
duke@435 374 set_req(jvms->argoff() + idx, c);
duke@435 375 }
duke@435 376 void ensure_stack(JVMState* jvms, uint stk_size) {
duke@435 377 assert(verify_jvms(jvms), "jvms must match");
duke@435 378 int grow_by = (int)stk_size - (int)jvms->stk_size();
duke@435 379 if (grow_by > 0) grow_stack(jvms, grow_by);
duke@435 380 }
duke@435 381 void grow_stack(JVMState* jvms, uint grow_by);
duke@435 382 // Handle monitor stack
duke@435 383 void push_monitor( const FastLockNode *lock );
duke@435 384 void pop_monitor ();
duke@435 385 Node *peek_monitor_box() const;
duke@435 386 Node *peek_monitor_obj() const;
duke@435 387
duke@435 388 // Access functions for the JVM
duke@435 389 Node *control () const { return in(TypeFunc::Control ); }
duke@435 390 Node *i_o () const { return in(TypeFunc::I_O ); }
duke@435 391 Node *memory () const { return in(TypeFunc::Memory ); }
duke@435 392 Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
duke@435 393 Node *frameptr () const { return in(TypeFunc::FramePtr ); }
duke@435 394
duke@435 395 void set_control ( Node *c ) { set_req(TypeFunc::Control,c); }
duke@435 396 void set_i_o ( Node *c ) { set_req(TypeFunc::I_O ,c); }
duke@435 397 void set_memory ( Node *c ) { set_req(TypeFunc::Memory ,c); }
duke@435 398
duke@435 399 MergeMemNode* merged_memory() const {
duke@435 400 return in(TypeFunc::Memory)->as_MergeMem();
duke@435 401 }
duke@435 402
duke@435 403 // The parser marks useless maps as dead when it's done with them:
duke@435 404 bool is_killed() { return in(TypeFunc::Control) == NULL; }
duke@435 405
duke@435 406 // Exception states bubbling out of subgraphs such as inlined calls
duke@435 407 // are recorded here. (There might be more than one, hence the "next".)
duke@435 408 // This feature is used only for safepoints which serve as "maps"
duke@435 409 // for JVM states during parsing, intrinsic expansion, etc.
duke@435 410 SafePointNode* next_exception() const;
duke@435 411 void set_next_exception(SafePointNode* n);
duke@435 412 bool has_exceptions() const { return next_exception() != NULL; }
duke@435 413
duke@435 414 // Standard Node stuff
duke@435 415 virtual int Opcode() const;
duke@435 416 virtual bool pinned() const { return true; }
duke@435 417 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 418 virtual const Type *bottom_type() const { return Type::CONTROL; }
duke@435 419 virtual const TypePtr *adr_type() const { return _adr_type; }
duke@435 420 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 421 virtual Node *Identity( PhaseTransform *phase );
duke@435 422 virtual uint ideal_reg() const { return 0; }
duke@435 423 virtual const RegMask &in_RegMask(uint) const;
duke@435 424 virtual const RegMask &out_RegMask() const;
duke@435 425 virtual uint match_edge(uint idx) const;
duke@435 426
duke@435 427 static bool needs_polling_address_input();
duke@435 428
duke@435 429 #ifndef PRODUCT
duke@435 430 virtual void dump_spec(outputStream *st) const;
duke@435 431 #endif
duke@435 432 };
duke@435 433
kvn@498 434 //------------------------------SafePointScalarObjectNode----------------------
kvn@498 435 // A SafePointScalarObjectNode represents the state of a scalarized object
kvn@498 436 // at a safepoint.
kvn@498 437
kvn@498 438 class SafePointScalarObjectNode: public TypeNode {
kvn@498 439 uint _first_index; // First input edge index of a SafePoint node where
kvn@498 440 // states of the scalarized object fields are collected.
kvn@498 441 uint _n_fields; // Number of non-static fields of the scalarized object.
