src/share/vm/opto/escape.cpp

Thu, 05 Feb 2009 11:42:10 -0800

author
never
date
Thu, 05 Feb 2009 11:42:10 -0800
changeset 979
82a980778b92
parent 895
424f9bfe6b96
child 1019
49a36a80b0c7
permissions
-rw-r--r--

6793828: G1: invariant: queues are empty when activated
Reviewed-by: jrose, kvn

duke@435 1 /*
xdono@631 2 * Copyright 2005-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
kvn@688 65 void PointsToNode::dump(bool print_state) const {
duke@435 66 NodeType nt = node_type();
kvn@688 67 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 68 if (print_state) {
kvn@688 69 EscapeState es = escape_state();
kvn@688 70 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 71 }
kvn@688 72 tty->print("[[");
duke@435 73 for (uint i = 0; i < edge_count(); i++) {
duke@435 74 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 75 }
duke@435 76 tty->print("]] ");
duke@435 77 if (_node == NULL)
duke@435 78 tty->print_cr("<null>");
duke@435 79 else
duke@435 80 _node->dump();
duke@435 81 }
duke@435 82 #endif
duke@435 83
kvn@679 84 ConnectionGraph::ConnectionGraph(Compile * C) :
kvn@679 85 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 86 _processed(C->comp_arena()),
kvn@679 87 _collecting(true),
kvn@679 88 _compile(C),
kvn@679 89 _node_map(C->comp_arena()) {
kvn@679 90
kvn@688 91 _phantom_object = C->top()->_idx,
kvn@688 92 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 93
kvn@688 94 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 95 PhaseGVN* igvn = C->initial_gvn();
kvn@688 96 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 97 _oop_null = oop_null->_idx;
kvn@688 98 assert(_oop_null < C->unique(), "should be created already");
kvn@688 99 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 100
kvn@688 101 if (UseCompressedOops) {
kvn@688 102 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 103 _noop_null = noop_null->_idx;
kvn@688 104 assert(_noop_null < C->unique(), "should be created already");
kvn@688 105 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 106 }
duke@435 107 }
duke@435 108
duke@435 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 110 PointsToNode *f = ptnode_adr(from_i);
duke@435 111 PointsToNode *t = ptnode_adr(to_i);
duke@435 112
duke@435 113 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 114 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 115 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 116 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 125 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 126 // don't add a self-referential edge, this can occur during removal of
duke@435 127 // deferred edges
duke@435 128 if (from_i != to_i)
duke@435 129 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 130 }
duke@435 131
kvn@500 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 133 const Type *adr_type = phase->type(adr);
kvn@500 134 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 137 // We are computing a raw address for a store captured by an Initialize
kvn@500 138 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 139 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 140 assert(offs != Type::OffsetBot ||
kvn@500 141 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 142 "offset must be a constant or it is initialization of array");
kvn@500 143 return offs;
kvn@500 144 }
kvn@500 145 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 146 assert(t_ptr != NULL, "must be a pointer type");
duke@435 147 return t_ptr->offset();
duke@435 148 }
duke@435 149
duke@435 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 151 PointsToNode *f = ptnode_adr(from_i);
duke@435 152 PointsToNode *t = ptnode_adr(to_i);
duke@435 153
duke@435 154 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 155 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 156 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 157 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 158 t->set_offset(offset);
duke@435 159
duke@435 160 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 164 PointsToNode *npt = ptnode_adr(ni);
duke@435 165 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 166 if (es > old_es)
duke@435 167 npt->set_escape_state(es);
duke@435 168 }
duke@435 169
kvn@500 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 171 PointsToNode::EscapeState es, bool done) {
kvn@500 172 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 173 ptadr->_node = n;
kvn@500 174 ptadr->set_node_type(nt);
kvn@500 175
kvn@500 176 // inline set_escape_state(idx, es);
kvn@500 177 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 178 if (es > old_es)
kvn@500 179 ptadr->set_escape_state(es);
kvn@500 180
kvn@500 181 if (done)
kvn@500 182 _processed.set(n->_idx);
kvn@500 183 }
kvn@500 184
duke@435 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 186 uint idx = n->_idx;
duke@435 187 PointsToNode::EscapeState es;
duke@435 188
kvn@500 189 // If we are still collecting or there were no non-escaping allocations
kvn@500 190 // we don't know the answer yet
kvn@679 191 if (_collecting)
duke@435 192 return PointsToNode::UnknownEscape;
duke@435 193
duke@435 194 // if the node was created after the escape computation, return
duke@435 195 // UnknownEscape
kvn@679 196 if (idx >= nodes_size())
duke@435 197 return PointsToNode::UnknownEscape;
duke@435 198
kvn@679 199 es = ptnode_adr(idx)->escape_state();
duke@435 200
duke@435 201 // if we have already computed a value, return it
kvn@895 202 if (es != PointsToNode::UnknownEscape &&
kvn@895 203 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 204 return es;
duke@435 205
kvn@679 206 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 207 if (n->uncast()->_idx >= nodes_size())
kvn@679 208 return PointsToNode::UnknownEscape;
kvn@679 209
duke@435 210 // compute max escape state of anything this node could point to
duke@435 211 VectorSet ptset(Thread::current()->resource_area());
duke@435 212 PointsTo(ptset, n, phase);
kvn@500 213 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 214 uint pt = i.elem;
kvn@679 215 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 216 if (pes > es)
duke@435 217 es = pes;
duke@435 218 }
duke@435 219 // cache the computed escape state
duke@435 220 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@679 221 ptnode_adr(idx)->set_escape_state(es);
duke@435 222 return es;
duke@435 223 }
duke@435 224
duke@435 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 226 VectorSet visited(Thread::current()->resource_area());
duke@435 227 GrowableArray<uint> worklist;
duke@435 228
kvn@559 229 #ifdef ASSERT
kvn@559 230 Node *orig_n = n;
kvn@559 231 #endif
kvn@559 232
kvn@500 233 n = n->uncast();
kvn@679 234 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 235
duke@435 236 // If we have a JavaObject, return just that object
kvn@679 237 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 238 ptset.set(n->_idx);
duke@435 239 return;
duke@435 240 }
kvn@559 241 #ifdef ASSERT
kvn@679 242 if (npt->_node == NULL) {
kvn@559 243 if (orig_n != n)
kvn@559 244 orig_n->dump();
kvn@559 245 n->dump();
kvn@679 246 assert(npt->_node != NULL, "unregistered node");
kvn@559 247 }
kvn@559 248 #endif
duke@435 249 worklist.push(n->_idx);
duke@435 250 while(worklist.length() > 0) {
duke@435 251 int ni = worklist.pop();
kvn@679 252 if (visited.test_set(ni))
kvn@679 253 continue;
duke@435 254
kvn@679 255 PointsToNode* pn = ptnode_adr(ni);
kvn@679 256 // ensure that all inputs of a Phi have been processed
kvn@679 257 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 258
kvn@679 259 int edges_processed = 0;
kvn@679 260 uint e_cnt = pn->edge_count();
kvn@679 261 for (uint e = 0; e < e_cnt; e++) {
kvn@679 262 uint etgt = pn->edge_target(e);
kvn@679 263 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 264 if (et == PointsToNode::PointsToEdge) {
kvn@679 265 ptset.set(etgt);
kvn@679 266 edges_processed++;
kvn@679 267 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 268 worklist.push(etgt);
kvn@679 269 edges_processed++;
kvn@679 270 } else {
kvn@679 271 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 272 }
kvn@679 273 }
kvn@679 274 if (edges_processed == 0) {
kvn@679 275 // no deferred or pointsto edges found. Assume the value was set
kvn@679 276 // outside this method. Add the phantom object to the pointsto set.
kvn@679 277 ptset.set(_phantom_object);
duke@435 278 }
duke@435 279 }
duke@435 280 }
duke@435 281
kvn@536 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 283 // This method is most expensive during ConnectionGraph construction.
kvn@536 284 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 285 deferred_edges->clear();
kvn@536 286 visited->Clear();
duke@435 287
kvn@679 288 visited->set(ni);
duke@435 289 PointsToNode *ptn = ptnode_adr(ni);
duke@435 290
kvn@536 291 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 292 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 293 uint t = ptn->edge_target(i);
kvn@536 294 #ifdef ASSERT
kvn@536 295 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 296 #else
kvn@536 297 visited->set(t);
kvn@536 298 #endif
kvn@536 299 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 300 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 301 deferred_edges->append(t);
kvn@559 302 } else {
kvn@559 303 i++;
kvn@536 304 }
kvn@536 305 }
kvn@536 306 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 307 uint t = deferred_edges->at(next);
kvn@500 308 PointsToNode *ptt = ptnode_adr(t);
kvn@679 309 uint e_cnt = ptt->edge_count();
kvn@679 310 for (uint e = 0; e < e_cnt; e++) {
kvn@679 311 uint etgt = ptt->edge_target(e);
kvn@679 312 if (visited->test_set(etgt))
kvn@536 313 continue;
kvn@679 314
kvn@679 315 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 316 if (et == PointsToNode::PointsToEdge) {
kvn@679 317 add_pointsto_edge(ni, etgt);
kvn@679 318 if(etgt == _phantom_object) {
kvn@679 319 // Special case - field set outside (globally escaping).
kvn@679 320 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 321 }
kvn@679 322 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 323 deferred_edges->append(etgt);
kvn@679 324 } else {
kvn@679 325 assert(false,"invalid connection graph");
duke@435 326 }
duke@435 327 }
duke@435 328 }
duke@435 329 }
duke@435 330
duke@435 331
duke@435 332 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 333 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 334 // a pointsto edge is added if it is a JavaObject
duke@435 335
duke@435 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 337 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 338 PointsToNode* to = ptnode_adr(to_i);
kvn@679 339 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 340
kvn@679 341 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 342 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 343 int fi = an->edge_target(fe);
kvn@679 344 PointsToNode* pf = ptnode_adr(fi);
kvn@679 345 int po = pf->offset();
duke@435 346 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 347 if (deferred)
duke@435 348 add_deferred_edge(fi, to_i);
duke@435 349 else
duke@435 350 add_pointsto_edge(fi, to_i);
duke@435 351 }
duke@435 352 }
duke@435 353 }
duke@435 354
kvn@500 355 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 356 // whose offset matches "offset".
