src/share/vm/oops/methodDataOop.cpp

Thu, 13 Jan 2011 22:15:41 -0800

author
never
date
Thu, 13 Jan 2011 22:15:41 -0800
changeset 2462
8012aa3ccede
parent 2314
f95d63e2154a
child 2534
e5383553fd4e
child 2559
72d6c57d0658
permissions
-rw-r--r--

4926272: methodOopDesc::method_from_bcp is unsafe
Reviewed-by: coleenp, jrose, kvn, dcubed

duke@435 1 /*
never@2462 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "classfile/systemDictionary.hpp"
stefank@2314 27 #include "gc_implementation/shared/markSweep.inline.hpp"
stefank@2314 28 #include "interpreter/bytecode.hpp"
stefank@2314 29 #include "interpreter/bytecodeStream.hpp"
stefank@2314 30 #include "interpreter/linkResolver.hpp"
stefank@2314 31 #include "oops/methodDataOop.hpp"
stefank@2314 32 #include "oops/oop.inline.hpp"
stefank@2314 33 #include "runtime/compilationPolicy.hpp"
stefank@2314 34 #include "runtime/deoptimization.hpp"
stefank@2314 35 #include "runtime/handles.inline.hpp"
duke@435 36
duke@435 37 // ==================================================================
duke@435 38 // DataLayout
duke@435 39 //
duke@435 40 // Overlay for generic profiling data.
duke@435 41
duke@435 42 // Some types of data layouts need a length field.
duke@435 43 bool DataLayout::needs_array_len(u1 tag) {
kvn@480 44 return (tag == multi_branch_data_tag) || (tag == arg_info_data_tag);
duke@435 45 }
duke@435 46
duke@435 47 // Perform generic initialization of the data. More specific
duke@435 48 // initialization occurs in overrides of ProfileData::post_initialize.
duke@435 49 void DataLayout::initialize(u1 tag, u2 bci, int cell_count) {
duke@435 50 _header._bits = (intptr_t)0;
duke@435 51 _header._struct._tag = tag;
duke@435 52 _header._struct._bci = bci;
duke@435 53 for (int i = 0; i < cell_count; i++) {
duke@435 54 set_cell_at(i, (intptr_t)0);
duke@435 55 }
duke@435 56 if (needs_array_len(tag)) {
duke@435 57 set_cell_at(ArrayData::array_len_off_set, cell_count - 1); // -1 for header.
duke@435 58 }
duke@435 59 }
duke@435 60
ysr@1376 61 void DataLayout::follow_weak_refs(BoolObjectClosure* cl) {
ysr@1376 62 ResourceMark m;
ysr@1376 63 data_in()->follow_weak_refs(cl);
ysr@1376 64 }
ysr@1376 65
ysr@1376 66
duke@435 67 // ==================================================================
duke@435 68 // ProfileData
duke@435 69 //
duke@435 70 // A ProfileData object is created to refer to a section of profiling
duke@435 71 // data in a structured way.
duke@435 72
duke@435 73 // Constructor for invalid ProfileData.
duke@435 74 ProfileData::ProfileData() {
duke@435 75 _data = NULL;
duke@435 76 }
duke@435 77
duke@435 78 #ifndef PRODUCT
duke@435 79 void ProfileData::print_shared(outputStream* st, const char* name) {
duke@435 80 st->print("bci: %d", bci());
duke@435 81 st->fill_to(tab_width_one);
duke@435 82 st->print("%s", name);
duke@435 83 tab(st);
duke@435 84 int trap = trap_state();
duke@435 85 if (trap != 0) {
duke@435 86 char buf[100];
duke@435 87 st->print("trap(%s) ", Deoptimization::format_trap_state(buf, sizeof(buf), trap));
duke@435 88 }
duke@435 89 int flags = data()->flags();
duke@435 90 if (flags != 0)
duke@435 91 st->print("flags(%d) ", flags);
duke@435 92 }
duke@435 93
duke@435 94 void ProfileData::tab(outputStream* st) {
duke@435 95 st->fill_to(tab_width_two);
duke@435 96 }
duke@435 97 #endif // !PRODUCT
duke@435 98
duke@435 99 // ==================================================================
duke@435 100 // BitData
duke@435 101 //
duke@435 102 // A BitData corresponds to a one-bit flag. This is used to indicate
duke@435 103 // whether a checkcast bytecode has seen a null value.
duke@435 104
duke@435 105
duke@435 106 #ifndef PRODUCT
duke@435 107 void BitData::print_data_on(outputStream* st) {
duke@435 108 print_shared(st, "BitData");
duke@435 109 }
duke@435 110 #endif // !PRODUCT
duke@435 111
duke@435 112 // ==================================================================
duke@435 113 // CounterData
duke@435 114 //
duke@435 115 // A CounterData corresponds to a simple counter.
duke@435 116
duke@435 117 #ifndef PRODUCT
duke@435 118 void CounterData::print_data_on(outputStream* st) {
duke@435 119 print_shared(st, "CounterData");
duke@435 120 st->print_cr("count(%u)", count());
duke@435 121 }
duke@435 122 #endif // !PRODUCT
duke@435 123
duke@435 124 // ==================================================================
duke@435 125 // JumpData
duke@435 126 //
duke@435 127 // A JumpData is used to access profiling information for a direct
duke@435 128 // branch. It is a counter, used for counting the number of branches,
duke@435 129 // plus a data displacement, used for realigning the data pointer to
duke@435 130 // the corresponding target bci.