kvn@509 442 DEBUG_ONLY(AllocateNode* _alloc;)
kvn@498 443 public:
kvn@498 444 SafePointScalarObjectNode(const TypeOopPtr* tp,
kvn@498 445 #ifdef ASSERT
kvn@498 446 AllocateNode* alloc,
kvn@498 447 #endif
kvn@498 448 uint first_index, uint n_fields);
kvn@498 449 virtual int Opcode() const;
kvn@498 450 virtual uint ideal_reg() const;
kvn@498 451 virtual const RegMask &in_RegMask(uint) const;
kvn@498 452 virtual const RegMask &out_RegMask() const;
kvn@498 453 virtual uint match_edge(uint idx) const;
kvn@498 454
kvn@498 455 uint first_index() const { return _first_index; }
kvn@498 456 uint n_fields() const { return _n_fields; }
kvn@498 457 DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
kvn@498 458
kvn@855 459 // SafePointScalarObject should be always pinned to the control edge
kvn@855 460 // of the SafePoint node for which it was generated.
kvn@855 461 virtual bool pinned() const; // { return true; }
kvn@855 462
kvn@1036 463 // SafePointScalarObject depends on the SafePoint node
kvn@1036 464 // for which it was generated.
kvn@1036 465 virtual bool depends_only_on_test() const; // { return false; }
kvn@1036 466
kvn@498 467 virtual uint size_of() const { return sizeof(*this); }
kvn@498 468
kvn@498 469 // Assumes that "this" is an argument to a safepoint node "s", and that
kvn@498 470 // "new_call" is being created to correspond to "s". But the difference
kvn@498 471 // between the start index of the jvmstates of "new_call" and "s" is
kvn@498 472 // "jvms_adj". Produce and return a SafePointScalarObjectNode that
kvn@498 473 // corresponds appropriately to "this" in "new_call". Assumes that
kvn@498 474 // "sosn_map" is a map, specific to the translation of "s" to "new_call",
kvn@498 475 // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
kvn@498 476 SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
kvn@498 477
kvn@498 478 #ifndef PRODUCT
kvn@498 479 virtual void dump_spec(outputStream *st) const;
kvn@498 480 #endif
kvn@498 481 };
kvn@498 482
never@1515 483
never@1515 484 // Simple container for the outgoing projections of a call. Useful
never@1515 485 // for serious surgery on calls.
never@1515 486 class CallProjections : public StackObj {
never@1515 487 public:
never@1515 488 Node* fallthrough_proj;
never@1515 489 Node* fallthrough_catchproj;
never@1515 490 Node* fallthrough_memproj;
never@1515 491 Node* fallthrough_ioproj;
never@1515 492 Node* catchall_catchproj;
never@1515 493 Node* catchall_memproj;
never@1515 494 Node* catchall_ioproj;
never@1515 495 Node* resproj;
never@1515 496 Node* exobj;
never@1515 497 };
never@1515 498
never@1515 499
duke@435 500 //------------------------------CallNode---------------------------------------
duke@435 501 // Call nodes now subsume the function of debug nodes at callsites, so they
duke@435 502 // contain the functionality of a full scope chain of debug nodes.
duke@435 503 class CallNode : public SafePointNode {
duke@435 504 public:
duke@435 505 const TypeFunc *_tf; // Function type
duke@435 506 address _entry_point; // Address of method being called
duke@435 507 float _cnt; // Estimate of number of times called
duke@435 508
duke@435 509 CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
duke@435 510 : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
duke@435 511 _tf(tf),
duke@435 512 _entry_point(addr),
duke@435 513 _cnt(COUNT_UNKNOWN)
duke@435 514 {
duke@435 515 init_class_id(Class_Call);
duke@435 516 init_flags(Flag_is_Call);
duke@435 517 }
duke@435 518
duke@435 519 const TypeFunc* tf() const { return _tf; }
duke@435 520 const address entry_point() const { return _entry_point; }
duke@435 521 const float cnt() const { return _cnt; }
duke@435 522
duke@435 523 void set_tf(const TypeFunc* tf) { _tf = tf; }
duke@435 524 void set_entry_point(address p) { _entry_point = p; }
duke@435 525 void set_cnt(float c) { _cnt = c; }
duke@435 526
duke@435 527 virtual const Type *bottom_type() const;
duke@435 528 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 529 virtual Node *Identity( PhaseTransform *phase ) { return this; }
duke@435 530 virtual uint cmp( const Node &n ) const;
duke@435 531 virtual uint size_of() const = 0;
duke@435 532 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 533 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 534 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 535 // Are we guaranteed that this node is a safepoint? Not true for leaf calls and
duke@435 536 // for some macro nodes whose expansion does not have a safepoint on the fast path.