duke@435 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 358 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 359 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 360 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 361 int fi = an->edge_target(fe);
kvn@679 362 PointsToNode* pf = ptnode_adr(fi);
kvn@679 363 int po = pf->offset();
kvn@679 364 if (pf->edge_count() == 0) {
duke@435 365 // we have not seen any stores to this field, assume it was set outside this method
duke@435 366 add_pointsto_edge(fi, _phantom_object);
duke@435 367 }
duke@435 368 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 369 add_deferred_edge(from_i, fi);
duke@435 370 }
duke@435 371 }
duke@435 372 }
duke@435 373
kvn@500 374 // Helper functions
kvn@500 375
kvn@500 376 static Node* get_addp_base(Node *addp) {
kvn@500 377 assert(addp->is_AddP(), "must be AddP");
kvn@500 378 //
kvn@500 379 // AddP cases for Base and Address inputs:
kvn@500 380 // case #1. Direct object's field reference:
kvn@500 381 // Allocate
kvn@500 382 // |
kvn@500 383 // Proj #5 ( oop result )
kvn@500 384 // |
kvn@500 385 // CheckCastPP (cast to instance type)
kvn@500 386 // | |
kvn@500 387 // AddP ( base == address )
kvn@500 388 //
kvn@500 389 // case #2. Indirect object's field reference:
kvn@500 390 // Phi
kvn@500 391 // |
kvn@500 392 // CastPP (cast to instance type)
kvn@500 393 // | |
kvn@500 394 // AddP ( base == address )
kvn@500 395 //
kvn@500 396 // case #3. Raw object's field reference for Initialize node:
kvn@500 397 // Allocate
kvn@500 398 // |
kvn@500 399 // Proj #5 ( oop result )
kvn@500 400 // top |
kvn@500 401 // \ |
kvn@500 402 // AddP ( base == top )
kvn@500 403 //
kvn@500 404 // case #4. Array's element reference:
kvn@500 405 // {CheckCastPP | CastPP}
kvn@500 406 // | | |
kvn@500 407 // | AddP ( array's element offset )
kvn@500 408 // | |
kvn@500 409 // AddP ( array's offset )
kvn@500 410 //
kvn@500 411 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 412 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 413 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 414 // Allocate
kvn@500 415 // |
kvn@500 416 // Proj #5 ( oop result )
kvn@500 417 // | |
kvn@500 418 // AddP ( base == address )
kvn@500 419 //
kvn@512 420 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 421 // Raw object's field reference:
kvn@512 422 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 423 // top |
kvn@500 424 // \ |
kvn@500 425 // AddP ( base == top )
kvn@500 426 //
kvn@512 427 // case #7. Klass's field reference.
kvn@512 428 // LoadKlass
kvn@512 429 // | |
kvn@512 430 // AddP ( base == address )
kvn@512 431 //
kvn@599 432 // case #8. narrow Klass's field reference.
kvn@599 433 // LoadNKlass
kvn@599 434 // |
kvn@599 435 // DecodeN
kvn@599 436 // | |
kvn@599 437 // AddP ( base == address )
kvn@599 438 //
kvn@500 439 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 440 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 441 base = addp->in(AddPNode::Address)->uncast();
kvn@500 442 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 443 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 444 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 445 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 446 }
kvn@500 447 return base;
kvn@500 448 }
kvn@500 449
kvn@500 450 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 451 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 452
kvn@500 453 Node* addp2 = addp->raw_out(0);
kvn@500 454 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 455 addp2->in(AddPNode::Base) == n &&
kvn@500 456 addp2->in(AddPNode::Address) == addp) {
kvn@500 457
kvn@500 458 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 459 //
kvn@500 460 // Find array's offset to push it on worklist first and
kvn@500 461 // as result process an array's element offset first (pushed second)
kvn@500 462 // to avoid CastPP for the array's offset.
kvn@500 463 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 464 // the AddP (Field) points to. Which would be wrong since
kvn@500 465 // the algorithm expects the CastPP has the same point as
kvn@500 466 // as AddP's base CheckCastPP (LocalVar).
kvn@500 467 //
kvn@500 468 // ArrayAllocation
kvn@500 469 // |
kvn@500 470 // CheckCastPP
kvn@500 471 // |
kvn@500 472 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 473 // | ||
kvn@500 474 // | || Int (element index)
kvn@500 475 // | || | ConI (log(element size))
kvn@500 476 // | || | /
kvn@500 477 // | || LShift
kvn@500 478 // | || /
kvn@500 479 // | AddP (array's element offset)
kvn@500 480 // | |
kvn@500 481 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 482 // | / /
kvn@500 483 // AddP (array's offset)
kvn@500 484 // |
kvn@500 485 // Load/Store (memory operation on array's element)
kvn@500 486 //
kvn@500 487 return addp2;
kvn@500 488 }
kvn@500 489 return NULL;
duke@435 490 }
duke@435 491
duke@435 492 //
duke@435 493 // Adjust the type and inputs of an AddP which computes the
duke@435 494 // address of a field of an instance
duke@435 495 //
kvn@728 496 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 497 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 498 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 499 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 500 if (t == NULL) {
kvn@500 501 // We are computing a raw address for a store captured by an Initialize
kvn@728 502 // compute an appropriate address type (cases #3 and #5).
kvn@500 503 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 504 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 505 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 506 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 507 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 508 }
kvn@658 509 int inst_id = base_t->instance_id();
kvn@658 510 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 511 "old type must be non-instance or match new type");
kvn@728 512
kvn@728 513 // The type 't' could be subclass of 'base_t'.
kvn@728 514 // As result t->offset() could be large then base_t's size and it will
kvn@728 515 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 516 // constructor verifies correctness of the offset.
kvn@728 517 //
kvn@728 518 // It could happend on subclass's branch (from the type profiling
kvn@728 519 // inlining) which was not eliminated during parsing since the exactness
kvn@728 520 // of the allocation type was not propagated to the subclass type check.
kvn@728 521 //
kvn@728 522 // Do nothing for such AddP node and don't process its users since
kvn@728 523 // this code branch will go away.
kvn@728 524 //
kvn@728 525 if (!t->is_known_instance() &&
kvn@728 526 !t->klass()->equals(base_t->klass()) &&
kvn@728 527 t->klass()->is_subtype_of(base_t->klass())) {
kvn@728 528 return false; // bail out
kvn@728 529 }
kvn@728 530
duke@435 531 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@500 532 // Do NOT remove the next call: ensure an new alias index is allocated
kvn@500 533 // for the instance type
duke@435 534 int alias_idx = _compile->get_alias_index(tinst);
duke@435 535 igvn->set_type(addp, tinst);
duke@435 536 // record the allocation in the node map
duke@435 537 set_map(addp->_idx, get_map(base->_idx));
kvn@688 538
kvn@688 539 // Set addp's Base and Address to 'base'.
kvn@688 540 Node *abase = addp->in(AddPNode::Base);
kvn@688 541 Node *adr = addp->in(AddPNode::Address);
kvn@688 542 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 543 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 544 // Skip AddP cases #3 and #5.
kvn@688 545 } else {
kvn@688 546 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 547 if (abase != base) {
kvn@688 548 igvn->hash_delete(addp);
kvn@688 549 addp->set_req(AddPNode::Base, base);
kvn@688 550 if (abase == adr) {
kvn@688 551 addp->set_req(AddPNode::Address, base);
kvn@688 552 } else {
kvn@688 553 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 554 #ifdef ASSERT
kvn@688 555 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 556 assert(adr->is_AddP() && atype != NULL &&
kvn@688 557 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 558 #endif
kvn@688 559 }
kvn@688 560 igvn->hash_insert(addp);
duke@435 561 }
duke@435 562 }
kvn@500 563 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 564 record_for_optimizer(addp);
kvn@728 565 return true;
duke@435 566 }
duke@435 567
duke@435 568 //
duke@435 569 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 570 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 571 // phi was created. Cache the last newly created phi in the node map.
duke@435 572 //
duke@435 573 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 574 Compile *C = _compile;
duke@435 575 new_created = false;
duke@435 576 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 577 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 578 if (phi_alias_idx == alias_idx) {
duke@435 579 return orig_phi;
duke@435 580 }
duke@435 581 // have we already created a Phi for this alias index?
duke@435 582 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 583 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 584 return result;
duke@435 585 }
kvn@473 586 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 587 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 588 // Retry compilation without escape analysis.
kvn@473 589 // If this is the first failure, the sentinel string will "stick"
kvn@473 590 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 591 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 592 }
kvn@473 593 return NULL;
kvn@473 594 }
duke@435 595 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 596 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 597 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
duke@435 598 set_map_phi(orig_phi->_idx, result);
duke@435 599 igvn->set_type(result, result->bottom_type());
duke@435 600 record_for_optimizer(result);
duke@435 601 new_created = true;
duke@435 602 return result;
duke@435 603 }
duke@435 604
duke@435 605 //
duke@435 606 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 607 // specified alias index.
duke@435 608 //
duke@435 609 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 610
duke@435 611 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 612 Compile *C = _compile;
duke@435 613 bool new_phi_created;
kvn@500 614 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 615 if (!new_phi_created) {
duke@435 616 return result;
duke@435 617 }
duke@435 618
duke@435 619 GrowableArray<PhiNode *> phi_list;
duke@435 620 GrowableArray<uint> cur_input;
duke@435 621
duke@435 622 PhiNode *phi = orig_phi;
duke@435 623 uint idx = 1;
duke@435 624 bool finished = false;
duke@435 625 while(!finished) {
duke@435 626 while (idx < phi->req()) {
kvn@500 627 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 628 if (mem != NULL && mem->is_Phi()) {
kvn@500 629 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 630 if (new_phi_created) {
duke@435 631 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 632 // processing new one
duke@435 633 phi_list.push(phi);
duke@435 634 cur_input.push(idx);
duke@435 635 phi = mem->as_Phi();
kvn@500 636 result = newphi;
duke@435 637 idx = 1;
duke@435 638 continue;
duke@435 639 } else {
kvn@500 640 mem = newphi;
duke@435 641 }
duke@435 642 }
kvn@473 643 if (C->failing()) {
kvn@473 644 return NULL;
kvn@473 645 }
duke@435 646 result->set_req(idx++, mem);
duke@435 647 }
duke@435 648 #ifdef ASSERT
duke@435 649 // verify that the new Phi has an input for each input of the original
duke@435 650 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 651 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 652 #endif
kvn@500 653 // Check if all new phi's inputs have specified alias index.
kvn@500 654 // Otherwise use old phi.
duke@435 655 for (uint i = 1; i < phi->req(); i++) {
kvn@500 656 Node* in = result->in(i);
kvn@500 657 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 658 }
duke@435 659 // we have finished processing a Phi, see if there are any more to do
duke@435 660 finished = (phi_list.length() == 0 );
duke@435 661 if (!finished) {
duke@435 662 phi = phi_list.pop();
duke@435 663 idx = cur_input.pop();
kvn@500 664 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 665 prev_result->set_req(idx++, result);
kvn@500 666 result = prev_result;
duke@435 667 }
duke@435 668 }
duke@435 669 return result;
duke@435 670 }
duke@435 671
kvn@500 672
kvn@500 673 //
kvn@500 674 // The next methods are derived from methods in MemNode.
kvn@500 675 //
kvn@500 676 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 677 Node *mem = mmem;
kvn@500 678 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 679 // means an array I have not precisely typed yet. Do not do any
kvn@500 680 // alias stuff with it any time soon.