duke@435 131
duke@435 132 void JumpData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
duke@435 133 assert(stream->bci() == bci(), "wrong pos");
duke@435 134 int target;
duke@435 135 Bytecodes::Code c = stream->code();
duke@435 136 if (c == Bytecodes::_goto_w || c == Bytecodes::_jsr_w) {
duke@435 137 target = stream->dest_w();
duke@435 138 } else {
duke@435 139 target = stream->dest();
duke@435 140 }
duke@435 141 int my_di = mdo->dp_to_di(dp());
duke@435 142 int target_di = mdo->bci_to_di(target);
duke@435 143 int offset = target_di - my_di;
duke@435 144 set_displacement(offset);
duke@435 145 }
duke@435 146
duke@435 147 #ifndef PRODUCT
duke@435 148 void JumpData::print_data_on(outputStream* st) {
duke@435 149 print_shared(st, "JumpData");
duke@435 150 st->print_cr("taken(%u) displacement(%d)", taken(), displacement());
duke@435 151 }
duke@435 152 #endif // !PRODUCT
duke@435 153
duke@435 154 // ==================================================================
duke@435 155 // ReceiverTypeData
duke@435 156 //
duke@435 157 // A ReceiverTypeData is used to access profiling information about a
duke@435 158 // dynamic type check. It consists of a counter which counts the total times
duke@435 159 // that the check is reached, and a series of (klassOop, count) pairs
duke@435 160 // which are used to store a type profile for the receiver of the check.
duke@435 161
duke@435 162 void ReceiverTypeData::follow_contents() {
ysr@1376 163 // This is a set of weak references that need
ysr@1376 164 // to be followed at the end of the strong marking
ysr@1376 165 // phase. Memoize this object so it can be visited
ysr@1376 166 // in the weak roots processing phase.
ysr@1376 167 MarkSweep::revisit_mdo(data());
duke@435 168 }
duke@435 169
duke@435 170 #ifndef SERIALGC
duke@435 171 void ReceiverTypeData::follow_contents(ParCompactionManager* cm) {
ysr@1376 172 // This is a set of weak references that need
ysr@1376 173 // to be followed at the end of the strong marking
ysr@1376 174 // phase. Memoize this object so it can be visited
ysr@1376 175 // in the weak roots processing phase.
ysr@1376 176 PSParallelCompact::revisit_mdo(cm, data());
duke@435 177 }
duke@435 178 #endif // SERIALGC
duke@435 179
duke@435 180 void ReceiverTypeData::oop_iterate(OopClosure* blk) {
ysr@1376 181 if (blk->should_remember_mdo()) {
ysr@1376 182 // This is a set of weak references that need
ysr@1376 183 // to be followed at the end of the strong marking
ysr@1376 184 // phase. Memoize this object so it can be visited
ysr@1376 185 // in the weak roots processing phase.
ysr@1376 186 blk->remember_mdo(data());
ysr@1376 187 } else { // normal scan
ysr@1376 188 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 189 if (receiver(row) != NULL) {
ysr@1376 190 oop* adr = adr_receiver(row);
duke@435 191 blk->do_oop(adr);
duke@435 192 }
duke@435 193 }
duke@435 194 }
duke@435 195 }
duke@435 196
ysr@1376 197 void ReceiverTypeData::oop_iterate_m(OopClosure* blk, MemRegion mr) {
ysr@1376 198 // Currently, this interface is called only during card-scanning for
ysr@1376 199 // a young gen gc, in which case this object cannot contribute anything,
ysr@1376 200 // since it does not contain any references that cross out of
ysr@1376 201 // the perm gen. However, for future more general use we allow
ysr@1376 202 // the possibility of calling for instance from more general
ysr@1376 203 // iterators (for example, a future regionalized perm gen for G1,
ysr@1376 204 // or the possibility of moving some references out of perm in
ysr@1376 205 // the case of other collectors). In that case, you will need
ysr@1376 206 // to relax or remove some of the assertions below.
ysr@1376 207 #ifdef ASSERT
ysr@1376 208 // Verify that none of the embedded oop references cross out of
ysr@1376 209 // this generation.
ysr@1376 210 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 211 if (receiver(row) != NULL) {
ysr@1376 212 oop* adr = adr_receiver(row);
ysr@1376 213 CollectedHeap* h = Universe::heap();
ysr@1376 214 assert(h->is_permanent(adr) && h->is_permanent_or_null(*adr), "Not intra-perm");
ysr@1376 215 }
ysr@1376 216 }
ysr@1376 217 #endif // ASSERT
ysr@1376 218 assert(!blk->should_remember_mdo(), "Not expected to remember MDO");
ysr@1376 219 return; // Nothing to do, see comment above
ysr@1376 220 #if 0
ysr@1376 221 if (blk->should_remember_mdo()) {
ysr@1376 222 // This is a set of weak references that need
ysr@1376 223 // to be followed at the end of the strong marking
ysr@1376 224 // phase. Memoize this object so it can be visited
ysr@1376 225 // in the weak roots processing phase.
ysr@1376 226 blk->remember_mdo(data());
ysr@1376 227 } else { // normal scan
ysr@1376 228 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 229 if (receiver(row) != NULL) {
ysr@1376 230 oop* adr = adr_receiver(row);
ysr@1376 231 if (mr.contains(adr)) {
ysr@1376 232 blk->do_oop(adr);
ysr@1376 233 } else if ((HeapWord*)adr >= mr.end()) {
ysr@1376 234 // Test that the current cursor and the two ends of the range
ysr@1376 235 // that we may have skipped iterating over are monotonically ordered;
ysr@1376 236 // this is just a paranoid assertion, just in case represetations
ysr@1376 237 // should change in the future rendering the short-circuit return
ysr@1376 238 // here invalid.