duke@435 537 virtual bool guaranteed_safepoint() { return true; }
duke@435 538 // For macro nodes, the JVMState gets modified during expansion, so when cloning
duke@435 539 // the node the JVMState must be cloned.
duke@435 540 virtual void clone_jvms() { } // default is not to clone
duke@435 541
kvn@500 542 // Returns true if the call may modify n
kvn@500 543 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase);
kvn@500 544 // Does this node have a use of n other than in debug information?
kvn@603 545 bool has_non_debug_use(Node *n);
kvn@500 546 // Returns the unique CheckCastPP of a call
kvn@500 547 // or result projection is there are several CheckCastPP
kvn@500 548 // or returns NULL if there is no one.
kvn@500 549 Node *result_cast();
kvn@500 550
never@1515 551 // Collect all the interesting edges from a call for use in
never@1515 552 // replacing the call by something else. Used by macro expansion
never@1515 553 // and the late inlining support.
never@1515 554 void extract_projections(CallProjections* projs, bool separate_io_proj);
never@1515 555
duke@435 556 virtual uint match_edge(uint idx) const;
duke@435 557
duke@435 558 #ifndef PRODUCT
duke@435 559 virtual void dump_req() const;
duke@435 560 virtual void dump_spec(outputStream *st) const;
duke@435 561 #endif
duke@435 562 };
duke@435 563
never@1515 564
duke@435 565 //------------------------------CallJavaNode-----------------------------------
duke@435 566 // Make a static or dynamic subroutine call node using Java calling
duke@435 567 // convention. (The "Java" calling convention is the compiler's calling
duke@435 568 // convention, as opposed to the interpreter's or that of native C.)
duke@435 569 class CallJavaNode : public CallNode {
duke@435 570 protected:
duke@435 571 virtual uint cmp( const Node &n ) const;
duke@435 572 virtual uint size_of() const; // Size is bigger
duke@435 573
duke@435 574 bool _optimized_virtual;
twisti@1572 575 bool _method_handle_invoke;
duke@435 576 ciMethod* _method; // Method being direct called
duke@435 577 public:
duke@435 578 const int _bci; // Byte Code Index of call byte code
duke@435 579 CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
duke@435 580 : CallNode(tf, addr, TypePtr::BOTTOM),
twisti@1572 581 _method(method), _bci(bci),
twisti@1572 582 _optimized_virtual(false),
twisti@1572 583 _method_handle_invoke(false)
duke@435 584 {
duke@435 585 init_class_id(Class_CallJava);
duke@435 586 }
duke@435 587
duke@435 588 virtual int Opcode() const;
duke@435 589 ciMethod* method() const { return _method; }
duke@435 590 void set_method(ciMethod *m) { _method = m; }
duke@435 591 void set_optimized_virtual(bool f) { _optimized_virtual = f; }
duke@435 592 bool is_optimized_virtual() const { return _optimized_virtual; }
twisti@1572 593 void set_method_handle_invoke(bool f) { _method_handle_invoke = f; }
twisti@1572 594 bool is_method_handle_invoke() const { return _method_handle_invoke; }
duke@435 595
duke@435 596 #ifndef PRODUCT
duke@435 597 virtual void dump_spec(outputStream *st) const;
duke@435 598 #endif
duke@435 599 };
duke@435 600
duke@435 601 //------------------------------CallStaticJavaNode-----------------------------
duke@435 602 // Make a direct subroutine call using Java calling convention (for static
duke@435 603 // calls and optimized virtual calls, plus calls to wrappers for run-time
duke@435 604 // routines); generates static stub.