kvn@500 681 if( tinst->base() != Type::AnyPtr &&
kvn@500 682 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 683 tinst->offset() == Type::OffsetBot) ) {
kvn@500 684 mem = mmem->memory_at(alias_idx);
kvn@500 685 // Update input if it is progress over what we have now
kvn@500 686 }
kvn@500 687 return mem;
kvn@500 688 }
kvn@500 689
kvn@500 690 //
kvn@500 691 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 692 // is the specified alias index.
kvn@500 693 //
kvn@500 694 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 695 if (orig_mem == NULL)
kvn@500 696 return orig_mem;
kvn@500 697 Compile* C = phase->C;
kvn@500 698 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@658 699 bool is_instance = (tinst != NULL) && tinst->is_known_instance();
kvn@688 700 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 701 Node *prev = NULL;
kvn@500 702 Node *result = orig_mem;
kvn@500 703 while (prev != result) {
kvn@500 704 prev = result;
kvn@688 705 if (result == start_mem)
kvn@688 706 break; // hit one of our sentinals
kvn@500 707 if (result->is_Mem()) {
kvn@688 708 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 709 if (at != Type::TOP) {
kvn@500 710 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 711 int idx = C->get_alias_index(at->is_ptr());
kvn@500 712 if (idx == alias_idx)
kvn@500 713 break;
kvn@500 714 }
kvn@688 715 result = result->in(MemNode::Memory);
kvn@500 716 }
kvn@500 717 if (!is_instance)
kvn@500 718 continue; // don't search further for non-instance types
kvn@500 719 // skip over a call which does not affect this memory slice
kvn@500 720 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 721 Node *proj_in = result->in(0);
kvn@688 722 if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
kvn@688 723 break; // hit one of our sentinals
kvn@688 724 } else if (proj_in->is_Call()) {
kvn@500 725 CallNode *call = proj_in->as_Call();
kvn@500 726 if (!call->may_modify(tinst, phase)) {
kvn@500 727 result = call->in(TypeFunc::Memory);
kvn@500 728 }
kvn@500 729 } else if (proj_in->is_Initialize()) {
kvn@500 730 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 731 // Stop if this is the initialization for the object instance which
kvn@500 732 // which contains this memory slice, otherwise skip over it.
kvn@658 733 if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
kvn@500 734 result = proj_in->in(TypeFunc::Memory);
kvn@500 735 }
kvn@500 736 } else if (proj_in->is_MemBar()) {
kvn@500 737 result = proj_in->in(TypeFunc::Memory);
kvn@500 738 }
kvn@500 739 } else if (result->is_MergeMem()) {
kvn@500 740 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 741 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 742 if (result == mmem->base_memory()) {
kvn@500 743 // Didn't find instance memory, search through general slice recursively.
kvn@500 744 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 745 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 746 if (C->failing()) {
kvn@500 747 return NULL;
kvn@500 748 }
kvn@500 749 mmem->set_memory_at(alias_idx, result);
kvn@500 750 }
kvn@500 751 } else if (result->is_Phi() &&
kvn@500 752 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 753 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 754 if (un != NULL) {
kvn@500 755 result = un;
kvn@500 756 } else {
kvn@500 757 break;
kvn@500 758 }
kvn@500 759 }
kvn@500 760 }
kvn@682 761 if (result->is_Phi()) {
kvn@500 762 PhiNode *mphi = result->as_Phi();
kvn@500 763 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 764 const TypePtr *t = mphi->adr_type();
kvn@500 765 if (C->get_alias_index(t) != alias_idx) {
kvn@682 766 // Create a new Phi with the specified alias index type.
kvn@500 767 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 768 } else if (!is_instance) {
kvn@682 769 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 770 // during Phase 4 if needed.
kvn@682 771 orig_phis.append_if_missing(mphi);
kvn@500 772 }
kvn@500 773 }
kvn@500 774 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 775 return result;
kvn@500 776 }
kvn@500 777
kvn@500 778
duke@435 779 //
duke@435 780 // Convert the types of unescaped object to instance types where possible,
duke@435 781 // propagate the new type information through the graph, and update memory
duke@435 782 // edges and MergeMem inputs to reflect the new type.
duke@435 783 //
duke@435 784 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 785 // The processing is done in 4 phases:
duke@435 786 //
duke@435 787 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 788 // types for the CheckCastPP for allocations where possible.
duke@435 789 // Propagate the the new types through users as follows:
duke@435 790 // casts and Phi: push users on alloc_worklist
duke@435 791 // AddP: cast Base and Address inputs to the instance type
duke@435 792 // push any AddP users on alloc_worklist and push any memnode
duke@435 793 // users onto memnode_worklist.
duke@435 794 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 795 // search the Memory chain for a store with the appropriate type
duke@435 796 // address type. If a Phi is found, create a new version with
duke@435 797 // the approriate memory slices from each of the Phi inputs.
duke@435 798 // For stores, process the users as follows:
duke@435 799 // MemNode: push on memnode_worklist
duke@435 800 // MergeMem: push on mergemem_worklist
duke@435 801 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 802 // moving the first node encountered of each instance type to the
duke@435 803 // the input corresponding to its alias index.
duke@435 804 // appropriate memory slice.
duke@435 805 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 806 //
duke@435 807 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 808 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 809 // instance type.
duke@435 810 //
duke@435 811 // We start with:
duke@435 812 //
duke@435 813 // 7 Parm #memory
duke@435 814 // 10 ConI "12"
duke@435 815 // 19 CheckCastPP "Foo"
duke@435 816 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 817 // 29 CheckCastPP "Foo"
duke@435 818 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 819 //
duke@435 820 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 821 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 822 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 823 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 824 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 825 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 826 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 827 //
duke@435 828 //
duke@435 829 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 830 // and creating a new alias index for node 30. This gives:
duke@435 831 //
duke@435 832 // 7 Parm #memory
duke@435 833 // 10 ConI "12"
duke@435 834 // 19 CheckCastPP "Foo"
duke@435 835 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 836 // 29 CheckCastPP "Foo" iid=24
duke@435 837 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 838 //
duke@435 839 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 840 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 841 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 842 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 843 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 844 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 845 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 846 //
duke@435 847 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 848 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 849 // node 80 are updated and then the memory nodes are updated with the
duke@435 850 // values computed in phase 2. This results in:
duke@435 851 //
duke@435 852 // 7 Parm #memory
duke@435 853 // 10 ConI "12"
duke@435 854 // 19 CheckCastPP "Foo"
duke@435 855 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 856 // 29 CheckCastPP "Foo" iid=24
duke@435 857 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 858 //
duke@435 859 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 860 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 861 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 862 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 863 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 864 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 865 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 866 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 867 //
duke@435 868 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 869 GrowableArray<Node *> memnode_worklist;
duke@435 870 GrowableArray<Node *> mergemem_worklist;
duke@435 871 GrowableArray<PhiNode *> orig_phis;
duke@435 872 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 873 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 874 VectorSet visited(Thread::current()->resource_area());
duke@435 875 VectorSet ptset(Thread::current()->resource_area());
duke@435 876
kvn@500 877
kvn@500 878 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 879 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 880 //
kvn@679 881 // (Note: don't forget to change the order of the second AddP node on
kvn@679 882 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 883 // see the comment in find_second_addp().)
kvn@679 884 //
duke@435 885 while (alloc_worklist.length() != 0) {
duke@435 886 Node *n = alloc_worklist.pop();
duke@435 887 uint ni = n->_idx;
kvn@500 888 const TypeOopPtr* tinst = NULL;
duke@435 889 if (n->is_Call()) {
duke@435 890 CallNode *alloc = n->as_Call();
duke@435 891 // copy escape information to call node
kvn@679 892 PointsToNode* ptn = ptnode_adr(alloc->_idx);
duke@435 893 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 894 // We have an allocation or call which returns a Java object,
kvn@500 895 // see if it is unescaped.
kvn@500 896 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 897 continue;
kvn@474 898 if (alloc->is_Allocate()) {
kvn@474 899 // Set the scalar_replaceable flag before the next check.
kvn@474 900 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@474 901 }
kvn@500 902 // find CheckCastPP of call return value
kvn@500 903 n = alloc->result_cast();
kvn@500 904 if (n == NULL || // No uses accept Initialize or
kvn@500 905 !n->is_CheckCastPP()) // not unique CheckCastPP.
kvn@500 906 continue;
kvn@500 907 // The inline code for Object.clone() casts the allocation result to
kvn@682 908 // java.lang.Object and then to the actual type of the allocated
kvn@500 909 // object. Detect this case and use the second cast.
kvn@682 910 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 911 // the allocation result is cast to java.lang.Object and then
kvn@682 912 // to the actual Array type.
kvn@500 913 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 914 && (alloc->is_AllocateArray() ||
kvn@682 915 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 916 Node *cast2 = NULL;
kvn@500 917 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 918 Node *use = n->fast_out(i);
kvn@500 919 if (use->is_CheckCastPP()) {
kvn@500 920 cast2 = use;
kvn@500 921 break;
kvn@500 922 }
kvn@500 923 }
kvn@500 924 if (cast2 != NULL) {
kvn@500 925 n = cast2;
kvn@500 926 } else {
kvn@500 927 continue;
kvn@500 928 }
kvn@500 929 }
kvn@500 930 set_escape_state(n->_idx, es);
kvn@682 931 // in order for an object to be scalar-replaceable, it must be:
kvn@500 932 // - a direct allocation (not a call returning an object)
kvn@500 933 // - non-escaping
kvn@500 934 // - eligible to be a unique type
kvn@500 935 // - not determined to be ineligible by escape analysis
duke@435 936 set_map(alloc->_idx, n);
duke@435 937 set_map(n->_idx, alloc);
kvn@500 938 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 939 if (t == NULL)
duke@435 940 continue; // not a TypeInstPtr
kvn@682 941 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 942 igvn->hash_delete(n);
duke@435 943 igvn->set_type(n, tinst);
duke@435 944 n->raise_bottom_type(tinst);
duke@435 945 igvn->hash_insert(n);
kvn@500 946 record_for_optimizer(n);
kvn@500 947 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 948 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 949
kvn@598 950 // First, put on the worklist all Field edges from Connection Graph
kvn@598 951 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 952 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 953 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 954 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 955 "only AddP nodes are Field edges in CG");
kvn@598 956 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 957 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 958 if (addp2 != NULL) {
kvn@598 959 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 960 alloc_worklist.append_if_missing(addp2);
kvn@598 961 }
kvn@598 962 alloc_worklist.append_if_missing(use);
kvn@598 963 }
kvn@598 964 }
kvn@598 965
kvn@500 966 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 967 // the users of the raw allocation result and push AddP users
kvn@500 968 // on alloc_worklist.
