src/cpu/x86/vm/assembler_x86.hpp

Thu, 12 Mar 2009 18:16:36 -0700

author
trims
date
Thu, 12 Mar 2009 18:16:36 -0700
changeset 1063
7bb995fbd3c0
parent 1059
337400e7a5dd
child 1077
660978a2a31a
permissions
-rw-r--r--

Merge

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 class BiasedLockingCounters;
duke@435 26
duke@435 27 // Contains all the definitions needed for x86 assembly code generation.
duke@435 28
duke@435 29 // Calling convention
duke@435 30 class Argument VALUE_OBJ_CLASS_SPEC {
duke@435 31 public:
duke@435 32 enum {
duke@435 33 #ifdef _LP64
duke@435 34 #ifdef _WIN64
duke@435 35 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 36 n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
duke@435 37 #else
duke@435 38 n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
duke@435 39 n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
duke@435 40 #endif // _WIN64
duke@435 41 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
duke@435 42 n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
duke@435 43 #else
duke@435 44 n_register_parameters = 0 // 0 registers used to pass arguments
duke@435 45 #endif // _LP64
duke@435 46 };
duke@435 47 };
duke@435 48
duke@435 49
duke@435 50 #ifdef _LP64
duke@435 51 // Symbolically name the register arguments used by the c calling convention.
duke@435 52 // Windows is different from linux/solaris. So much for standards...
duke@435 53
duke@435 54 #ifdef _WIN64
duke@435 55
duke@435 56 REGISTER_DECLARATION(Register, c_rarg0, rcx);
duke@435 57 REGISTER_DECLARATION(Register, c_rarg1, rdx);
duke@435 58 REGISTER_DECLARATION(Register, c_rarg2, r8);
duke@435 59 REGISTER_DECLARATION(Register, c_rarg3, r9);
duke@435 60
never@739 61 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 62 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 63 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 64 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
duke@435 65
duke@435 66 #else
duke@435 67
duke@435 68 REGISTER_DECLARATION(Register, c_rarg0, rdi);
duke@435 69 REGISTER_DECLARATION(Register, c_rarg1, rsi);
duke@435 70 REGISTER_DECLARATION(Register, c_rarg2, rdx);
duke@435 71 REGISTER_DECLARATION(Register, c_rarg3, rcx);
duke@435 72 REGISTER_DECLARATION(Register, c_rarg4, r8);
duke@435 73 REGISTER_DECLARATION(Register, c_rarg5, r9);
duke@435 74
never@739 75 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
never@739 76 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
never@739 77 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
never@739 78 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
never@739 79 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
never@739 80 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
never@739 81 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
never@739 82 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
duke@435 83
duke@435 84 #endif // _WIN64
duke@435 85
duke@435 86 // Symbolically name the register arguments used by the Java calling convention.
duke@435 87 // We have control over the convention for java so we can do what we please.
duke@435 88 // What pleases us is to offset the java calling convention so that when
duke@435 89 // we call a suitable jni method the arguments are lined up and we don't
duke@435 90 // have to do little shuffling. A suitable jni method is non-static and a
duke@435 91 // small number of arguments (two fewer args on windows)
duke@435 92 //
duke@435 93 // |-------------------------------------------------------|
duke@435 94 // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
duke@435 95 // |-------------------------------------------------------|
duke@435 96 // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
duke@435 97 // | rdi rsi rdx rcx r8 r9 | solaris/linux
duke@435 98 // |-------------------------------------------------------|
duke@435 99 // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
duke@435 100 // |-------------------------------------------------------|
duke@435 101
duke@435 102 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
duke@435 103 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
duke@435 104 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
duke@435 105 // Windows runs out of register args here
duke@435 106 #ifdef _WIN64
duke@435 107 REGISTER_DECLARATION(Register, j_rarg3, rdi);
duke@435 108 REGISTER_DECLARATION(Register, j_rarg4, rsi);
duke@435 109 #else
duke@435 110 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
duke@435 111 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
duke@435 112 #endif /* _WIN64 */
duke@435 113 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
duke@435 114
never@739 115 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
never@739 116 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
never@739 117 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
never@739 118 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
never@739 119 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
never@739 120 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
never@739 121 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
never@739 122 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
duke@435 123
duke@435 124 REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
duke@435 125 REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
duke@435 126
never@739 127 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
duke@435 128 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
duke@435 129
never@739 130 #else
never@739 131 // rscratch1 will apear in 32bit code that is dead but of course must compile
never@739 132 // Using noreg ensures if the dead code is incorrectly live and executed it
never@739 133 // will cause an assertion failure
never@739 134 #define rscratch1 noreg
never@739 135
duke@435 136 #endif // _LP64
duke@435 137
duke@435 138 // Address is an abstraction used to represent a memory location
duke@435 139 // using any of the amd64 addressing modes with one object.
duke@435 140 //
duke@435 141 // Note: A register location is represented via a Register, not
duke@435 142 // via an address for efficiency & simplicity reasons.