duke@435 605 class CallStaticJavaNode : public CallJavaNode {
duke@435 606 virtual uint cmp( const Node &n ) const;
duke@435 607 virtual uint size_of() const; // Size is bigger
duke@435 608 public:
duke@435 609 CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
duke@435 610 : CallJavaNode(tf, addr, method, bci), _name(NULL) {
duke@435 611 init_class_id(Class_CallStaticJava);
duke@435 612 }
duke@435 613 CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
duke@435 614 const TypePtr* adr_type)
duke@435 615 : CallJavaNode(tf, addr, NULL, bci), _name(name) {
duke@435 616 init_class_id(Class_CallStaticJava);
duke@435 617 // This node calls a runtime stub, which often has narrow memory effects.
duke@435 618 _adr_type = adr_type;
duke@435 619 }
duke@435 620 const char *_name; // Runtime wrapper name
duke@435 621
duke@435 622 // If this is an uncommon trap, return the request code, else zero.
duke@435 623 int uncommon_trap_request() const;
duke@435 624 static int extract_uncommon_trap_request(const Node* call);
duke@435 625
duke@435 626 virtual int Opcode() const;
duke@435 627 #ifndef PRODUCT
duke@435 628 virtual void dump_spec(outputStream *st) const;
duke@435 629 #endif
duke@435 630 };
duke@435 631
duke@435 632 //------------------------------CallDynamicJavaNode----------------------------
duke@435 633 // Make a dispatched call using Java calling convention.
duke@435 634 class CallDynamicJavaNode : public CallJavaNode {
duke@435 635 virtual uint cmp( const Node &n ) const;
duke@435 636 virtual uint size_of() const; // Size is bigger
duke@435 637 public:
duke@435 638 CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
duke@435 639 init_class_id(Class_CallDynamicJava);
duke@435 640 }
duke@435 641
duke@435 642 int _vtable_index;
duke@435 643 virtual int Opcode() const;
duke@435 644 #ifndef PRODUCT
duke@435 645 virtual void dump_spec(outputStream *st) const;
duke@435 646 #endif
duke@435 647 };
duke@435 648
duke@435 649 //------------------------------CallRuntimeNode--------------------------------
duke@435 650 // Make a direct subroutine call node into compiled C++ code.
duke@435 651 class CallRuntimeNode : public CallNode {
duke@435 652 virtual uint cmp( const Node &n ) const;
duke@435 653 virtual uint size_of() const; // Size is bigger
duke@435 654 public:
duke@435 655 CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
duke@435 656 const TypePtr* adr_type)
duke@435 657 : CallNode(tf, addr, adr_type),
duke@435 658 _name(name)
duke@435 659 {
duke@435 660 init_class_id(Class_CallRuntime);
duke@435 661 }
duke@435 662
duke@435 663 const char *_name; // Printable name, if _method is NULL
duke@435 664 virtual int Opcode() const;
duke@435 665 virtual void calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
duke@435 666
duke@435 667 #ifndef PRODUCT
duke@435 668 virtual void dump_spec(outputStream *st) const;
duke@435 669 #endif
duke@435 670 };
duke@435 671
duke@435 672 //------------------------------CallLeafNode-----------------------------------
duke@435 673 // Make a direct subroutine call node into compiled C++ code, without
duke@435 674 // safepoints
duke@435 675 class CallLeafNode : public CallRuntimeNode {
duke@435 676 public:
duke@435 677 CallLeafNode(const TypeFunc* tf, address addr, const char* name,
duke@435 678 const TypePtr* adr_type)
duke@435 679 : CallRuntimeNode(tf, addr, name, adr_type)
duke@435 680 {
duke@435 681 init_class_id(Class_CallLeaf);
duke@435 682 }
duke@435 683 virtual int Opcode() const;
duke@435 684 virtual bool guaranteed_safepoint() { return false; }
duke@435 685 #ifndef PRODUCT
duke@435 686 virtual void dump_spec(outputStream *st) const;
duke@435 687 #endif
duke@435 688 };
duke@435 689