kvn@500 969 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 970 assert (raw_result != NULL, "must have an allocation result");
kvn@500 971 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 972 Node *use = raw_result->fast_out(i);
kvn@500 973 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 974 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 975 if (addp2 != NULL) {
kvn@500 976 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 977 alloc_worklist.append_if_missing(addp2);
kvn@500 978 }
kvn@500 979 alloc_worklist.append_if_missing(use);
kvn@500 980 } else if (use->is_Initialize()) {
kvn@500 981 memnode_worklist.append_if_missing(use);
kvn@500 982 }
kvn@500 983 }
kvn@500 984 }
duke@435 985 } else if (n->is_AddP()) {
duke@435 986 ptset.Clear();
kvn@500 987 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 988 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 989 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 990 if (elem == _phantom_object)
kvn@500 991 continue; // Assume the value was set outside this method.
kvn@500 992 Node *base = get_map(elem); // CheckCastPP node
kvn@728 993 if (!split_AddP(n, base, igvn)) continue; // wrong type
kvn@500 994 tinst = igvn->type(base)->isa_oopptr();
kvn@500 995 } else if (n->is_Phi() ||
kvn@500 996 n->is_CheckCastPP() ||
kvn@603 997 n->is_EncodeP() ||
kvn@603 998 n->is_DecodeN() ||
kvn@500 999 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1000 if (visited.test_set(n->_idx)) {
duke@435 1001 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1002 continue; // already processed
duke@435 1003 }
duke@435 1004 ptset.Clear();
duke@435 1005 PointsTo(ptset, n, igvn);
duke@435 1006 if (ptset.Size() == 1) {
kvn@500 1007 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 1008 if (elem == _phantom_object)
kvn@500 1009 continue; // Assume the value was set outside this method.
kvn@500 1010 Node *val = get_map(elem); // CheckCastPP node
duke@435 1011 TypeNode *tn = n->as_Type();
kvn@500 1012 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1013 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1014 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1015
kvn@598 1016 const Type *tn_type = igvn->type(tn);
kvn@658 1017 const TypeOopPtr *tn_t;
kvn@658 1018 if (tn_type->isa_narrowoop()) {
kvn@658 1019 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1020 } else {
kvn@658 1021 tn_t = tn_type->isa_oopptr();
kvn@658 1022 }
duke@435 1023
kvn@500 1024 if (tn_t != NULL &&
kvn@658 1025 tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
kvn@598 1026 if (tn_type->isa_narrowoop()) {
kvn@598 1027 tn_type = tinst->make_narrowoop();
kvn@598 1028 } else {
kvn@598 1029 tn_type = tinst;
kvn@598 1030 }
duke@435 1031 igvn->hash_delete(tn);
kvn@598 1032 igvn->set_type(tn, tn_type);
kvn@598 1033 tn->set_type(tn_type);
duke@435 1034 igvn->hash_insert(tn);
kvn@500 1035 record_for_optimizer(n);
kvn@728 1036 } else {
kvn@728 1037 continue; // wrong type
duke@435 1038 }
duke@435 1039 }
duke@435 1040 } else {
duke@435 1041 continue;
duke@435 1042 }
duke@435 1043 // push users on appropriate worklist
duke@435 1044 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1045 Node *use = n->fast_out(i);
duke@435 1046 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@500 1047 memnode_worklist.append_if_missing(use);
kvn@500 1048 } else if (use->is_Initialize()) {
kvn@500 1049 memnode_worklist.append_if_missing(use);
kvn@500 1050 } else if (use->is_MergeMem()) {
kvn@500 1051 mergemem_worklist.append_if_missing(use);
kvn@688 1052 } else if (use->is_SafePoint() && tinst != NULL) {
kvn@500 1053 // Look for MergeMem nodes for calls which reference unique allocation
kvn@500 1054 // (through CheckCastPP nodes) even for debug info.
kvn@500 1055 Node* m = use->in(TypeFunc::Memory);
kvn@500 1056 uint iid = tinst->instance_id();
kvn@688 1057 while (m->is_Proj() && m->in(0)->is_SafePoint() &&
kvn@500 1058 m->in(0) != use && !m->in(0)->_idx != iid) {
kvn@500 1059 m = m->in(0)->in(TypeFunc::Memory);
kvn@500 1060 }
kvn@500 1061 if (m->is_MergeMem()) {
kvn@500 1062 mergemem_worklist.append_if_missing(m);
kvn@500 1063 }
kvn@500 1064 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1065 Node* addp2 = find_second_addp(use, n);
kvn@500 1066 if (addp2 != NULL) {
kvn@500 1067 alloc_worklist.append_if_missing(addp2);
kvn@500 1068 }
kvn@500 1069 alloc_worklist.append_if_missing(use);
kvn@500 1070 } else if (use->is_Phi() ||
kvn@500 1071 use->is_CheckCastPP() ||
kvn@603 1072 use->is_EncodeP() ||
kvn@603 1073 use->is_DecodeN() ||
kvn@500 1074 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1075 alloc_worklist.append_if_missing(use);
duke@435 1076 }
duke@435 1077 }
duke@435 1078
duke@435 1079 }
kvn@500 1080 // New alias types were created in split_AddP().
duke@435 1081 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1082
duke@435 1083 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1084 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1085 // actually updated until phase 4.)
duke@435 1086 if (memnode_worklist.length() == 0)
duke@435 1087 return; // nothing to do
duke@435 1088
duke@435 1089 while (memnode_worklist.length() != 0) {
duke@435 1090 Node *n = memnode_worklist.pop();
kvn@500 1091 if (visited.test_set(n->_idx))
kvn@500 1092 continue;
duke@435 1093 if (n->is_Phi()) {
duke@435 1094 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 1095 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 1096 // this Phi before
kvn@500 1097 } else if (n->is_Initialize()) {
kvn@500 1098 // we don't need to do anything, but the users of the memory projection must be pushed
kvn@500 1099 n = n->as_Initialize()->proj_out(TypeFunc::Memory);
kvn@500 1100 if (n == NULL)
duke@435 1101 continue;
duke@435 1102 } else {
duke@435 1103 assert(n->is_Mem(), "memory node required.");
duke@435 1104 Node *addr = n->in(MemNode::Address);
kvn@500 1105 assert(addr->is_AddP(), "AddP required");
duke@435 1106 const Type *addr_t = igvn->type(addr);
duke@435 1107 if (addr_t == Type::TOP)
duke@435 1108 continue;
duke@435 1109 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1110 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1111 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1112 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1113 if (_compile->failing()) {
kvn@473 1114 return;
kvn@473 1115 }
kvn@500 1116 if (mem != n->in(MemNode::Memory)) {
duke@435 1117 set_map(n->_idx, mem);
kvn@679 1118 ptnode_adr(n->_idx)->_node = n;
kvn@500 1119 }
duke@435 1120 if (n->is_Load()) {
duke@435 1121 continue; // don't push users
duke@435 1122 } else if (n->is_LoadStore()) {
duke@435 1123 // get the memory projection
duke@435 1124 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1125 Node *use = n->fast_out(i);
duke@435 1126 if (use->Opcode() == Op_SCMemProj) {
duke@435 1127 n = use;
duke@435 1128 break;
duke@435 1129 }
duke@435 1130 }
duke@435 1131 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1132 }
duke@435 1133 }
duke@435 1134 // push user on appropriate worklist
duke@435 1135 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1136 Node *use = n->fast_out(i);
duke@435 1137 if (use->is_Phi()) {
kvn@500 1138 memnode_worklist.append_if_missing(use);
duke@435 1139 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@500 1140 memnode_worklist.append_if_missing(use);
kvn@500 1141 } else if (use->is_Initialize()) {
kvn@500 1142 memnode_worklist.append_if_missing(use);
duke@435 1143 } else if (use->is_MergeMem()) {
kvn@500 1144 mergemem_worklist.append_if_missing(use);
duke@435 1145 }
duke@435 1146 }
duke@435 1147 }
duke@435 1148
kvn@500 1149 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@500 1150 // Walk each memory moving the first node encountered of each
kvn@500 1151 // instance type to the the input corresponding to its alias index.
duke@435 1152 while (mergemem_worklist.length() != 0) {
duke@435 1153 Node *n = mergemem_worklist.pop();
duke@435 1154 assert(n->is_MergeMem(), "MergeMem node required.");
kvn@500 1155 if (visited.test_set(n->_idx))
kvn@500 1156 continue;
duke@435 1157 MergeMemNode *nmm = n->as_MergeMem();
duke@435 1158 // Note: we don't want to use MergeMemStream here because we only want to
kvn@500 1159 // scan inputs which exist at the start, not ones we add during processing.
duke@435 1160 uint nslices = nmm->req();
duke@435 1161 igvn->hash_delete(nmm);
duke@435 1162 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1163 Node* mem = nmm->in(i);
kvn@500 1164 Node* cur = NULL;
duke@435 1165 if (mem == NULL || mem->is_top())
duke@435 1166 continue;
duke@435 1167 while (mem->is_Mem()) {
duke@435 1168 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1169 if (at != Type::TOP) {
duke@435 1170 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1171 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1172 if (idx == i) {
duke@435 1173 if (cur == NULL)
duke@435 1174 cur = mem;
duke@435 1175 } else {
duke@435 1176 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1177 nmm->set_memory_at(idx, mem);
duke@435 1178 }
duke@435 1179 }
duke@435 1180 }
duke@435 1181 mem = mem->in(MemNode::Memory);
duke@435 1182 }
duke@435 1183 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1184 // Find any instance of the current type if we haven't encountered
kvn@500 1185 // a value of the instance along the chain.
kvn@500 1186 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1187 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1188 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1189 if (nmm->is_empty_memory(m)) {
kvn@500 1190 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1191 if (_compile->failing()) {
kvn@500 1192 return;
kvn@500 1193 }
kvn@500 1194 nmm->set_memory_at(ni, result);
kvn@500 1195 }
kvn@500 1196 }
kvn@500 1197 }
kvn@500 1198 }
kvn@500 1199 // Find the rest of instances values
kvn@500 1200 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1201 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1202 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1203 if (result == nmm->base_memory()) {
kvn@500 1204 // Didn't find instance memory, search through general slice recursively.
kvn@500 1205 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1206 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1207 if (_compile->failing()) {
kvn@500 1208 return;
kvn@500 1209 }
kvn@500 1210 nmm->set_memory_at(ni, result);
kvn@500 1211 }
kvn@500 1212 }
kvn@500 1213 igvn->hash_insert(nmm);
kvn@500 1214 record_for_optimizer(nmm);
kvn@500 1215
kvn@500 1216 // Propagate new memory slices to following MergeMem nodes.