ysr@1376 239 assert((row+1 >= row_limit() || adr_receiver(row+1) > adr) &&
ysr@1376 240 (row+2 >= row_limit() || adr_receiver(row_limit()-1) > adr_receiver(row+1)), "Reducing?");
ysr@1376 241 break; // remaining should be outside this mr too
ysr@1376 242 }
ysr@1376 243 }
ysr@1376 244 }
ysr@1376 245 }
ysr@1376 246 #endif
ysr@1376 247 }
ysr@1376 248
duke@435 249 void ReceiverTypeData::adjust_pointers() {
duke@435 250 for (uint row = 0; row < row_limit(); row++) {
duke@435 251 if (receiver(row) != NULL) {
duke@435 252 MarkSweep::adjust_pointer(adr_receiver(row));
duke@435 253 }
duke@435 254 }
duke@435 255 }
duke@435 256
ysr@1376 257 void ReceiverTypeData::follow_weak_refs(BoolObjectClosure* is_alive_cl) {
ysr@1376 258 for (uint row = 0; row < row_limit(); row++) {
ysr@1376 259 klassOop p = receiver(row);
ysr@1376 260 if (p != NULL && !is_alive_cl->do_object_b(p)) {
ysr@1376 261 clear_row(row);
ysr@1376 262 }
ysr@1376 263 }
ysr@1376 264 }
ysr@1376 265
duke@435 266 #ifndef SERIALGC
duke@435 267 void ReceiverTypeData::update_pointers() {
duke@435 268 for (uint row = 0; row < row_limit(); row++) {
duke@435 269 if (receiver_unchecked(row) != NULL) {
duke@435 270 PSParallelCompact::adjust_pointer(adr_receiver(row));
duke@435 271 }
duke@435 272 }
duke@435 273 }
duke@435 274
duke@435 275 void ReceiverTypeData::update_pointers(HeapWord* beg_addr, HeapWord* end_addr) {
duke@435 276 // The loop bounds could be computed based on beg_addr/end_addr and the
duke@435 277 // boundary test hoisted outside the loop (see klassVTable for an example);
duke@435 278 // however, row_limit() is small enough (2) to make that less efficient.
duke@435 279 for (uint row = 0; row < row_limit(); row++) {
duke@435 280 if (receiver_unchecked(row) != NULL) {
duke@435 281 PSParallelCompact::adjust_pointer(adr_receiver(row), beg_addr, end_addr);
duke@435 282 }
duke@435 283 }
duke@435 284 }
duke@435 285 #endif // SERIALGC
duke@435 286
duke@435 287 #ifndef PRODUCT
duke@435 288 void ReceiverTypeData::print_receiver_data_on(outputStream* st) {
duke@435 289 uint row;
duke@435 290 int entries = 0;
duke@435 291 for (row = 0; row < row_limit(); row++) {
duke@435 292 if (receiver(row) != NULL) entries++;
duke@435 293 }
duke@435 294 st->print_cr("count(%u) entries(%u)", count(), entries);
iveresov@2138 295 int total = count();
iveresov@2138 296 for (row = 0; row < row_limit(); row++) {
iveresov@2138 297 if (receiver(row) != NULL) {
iveresov@2138 298 total += receiver_count(row);
iveresov@2138 299 }
iveresov@2138 300 }
duke@435 301 for (row = 0; row < row_limit(); row++) {
duke@435 302 if (receiver(row) != NULL) {
duke@435 303 tab(st);
duke@435 304 receiver(row)->print_value_on(st);
iveresov@2138 305 st->print_cr("(%u %4.2f)", receiver_count(row), (float) receiver_count(row) / (float) total);
duke@435 306 }
duke@435 307 }
duke@435 308 }
duke@435 309 void ReceiverTypeData::print_data_on(outputStream* st) {
duke@435 310 print_shared(st, "ReceiverTypeData");
duke@435 311 print_receiver_data_on(st);
duke@435 312 }
duke@435 313 void VirtualCallData::print_data_on(outputStream* st) {
duke@435 314 print_shared(st, "VirtualCallData");
duke@435 315 print_receiver_data_on(st);
duke@435 316 }
duke@435 317 #endif // !PRODUCT
duke@435 318
duke@435 319 // ==================================================================
duke@435 320 // RetData
duke@435 321 //
duke@435 322 // A RetData is used to access profiling information for a ret bytecode.
duke@435 323 // It is composed of a count of the number of times that the ret has
duke@435 324 // been executed, followed by a series of triples of the form
duke@435 325 // (bci, count, di) which count the number of times that some bci was the
duke@435 326 // target of the ret and cache a corresponding displacement.
duke@435 327
duke@435 328 void RetData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
duke@435 329 for (uint row = 0; row < row_limit(); row++) {
duke@435 330 set_bci_displacement(row, -1);
duke@435 331 set_bci(row, no_bci);
duke@435 332 }
duke@435 333 // release so other threads see a consistent state. bci is used as
duke@435 334 // a valid flag for bci_displacement.
duke@435 335 OrderAccess::release();
duke@435 336 }
duke@435 337
duke@435 338 // This routine needs to atomically update the RetData structure, so the
duke@435 339 // caller needs to hold the RetData_lock before it gets here. Since taking
duke@435 340 // the lock can block (and allow GC) and since RetData is a ProfileData is a
duke@435 341 // wrapper around a derived oop, taking the lock in _this_ method will
duke@435 342 // basically cause the 'this' pointer's _data field to contain junk after the
duke@435 343 // lock. We require the caller to take the lock before making the ProfileData
duke@435 344 // structure. Currently the only caller is InterpreterRuntime::update_mdp_for_ret
duke@435 345 address RetData::fixup_ret(int return_bci, methodDataHandle h_mdo) {
duke@435 346 // First find the mdp which corresponds to the return bci.
duke@435 347 address mdp = h_mdo->bci_to_dp(return_bci);
duke@435 348
duke@435 349 // Now check to see if any of the cache slots are open.
duke@435 350 for (uint row = 0; row < row_limit(); row++) {
duke@435 351 if (bci(row) == no_bci) {
duke@435 352 set_bci_displacement(row, mdp - dp());
duke@435 353 set_bci_count(row, DataLayout::counter_increment);
duke@435 354 // Barrier to ensure displacement is written before the bci; allows
duke@435 355 // the interpreter to read displacement without fear of race condition.
duke@435 356 release_set_bci(row, return_bci);
duke@435 357 break;
duke@435 358 }
duke@435 359 }
duke@435 360 return mdp;
duke@435 361 }
duke@435 362
duke@435 363
duke@435 364 #ifndef PRODUCT
duke@435 365 void RetData::print_data_on(outputStream* st) {
duke@435 366 print_shared(st, "RetData");
duke@435 367 uint row;
duke@435 368 int entries = 0;
duke@435 369 for (row = 0; row < row_limit(); row++) {
duke@435 370 if (bci(row) != no_bci) entries++;
duke@435 371 }
duke@435 372 st->print_cr("count(%u) entries(%u)", count(), entries);
duke@435 373 for (row = 0; row < row_limit(); row++) {
duke@435 374 if (bci(row) != no_bci) {
duke@435 375 tab(st);
duke@435 376 st->print_cr("bci(%d: count(%u) displacement(%d))",
duke@435 377 bci(row), bci_count(row), bci_displacement(row));
duke@435 378 }
duke@435 379 }
duke@435 380 }
duke@435 381 #endif // !PRODUCT
duke@435 382
duke@435 383 // ==================================================================
duke@435 384 // BranchData
duke@435 385 //
duke@435 386 // A BranchData is used to access profiling data for a two-way branch.