duke@435 690 //------------------------------CallLeafNoFPNode-------------------------------
duke@435 691 // CallLeafNode, not using floating point or using it in the same manner as
duke@435 692 // the generated code
duke@435 693 class CallLeafNoFPNode : public CallLeafNode {
duke@435 694 public:
duke@435 695 CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
duke@435 696 const TypePtr* adr_type)
duke@435 697 : CallLeafNode(tf, addr, name, adr_type)
duke@435 698 {
duke@435 699 }
duke@435 700 virtual int Opcode() const;
duke@435 701 };
duke@435 702
duke@435 703
duke@435 704 //------------------------------Allocate---------------------------------------
duke@435 705 // High-level memory allocation
duke@435 706 //
duke@435 707 // AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
duke@435 708 // get expanded into a code sequence containing a call. Unlike other CallNodes,
duke@435 709 // they have 2 memory projections and 2 i_o projections (which are distinguished by
duke@435 710 // the _is_io_use flag in the projection.) This is needed when expanding the node in
duke@435 711 // order to differentiate the uses of the projection on the normal control path from
duke@435 712 // those on the exception return path.
duke@435 713 //
duke@435 714 class AllocateNode : public CallNode {
duke@435 715 public:
duke@435 716 enum {
duke@435 717 // Output:
duke@435 718 RawAddress = TypeFunc::Parms, // the newly-allocated raw address
duke@435 719 // Inputs:
duke@435 720 AllocSize = TypeFunc::Parms, // size (in bytes) of the new object
duke@435 721 KlassNode, // type (maybe dynamic) of the obj.
duke@435 722 InitialTest, // slow-path test (may be constant)
duke@435 723 ALength, // array length (or TOP if none)
duke@435 724 ParmLimit
duke@435 725 };
duke@435 726
duke@435 727 static const TypeFunc* alloc_type() {
duke@435 728 const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
duke@435 729 fields[AllocSize] = TypeInt::POS;
duke@435 730 fields[KlassNode] = TypeInstPtr::NOTNULL;
duke@435 731 fields[InitialTest] = TypeInt::BOOL;
duke@435 732 fields[ALength] = TypeInt::INT; // length (can be a bad length)
duke@435 733
duke@435 734 const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
duke@435 735
duke@435 736 // create result type (range)
duke@435 737 fields = TypeTuple::fields(1);
duke@435 738 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
duke@435 739
duke@435 740 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
duke@435 741
duke@435 742 return TypeFunc::make(domain, range);
duke@435 743 }
duke@435 744
kvn@474 745 bool _is_scalar_replaceable; // Result of Escape Analysis
kvn@474 746
duke@435 747 virtual uint size_of() const; // Size is bigger
duke@435 748 AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 749 Node *size, Node *klass_node, Node *initial_test);
duke@435 750 // Expansion modifies the JVMState, so we need to clone it
duke@435 751 virtual void clone_jvms() {
duke@435 752 set_jvms(jvms()->clone_deep(Compile::current()));
duke@435 753 }
duke@435 754 virtual int Opcode() const;
duke@435 755 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 756 virtual bool guaranteed_safepoint() { return false; }
duke@435 757
kvn@500 758 // allocations do not modify their arguments
kvn@500 759 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
kvn@500 760
duke@435 761 // Pattern-match a possible usage of AllocateNode.
duke@435 762 // Return null if no allocation is recognized.
duke@435 763 // The operand is the pointer produced by the (possible) allocation.
duke@435 764 // It must be a projection of the Allocate or its subsequent CastPP.
duke@435 765 // (Note: This function is defined in file graphKit.cpp, near
duke@435 766 // GraphKit::new_instance/new_array, whose output it recognizes.)