kvn@500 1217 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1218 Node *use = n->fast_out(i);
kvn@500 1219 if (use->is_Call()) {
kvn@500 1220 CallNode* in = use->as_Call();
kvn@500 1221 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1222 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1223 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1224 Node* mm = m->fast_out(j);
kvn@500 1225 if (mm->is_MergeMem()) {
kvn@500 1226 mergemem_worklist.append_if_missing(mm);
kvn@500 1227 }
kvn@500 1228 }
kvn@500 1229 }
kvn@500 1230 if (use->is_Allocate()) {
kvn@500 1231 use = use->as_Allocate()->initialization();
kvn@500 1232 if (use == NULL) {
kvn@500 1233 continue;
kvn@500 1234 }
kvn@500 1235 }
kvn@500 1236 }
kvn@500 1237 if (use->is_Initialize()) {
kvn@500 1238 InitializeNode* in = use->as_Initialize();
kvn@500 1239 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1240 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1241 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1242 Node* mm = m->fast_out(j);
kvn@500 1243 if (mm->is_MergeMem()) {
kvn@500 1244 mergemem_worklist.append_if_missing(mm);
duke@435 1245 }
duke@435 1246 }
duke@435 1247 }
duke@435 1248 }
duke@435 1249 }
duke@435 1250 }
duke@435 1251
kvn@500 1252 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1253 // the Memory input of memnodes
duke@435 1254 // First update the inputs of any non-instance Phi's from
duke@435 1255 // which we split out an instance Phi. Note we don't have
duke@435 1256 // to recursively process Phi's encounted on the input memory
duke@435 1257 // chains as is done in split_memory_phi() since they will
duke@435 1258 // also be processed here.
kvn@682 1259 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1260 PhiNode *phi = orig_phis.at(j);
duke@435 1261 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1262 igvn->hash_delete(phi);
duke@435 1263 for (uint i = 1; i < phi->req(); i++) {
duke@435 1264 Node *mem = phi->in(i);
kvn@500 1265 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1266 if (_compile->failing()) {
kvn@500 1267 return;
kvn@500 1268 }
duke@435 1269 if (mem != new_mem) {
duke@435 1270 phi->set_req(i, new_mem);
duke@435 1271 }
duke@435 1272 }
duke@435 1273 igvn->hash_insert(phi);
duke@435 1274 record_for_optimizer(phi);
duke@435 1275 }
duke@435 1276
duke@435 1277 // Update the memory inputs of MemNodes with the value we computed
duke@435 1278 // in Phase 2.
kvn@679 1279 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1280 Node *nmem = get_map(i);
duke@435 1281 if (nmem != NULL) {
kvn@679 1282 Node *n = ptnode_adr(i)->_node;
duke@435 1283 if (n != NULL && n->is_Mem()) {
duke@435 1284 igvn->hash_delete(n);
duke@435 1285 n->set_req(MemNode::Memory, nmem);
duke@435 1286 igvn->hash_insert(n);
duke@435 1287 record_for_optimizer(n);
duke@435 1288 }
duke@435 1289 }
duke@435 1290 }
duke@435 1291 }
duke@435 1292
kvn@679 1293 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1294 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1295 // are represented by ideal Macro nodes.
kvn@679 1296 int cnt = C->macro_count();
kvn@679 1297 for( int i=0; i < cnt; i++ ) {
kvn@679 1298 Node *n = C->macro_node(i);
kvn@679 1299 if ( n->is_Allocate() )
kvn@679 1300 return true;
kvn@679 1301 if( n->is_Lock() ) {
kvn@679 1302 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1303 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1304 return true;
kvn@679 1305 }
kvn@679 1306 }
kvn@679 1307 return false;
kvn@679 1308 }
kvn@679 1309
kvn@679 1310 bool ConnectionGraph::compute_escape() {
kvn@679 1311 Compile* C = _compile;
duke@435 1312
kvn@598 1313 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1314
kvn@500 1315 Unique_Node_List worklist_init;
kvn@679 1316 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1317
kvn@500 1318 // Initialize worklist
kvn@679 1319 if (C->root() != NULL) {
kvn@679 1320 worklist_init.push(C->root());
kvn@500 1321 }
kvn@500 1322
kvn@500 1323 GrowableArray<int> cg_worklist;
kvn@679 1324 PhaseGVN* igvn = C->initial_gvn();
kvn@500 1325 bool has_allocations = false;
kvn@500 1326
kvn@500 1327 // Push all useful nodes onto CG list and set their type.
kvn@500 1328 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1329 Node* n = worklist_init.at(next);
kvn@500 1330 record_for_escape_analysis(n, igvn);
kvn@679 1331 // Only allocations and java static calls results are checked
kvn@679 1332 // for an escape status. See process_call_result() below.
kvn@679 1333 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1334 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1335 has_allocations = true;
kvn@500 1336 }
kvn@500 1337 if(n->is_AddP())
kvn@500 1338 cg_worklist.append(n->_idx);
kvn@500 1339 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1340 Node* m = n->fast_out(i); // Get user
kvn@500 1341 worklist_init.push(m);
kvn@500 1342 }
kvn@500 1343 }
kvn@500 1344
kvn@679 1345 if (!has_allocations) {
kvn@500 1346 _collecting = false;
kvn@679 1347 return false; // Nothing to do.
kvn@500 1348 }
kvn@500 1349
kvn@500 1350 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1351 uint delayed_size = _delayed_worklist.size();
kvn@679 1352 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1353 Node* n = _delayed_worklist.at(next);
kvn@500 1354 build_connection_graph(n, igvn);
kvn@500 1355 }
kvn@500 1356
kvn@500 1357 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1358 uint cg_length = cg_worklist.length();
kvn@679 1359 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1360 int ni = cg_worklist.at(next);
kvn@679 1361 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1362 }
kvn@500 1363
kvn@500 1364 cg_worklist.clear();
kvn@500 1365 cg_worklist.append(_phantom_object);
kvn@500 1366
kvn@500 1367 // 4. Build Connection Graph which need
kvn@500 1368 // to walk the connection graph.
kvn@679 1369 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1370 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1371 Node *n = ptn->_node;
kvn@500 1372 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1373 build_connection_graph(n, igvn);
kvn@500 1374 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1375 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1376 }
duke@435 1377 }
duke@435 1378
duke@435 1379 VectorSet ptset(Thread::current()->resource_area());
kvn@536 1380 GrowableArray<uint> deferred_edges;
kvn@536 1381 VectorSet visited(Thread::current()->resource_area());
duke@435 1382
kvn@679 1383 // 5. Remove deferred edges from the graph and collect
kvn@679 1384 // information needed for type splitting.
kvn@679 1385 cg_length = cg_worklist.length();
kvn@679 1386 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1387 int ni = cg_worklist.at(next);
kvn@679 1388 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1389 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1390 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1391 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1392 Node *n = ptn->_node;
duke@435 1393 if (n->is_AddP()) {
kvn@688 1394 // Search for objects which are not scalar replaceable.
kvn@688 1395 // Mark their escape state as ArgEscape to propagate the state
kvn@688 1396 // to referenced objects.
kvn@688 1397 // Note: currently there are no difference in compiler optimizations
kvn@688 1398 // for ArgEscape objects and NoEscape objects which are not
kvn@688 1399 // scalar replaceable.
kvn@688 1400
kvn@688 1401 int offset = ptn->offset();
kvn@500 1402 Node *base = get_addp_base(n);
duke@435 1403 ptset.Clear();
duke@435 1404 PointsTo(ptset, base, igvn);
kvn@688 1405 int ptset_size = ptset.Size();
kvn@688 1406
kvn@688 1407 // Check if a field's initializing value is recorded and add
kvn@688 1408 // a corresponding NULL field's value if it is not recorded.
kvn@688 1409 // Connection Graph does not record a default initialization by NULL
kvn@688 1410 // captured by Initialize node.
kvn@688 1411 //
kvn@688 1412 // Note: it will disable scalar replacement in some cases:
kvn@688 1413 //
kvn@688 1414 // Point p[] = new Point[1];
kvn@688 1415 // p[0] = new Point(); // Will be not scalar replaced
kvn@688 1416 //
kvn@688 1417 // but it will save us from incorrect optimizations in next cases:
kvn@688 1418 //
kvn@688 1419 // Point p[] = new Point[1];
kvn@688 1420 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@688 1421 //
kvn@688 1422 // Without a control flow analysis we can't distinguish above cases.
kvn@688 1423 //
kvn@688 1424 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@688 1425 uint elem = ptset.getelem(); // Allocation node's index
kvn@688 1426 // It does not matter if it is not Allocation node since
kvn@688 1427 // only non-escaping allocations are scalar replaced.
kvn@688 1428 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@688 1429 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@688 1430 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@688 1431 InitializeNode* ini = alloc->initialization();
kvn@688 1432 Node* value = NULL;
kvn@688 1433 if (ini != NULL) {
kvn@688 1434 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@688 1435 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
kvn@688 1436 if (store != NULL && store->is_Store())
kvn@688 1437 value = store->in(MemNode::ValueIn);
kvn@688 1438 }
kvn@688 1439 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@688 1440 // A field's initializing value was not recorded. Add NULL.
kvn@688 1441 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@688 1442 add_pointsto_edge(ni, null_idx);
kvn@688 1443 }
kvn@688 1444 }
kvn@688 1445 }
kvn@688 1446
kvn@688 1447 // An object is not scalar replaceable if the field which may point
kvn@688 1448 // to it has unknown offset (unknown element of an array of objects).
kvn@688 1449 //
kvn@688 1450 if (offset == Type::OffsetBot) {
kvn@688 1451 uint e_cnt = ptn->edge_count();
kvn@688 1452 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@688 1453 uint npi = ptn->edge_target(ei);
kvn@688 1454 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@688 1455 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@688 1456 }
kvn@688 1457 }
kvn@688 1458
kvn@688 1459 // Currently an object is not scalar replaceable if a LoadStore node
kvn@688 1460 // access its field since the field value is unknown after it.
kvn@688 1461 //
kvn@688 1462 bool has_LoadStore = false;
kvn@688 1463 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@688 1464 Node *use = n->fast_out(i);
kvn@688 1465 if (use->is_LoadStore()) {
kvn@688 1466 has_LoadStore = true;
kvn@688 1467 break;
kvn@688 1468 }
kvn@688 1469 }
kvn@688 1470 // An object is not scalar replaceable if the address points
kvn@688 1471 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@688 1472 //
kvn@688 1473 // Or the address may point to more then one object. This may produce
kvn@688 1474 // the false positive result (set scalar_replaceable to false)
kvn@688 1475 // since the flow-insensitive escape analysis can't separate
kvn@688 1476 // the case when stores overwrite the field's value from the case
kvn@688 1477 // when stores happened on different control branches.
kvn@688 1478 //
kvn@688 1479 if (ptset_size > 1 || ptset_size != 0 &&
kvn@688 1480 (has_LoadStore || offset == Type::OffsetBot)) {
duke@435 1481 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@688 1482 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@679 1483 ptnode_adr(j.elem)->_scalar_replaceable = false;
duke@435 1484 }
duke@435 1485 }
duke@435 1486 }
duke@435 1487 }
duke@435 1488 }
kvn@500 1489
kvn@679 1490 // 6. Propagate escape states.