duke@435 387 // It consists of taken and not_taken counts as well as a data displacement
duke@435 388 // for the taken case.
duke@435 389
duke@435 390 void BranchData::post_initialize(BytecodeStream* stream, methodDataOop mdo) {
duke@435 391 assert(stream->bci() == bci(), "wrong pos");
duke@435 392 int target = stream->dest();
duke@435 393 int my_di = mdo->dp_to_di(dp());
duke@435 394 int target_di = mdo->bci_to_di(target);
duke@435 395 int offset = target_di - my_di;
duke@435 396 set_displacement(offset);
duke@435 397 }
duke@435 398
duke@435 399 #ifndef PRODUCT
duke@435 400 void BranchData::print_data_on(outputStream* st) {
duke@435 401 print_shared(st, "BranchData");
duke@435 402 st->print_cr("taken(%u) displacement(%d)",
duke@435 403 taken(), displacement());
duke@435 404 tab(st);
duke@435 405 st->print_cr("not taken(%u)", not_taken());
duke@435 406 }
duke@435 407 #endif
duke@435 408
duke@435 409 // ==================================================================
duke@435 410 // MultiBranchData
duke@435 411 //
duke@435 412 // A MultiBranchData is used to access profiling information for
duke@435 413 // a multi-way branch (*switch bytecodes). It consists of a series
duke@435 414 // of (count, displacement) pairs, which count the number of times each
duke@435 415 // case was taken and specify the data displacment for each branch target.
duke@435 416
duke@435 417 int MultiBranchData::compute_cell_count(BytecodeStream* stream) {
duke@435 418 int cell_count = 0;
duke@435 419 if (stream->code() == Bytecodes::_tableswitch) {
never@2462 420 Bytecode_tableswitch sw(stream->method()(), stream->bcp());
never@2462 421 cell_count = 1 + per_case_cell_count * (1 + sw.length()); // 1 for default
duke@435 422 } else {
never@2462 423 Bytecode_lookupswitch sw(stream->method()(), stream->bcp());
never@2462 424 cell_count = 1 + per_case_cell_count * (sw.number_of_pairs() + 1); // 1 for default
duke@435 425 }
duke@435 426 return cell_count;
duke@435 427 }
duke@435 428
duke@435 429 void MultiBranchData::post_initialize(BytecodeStream* stream,
duke@435 430 methodDataOop mdo) {
duke@435 431 assert(stream->bci() == bci(), "wrong pos");
duke@435 432 int target;
duke@435 433 int my_di;
duke@435 434 int target_di;
duke@435 435 int offset;
duke@435 436 if (stream->code() == Bytecodes::_tableswitch) {
never@2462 437 Bytecode_tableswitch sw(stream->method()(), stream->bcp());
never@2462 438 int len = sw.length();
duke@435 439 assert(array_len() == per_case_cell_count * (len + 1), "wrong len");
duke@435 440 for (int count = 0; count < len; count++) {
never@2462 441 target = sw.dest_offset_at(count) + bci();
duke@435 442 my_di = mdo->dp_to_di(dp());
duke@435 443 target_di = mdo->bci_to_di(target);
duke@435 444 offset = target_di - my_di;
duke@435 445 set_displacement_at(count, offset);
duke@435 446 }
never@2462 447 target = sw.default_offset() + bci();
duke@435 448 my_di = mdo->dp_to_di(dp());
duke@435 449 target_di = mdo->bci_to_di(target);
duke@435 450 offset = target_di - my_di;
duke@435 451 set_default_displacement(offset);
duke@435 452
duke@435 453 } else {
never@2462 454 Bytecode_lookupswitch sw(stream->method()(), stream->bcp());
never@2462 455 int npairs = sw.number_of_pairs();
duke@435 456 assert(array_len() == per_case_cell_count * (npairs + 1), "wrong len");
duke@435 457 for (int count = 0; count < npairs; count++) {
never@2462 458 LookupswitchPair pair = sw.pair_at(count);
never@2462 459 target = pair.offset() + bci();
duke@435 460 my_di = mdo->dp_to_di(dp());
duke@435 461 target_di = mdo->bci_to_di(target);
duke@435 462 offset = target_di - my_di;
duke@435 463 set_displacement_at(count, offset);
duke@435 464 }
never@2462 465 target = sw.default_offset() + bci();
duke@435 466 my_di = mdo->dp_to_di(dp());
duke@435 467 target_di = mdo->bci_to_di(target);
duke@435 468 offset = target_di - my_di;
duke@435 469 set_default_displacement(offset);
duke@435 470 }
duke@435 471 }
duke@435 472
duke@435 473 #ifndef PRODUCT
duke@435 474 void MultiBranchData::print_data_on(outputStream* st) {
duke@435 475 print_shared(st, "MultiBranchData");
duke@435 476 st->print_cr("default_count(%u) displacement(%d)",
duke@435 477 default_count(), default_displacement());
duke@435 478 int cases = number_of_cases();
duke@435 479 for (int i = 0; i < cases; i++) {
duke@435 480 tab(st);
duke@435 481 st->print_cr("count(%u) displacement(%d)",
duke@435 482 count_at(i), displacement_at(i));
duke@435 483 }
duke@435 484 }
duke@435 485 #endif
duke@435 486
kvn@480 487 #ifndef PRODUCT
kvn@480 488 void ArgInfoData::print_data_on(outputStream* st) {
kvn@480 489 print_shared(st, "ArgInfoData");
kvn@480 490 int nargs = number_of_args();
kvn@480 491 for (int i = 0; i < nargs; i++) {
kvn@480 492 st->print(" 0x%x", arg_modified(i));
kvn@480 493 }
kvn@480 494 st->cr();
kvn@480 495 }
kvn@480 496
kvn@480 497 #endif
duke@435 498 // ==================================================================
duke@435 499 // methodDataOop
duke@435 500 //
duke@435 501 // A methodDataOop holds information which has been collected about
duke@435 502 // a method.