duke@435 143
duke@435 144 class ArrayAddress;
duke@435 145
duke@435 146 class Address VALUE_OBJ_CLASS_SPEC {
duke@435 147 public:
duke@435 148 enum ScaleFactor {
duke@435 149 no_scale = -1,
duke@435 150 times_1 = 0,
duke@435 151 times_2 = 1,
duke@435 152 times_4 = 2,
never@739 153 times_8 = 3,
never@739 154 times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
duke@435 155 };
jrose@1057 156 static ScaleFactor times(int size) {
jrose@1057 157 assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
jrose@1057 158 if (size == 8) return times_8;
jrose@1057 159 if (size == 4) return times_4;
jrose@1057 160 if (size == 2) return times_2;
jrose@1057 161 return times_1;
jrose@1057 162 }
jrose@1057 163 static int scale_size(ScaleFactor scale) {
jrose@1057 164 assert(scale != no_scale, "");
jrose@1057 165 assert(((1 << (int)times_1) == 1 &&
jrose@1057 166 (1 << (int)times_2) == 2 &&
jrose@1057 167 (1 << (int)times_4) == 4 &&
jrose@1057 168 (1 << (int)times_8) == 8), "");
jrose@1057 169 return (1 << (int)scale);
jrose@1057 170 }
duke@435 171
duke@435 172 private:
duke@435 173 Register _base;
duke@435 174 Register _index;
duke@435 175 ScaleFactor _scale;
duke@435 176 int _disp;
duke@435 177 RelocationHolder _rspec;
duke@435 178
never@739 179 // Easily misused constructors make them private
never@739 180 // %%% can we make these go away?
never@739 181 NOT_LP64(Address(address loc, RelocationHolder spec);)
never@739 182 Address(int disp, address loc, relocInfo::relocType rtype);
never@739 183 Address(int disp, address loc, RelocationHolder spec);
duke@435 184
duke@435 185 public:
never@739 186
never@739 187 int disp() { return _disp; }
duke@435 188 // creation
duke@435 189 Address()
duke@435 190 : _base(noreg),
duke@435 191 _index(noreg),
duke@435 192 _scale(no_scale),
duke@435 193 _disp(0) {
duke@435 194 }
duke@435 195
duke@435 196 // No default displacement otherwise Register can be implicitly
duke@435 197 // converted to 0(Register) which is quite a different animal.
duke@435 198
duke@435 199 Address(Register base, int disp)
duke@435 200 : _base(base),
duke@435 201 _index(noreg),
duke@435 202 _scale(no_scale),
duke@435 203 _disp(disp) {
duke@435 204 }
duke@435 205
duke@435 206 Address(Register base, Register index, ScaleFactor scale, int disp = 0)
duke@435 207 : _base (base),
duke@435 208 _index(index),
duke@435 209 _scale(scale),
duke@435 210 _disp (disp) {
duke@435 211 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 212 "inconsistent address");
duke@435 213 }
duke@435 214
jrose@1057 215 Address(Register base, RegisterConstant index, ScaleFactor scale = times_1, int disp = 0)
jrose@1057 216 : _base (base),
jrose@1057 217 _index(index.register_or_noreg()),
jrose@1057 218 _scale(scale),
jrose@1057 219 _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 220 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 221 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 222 "inconsistent address");
jrose@1057 223 }
jrose@1057 224
jrose@1057 225 Address plus_disp(int disp) const {
jrose@1057 226 Address a = (*this);
jrose@1057 227 a._disp += disp;
jrose@1057 228 return a;
jrose@1057 229 }
jrose@1057 230
duke@435 231 // The following two overloads are used in connection with the
duke@435 232 // ByteSize type (see sizes.hpp). They simplify the use of
duke@435 233 // ByteSize'd arguments in assembly code. Note that their equivalent
duke@435 234 // for the optimized build are the member functions with int disp
duke@435 235 // argument since ByteSize is mapped to an int type in that case.
duke@435 236 //
duke@435 237 // Note: DO NOT introduce similar overloaded functions for WordSize
duke@435 238 // arguments as in the optimized mode, both ByteSize and WordSize
duke@435 239 // are mapped to the same type and thus the compiler cannot make a
duke@435 240 // distinction anymore (=> compiler errors).
duke@435 241
duke@435 242 #ifdef ASSERT
duke@435 243 Address(Register base, ByteSize disp)
duke@435 244 : _base(base),
duke@435 245 _index(noreg),
duke@435 246 _scale(no_scale),
duke@435 247 _disp(in_bytes(disp)) {
duke@435 248 }
duke@435 249
duke@435 250 Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
duke@435 251 : _base(base),
duke@435 252 _index(index),
duke@435 253 _scale(scale),
duke@435 254 _disp(in_bytes(disp)) {
duke@435 255 assert(!index->is_valid() == (scale == Address::no_scale),
duke@435 256 "inconsistent address");
duke@435 257 }
jrose@1057 258
jrose@1057 259 Address(Register base, RegisterConstant index, ScaleFactor scale, ByteSize disp)
jrose@1057 260 : _base (base),
jrose@1057 261 _index(index.register_or_noreg()),
jrose@1057 262 _scale(scale),
jrose@1057 263 _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
jrose@1057 264 if (!index.is_register()) scale = Address::no_scale;
jrose@1057 265 assert(!_index->is_valid() == (scale == Address::no_scale),
jrose@1057 266 "inconsistent address");
jrose@1057 267 }
jrose@1057 268
duke@435 269 #endif // ASSERT
duke@435 270
duke@435 271 // accessors
ysr@777 272 bool uses(Register reg) const { return _base == reg || _index == reg; }
ysr@777 273 Register base() const { return _base; }
ysr@777 274 Register index() const { return _index; }
ysr@777 275 ScaleFactor scale() const { return _scale; }
ysr@777 276 int disp() const { return _disp; }
duke@435 277
duke@435 278 // Convert the raw encoding form into the form expected by the constructor for
duke@435 279 // Address. An index of 4 (rsp) corresponds to having no index, so convert
duke@435 280 // that to noreg for the Address constructor.