kvn@679 1491 GrowableArray<int> worklist;
kvn@679 1492 bool has_non_escaping_obj = false;
kvn@679 1493
duke@435 1494 // push all GlobalEscape nodes on the worklist
kvn@679 1495 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1496 int nk = cg_worklist.at(next);
kvn@679 1497 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1498 worklist.push(nk);
duke@435 1499 }
kvn@679 1500 // mark all nodes reachable from GlobalEscape nodes
duke@435 1501 while(worklist.length() > 0) {
kvn@679 1502 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1503 uint e_cnt = ptn->edge_count();
kvn@679 1504 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1505 uint npi = ptn->edge_target(ei);
duke@435 1506 PointsToNode *np = ptnode_adr(npi);
kvn@500 1507 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1508 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1509 worklist.push(npi);
duke@435 1510 }
duke@435 1511 }
duke@435 1512 }
duke@435 1513
duke@435 1514 // push all ArgEscape nodes on the worklist
kvn@679 1515 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1516 int nk = cg_worklist.at(next);
kvn@679 1517 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1518 worklist.push(nk);
duke@435 1519 }
kvn@679 1520 // mark all nodes reachable from ArgEscape nodes
duke@435 1521 while(worklist.length() > 0) {
kvn@679 1522 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1523 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1524 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1525 uint e_cnt = ptn->edge_count();
kvn@679 1526 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1527 uint npi = ptn->edge_target(ei);
duke@435 1528 PointsToNode *np = ptnode_adr(npi);
kvn@500 1529 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1530 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1531 worklist.push(npi);
duke@435 1532 }
duke@435 1533 }
duke@435 1534 }
kvn@500 1535
kvn@679 1536 GrowableArray<Node*> alloc_worklist;
kvn@679 1537
kvn@500 1538 // push all NoEscape nodes on the worklist
kvn@679 1539 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1540 int nk = cg_worklist.at(next);
kvn@679 1541 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1542 worklist.push(nk);
kvn@500 1543 }
kvn@679 1544 // mark all nodes reachable from NoEscape nodes
kvn@500 1545 while(worklist.length() > 0) {
kvn@679 1546 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1547 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1548 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1549 Node* n = ptn->_node;
kvn@679 1550 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
kvn@679 1551 // Push scalar replaceable alocations on alloc_worklist
kvn@679 1552 // for processing in split_unique_types().
kvn@679 1553 alloc_worklist.append(n);
kvn@679 1554 }
kvn@679 1555 uint e_cnt = ptn->edge_count();
kvn@679 1556 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1557 uint npi = ptn->edge_target(ei);
kvn@500 1558 PointsToNode *np = ptnode_adr(npi);
kvn@500 1559 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1560 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1561 worklist.push(npi);
kvn@500 1562 }
kvn@500 1563 }
kvn@500 1564 }
kvn@500 1565
duke@435 1566 _collecting = false;
kvn@679 1567 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1568
kvn@679 1569 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1570 if ( has_scalar_replaceable_candidates &&
kvn@679 1571 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1572
kvn@679 1573 // Now use the escape information to create unique types for
kvn@679 1574 // scalar replaceable objects.
kvn@679 1575 split_unique_types(alloc_worklist);
duke@435 1576
kvn@679 1577 if (C->failing()) return false;
duke@435 1578
kvn@500 1579 // Clean up after split unique types.
kvn@500 1580 ResourceMark rm;
kvn@679 1581 PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
kvn@679 1582
kvn@679 1583 C->print_method("After Escape Analysis", 2);
duke@435 1584
kvn@500 1585 #ifdef ASSERT
kvn@679 1586 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1587 tty->print("=== No allocations eliminated for ");
kvn@679 1588 C->method()->print_short_name();
kvn@500 1589 if(!EliminateAllocations) {
kvn@500 1590 tty->print(" since EliminateAllocations is off ===");
kvn@679 1591 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1592 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1593 } else if(C->AliasLevel() < 3) {
kvn@500 1594 tty->print(" since AliasLevel < 3 ===");
duke@435 1595 }
kvn@500 1596 tty->cr();
kvn@500 1597 #endif
duke@435 1598 }
kvn@679 1599 return has_non_escaping_obj;
duke@435 1600 }
duke@435 1601
duke@435 1602 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1603
duke@435 1604 switch (call->Opcode()) {
kvn@500 1605 #ifdef ASSERT
duke@435 1606 case Op_Allocate:
duke@435 1607 case Op_AllocateArray:
duke@435 1608 case Op_Lock:
duke@435 1609 case Op_Unlock:
kvn@500 1610 assert(false, "should be done already");
duke@435 1611 break;
kvn@500 1612 #endif
kvn@500 1613 case Op_CallLeafNoFP:
kvn@500 1614 {
kvn@500 1615 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1616 // Adjust escape state for outgoing arguments.
kvn@500 1617 const TypeTuple * d = call->tf()->domain();
kvn@500 1618 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1619 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1620 const Type* at = d->field_at(i);
kvn@500 1621 Node *arg = call->in(i)->uncast();
kvn@500 1622 const Type *aat = phase->type(arg);
kvn@500 1623 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
kvn@500 1624 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1625 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@500 1626 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1627 if (arg->is_AddP()) {
kvn@500 1628 //
kvn@500 1629 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1630 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1631 //
kvn@500 1632 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1633 // pointer to the base (with offset) is passed as argument.
kvn@500 1634 //
kvn@500 1635 arg = get_addp_base(arg);
kvn@500 1636 }
kvn@500 1637 ptset.Clear();
kvn@500 1638 PointsTo(ptset, arg, phase);
kvn@500 1639 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1640 uint pt = j.elem;
kvn@500 1641 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1642 }
kvn@500 1643 }
kvn@500 1644 }
kvn@500 1645 break;
kvn@500 1646 }
duke@435 1647
duke@435 1648 case Op_CallStaticJava:
duke@435 1649 // For a static call, we know exactly what method is being called.
duke@435 1650 // Use bytecode estimator to record the call's escape affects
duke@435 1651 {
duke@435 1652 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1653 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1654 // fall-through if not a Java method or no analyzer information
kvn@500 1655 if (call_analyzer != NULL) {
duke@435 1656 const TypeTuple * d = call->tf()->domain();
duke@435 1657 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1658 bool copy_dependencies = false;
duke@435 1659 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1660 const Type* at = d->field_at(i);
duke@435 1661 int k = i - TypeFunc::Parms;
duke@435 1662
duke@435 1663 if (at->isa_oopptr() != NULL) {
kvn@500 1664 Node *arg = call->in(i)->uncast();
duke@435 1665
kvn@500 1666 bool global_escapes = false;
kvn@500 1667 bool fields_escapes = false;
kvn@500 1668 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1669 // The argument global escapes, mark everything it could point to
kvn@500 1670 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1671 global_escapes = true;
kvn@500 1672 } else {
kvn@500 1673 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1674 // The argument itself doesn't escape, but any fields might
kvn@500 1675 fields_escapes = true;
kvn@500 1676 }
kvn@500 1677 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1678 copy_dependencies = true;
kvn@500 1679 }
duke@435 1680
kvn@500 1681 ptset.Clear();
kvn@500 1682 PointsTo(ptset, arg, phase);
kvn@500 1683 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1684 uint pt = j.elem;
kvn@500 1685 if (global_escapes) {
kvn@500 1686 //The argument global escapes, mark everything it could point to
duke@435 1687 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1688 } else {
kvn@500 1689 if (fields_escapes) {
kvn@500 1690 // The argument itself doesn't escape, but any fields might
kvn@500 1691 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1692 }
kvn@500 1693 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1694 }
duke@435 1695 }
duke@435 1696 }
duke@435 1697 }
kvn@500 1698 if (copy_dependencies)
kvn@679 1699 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1700 break;
duke@435 1701 }
duke@435 1702 }
duke@435 1703
duke@435 1704 default:
kvn@500 1705 // Fall-through here if not a Java method or no analyzer information
kvn@500 1706 // or some other type of call, assume the worst case: all arguments
duke@435 1707 // globally escape.
duke@435 1708 {
duke@435 1709 // adjust escape state for outgoing arguments
duke@435 1710 const TypeTuple * d = call->tf()->domain();
duke@435 1711 VectorSet ptset(Thread::current()->resource_area());
duke@435 1712 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1713 const Type* at = d->field_at(i);
duke@435 1714 if (at->isa_oopptr() != NULL) {
kvn@500 1715 Node *arg = call->in(i)->uncast();
kvn@500 1716 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1717 ptset.Clear();
duke@435 1718 PointsTo(ptset, arg, phase);
duke@435 1719 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1720 uint pt = j.elem;
duke@435 1721 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 1722 }
duke@435 1723 }
duke@435 1724 }
duke@435 1725 }
duke@435 1726 }
duke@435 1727 }
duke@435 1728 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 1729 CallNode *call = resproj->in(0)->as_Call();
kvn@679 1730 uint call_idx = call->_idx;
kvn@679 1731 uint resproj_idx = resproj->_idx;
duke@435 1732
duke@435 1733 switch (call->Opcode()) {
duke@435 1734 case Op_Allocate:
duke@435 1735 {
duke@435 1736 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1737 const TypeKlassPtr *kt;
duke@435 1738 if (k->Opcode() == Op_LoadKlass) {
duke@435 1739 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1740 } else {
kvn@599 1741 // Also works for DecodeN(LoadNKlass).
duke@435 1742 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1743 }
duke@435 1744 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1745 ciKlass* cik = kt->klass();
duke@435 1746 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1747
kvn@500 1748 PointsToNode::EscapeState es;
kvn@500 1749 uint edge_to;
duke@435 1750 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1751 es = PointsToNode::GlobalEscape;
kvn@500 1752 edge_to = _phantom_object; // Could not be worse
duke@435 1753 } else {
kvn@500 1754 es = PointsToNode::NoEscape;
kvn@679 1755 edge_to = call_idx;
duke@435 1756 }
kvn@679 1757 set_escape_state(call_idx, es);
kvn@679 1758 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 1759 _processed.set(resproj_idx);
duke@435 1760 break;
duke@435 1761 }
duke@435 1762
duke@435 1763 case Op_AllocateArray:
duke@435 1764 {
kvn@500 1765 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1766 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1767 // Not scalar replaceable if the length is not constant or too big.
kvn@679 1768 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@500 1769 }
kvn@679 1770 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1771 add_pointsto_edge(resproj_idx, call_idx);
kvn@679 1772 _processed.set(resproj_idx);
duke@435 1773 break;
duke@435 1774 }
duke@435 1775
duke@435 1776 case Op_CallStaticJava:
duke@435 1777 // For a static call, we know exactly what method is being called.
duke@435 1778 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1779 {
kvn@500 1780 bool done = true;
duke@435 1781 const TypeTuple *r = call->tf()->range();
duke@435 1782 const Type* ret_type = NULL;
duke@435 1783
duke@435 1784 if (r->cnt() > TypeFunc::Parms)
duke@435 1785 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1786
duke@435 1787 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1788 // _multianewarray functions return a TypeRawPtr.