duke@435 503
duke@435 504 int methodDataOopDesc::bytecode_cell_count(Bytecodes::Code code) {
duke@435 505 switch (code) {
duke@435 506 case Bytecodes::_checkcast:
duke@435 507 case Bytecodes::_instanceof:
duke@435 508 case Bytecodes::_aastore:
duke@435 509 if (TypeProfileCasts) {
duke@435 510 return ReceiverTypeData::static_cell_count();
duke@435 511 } else {
duke@435 512 return BitData::static_cell_count();
duke@435 513 }
duke@435 514 case Bytecodes::_invokespecial:
duke@435 515 case Bytecodes::_invokestatic:
duke@435 516 return CounterData::static_cell_count();
duke@435 517 case Bytecodes::_goto:
duke@435 518 case Bytecodes::_goto_w:
duke@435 519 case Bytecodes::_jsr:
duke@435 520 case Bytecodes::_jsr_w:
duke@435 521 return JumpData::static_cell_count();
duke@435 522 case Bytecodes::_invokevirtual:
duke@435 523 case Bytecodes::_invokeinterface:
duke@435 524 return VirtualCallData::static_cell_count();
jrose@1161 525 case Bytecodes::_invokedynamic:
jrose@1161 526 return CounterData::static_cell_count();
duke@435 527 case Bytecodes::_ret:
duke@435 528 return RetData::static_cell_count();
duke@435 529 case Bytecodes::_ifeq:
duke@435 530 case Bytecodes::_ifne:
duke@435 531 case Bytecodes::_iflt:
duke@435 532 case Bytecodes::_ifge:
duke@435 533 case Bytecodes::_ifgt:
duke@435 534 case Bytecodes::_ifle:
duke@435 535 case Bytecodes::_if_icmpeq:
duke@435 536 case Bytecodes::_if_icmpne:
duke@435 537 case Bytecodes::_if_icmplt:
duke@435 538 case Bytecodes::_if_icmpge:
duke@435 539 case Bytecodes::_if_icmpgt:
duke@435 540 case Bytecodes::_if_icmple:
duke@435 541 case Bytecodes::_if_acmpeq:
duke@435 542 case Bytecodes::_if_acmpne:
duke@435 543 case Bytecodes::_ifnull:
duke@435 544 case Bytecodes::_ifnonnull:
duke@435 545 return BranchData::static_cell_count();
duke@435 546 case Bytecodes::_lookupswitch:
duke@435 547 case Bytecodes::_tableswitch:
duke@435 548 return variable_cell_count;
duke@435 549 }
duke@435 550 return no_profile_data;
duke@435 551 }
duke@435 552
duke@435 553 // Compute the size of the profiling information corresponding to
duke@435 554 // the current bytecode.
duke@435 555 int methodDataOopDesc::compute_data_size(BytecodeStream* stream) {
duke@435 556 int cell_count = bytecode_cell_count(stream->code());
duke@435 557 if (cell_count == no_profile_data) {
duke@435 558 return 0;
duke@435 559 }
duke@435 560 if (cell_count == variable_cell_count) {
duke@435 561 cell_count = MultiBranchData::compute_cell_count(stream);
duke@435 562 }
duke@435 563 // Note: cell_count might be zero, meaning that there is just
duke@435 564 // a DataLayout header, with no extra cells.
duke@435 565 assert(cell_count >= 0, "sanity");
duke@435 566 return DataLayout::compute_size_in_bytes(cell_count);
duke@435 567 }
duke@435 568
duke@435 569 int methodDataOopDesc::compute_extra_data_count(int data_size, int empty_bc_count) {
duke@435 570 if (ProfileTraps) {
duke@435 571 // Assume that up to 3% of BCIs with no MDP will need to allocate one.
duke@435 572 int extra_data_count = (uint)(empty_bc_count * 3) / 128 + 1;
duke@435 573 // If the method is large, let the extra BCIs grow numerous (to ~1%).
duke@435 574 int one_percent_of_data
duke@435 575 = (uint)data_size / (DataLayout::header_size_in_bytes()*128);
duke@435 576 if (extra_data_count < one_percent_of_data)
duke@435 577 extra_data_count = one_percent_of_data;
duke@435 578 if (extra_data_count > empty_bc_count)
duke@435 579 extra_data_count = empty_bc_count; // no need for more
duke@435 580 return extra_data_count;
duke@435 581 } else {
duke@435 582 return 0;
duke@435 583 }
duke@435 584 }
duke@435 585
duke@435 586 // Compute the size of the methodDataOop necessary to store
duke@435 587 // profiling information about a given method. Size is in bytes.
duke@435 588 int methodDataOopDesc::compute_allocation_size_in_bytes(methodHandle method) {
duke@435 589 int data_size = 0;
duke@435 590 BytecodeStream stream(method);
duke@435 591 Bytecodes::Code c;
duke@435 592 int empty_bc_count = 0; // number of bytecodes lacking data
duke@435 593 while ((c = stream.next()) >= 0) {
duke@435 594 int size_in_bytes = compute_data_size(&stream);
duke@435 595 data_size += size_in_bytes;
duke@435 596 if (size_in_bytes == 0) empty_bc_count += 1;
duke@435 597 }
duke@435 598 int object_size = in_bytes(data_offset()) + data_size;
duke@435 599
duke@435 600 // Add some extra DataLayout cells (at least one) to track stray traps.
duke@435 601 int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
duke@435 602 object_size += extra_data_count * DataLayout::compute_size_in_bytes(0);
duke@435 603
kvn@480 604 // Add a cell to record information about modified arguments.