duke@435 767 // The 'ptr' may not have an offset unless the 'offset' argument is given.
duke@435 768 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
duke@435 769
duke@435 770 // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
duke@435 771 // an offset, which is reported back to the caller.
duke@435 772 // (Note: AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
duke@435 773 static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
duke@435 774 intptr_t& offset);
duke@435 775
duke@435 776 // Dig the klass operand out of a (possible) allocation site.
duke@435 777 static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
duke@435 778 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 779 return (allo == NULL) ? NULL : allo->in(KlassNode);
duke@435 780 }
duke@435 781
duke@435 782 // Conservatively small estimate of offset of first non-header byte.
duke@435 783 int minimum_header_size() {
coleenp@548 784 return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
coleenp@548 785 instanceOopDesc::base_offset_in_bytes();
duke@435 786 }
duke@435 787
duke@435 788 // Return the corresponding initialization barrier (or null if none).
duke@435 789 // Walks out edges to find it...
duke@435 790 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 791 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 792 InitializeNode* initialization();
duke@435 793
duke@435 794 // Convenience for initialization->maybe_set_complete(phase)
duke@435 795 bool maybe_set_complete(PhaseGVN* phase);
duke@435 796 };
duke@435 797
duke@435 798 //------------------------------AllocateArray---------------------------------
duke@435 799 //
duke@435 800 // High-level array allocation
duke@435 801 //
duke@435 802 class AllocateArrayNode : public AllocateNode {
duke@435 803 public:
duke@435 804 AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
duke@435 805 Node* size, Node* klass_node, Node* initial_test,
duke@435 806 Node* count_val
duke@435 807 )
duke@435 808 : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
duke@435 809 initial_test)
duke@435 810 {
duke@435 811 init_class_id(Class_AllocateArray);
duke@435 812 set_req(AllocateNode::ALength, count_val);
duke@435 813 }
duke@435 814 virtual int Opcode() const;
duke@435 815 virtual uint size_of() const; // Size is bigger
kvn@1139 816 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 817
rasbold@801 818 // Dig the length operand out of a array allocation site.
rasbold@801 819 Node* Ideal_length() {
rasbold@801 820 return in(AllocateNode::ALength);
rasbold@801 821 }
rasbold@801 822
rasbold@801 823 // Dig the length operand out of a array allocation site and narrow the
rasbold@801 824 // type with a CastII, if necesssary
rasbold@801 825 Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
rasbold@801 826
duke@435 827 // Pattern-match a possible usage of AllocateArrayNode.
duke@435 828 // Return null if no allocation is recognized.
duke@435 829 static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
duke@435 830 AllocateNode* allo = Ideal_allocation(ptr, phase);
duke@435 831 return (allo == NULL || !allo->is_AllocateArray())
duke@435 832 ? NULL : allo->as_AllocateArray();
duke@435 833 }
duke@435 834 };
duke@435 835
duke@435 836 //------------------------------AbstractLockNode-----------------------------------
duke@435 837 class AbstractLockNode: public CallNode {
duke@435 838 private:
kvn@895 839 bool _eliminate; // indicates this lock can be safely eliminated
kvn@895 840 bool _coarsened; // indicates this lock was coarsened
duke@435 841 #ifndef PRODUCT
duke@435 842 NamedCounter* _counter;
duke@435 843 #endif
duke@435 844
duke@435 845 protected:
duke@435 846 // helper functions for lock elimination
duke@435 847 //
duke@435 848
duke@435 849 bool find_matching_unlock(const Node* ctrl, LockNode* lock,
duke@435 850 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 851 bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
duke@435 852 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 853 bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
duke@435 854 GrowableArray<AbstractLockNode*> &lock_ops);