kvn@500 1789 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 1790 _processed.set(resproj_idx);
duke@435 1791 break; // doesn't return a pointer type
kvn@500 1792 }
duke@435 1793 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1794 const TypeTuple * d = call->tf()->domain();
duke@435 1795 if (meth == NULL) {
duke@435 1796 // not a Java method, assume global escape
kvn@679 1797 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1798 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1799 } else {
kvn@500 1800 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 1801 bool copy_dependencies = false;
duke@435 1802
kvn@500 1803 if (call_analyzer->is_return_allocated()) {
kvn@500 1804 // Returns a newly allocated unescaped object, simply
kvn@500 1805 // update dependency information.
kvn@500 1806 // Mark it as NoEscape so that objects referenced by
kvn@500 1807 // it's fields will be marked as NoEscape at least.
kvn@679 1808 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1809 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 1810 copy_dependencies = true;
kvn@679 1811 } else if (call_analyzer->is_return_local()) {
duke@435 1812 // determine whether any arguments are returned
kvn@679 1813 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 1814 bool ret_arg = false;
duke@435 1815 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1816 const Type* at = d->field_at(i);
duke@435 1817
duke@435 1818 if (at->isa_oopptr() != NULL) {
kvn@500 1819 Node *arg = call->in(i)->uncast();
duke@435 1820
kvn@500 1821 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 1822 ret_arg = true;
kvn@679 1823 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1824 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1825 done = false;
kvn@500 1826 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 1827 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 1828 else
kvn@679 1829 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 1830 arg_esp->_hidden_alias = true;
duke@435 1831 }
duke@435 1832 }
duke@435 1833 }
kvn@742 1834 if (done && !ret_arg) {
kvn@742 1835 // Returns unknown object.
kvn@742 1836 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 1837 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 1838 }
kvn@500 1839 copy_dependencies = true;
duke@435 1840 } else {
kvn@679 1841 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1842 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 1843 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1844 const Type* at = d->field_at(i);
kvn@500 1845 if (at->isa_oopptr() != NULL) {
kvn@500 1846 Node *arg = call->in(i)->uncast();
kvn@679 1847 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1848 arg_esp->_hidden_alias = true;
kvn@500 1849 }
kvn@500 1850 }
duke@435 1851 }
kvn@500 1852 if (copy_dependencies)
kvn@679 1853 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1854 }
kvn@500 1855 if (done)
kvn@679 1856 _processed.set(resproj_idx);
duke@435 1857 break;
duke@435 1858 }
duke@435 1859
duke@435 1860 default:
duke@435 1861 // Some other type of call, assume the worst case that the
duke@435 1862 // returned value, if any, globally escapes.
duke@435 1863 {
duke@435 1864 const TypeTuple *r = call->tf()->range();
duke@435 1865 if (r->cnt() > TypeFunc::Parms) {
duke@435 1866 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1867
duke@435 1868 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1869 // _multianewarray functions return a TypeRawPtr.
duke@435 1870 if (ret_type->isa_ptr() != NULL) {
kvn@679 1871 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1872 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1873 }
duke@435 1874 }
kvn@679 1875 _processed.set(resproj_idx);
duke@435 1876 }
duke@435 1877 }
duke@435 1878 }
duke@435 1879
kvn@500 1880 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 1881 // connection graph edges (do not need to check the node_type of inputs
kvn@500 1882 // or to call PointsTo() to walk the connection graph).
kvn@500 1883 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 1884 if (_processed.test(n->_idx))
kvn@500 1885 return; // No need to redefine node's state.
kvn@500 1886
kvn@500 1887 if (n->is_Call()) {
kvn@500 1888 // Arguments to allocation and locking don't escape.
kvn@500 1889 if (n->is_Allocate()) {
kvn@500 1890 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 1891 record_for_optimizer(n);
kvn@500 1892 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 1893 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 1894 // the first IGVN optimization when escape information is still available.
kvn@500 1895 record_for_optimizer(n);
kvn@500 1896 _processed.set(n->_idx);
kvn@500 1897 } else {
kvn@500 1898 // Have to process call's arguments first.
kvn@500 1899 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@500 1900
kvn@500 1901 // Check if a call returns an object.
kvn@500 1902 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@679 1903 if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
kvn@500 1904 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@500 1905 // Note: use isa_ptr() instead of isa_oopptr() here because
kvn@500 1906 // the _multianewarray functions return a TypeRawPtr.
kvn@500 1907 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@500 1908 nt = PointsToNode::JavaObject;
kvn@500 1909 }
duke@435 1910 }
kvn@500 1911 add_node(n, nt, PointsToNode::UnknownEscape, false);
duke@435 1912 }
kvn@500 1913 return;
duke@435 1914 }
kvn@500 1915
kvn@500 1916 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 1917 // ThreadLocal has RawPrt type.
kvn@500 1918 switch (n->Opcode()) {
kvn@500 1919 case Op_AddP:
kvn@500 1920 {
kvn@500 1921 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 1922 break;
kvn@500 1923 }
kvn@500 1924 case Op_CastX2P:
kvn@500 1925 { // "Unsafe" memory access.
kvn@500 1926 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1927 break;
kvn@500 1928 }
kvn@500 1929 case Op_CastPP:
kvn@500 1930 case Op_CheckCastPP:
kvn@559 1931 case Op_EncodeP:
kvn@559 1932 case Op_DecodeN:
kvn@500 1933 {
kvn@500 1934 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1935 int ti = n->in(1)->_idx;
kvn@679 1936 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 1937 if (nt == PointsToNode::UnknownType) {
kvn@500 1938 _delayed_worklist.push(n); // Process it later.
kvn@500 1939 break;
kvn@500 1940 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1941 add_pointsto_edge(n->_idx, ti);
kvn@500 1942 } else {
kvn@500 1943 add_deferred_edge(n->_idx, ti);
kvn@500 1944 }
kvn@500 1945 _processed.set(n->_idx);
kvn@500 1946 break;
kvn@500 1947 }
kvn@500 1948 case Op_ConP:
kvn@500 1949 {
kvn@500 1950 // assume all pointer constants globally escape except for null
kvn@500 1951 PointsToNode::EscapeState es;
kvn@500 1952 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 1953 es = PointsToNode::NoEscape;
kvn@500 1954 else
kvn@500 1955 es = PointsToNode::GlobalEscape;
kvn@500 1956
kvn@500 1957 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 1958 break;
kvn@500 1959 }
coleenp@548 1960 case Op_ConN:
coleenp@548 1961 {
coleenp@548 1962 // assume all narrow oop constants globally escape except for null
coleenp@548 1963 PointsToNode::EscapeState es;
coleenp@548 1964 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 1965 es = PointsToNode::NoEscape;
coleenp@548 1966 else
coleenp@548 1967 es = PointsToNode::GlobalEscape;
coleenp@548 1968
coleenp@548 1969 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 1970 break;
coleenp@548 1971 }
kvn@559 1972 case Op_CreateEx:
kvn@559 1973 {
kvn@559 1974 // assume that all exception objects globally escape
kvn@559 1975 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 1976 break;
kvn@559 1977 }
kvn@500 1978 case Op_LoadKlass:
kvn@599 1979 case Op_LoadNKlass:
kvn@500 1980 {
kvn@500 1981 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1982 break;
kvn@500 1983 }
kvn@500 1984 case Op_LoadP:
coleenp@548 1985 case Op_LoadN:
kvn@500 1986 {
kvn@500 1987 const Type *t = phase->type(n);
kvn@688 1988 if (t->make_ptr() == NULL) {
kvn@500 1989 _processed.set(n->_idx);
kvn@500 1990 return;
kvn@500 1991 }
kvn@500 1992 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1993 break;
kvn@500 1994 }
kvn@500 1995 case Op_Parm:
kvn@500 1996 {
kvn@500 1997 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 1998 uint con = n->as_Proj()->_con;
kvn@500 1999 if (con < TypeFunc::Parms)
kvn@500 2000 return;
kvn@500 2001 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2002 if (t->isa_ptr() == NULL)
kvn@500 2003 return;
kvn@500 2004 // We have to assume all input parameters globally escape
kvn@500 2005 // (Note: passing 'false' since _processed is already set).
kvn@500 2006 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2007 break;
kvn@500 2008 }
kvn@500 2009 case Op_Phi:
kvn@500 2010 {
kvn@688 2011 const Type *t = n->as_Phi()->type();
kvn@688 2012 if (t->make_ptr() == NULL) {
kvn@688 2013 // nothing to do if not an oop or narrow oop
kvn@500 2014 _processed.set(n->_idx);
kvn@500 2015 return;
kvn@500 2016 }
kvn@500 2017 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2018 uint i;
kvn@500 2019 for (i = 1; i < n->req() ; i++) {
kvn@500 2020 Node* in = n->in(i);
kvn@500 2021 if (in == NULL)
kvn@500 2022 continue; // ignore NULL
kvn@500 2023 in = in->uncast();
kvn@500 2024 if (in->is_top() || in == n)
kvn@500 2025 continue; // ignore top or inputs which go back this node
kvn@500 2026 int ti = in->_idx;
kvn@679 2027 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2028 if (nt == PointsToNode::UnknownType) {
kvn@500 2029 break;
kvn@500 2030 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2031 add_pointsto_edge(n->_idx, ti);
kvn@500 2032 } else {
kvn@500 2033 add_deferred_edge(n->_idx, ti);
kvn@500 2034 }
kvn@500 2035 }
kvn@500 2036 if (i >= n->req())
kvn@500 2037 _processed.set(n->_idx);
kvn@500 2038 else
kvn@500 2039 _delayed_worklist.push(n);
kvn@500 2040 break;
kvn@500 2041 }
kvn@500 2042 case Op_Proj:
kvn@500 2043 {
kvn@500 2044 // we are only interested in the result projection from a call
kvn@500 2045 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2046 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2047 process_call_result(n->as_Proj(), phase);
kvn@500 2048 if (!_processed.test(n->_idx)) {
kvn@500 2049 // The call's result may need to be processed later if the call
kvn@500 2050 // returns it's argument and the argument is not processed yet.
kvn@500 2051 _delayed_worklist.push(n);
kvn@500 2052 }
kvn@500 2053 } else {
kvn@500 2054 _processed.set(n->_idx);
kvn@500 2055 }
kvn@500 2056 break;
kvn@500 2057 }
kvn@500 2058 case Op_Return:
kvn@500 2059 {
kvn@500 2060 if( n->req() > TypeFunc::Parms &&
kvn@500 2061 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2062 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2063 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2064 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2065 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2066 if (nt == PointsToNode::UnknownType) {
kvn@500 2067 _delayed_worklist.push(n); // Process it later.