twisti@1059 281 static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
duke@435 282
duke@435 283 static Address make_array(ArrayAddress);
duke@435 284
duke@435 285 private:
duke@435 286 bool base_needs_rex() const {
duke@435 287 return _base != noreg && _base->encoding() >= 8;
duke@435 288 }
duke@435 289
duke@435 290 bool index_needs_rex() const {
duke@435 291 return _index != noreg &&_index->encoding() >= 8;
duke@435 292 }
duke@435 293
duke@435 294 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 295
duke@435 296 friend class Assembler;
duke@435 297 friend class MacroAssembler;
duke@435 298 friend class LIR_Assembler; // base/index/scale/disp
duke@435 299 };
duke@435 300
duke@435 301 //
duke@435 302 // AddressLiteral has been split out from Address because operands of this type
duke@435 303 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
duke@435 304 // the few instructions that need to deal with address literals are unique and the
duke@435 305 // MacroAssembler does not have to implement every instruction in the Assembler
duke@435 306 // in order to search for address literals that may need special handling depending
duke@435 307 // on the instruction and the platform. As small step on the way to merging i486/amd64
duke@435 308 // directories.
duke@435 309 //
duke@435 310 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
duke@435 311 friend class ArrayAddress;
duke@435 312 RelocationHolder _rspec;
duke@435 313 // Typically we use AddressLiterals we want to use their rval
duke@435 314 // However in some situations we want the lval (effect address) of the item.
duke@435 315 // We provide a special factory for making those lvals.
duke@435 316 bool _is_lval;
duke@435 317
duke@435 318 // If the target is far we'll need to load the ea of this to
duke@435 319 // a register to reach it. Otherwise if near we can do rip
duke@435 320 // relative addressing.
duke@435 321
duke@435 322 address _target;
duke@435 323
duke@435 324 protected:
duke@435 325 // creation
duke@435 326 AddressLiteral()
duke@435 327 : _is_lval(false),
duke@435 328 _target(NULL)
duke@435 329 {}
duke@435 330
duke@435 331 public:
duke@435 332
duke@435 333
duke@435 334 AddressLiteral(address target, relocInfo::relocType rtype);
duke@435 335
duke@435 336 AddressLiteral(address target, RelocationHolder const& rspec)
duke@435 337 : _rspec(rspec),
duke@435 338 _is_lval(false),
duke@435 339 _target(target)
duke@435 340 {}
duke@435 341
duke@435 342 AddressLiteral addr() {
duke@435 343 AddressLiteral ret = *this;
duke@435 344 ret._is_lval = true;
duke@435 345 return ret;
duke@435 346 }
duke@435 347
duke@435 348
duke@435 349 private:
duke@435 350
duke@435 351 address target() { return _target; }
duke@435 352 bool is_lval() { return _is_lval; }
duke@435 353
duke@435 354 relocInfo::relocType reloc() const { return _rspec.type(); }
duke@435 355 const RelocationHolder& rspec() const { return _rspec; }
duke@435 356
duke@435 357 friend class Assembler;
duke@435 358 friend class MacroAssembler;
duke@435 359 friend class Address;
duke@435 360 friend class LIR_Assembler;
duke@435 361 };
duke@435 362
duke@435 363 // Convience classes
duke@435 364 class RuntimeAddress: public AddressLiteral {
duke@435 365
duke@435 366 public:
duke@435 367
duke@435 368 RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
duke@435 369
duke@435 370 };
duke@435 371
duke@435 372 class OopAddress: public AddressLiteral {
duke@435 373
duke@435 374 public:
duke@435 375
duke@435 376 OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
duke@435 377
duke@435 378 };
duke@435 379
duke@435 380 class ExternalAddress: public AddressLiteral {
duke@435 381
duke@435 382 public:
duke@435 383
duke@435 384 ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
duke@435 385
duke@435 386 };
duke@435 387
duke@435 388 class InternalAddress: public AddressLiteral {
duke@435 389
duke@435 390 public:
duke@435 391
duke@435 392 InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
duke@435 393
duke@435 394 };
duke@435 395
duke@435 396 // x86 can do array addressing as a single operation since disp can be an absolute
duke@435 397 // address amd64 can't. We create a class that expresses the concept but does extra
duke@435 398 // magic on amd64 to get the final result
duke@435 399
duke@435 400 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
duke@435 401 private:
duke@435 402
duke@435 403 AddressLiteral _base;
duke@435 404 Address _index;
duke@435 405
duke@435 406 public:
duke@435 407
duke@435 408 ArrayAddress() {};
duke@435 409 ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
duke@435 410 AddressLiteral base() { return _base; }
duke@435 411 Address index() { return _index; }
duke@435 412
duke@435 413 };
duke@435 414
never@739 415 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
duke@435 416
duke@435 417 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
duke@435 418 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
duke@435 419 // is what you get. The Assembler is generating code into a CodeBuffer.