kvn@480 605 int arg_size = method->size_of_parameters();
kvn@480 606 object_size += DataLayout::compute_size_in_bytes(arg_size+1);
duke@435 607 return object_size;
duke@435 608 }
duke@435 609
duke@435 610 // Compute the size of the methodDataOop necessary to store
duke@435 611 // profiling information about a given method. Size is in words
duke@435 612 int methodDataOopDesc::compute_allocation_size_in_words(methodHandle method) {
duke@435 613 int byte_size = compute_allocation_size_in_bytes(method);
duke@435 614 int word_size = align_size_up(byte_size, BytesPerWord) / BytesPerWord;
duke@435 615 return align_object_size(word_size);
duke@435 616 }
duke@435 617
duke@435 618 // Initialize an individual data segment. Returns the size of
duke@435 619 // the segment in bytes.
duke@435 620 int methodDataOopDesc::initialize_data(BytecodeStream* stream,
duke@435 621 int data_index) {
duke@435 622 int cell_count = -1;
duke@435 623 int tag = DataLayout::no_tag;
duke@435 624 DataLayout* data_layout = data_layout_at(data_index);
duke@435 625 Bytecodes::Code c = stream->code();
duke@435 626 switch (c) {
duke@435 627 case Bytecodes::_checkcast:
duke@435 628 case Bytecodes::_instanceof:
duke@435 629 case Bytecodes::_aastore:
duke@435 630 if (TypeProfileCasts) {
duke@435 631 cell_count = ReceiverTypeData::static_cell_count();
duke@435 632 tag = DataLayout::receiver_type_data_tag;
duke@435 633 } else {
duke@435 634 cell_count = BitData::static_cell_count();
duke@435 635 tag = DataLayout::bit_data_tag;
duke@435 636 }
duke@435 637 break;
duke@435 638 case Bytecodes::_invokespecial:
duke@435 639 case Bytecodes::_invokestatic:
duke@435 640 cell_count = CounterData::static_cell_count();
duke@435 641 tag = DataLayout::counter_data_tag;
duke@435 642 break;
duke@435 643 case Bytecodes::_goto:
duke@435 644 case Bytecodes::_goto_w:
duke@435 645 case Bytecodes::_jsr:
duke@435 646 case Bytecodes::_jsr_w:
duke@435 647 cell_count = JumpData::static_cell_count();
duke@435 648 tag = DataLayout::jump_data_tag;
duke@435 649 break;
duke@435 650 case Bytecodes::_invokevirtual:
duke@435 651 case Bytecodes::_invokeinterface:
duke@435 652 cell_count = VirtualCallData::static_cell_count();
duke@435 653 tag = DataLayout::virtual_call_data_tag;
duke@435 654 break;
jrose@1161 655 case Bytecodes::_invokedynamic:
jrose@1161 656 // %%% should make a type profile for any invokedynamic that takes a ref argument
jrose@1161 657 cell_count = CounterData::static_cell_count();
jrose@1161 658 tag = DataLayout::counter_data_tag;
jrose@1161 659 break;
duke@435 660 case Bytecodes::_ret:
duke@435 661 cell_count = RetData::static_cell_count();
duke@435 662 tag = DataLayout::ret_data_tag;
duke@435 663 break;
duke@435 664 case Bytecodes::_ifeq:
duke@435 665 case Bytecodes::_ifne:
duke@435 666 case Bytecodes::_iflt:
duke@435 667 case Bytecodes::_ifge:
duke@435 668 case Bytecodes::_ifgt:
duke@435 669 case Bytecodes::_ifle:
duke@435 670 case Bytecodes::_if_icmpeq:
duke@435 671 case Bytecodes::_if_icmpne:
duke@435 672 case Bytecodes::_if_icmplt:
duke@435 673 case Bytecodes::_if_icmpge:
duke@435 674 case Bytecodes::_if_icmpgt:
duke@435 675 case Bytecodes::_if_icmple:
duke@435 676 case Bytecodes::_if_acmpeq:
duke@435 677 case Bytecodes::_if_acmpne:
duke@435 678 case Bytecodes::_ifnull:
duke@435 679 case Bytecodes::_ifnonnull:
duke@435 680 cell_count = BranchData::static_cell_count();
duke@435 681 tag = DataLayout::branch_data_tag;
duke@435 682 break;
duke@435 683 case Bytecodes::_lookupswitch:
duke@435 684 case Bytecodes::_tableswitch:
duke@435 685 cell_count = MultiBranchData::compute_cell_count(stream);
duke@435 686 tag = DataLayout::multi_branch_data_tag;
duke@435 687 break;
duke@435 688 }
duke@435 689 assert(tag == DataLayout::multi_branch_data_tag ||
duke@435 690 cell_count == bytecode_cell_count(c), "cell counts must agree");
duke@435 691 if (cell_count >= 0) {
duke@435 692 assert(tag != DataLayout::no_tag, "bad tag");
duke@435 693 assert(bytecode_has_profile(c), "agree w/ BHP");
duke@435 694 data_layout->initialize(tag, stream->bci(), cell_count);
duke@435 695 return DataLayout::compute_size_in_bytes(cell_count);
duke@435 696 } else {
duke@435 697 assert(!bytecode_has_profile(c), "agree w/ !BHP");
duke@435 698 return 0;
duke@435 699 }
duke@435 700 }
duke@435 701
duke@435 702 // Get the data at an arbitrary (sort of) data index.
duke@435 703 ProfileData* methodDataOopDesc::data_at(int data_index) {
duke@435 704 if (out_of_bounds(data_index)) {
duke@435 705 return NULL;
duke@435 706 }
duke@435 707 DataLayout* data_layout = data_layout_at(data_index);
ysr@1376 708 return data_layout->data_in();
ysr@1376 709 }
duke@435 710
ysr@1376 711 ProfileData* DataLayout::data_in() {
ysr@1376 712 switch (tag()) {
duke@435 713 case DataLayout::no_tag:
duke@435 714 default:
duke@435 715 ShouldNotReachHere();
duke@435 716 return NULL;
duke@435 717 case DataLayout::bit_data_tag:
ysr@1376 718 return new BitData(this);
duke@435 719 case DataLayout::counter_data_tag:
ysr@1376 720 return new CounterData(this);
duke@435 721 case DataLayout::jump_data_tag:
ysr@1376 722 return new JumpData(this);
duke@435 723 case DataLayout::receiver_type_data_tag:
ysr@1376 724 return new ReceiverTypeData(this);
duke@435 725 case DataLayout::virtual_call_data_tag:
ysr@1376 726 return new VirtualCallData(this);
duke@435 727 case DataLayout::ret_data_tag:
ysr@1376 728 return new RetData(this);
duke@435 729 case DataLayout::branch_data_tag:
ysr@1376 730 return new BranchData(this);
duke@435 731 case DataLayout::multi_branch_data_tag:
ysr@1376 732 return new MultiBranchData(this);
kvn@480 733 case DataLayout::arg_info_data_tag:
ysr@1376 734 return new ArgInfoData(this);
duke@435 735 };
duke@435 736 }
duke@435 737
duke@435 738 // Iteration over data.