kvn@500 2068 break;
kvn@500 2069 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2070 add_pointsto_edge(n->_idx, ti);
kvn@500 2071 } else {
kvn@500 2072 add_deferred_edge(n->_idx, ti);
kvn@500 2073 }
kvn@500 2074 }
kvn@500 2075 _processed.set(n->_idx);
kvn@500 2076 break;
kvn@500 2077 }
kvn@500 2078 case Op_StoreP:
coleenp@548 2079 case Op_StoreN:
kvn@500 2080 {
kvn@500 2081 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2082 adr_type = adr_type->make_ptr();
kvn@500 2083 if (adr_type->isa_oopptr()) {
kvn@500 2084 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2085 } else {
kvn@500 2086 Node* adr = n->in(MemNode::Address);
kvn@500 2087 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2088 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2089 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2090 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2091 // We are computing a raw address for a store captured
kvn@500 2092 // by an Initialize compute an appropriate address type.
kvn@500 2093 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2094 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2095 } else {
kvn@500 2096 _processed.set(n->_idx);
kvn@500 2097 return;
kvn@500 2098 }
kvn@500 2099 }
kvn@500 2100 break;
kvn@500 2101 }
kvn@500 2102 case Op_StorePConditional:
kvn@500 2103 case Op_CompareAndSwapP:
coleenp@548 2104 case Op_CompareAndSwapN:
kvn@500 2105 {
kvn@500 2106 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2107 adr_type = adr_type->make_ptr();
kvn@500 2108 if (adr_type->isa_oopptr()) {
kvn@500 2109 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2110 } else {
kvn@500 2111 _processed.set(n->_idx);
kvn@500 2112 return;
kvn@500 2113 }
kvn@500 2114 break;
kvn@500 2115 }
kvn@500 2116 case Op_ThreadLocal:
kvn@500 2117 {
kvn@500 2118 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2119 break;
kvn@500 2120 }
kvn@500 2121 default:
kvn@500 2122 ;
kvn@500 2123 // nothing to do
kvn@500 2124 }
kvn@500 2125 return;
duke@435 2126 }
duke@435 2127
kvn@500 2128 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2129 uint n_idx = n->_idx;
kvn@679 2130
kvn@500 2131 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2132 // they may need more then one pass to process.
kvn@679 2133 if (_processed.test(n_idx))
kvn@500 2134 return; // No need to redefine node's state.
duke@435 2135
duke@435 2136 if (n->is_Call()) {
duke@435 2137 CallNode *call = n->as_Call();
duke@435 2138 process_call_arguments(call, phase);
kvn@679 2139 _processed.set(n_idx);
duke@435 2140 return;
duke@435 2141 }
duke@435 2142
kvn@500 2143 switch (n->Opcode()) {
duke@435 2144 case Op_AddP:
duke@435 2145 {
kvn@500 2146 Node *base = get_addp_base(n);
kvn@500 2147 // Create a field edge to this node from everything base could point to.
duke@435 2148 VectorSet ptset(Thread::current()->resource_area());
duke@435 2149 PointsTo(ptset, base, phase);
duke@435 2150 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2151 uint pt = i.elem;
kvn@679 2152 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2153 }
kvn@500 2154 break;
kvn@500 2155 }
kvn@500 2156 case Op_CastX2P:
kvn@500 2157 {
kvn@500 2158 assert(false, "Op_CastX2P");
kvn@500 2159 break;
kvn@500 2160 }
kvn@500 2161 case Op_CastPP:
kvn@500 2162 case Op_CheckCastPP:
coleenp@548 2163 case Op_EncodeP:
coleenp@548 2164 case Op_DecodeN:
kvn@500 2165 {
kvn@500 2166 int ti = n->in(1)->_idx;
kvn@679 2167 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2168 add_pointsto_edge(n_idx, ti);
kvn@500 2169 } else {
kvn@679 2170 add_deferred_edge(n_idx, ti);
kvn@500 2171 }
kvn@679 2172 _processed.set(n_idx);
kvn@500 2173 break;
kvn@500 2174 }
kvn@500 2175 case Op_ConP:
kvn@500 2176 {
kvn@500 2177 assert(false, "Op_ConP");
kvn@500 2178 break;
kvn@500 2179 }
kvn@598 2180 case Op_ConN:
kvn@598 2181 {
kvn@598 2182 assert(false, "Op_ConN");
kvn@598 2183 break;
kvn@598 2184 }
kvn@500 2185 case Op_CreateEx:
kvn@500 2186 {
kvn@500 2187 assert(false, "Op_CreateEx");
kvn@500 2188 break;
kvn@500 2189 }
kvn@500 2190 case Op_LoadKlass:
kvn@599 2191 case Op_LoadNKlass:
kvn@500 2192 {
kvn@500 2193 assert(false, "Op_LoadKlass");
kvn@500 2194 break;
kvn@500 2195 }
kvn@500 2196 case Op_LoadP:
kvn@559 2197 case Op_LoadN:
kvn@500 2198 {
kvn@500 2199 const Type *t = phase->type(n);
kvn@500 2200 #ifdef ASSERT
kvn@688 2201 if (t->make_ptr() == NULL)
kvn@500 2202 assert(false, "Op_LoadP");
kvn@500 2203 #endif
kvn@500 2204
kvn@500 2205 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2206 const Type *adr_type = phase->type(adr);
kvn@500 2207 Node* adr_base;
kvn@500 2208 if (adr->is_AddP()) {
kvn@500 2209 adr_base = get_addp_base(adr);
kvn@500 2210 } else {
kvn@500 2211 adr_base = adr;
kvn@500 2212 }
kvn@500 2213
kvn@500 2214 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2215 // this node to each field with the same offset.
kvn@500 2216 VectorSet ptset(Thread::current()->resource_area());
kvn@500 2217 PointsTo(ptset, adr_base, phase);
kvn@500 2218 int offset = address_offset(adr, phase);
kvn@500 2219 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2220 uint pt = i.elem;
kvn@679 2221 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2222 }
duke@435 2223 break;
duke@435 2224 }
duke@435 2225 case Op_Parm:
duke@435 2226 {
kvn@500 2227 assert(false, "Op_Parm");
kvn@500 2228 break;
kvn@500 2229 }
kvn@500 2230 case Op_Phi:
kvn@500 2231 {
kvn@500 2232 #ifdef ASSERT
kvn@688 2233 const Type *t = n->as_Phi()->type();
kvn@688 2234 if (t->make_ptr() == NULL)
kvn@500 2235 assert(false, "Op_Phi");
kvn@500 2236 #endif
kvn@500 2237 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2238 Node* in = n->in(i);
kvn@500 2239 if (in == NULL)
kvn@500 2240 continue; // ignore NULL
kvn@500 2241 in = in->uncast();
kvn@500 2242 if (in->is_top() || in == n)
kvn@500 2243 continue; // ignore top or inputs which go back this node
kvn@500 2244 int ti = in->_idx;
kvn@742 2245 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2246 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2247 if (nt == PointsToNode::JavaObject) {
kvn@679 2248 add_pointsto_edge(n_idx, ti);
kvn@500 2249 } else {
kvn@679 2250 add_deferred_edge(n_idx, ti);
kvn@500 2251 }
duke@435 2252 }
kvn@679 2253 _processed.set(n_idx);
duke@435 2254 break;
duke@435 2255 }
kvn@500 2256 case Op_Proj:
duke@435 2257 {
kvn@500 2258 // we are only interested in the result projection from a call
kvn@500 2259 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2260 process_call_result(n->as_Proj(), phase);
kvn@679 2261 assert(_processed.test(n_idx), "all call results should be processed");
kvn@500 2262 } else {
kvn@500 2263 assert(false, "Op_Proj");
kvn@500 2264 }
duke@435 2265 break;
duke@435 2266 }
kvn@500 2267 case Op_Return:
duke@435 2268 {
kvn@500 2269 #ifdef ASSERT
kvn@500 2270 if( n->req() <= TypeFunc::Parms ||
kvn@500 2271 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2272 assert(false, "Op_Return");
kvn@500 2273 }
kvn@500 2274 #endif
kvn@500 2275 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2276 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2277 add_pointsto_edge(n_idx, ti);
kvn@500 2278 } else {
kvn@679 2279 add_deferred_edge(n_idx, ti);
kvn@500 2280 }
kvn@679 2281 _processed.set(n_idx);
duke@435 2282 break;
duke@435 2283 }
duke@435 2284 case Op_StoreP:
kvn@559 2285 case Op_StoreN:
duke@435 2286 case Op_StorePConditional:
duke@435 2287 case Op_CompareAndSwapP:
kvn@559 2288 case Op_CompareAndSwapN:
duke@435 2289 {
duke@435 2290 Node *adr = n->in(MemNode::Address);
kvn@656 2291 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2292 #ifdef ASSERT
duke@435 2293 if (!adr_type->isa_oopptr())
kvn@500 2294 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2295 #endif
duke@435 2296
kvn@500 2297 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2298 Node *adr_base = get_addp_base(adr);
kvn@500 2299 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2300 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2301 // to "val" from each field with the same offset.
duke@435 2302 VectorSet ptset(Thread::current()->resource_area());
duke@435 2303 PointsTo(ptset, adr_base, phase);
duke@435 2304 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2305 uint pt = i.elem;
kvn@500 2306 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2307 }
duke@435 2308 break;
duke@435 2309 }
kvn@500 2310 case Op_ThreadLocal:
duke@435 2311 {
kvn@500 2312 assert(false, "Op_ThreadLocal");
duke@435 2313 break;
duke@435 2314 }
duke@435 2315 default:
duke@435 2316 ;
duke@435 2317 // nothing to do
duke@435 2318 }
duke@435 2319 }
duke@435 2320
duke@435 2321 #ifndef PRODUCT
duke@435 2322 void ConnectionGraph::dump() {
duke@435 2323 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2324 bool first = true;
duke@435 2325
kvn@679 2326 uint size = nodes_size();
kvn@500 2327 for (uint ni = 0; ni < size; ni++) {
kvn@679 2328 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2329 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2330
kvn@500 2331 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2332 continue;
kvn@500 2333 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2334 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2335 if (first) {
kvn@500 2336 tty->cr();
kvn@500 2337 tty->print("======== Connection graph for ");
kvn@679 2338 _compile->method()->print_short_name();
kvn@500 2339 tty->cr();
kvn@500 2340 first = false;
kvn@500 2341 }
kvn@500 2342 tty->print("%6d ", ni);
kvn@500 2343 ptn->dump();
kvn@500 2344 // Print all locals which reference this allocation
kvn@500 2345 for (uint li = ni; li < size; li++) {
kvn@679 2346 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2347 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2348 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2349 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2350 ptnode_adr(li)->dump(false);
duke@435 2351 }
duke@435 2352 }
kvn@500 2353 if (Verbose) {
kvn@500 2354 // Print all fields which reference this allocation
kvn@500 2355 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2356 uint ei = ptn->edge_target(i);
kvn@688 2357 ptnode_adr(ei)->dump(false);
kvn@500 2358 }
kvn@500 2359 }
kvn@500 2360 tty->cr();
duke@435 2361 }
duke@435 2362 }
duke@435 2363 }
duke@435 2364 #endif

mercurial