duke@435 420
duke@435 421 class Assembler : public AbstractAssembler {
duke@435 422 friend class AbstractAssembler; // for the non-virtual hack
duke@435 423 friend class LIR_Assembler; // as_Address()
never@739 424 friend class StubGenerator;
duke@435 425
duke@435 426 public:
duke@435 427 enum Condition { // The x86 condition codes used for conditional jumps/moves.
duke@435 428 zero = 0x4,
duke@435 429 notZero = 0x5,
duke@435 430 equal = 0x4,
duke@435 431 notEqual = 0x5,
duke@435 432 less = 0xc,
duke@435 433 lessEqual = 0xe,
duke@435 434 greater = 0xf,
duke@435 435 greaterEqual = 0xd,
duke@435 436 below = 0x2,
duke@435 437 belowEqual = 0x6,
duke@435 438 above = 0x7,
duke@435 439 aboveEqual = 0x3,
duke@435 440 overflow = 0x0,
duke@435 441 noOverflow = 0x1,
duke@435 442 carrySet = 0x2,
duke@435 443 carryClear = 0x3,
duke@435 444 negative = 0x8,
duke@435 445 positive = 0x9,
duke@435 446 parity = 0xa,
duke@435 447 noParity = 0xb
duke@435 448 };
duke@435 449
duke@435 450 enum Prefix {
duke@435 451 // segment overrides
duke@435 452 CS_segment = 0x2e,
duke@435 453 SS_segment = 0x36,
duke@435 454 DS_segment = 0x3e,
duke@435 455 ES_segment = 0x26,
duke@435 456 FS_segment = 0x64,
duke@435 457 GS_segment = 0x65,
duke@435 458
duke@435 459 REX = 0x40,
duke@435 460
duke@435 461 REX_B = 0x41,
duke@435 462 REX_X = 0x42,
duke@435 463 REX_XB = 0x43,
duke@435 464 REX_R = 0x44,
duke@435 465 REX_RB = 0x45,
duke@435 466 REX_RX = 0x46,
duke@435 467 REX_RXB = 0x47,
duke@435 468
duke@435 469 REX_W = 0x48,
duke@435 470
duke@435 471 REX_WB = 0x49,
duke@435 472 REX_WX = 0x4A,
duke@435 473 REX_WXB = 0x4B,
duke@435 474 REX_WR = 0x4C,
duke@435 475 REX_WRB = 0x4D,
duke@435 476 REX_WRX = 0x4E,
duke@435 477 REX_WRXB = 0x4F
duke@435 478 };
duke@435 479
duke@435 480 enum WhichOperand {
duke@435 481 // input to locate_operand, and format code for relocations
never@739 482 imm_operand = 0, // embedded 32-bit|64-bit immediate operand
duke@435 483 disp32_operand = 1, // embedded 32-bit displacement or address
duke@435 484 call32_operand = 2, // embedded 32-bit self-relative displacement
never@739 485 #ifndef _LP64
duke@435 486 _WhichOperand_limit = 3
never@739 487 #else
never@739 488 narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
never@739 489 _WhichOperand_limit = 4
never@739 490 #endif
duke@435 491 };
duke@435 492
never@739 493
never@739 494
never@739 495 // NOTE: The general philopsophy of the declarations here is that 64bit versions
never@739 496 // of instructions are freely declared without the need for wrapping them an ifdef.
never@739 497 // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
never@739 498 // In the .cpp file the implementations are wrapped so that they are dropped out
never@739 499 // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
never@739 500 // to the size it was prior to merging up the 32bit and 64bit assemblers.
never@739 501 //
never@739 502 // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
never@739 503 // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
never@739 504
never@739 505 private:
never@739 506
never@739 507
never@739 508 // 64bit prefixes
never@739 509 int prefix_and_encode(int reg_enc, bool byteinst = false);
never@739 510 int prefixq_and_encode(int reg_enc);
never@739 511
never@739 512 int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
never@739 513 int prefixq_and_encode(int dst_enc, int src_enc);
never@739 514
never@739 515 void prefix(Register reg);
never@739 516 void prefix(Address adr);
never@739 517 void prefixq(Address adr);
never@739 518
never@739 519 void prefix(Address adr, Register reg, bool byteinst = false);
never@739 520 void prefixq(Address adr, Register reg);
never@739 521
never@739 522 void prefix(Address adr, XMMRegister reg);
never@739 523
never@739 524 void prefetch_prefix(Address src);
never@739 525
never@739 526 // Helper functions for groups of instructions
never@739 527 void emit_arith_b(int op1, int op2, Register dst, int imm8);
never@739 528
never@739 529 void emit_arith(int op1, int op2, Register dst, int32_t imm32);
never@739 530 // only 32bit??