duke@435 739 ProfileData* methodDataOopDesc::next_data(ProfileData* current) {
duke@435 740 int current_index = dp_to_di(current->dp());
duke@435 741 int next_index = current_index + current->size_in_bytes();
duke@435 742 ProfileData* next = data_at(next_index);
duke@435 743 return next;
duke@435 744 }
duke@435 745
duke@435 746 // Give each of the data entries a chance to perform specific
duke@435 747 // data initialization.
duke@435 748 void methodDataOopDesc::post_initialize(BytecodeStream* stream) {
duke@435 749 ResourceMark rm;
duke@435 750 ProfileData* data;
duke@435 751 for (data = first_data(); is_valid(data); data = next_data(data)) {
duke@435 752 stream->set_start(data->bci());
duke@435 753 stream->next();
duke@435 754 data->post_initialize(stream, this);
duke@435 755 }
duke@435 756 }
duke@435 757
duke@435 758 // Initialize the methodDataOop corresponding to a given method.
duke@435 759 void methodDataOopDesc::initialize(methodHandle method) {
duke@435 760 ResourceMark rm;
duke@435 761 // Set the method back-pointer.
duke@435 762 _method = method();
iveresov@2138 763
iveresov@2138 764 if (TieredCompilation) {
iveresov@2138 765 _invocation_counter.init();
iveresov@2138 766 _backedge_counter.init();
iveresov@2138 767 _num_loops = 0;
iveresov@2138 768 _num_blocks = 0;
iveresov@2138 769 _highest_comp_level = 0;
iveresov@2138 770 _highest_osr_comp_level = 0;
iveresov@2138 771 _would_profile = false;
iveresov@2138 772 }
duke@435 773 set_creation_mileage(mileage_of(method()));
duke@435 774
duke@435 775 // Initialize flags and trap history.
duke@435 776 _nof_decompiles = 0;
duke@435 777 _nof_overflow_recompiles = 0;
duke@435 778 _nof_overflow_traps = 0;
duke@435 779 assert(sizeof(_trap_hist) % sizeof(HeapWord) == 0, "align");
duke@435 780 Copy::zero_to_words((HeapWord*) &_trap_hist,
duke@435 781 sizeof(_trap_hist) / sizeof(HeapWord));
duke@435 782
duke@435 783 // Go through the bytecodes and allocate and initialize the
duke@435 784 // corresponding data cells.
duke@435 785 int data_size = 0;
duke@435 786 int empty_bc_count = 0; // number of bytecodes lacking data
duke@435 787 BytecodeStream stream(method);
duke@435 788 Bytecodes::Code c;
duke@435 789 while ((c = stream.next()) >= 0) {
duke@435 790 int size_in_bytes = initialize_data(&stream, data_size);
duke@435 791 data_size += size_in_bytes;
duke@435 792 if (size_in_bytes == 0) empty_bc_count += 1;
duke@435 793 }
duke@435 794 _data_size = data_size;
duke@435 795 int object_size = in_bytes(data_offset()) + data_size;
duke@435 796
duke@435 797 // Add some extra DataLayout cells (at least one) to track stray traps.
duke@435 798 int extra_data_count = compute_extra_data_count(data_size, empty_bc_count);
kvn@480 799 int extra_size = extra_data_count * DataLayout::compute_size_in_bytes(0);
kvn@480 800
kvn@480 801 // Add a cell to record information about modified arguments.
kvn@480 802 // Set up _args_modified array after traps cells so that
kvn@480 803 // the code for traps cells works.
kvn@480 804 DataLayout *dp = data_layout_at(data_size + extra_size);
kvn@480 805
kvn@480 806 int arg_size = method->size_of_parameters();
kvn@480 807 dp->initialize(DataLayout::arg_info_data_tag, 0, arg_size+1);
kvn@480 808
kvn@480 809 object_size += extra_size + DataLayout::compute_size_in_bytes(arg_size+1);
duke@435 810
duke@435 811 // Set an initial hint. Don't use set_hint_di() because
duke@435 812 // first_di() may be out of bounds if data_size is 0.
duke@435 813 // In that situation, _hint_di is never used, but at
duke@435 814 // least well-defined.
duke@435 815 _hint_di = first_di();
duke@435 816
duke@435 817 post_initialize(&stream);
duke@435 818
duke@435 819 set_object_is_parsable(object_size);
duke@435 820 }
duke@435 821
duke@435 822 // Get a measure of how much mileage the method has on it.
duke@435 823 int methodDataOopDesc::mileage_of(methodOop method) {
duke@435 824 int mileage = 0;
iveresov@2138 825 if (TieredCompilation) {
iveresov@2138 826 mileage = MAX2(method->invocation_count(), method->backedge_count());
iveresov@2138 827 } else {
iveresov@2138 828 int iic = method->interpreter_invocation_count();
iveresov@2138 829 if (mileage < iic) mileage = iic;
iveresov@2138 830 InvocationCounter* ic = method->invocation_counter();
iveresov@2138 831 InvocationCounter* bc = method->backedge_counter();
iveresov@2138 832 int icval = ic->count();
iveresov@2138 833 if (ic->carry()) icval += CompileThreshold;
iveresov@2138 834 if (mileage < icval) mileage = icval;
iveresov@2138 835 int bcval = bc->count();
iveresov@2138 836 if (bc->carry()) bcval += CompileThreshold;
iveresov@2138 837 if (mileage < bcval) mileage = bcval;
iveresov@2138 838 }
duke@435 839 return mileage;
duke@435 840 }
duke@435 841
duke@435 842 bool methodDataOopDesc::is_mature() const {
iveresov@2138 843 return CompilationPolicy::policy()->is_mature(_method);
duke@435 844 }
duke@435 845
duke@435 846 // Translate a bci to its corresponding data index (di).