duke@435 855 LockNode *find_matching_lock(UnlockNode* unlock);
duke@435 856
duke@435 857
duke@435 858 public:
duke@435 859 AbstractLockNode(const TypeFunc *tf)
duke@435 860 : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
kvn@895 861 _coarsened(false),
duke@435 862 _eliminate(false)
duke@435 863 {
duke@435 864 #ifndef PRODUCT
duke@435 865 _counter = NULL;
duke@435 866 #endif
duke@435 867 }
duke@435 868 virtual int Opcode() const = 0;
duke@435 869 Node * obj_node() const {return in(TypeFunc::Parms + 0); }
duke@435 870 Node * box_node() const {return in(TypeFunc::Parms + 1); }
duke@435 871 Node * fastlock_node() const {return in(TypeFunc::Parms + 2); }
duke@435 872 const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
duke@435 873
duke@435 874 virtual uint size_of() const { return sizeof(*this); }
duke@435 875
duke@435 876 bool is_eliminated() {return _eliminate; }
duke@435 877 // mark node as eliminated and update the counter if there is one
duke@435 878 void set_eliminated();
duke@435 879
kvn@895 880 bool is_coarsened() { return _coarsened; }
kvn@895 881 void set_coarsened() { _coarsened = true; }
kvn@895 882
kvn@500 883 // locking does not modify its arguments
kvn@500 884 virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
kvn@500 885
duke@435 886 #ifndef PRODUCT
duke@435 887 void create_lock_counter(JVMState* s);
duke@435 888 NamedCounter* counter() const { return _counter; }
duke@435 889 #endif
duke@435 890 };
duke@435 891
duke@435 892 //------------------------------Lock---------------------------------------
duke@435 893 // High-level lock operation
duke@435 894 //
duke@435 895 // This is a subclass of CallNode because it is a macro node which gets expanded
duke@435 896 // into a code sequence containing a call. This node takes 3 "parameters":
duke@435 897 // 0 - object to lock
duke@435 898 // 1 - a BoxLockNode
duke@435 899 // 2 - a FastLockNode
duke@435 900 //
duke@435 901 class LockNode : public AbstractLockNode {
duke@435 902 public:
duke@435 903
duke@435 904 static const TypeFunc *lock_type() {
duke@435 905 // create input type (domain)
duke@435 906 const Type **fields = TypeTuple::fields(3);
duke@435 907 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
duke@435 908 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
duke@435 909 fields[TypeFunc::Parms+2] = TypeInt::BOOL; // FastLock
duke@435 910 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
duke@435 911
duke@435 912 // create result type (range)
duke@435 913 fields = TypeTuple::fields(0);
duke@435 914
duke@435 915 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
duke@435 916
duke@435 917 return TypeFunc::make(domain,range);
duke@435 918 }
duke@435 919
duke@435 920 virtual int Opcode() const;
duke@435 921 virtual uint size_of() const; // Size is bigger
duke@435 922 LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 923 init_class_id(Class_Lock);
duke@435 924 init_flags(Flag_is_macro);
duke@435 925 C->add_macro_node(this);
duke@435 926 }
duke@435 927 virtual bool guaranteed_safepoint() { return false; }
duke@435 928
duke@435 929 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 930 // Expansion modifies the JVMState, so we need to clone it
duke@435 931 virtual void clone_jvms() {
duke@435 932 set_jvms(jvms()->clone_deep(Compile::current()));
duke@435 933 }
duke@435 934 };
duke@435 935
duke@435 936 //------------------------------Unlock---------------------------------------
duke@435 937 // High-level unlock operation
duke@435 938 class UnlockNode : public AbstractLockNode {
duke@435 939 public:
duke@435 940 virtual int Opcode() const;
duke@435 941 virtual uint size_of() const; // Size is bigger
duke@435 942 UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
duke@435 943 init_class_id(Class_Unlock);
duke@435 944 init_flags(Flag_is_macro);
duke@435 945 C->add_macro_node(this);
duke@435 946 }
duke@435 947 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 948 // unlock is never a safepoint
duke@435 949 virtual bool guaranteed_safepoint() { return false; }
duke@435 950 };
stefank@2314 951
stefank@2314 952 #endif // SHARE_VM_OPTO_CALLNODE_HPP

mercurial