never@739 531 void emit_arith(int op1, int op2, Register dst, jobject obj);
never@739 532 void emit_arith(int op1, int op2, Register dst, Register src);
never@739 533
never@739 534 void emit_operand(Register reg,
never@739 535 Register base, Register index, Address::ScaleFactor scale,
never@739 536 int disp,
never@739 537 RelocationHolder const& rspec,
never@739 538 int rip_relative_correction = 0);
never@739 539
never@739 540 void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
never@739 541
never@739 542 // operands that only take the original 32bit registers
never@739 543 void emit_operand32(Register reg, Address adr);
never@739 544
never@739 545 void emit_operand(XMMRegister reg,
never@739 546 Register base, Register index, Address::ScaleFactor scale,
never@739 547 int disp,
never@739 548 RelocationHolder const& rspec);
never@739 549
never@739 550 void emit_operand(XMMRegister reg, Address adr);
never@739 551
never@739 552 void emit_operand(MMXRegister reg, Address adr);
never@739 553
never@739 554 // workaround gcc (3.2.1-7) bug
never@739 555 void emit_operand(Address adr, MMXRegister reg);
never@739 556
never@739 557
never@739 558 // Immediate-to-memory forms
never@739 559 void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
never@739 560
never@739 561 void emit_farith(int b1, int b2, int i);
never@739 562
duke@435 563
duke@435 564 protected:
never@739 565 #ifdef ASSERT
never@739 566 void check_relocation(RelocationHolder const& rspec, int format);
never@739 567 #endif
never@739 568
never@739 569 inline void emit_long64(jlong x);
never@739 570
never@739 571 void emit_data(jint data, relocInfo::relocType rtype, int format);
never@739 572 void emit_data(jint data, RelocationHolder const& rspec, int format);
never@739 573 void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
never@739 574 void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
never@739 575
never@739 576
never@739 577 bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
never@739 578
never@739 579 // These are all easily abused and hence protected
never@739 580
never@739 581 void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format = 0);
never@739 582
never@739 583 // 32BIT ONLY SECTION
never@739 584 #ifndef _LP64
never@739 585 // Make these disappear in 64bit mode since they would never be correct
never@739 586 void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 587 void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 588
never@739 589 void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 590
never@739 591 void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
never@739 592 #else
never@739 593 // 64BIT ONLY SECTION
never@739 594 void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
never@739 595 #endif // _LP64
never@739 596
never@739 597 // These are unique in that we are ensured by the caller that the 32bit
never@739 598 // relative in these instructions will always be able to reach the potentially
never@739 599 // 64bit address described by entry. Since they can take a 64bit address they
never@739 600 // don't have the 32 suffix like the other instructions in this class.
never@739 601
never@739 602 void call_literal(address entry, RelocationHolder const& rspec);
never@739 603 void jmp_literal(address entry, RelocationHolder const& rspec);
never@739 604
never@739 605 // Avoid using directly section
never@739 606 // Instructions in this section are actually usable by anyone without danger
never@739 607 // of failure but have performance issues that are addressed my enhanced
never@739 608 // instructions which will do the proper thing base on the particular cpu.
never@739 609 // We protect them because we don't trust you...
never@739 610
duke@435 611 // Don't use next inc() and dec() methods directly. INC & DEC instructions
duke@435 612 // could cause a partial flag stall since they don't set CF flag.
duke@435 613 // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
duke@435 614 // which call inc() & dec() or add() & sub() in accordance with
duke@435 615 // the product flag UseIncDec value.
duke@435 616
duke@435 617 void decl(Register dst);
duke@435 618 void decl(Address dst);
never@739 619 void decq(Register dst);
never@739 620 void decq(Address dst);
duke@435 621
duke@435 622 void incl(Register dst);
duke@435 623 void incl(Address dst);
never@739 624 void incq(Register dst);
never@739 625 void incq(Address dst);
never@739 626
never@739 627 // New cpus require use of movsd and movss to avoid partial register stall
never@739 628 // when loading from memory. But for old Opteron use movlpd instead of movsd.
never@739 629 // The selection is done in MacroAssembler::movdbl() and movflt().
never@739 630
never@739 631 // Move Scalar Single-Precision Floating-Point Values
never@739 632 void movss(XMMRegister dst, Address src);
never@739 633 void movss(XMMRegister dst, XMMRegister src);
never@739 634 void movss(Address dst, XMMRegister src);
never@739 635
never@739 636 // Move Scalar Double-Precision Floating-Point Values
never@739 637 void movsd(XMMRegister dst, Address src);
never@739 638 void movsd(XMMRegister dst, XMMRegister src);
never@739 639 void movsd(Address dst, XMMRegister src);
never@739 640 void movlpd(XMMRegister dst, Address src);
never@739 641
never@739 642 // New cpus require use of movaps and movapd to avoid partial register stall
never@739 643 // when moving between registers.