duke@435 847 address methodDataOopDesc::bci_to_dp(int bci) {
duke@435 848 ResourceMark rm;
duke@435 849 ProfileData* data = data_before(bci);
duke@435 850 ProfileData* prev = NULL;
duke@435 851 for ( ; is_valid(data); data = next_data(data)) {
duke@435 852 if (data->bci() >= bci) {
duke@435 853 if (data->bci() == bci) set_hint_di(dp_to_di(data->dp()));
duke@435 854 else if (prev != NULL) set_hint_di(dp_to_di(prev->dp()));
duke@435 855 return data->dp();
duke@435 856 }
duke@435 857 prev = data;
duke@435 858 }
duke@435 859 return (address)limit_data_position();
duke@435 860 }
duke@435 861
duke@435 862 // Translate a bci to its corresponding data, or NULL.
duke@435 863 ProfileData* methodDataOopDesc::bci_to_data(int bci) {
duke@435 864 ProfileData* data = data_before(bci);
duke@435 865 for ( ; is_valid(data); data = next_data(data)) {
duke@435 866 if (data->bci() == bci) {
duke@435 867 set_hint_di(dp_to_di(data->dp()));
duke@435 868 return data;
duke@435 869 } else if (data->bci() > bci) {
duke@435 870 break;
duke@435 871 }
duke@435 872 }
duke@435 873 return bci_to_extra_data(bci, false);
duke@435 874 }
duke@435 875
duke@435 876 // Translate a bci to its corresponding extra data, or NULL.
duke@435 877 ProfileData* methodDataOopDesc::bci_to_extra_data(int bci, bool create_if_missing) {
duke@435 878 DataLayout* dp = extra_data_base();
duke@435 879 DataLayout* end = extra_data_limit();
duke@435 880 DataLayout* avail = NULL;
duke@435 881 for (; dp < end; dp = next_extra(dp)) {
duke@435 882 // No need for "OrderAccess::load_acquire" ops,
duke@435 883 // since the data structure is monotonic.
duke@435 884 if (dp->tag() == DataLayout::no_tag) break;
kvn@480 885 if (dp->tag() == DataLayout::arg_info_data_tag) {
kvn@480 886 dp = end; // ArgInfoData is at the end of extra data section.
kvn@480 887 break;
kvn@480 888 }
duke@435 889 if (dp->bci() == bci) {
duke@435 890 assert(dp->tag() == DataLayout::bit_data_tag, "sane");
duke@435 891 return new BitData(dp);
duke@435 892 }
duke@435 893 }
duke@435 894 if (create_if_missing && dp < end) {
duke@435 895 // Allocate this one. There is no mutual exclusion,
duke@435 896 // so two threads could allocate different BCIs to the
duke@435 897 // same data layout. This means these extra data
duke@435 898 // records, like most other MDO contents, must not be
duke@435 899 // trusted too much.
duke@435 900 DataLayout temp;
duke@435 901 temp.initialize(DataLayout::bit_data_tag, bci, 0);
duke@435 902 dp->release_set_header(temp.header());
duke@435 903 assert(dp->tag() == DataLayout::bit_data_tag, "sane");
duke@435 904 //NO: assert(dp->bci() == bci, "no concurrent allocation");
duke@435 905 return new BitData(dp);
duke@435 906 }
duke@435 907 return NULL;
duke@435 908 }
duke@435 909
kvn@480 910 ArgInfoData *methodDataOopDesc::arg_info() {
kvn@480 911 DataLayout* dp = extra_data_base();
kvn@480 912 DataLayout* end = extra_data_limit();
kvn@480 913 for (; dp < end; dp = next_extra(dp)) {
kvn@480 914 if (dp->tag() == DataLayout::arg_info_data_tag)
kvn@480 915 return new ArgInfoData(dp);
kvn@480 916 }
kvn@480 917 return NULL;
kvn@480 918 }
kvn@480 919
duke@435 920 #ifndef PRODUCT
duke@435 921 void methodDataOopDesc::print_data_on(outputStream* st) {
duke@435 922 ResourceMark rm;
duke@435 923 ProfileData* data = first_data();
duke@435 924 for ( ; is_valid(data); data = next_data(data)) {
duke@435 925 st->print("%d", dp_to_di(data->dp()));
duke@435 926 st->fill_to(6);
duke@435 927 data->print_data_on(st);
duke@435 928 }
kvn@480 929 st->print_cr("--- Extra data:");
duke@435 930 DataLayout* dp = extra_data_base();
duke@435 931 DataLayout* end = extra_data_limit();
duke@435 932 for (; dp < end; dp = next_extra(dp)) {
duke@435 933 // No need for "OrderAccess::load_acquire" ops,
duke@435 934 // since the data structure is monotonic.
kvn@480 935 if (dp->tag() == DataLayout::no_tag) continue;
kvn@480 936 if (dp->tag() == DataLayout::bit_data_tag) {
kvn@480 937 data = new BitData(dp);
kvn@480 938 } else {
kvn@480 939 assert(dp->tag() == DataLayout::arg_info_data_tag, "must be BitData or ArgInfo");
kvn@480 940 data = new ArgInfoData(dp);
kvn@480 941 dp = end; // ArgInfoData is at the end of extra data section.
kvn@480 942 }
duke@435 943 st->print("%d", dp_to_di(data->dp()));
duke@435 944 st->fill_to(6);
duke@435 945 data->print_data_on(st);
duke@435 946 }
duke@435 947 }
duke@435 948 #endif
duke@435 949
duke@435 950 void methodDataOopDesc::verify_data_on(outputStream* st) {
duke@435 951 NEEDS_CLEANUP;
duke@435 952 // not yet implemented.
duke@435 953 }

mercurial