never@739 644 void movaps(XMMRegister dst, XMMRegister src);
never@739 645 void movapd(XMMRegister dst, XMMRegister src);
never@739 646
never@739 647 // End avoid using directly
never@739 648
never@739 649
never@739 650 // Instruction prefixes
never@739 651 void prefix(Prefix p);
never@739 652
never@739 653 public:
never@739 654
never@739 655 // Creation
never@739 656 Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
never@739 657
never@739 658 // Decoding
never@739 659 static address locate_operand(address inst, WhichOperand which);
never@739 660 static address locate_next_instruction(address inst);
never@739 661
never@739 662 // Utilities
never@739 663
never@739 664 #ifdef _LP64
never@739 665 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
never@739 666 static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
never@739 667 #else
never@739 668 static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); }
never@739 669 static bool is_simm32(int32_t x) { return true; }
never@739 670 #endif // LP64
never@739 671
never@739 672 // Generic instructions
never@739 673 // Does 32bit or 64bit as needed for the platform. In some sense these
never@739 674 // belong in macro assembler but there is no need for both varieties to exist
never@739 675
never@739 676 void lea(Register dst, Address src);
never@739 677
never@739 678 void mov(Register dst, Register src);
never@739 679
never@739 680 void pusha();
never@739 681 void popa();
never@739 682
never@739 683 void pushf();
never@739 684 void popf();
never@739 685
never@739 686 void push(int32_t imm32);
never@739 687
never@739 688 void push(Register src);
never@739 689
never@739 690 void pop(Register dst);
never@739 691
never@739 692 // These are dummies to prevent surprise implicit conversions to Register
never@739 693 void push(void* v);
never@739 694 void pop(void* v);
never@739 695
never@739 696
never@739 697 // These do register sized moves/scans
never@739 698 void rep_mov();
never@739 699 void rep_set();
never@739 700 void repne_scan();
never@739 701 #ifdef _LP64
never@739 702 void repne_scanl();
never@739 703 #endif
never@739 704
never@739 705 // Vanilla instructions in lexical order
never@739 706
never@739 707 void adcl(Register dst, int32_t imm32);
never@739 708 void adcl(Register dst, Address src);
never@739 709 void adcl(Register dst, Register src);
never@739 710
never@739 711 void adcq(Register dst, int32_t imm32);
never@739 712 void adcq(Register dst, Address src);
never@739 713 void adcq(Register dst, Register src);
never@739 714
never@739 715
never@739 716 void addl(Address dst, int32_t imm32);
never@739 717 void addl(Address dst, Register src);
never@739 718 void addl(Register dst, int32_t imm32);
never@739 719 void addl(Register dst, Address src);
never@739 720 void addl(Register dst, Register src);
never@739 721
never@739 722 void addq(Address dst, int32_t imm32);
never@739 723 void addq(Address dst, Register src);
never@739 724 void addq(Register dst, int32_t imm32);
never@739 725 void addq(Register dst, Address src);
never@739 726 void addq(Register dst, Register src);
never@739 727
never@739 728
duke@435 729 void addr_nop_4();
duke@435 730 void addr_nop_5();
duke@435 731 void addr_nop_7();
duke@435 732 void addr_nop_8();
duke@435 733
never@739 734 // Add Scalar Double-Precision Floating-Point Values
never@739 735 void addsd(XMMRegister dst, Address src);
never@739 736 void addsd(XMMRegister dst, XMMRegister src);
never@739 737
never@739 738 // Add Scalar Single-Precision Floating-Point Values
never@739 739 void addss(XMMRegister dst, Address src);
never@739 740 void addss(XMMRegister dst, XMMRegister src);
never@739 741
never@739 742 void andl(Register dst, int32_t imm32);
never@739 743 void andl(Register dst, Address src);
never@739 744 void andl(Register dst, Register src);
never@739 745
never@739 746 void andq(Register dst, int32_t imm32);
never@739 747 void andq(Register dst, Address src);
never@739 748 void andq(Register dst, Register src);
never@739 749
never@739 750
never@739 751 // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
never@739 752 void andpd(XMMRegister dst, Address src);
never@739 753 void andpd(XMMRegister dst, XMMRegister src);
never@739 754
never@739 755 void bswapl(Register reg);
never@739 756
never@739 757 void bswapq(Register reg);
never@739 758
duke@435 759 void call(Label& L, relocInfo::relocType rtype);
duke@435 760 void call(Register reg); // push pc; pc <- reg
duke@435 761 void call(Address adr); // push pc; pc <- adr
duke@435 762
never@739 763 void cdql();
never@739 764
never@739 765 void cdqq();
never@739 766
never@739 767 void cld() { emit_byte(0xfc); }
never@739 768
never@739 769 void clflush(Address adr);
never@739 770
never@739 771 void cmovl(Condition cc, Register dst, Register src);
never@739 772 void cmovl(Condition cc, Register dst, Address src);
never@739 773
never@739 774 void cmovq(Condition cc, Register dst, Register src);
never@739 775 void cmovq(Condition cc, Register dst, Address src);
never@739 776
never@739 777
never@739 778 void cmpb(Address dst, int imm8);
never@739 779
never@739 780 void cmpl(Address dst, int32_t imm32);
never@739 781
never@739 782 void cmpl(Register dst, int32_t imm32);
never@739 783 void cmpl(Register dst, Register src);
never@739 784 void cmpl(Register dst, Address src);
never@739 785
never@739 786 void cmpq(Address dst, int32_t imm32);
never@739 787 void cmpq(Address dst, Register src);
never@739 788
never@739 789 void cmpq(Register dst, int32_t imm32);
never@739 790 void cmpq(Register dst, Register src);
never@739 791 void cmpq(Register dst, Address src);
never@739 792
never@739 793 // these are dummies used to catch attempting to convert NULL to Register
never@739 794 void cmpl(Register dst, void* junk); // dummy
never@739 795 void cmpq(Register dst, void* junk); // dummy
never@739 796
never@739 797 void cmpw(Address dst, int imm16);
never@739 798
never@739 799 void cmpxchg8 (Address adr);
never@739 800
never@739 801 void cmpxchgl(Register reg, Address adr);
never@739 802
never@739 803 void cmpxchgq(Register reg, Address adr);
never@739 804
never@739 805 // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 806 void comisd(XMMRegister dst, Address src);
never@739 807
never@739 808 // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 809 void comiss(XMMRegister dst, Address src);
never@739 810
never@739 811 // Identify processor type and features
never@739 812 void cpuid() {
never@739 813 emit_byte(0x0F);
never@739 814 emit_byte(0xA2);
never@739 815 }
never@739 816
never@739 817 // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
never@739 818 void cvtsd2ss(XMMRegister dst, XMMRegister src);
never@739 819
never@739 820 // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
never@739 821 void cvtsi2sdl(XMMRegister dst, Register src);
never@739 822 void cvtsi2sdq(XMMRegister dst, Register src);
never@739 823
never@739 824 // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
never@739 825 void cvtsi2ssl(XMMRegister dst, Register src);
never@739 826 void cvtsi2ssq(XMMRegister dst, Register src);
never@739 827
never@739 828 // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
never@739 829 void cvtdq2pd(XMMRegister dst, XMMRegister src);
never@739 830
never@739 831 // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
never@739 832 void cvtdq2ps(XMMRegister dst, XMMRegister src);
never@739 833
never@739 834 // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
never@739 835 void cvtss2sd(XMMRegister dst, XMMRegister src);
never@739 836
never@739 837 // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
never@739 838 void cvttsd2sil(Register dst, Address src);
never@739 839 void cvttsd2sil(Register dst, XMMRegister src);
never@739 840 void cvttsd2siq(Register dst, XMMRegister src);
never@739 841
never@739 842 // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
never@739 843 void cvttss2sil(Register dst, XMMRegister src);
never@739 844 void cvttss2siq(Register dst, XMMRegister src);
never@739 845
never@739 846 // Divide Scalar Double-Precision Floating-Point Values
never@739 847 void divsd(XMMRegister dst, Address src);
never@739 848 void divsd(XMMRegister dst, XMMRegister src);
never@739 849
never@739 850 // Divide Scalar Single-Precision Floating-Point Values
never@739 851 void divss(XMMRegister dst, Address src);
never@739 852 void divss(XMMRegister dst, XMMRegister src);
never@739 853
never@739 854 void emms();
never@739 855
never@739 856 void fabs();
never@739 857
never@739 858 void fadd(int i);
never@739 859
never@739 860 void fadd_d(Address src);
never@739 861 void fadd_s(Address src);
never@739 862
never@739 863 // "Alternate" versions of x87 instructions place result down in FPU
never@739 864 // stack instead of on TOS
never@739 865
never@739 866 void fadda(int i); // "alternate" fadd
never@739 867 void faddp(int i = 1);
never@739 868
never@739 869 void fchs();
never@739 870
never@739 871 void fcom(int i);
never@739 872
never@739 873 void fcomp(int i = 1);
never@739 874 void fcomp_d(Address src);
never@739 875 void fcomp_s(Address src);
never@739 876
never@739 877 void fcompp();
never@739 878
never@739 879 void fcos();
never@739 880
never@739 881 void fdecstp();
never@739 882
never@739 883 void fdiv(int i);
never@739 884 void fdiv_d(Address src);
never@739 885 void fdivr_s(Address src);
never@739 886 void fdiva(int i); // "alternate" fdiv
never@739 887 void fdivp(int i = 1);
never@739 888
never@739 889 void fdivr(int i);
never@739 890 void fdivr_d(Address src);
never@739 891 void fdiv_s(Address src);
never@739 892
never@739 893 void fdivra(int i); // "alternate" reversed fdiv
never@739 894
never@739 895 void fdivrp(int i = 1);
never@739 896
never@739 897 void ffree(int i = 0);
never@739 898
never@739 899 void fild_d(Address adr);
never@739 900 void fild_s(Address adr);
never@739 901
never@739 902 void fincstp();
never@739 903
never@739 904 void finit();
never@739 905
never@739 906 void fist_s (Address adr);
never@739 907 void fistp_d(Address adr);
never@739 908 void fistp_s(Address adr);
never@739 909
never@739 910 void fld1();
never@739 911
never@739 912 void fld_d(Address adr);
never@739 913 void fld_s(Address adr);
never@739 914 void fld_s(int index);
never@739 915 void fld_x(Address adr); // extended-precision (80-bit) format
never@739 916
never@739 917 void fldcw(Address src);
never@739 918
never@739 919 void fldenv(Address src);
never@739 920
never@739 921 void fldlg2();
never@739 922
never@739 923 void fldln2();
never@739 924
never@739 925 void fldz();
never@739 926
never@739 927 void flog();
never@739 928 void flog10();
never@739 929
never@739 930 void fmul(int i);
never@739 931
never@739 932 void fmul_d(Address src);
never@739 933 void fmul_s(Address src);
never@739 934
never@739 935 void fmula(int i); // "alternate" fmul
never@739 936
never@739 937 void fmulp(int i = 1);
never@739 938
never@739 939 void fnsave(Address dst);
never@739 940
never@739 941 void fnstcw(Address src);
never@739 942
never@739 943 void fnstsw_ax();
never@739 944
never@739 945 void fprem();
never@739 946 void fprem1();
never@739 947
never@739 948 void frstor(Address src);
never@739 949
never@739 950 void fsin();
never@739 951
never@739 952 void fsqrt();
never@739 953
never@739 954 void fst_d(Address adr);
never@739 955 void fst_s(Address adr);
never@739 956
never@739 957 void fstp_d(Address adr);
never@739 958 void fstp_d(int index);
never@739 959 void fstp_s(Address adr);
never@739 960 void fstp_x(Address adr); // extended-precision (80-bit) format
never@739 961
never@739 962 void fsub(int i);
never@739 963 void fsub_d(Address src);
never@739 964 void fsub_s(Address src);
never@739 965
never@739 966 void fsuba(int i); // "alternate" fsub
never@739 967
never@739 968 void fsubp(int i = 1);
never@739 969
never@739 970 void fsubr(int i);
never@739 971 void fsubr_d(Address src);
never@739 972 void fsubr_s(Address src);
never@739 973
never@739 974 void fsubra(int i); // "alternate" reversed fsub
never@739 975
never@739 976 void fsubrp(int i = 1);
never@739 977
never@739 978 void ftan();
never@739 979
never@739 980 void ftst();
never@739 981
never@739 982 void fucomi(int i = 1);
never@739 983 void fucomip(int i = 1);
never@739 984
never@739 985 void fwait();
never@739 986
never@739 987 void fxch(int i = 1);
never@739 988
never@739 989 void fxrstor(Address src);
never@739 990
never@739 991 void fxsave(Address dst);
never@739 992
never@739 993 void fyl2x();
never@739 994
never@739 995 void hlt();
never@739 996
never@739 997 void idivl(Register src);
never@739 998
never@739 999 void idivq(Register src);
never@739 1000
never@739 1001 void imull(Register dst, Register src);
never@739 1002 void imull(Register dst, Register src, int value);
never@739 1003
never@739 1004 void imulq(Register dst, Register src);
never@739 1005 void imulq(Register dst, Register src, int value);
never@739 1006
duke@435 1007
duke@435 1008 // jcc is the generic conditional branch generator to run-
duke@435 1009 // time routines, jcc is used for branches to labels. jcc
duke@435 1010 // takes a branch opcode (cc) and a label (L) and generates
duke@435 1011 // either a backward branch or a forward branch and links it
duke@435 1012 // to the label fixup chain. Usage:
duke@435 1013 //
duke@435 1014 // Label L; // unbound label
duke@435 1015 // jcc(cc, L); // forward branch to unbound label
duke@435 1016 // bind(L); // bind label to the current pc
duke@435 1017 // jcc(cc, L); // backward branch to bound label
duke@435 1018 // bind(L); // illegal: a label may be bound only once
duke@435 1019 //
duke@435 1020 // Note: The same Label can be used for forward and backward branches
duke@435 1021 // but it may be bound only once.
duke@435 1022
duke@435 1023 void jcc(Condition cc, Label& L,
duke@435 1024 relocInfo::relocType rtype = relocInfo::none);
duke@435 1025
duke@435 1026 // Conditional jump to a 8-bit offset to L.
duke@435 1027 // WARNING: be very careful using this for forward jumps. If the label is
duke@435 1028 // not bound within an 8-bit offset of this instruction, a run-time error
duke@435 1029 // will occur.
duke@435 1030 void jccb(Condition cc, Label& L);
duke@435 1031
never@739 1032 void jmp(Address entry); // pc <- entry
never@739 1033
never@739 1034 // Label operations & relative jumps (PPUM Appendix D)
never@739 1035 void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
never@739 1036
never@739 1037 void jmp(Register entry); // pc <- entry
never@739 1038
never@739 1039 // Unconditional 8-bit offset jump to L.
never@739 1040 // WARNING: be very careful using this for forward jumps. If the label is
never@739 1041 // not bound within an 8-bit offset of this instruction, a run-time error
never@739 1042 // will occur.
never@739 1043 void jmpb(Label& L);
never@739 1044
never@739 1045 void ldmxcsr( Address src );
never@739 1046
never@739 1047 void leal(Register dst, Address src);
never@739 1048
never@739 1049 void leaq(Register dst, Address src);
never@739 1050
never@739 1051 void lfence() {
never@739 1052 emit_byte(0x0F);
never@739 1053 emit_byte(0xAE);
never@739 1054 emit_byte(0xE8);
never@739 1055 }
never@739 1056
never@739 1057 void lock();
never@739 1058
never@739 1059 enum Membar_mask_bits {
never@739 1060 StoreStore = 1 << 3,
never@739 1061 LoadStore = 1 << 2,
never@739 1062 StoreLoad = 1 << 1,
never@739 1063 LoadLoad = 1 << 0
never@739 1064 };
never@739 1065
never@739 1066 // Serializes memory.
never@739 1067 void membar(Membar_mask_bits order_constraint) {
never@739 1068 // We only have to handle StoreLoad and LoadLoad
never@739 1069 if (order_constraint & StoreLoad) {
never@739 1070 // MFENCE subsumes LFENCE
never@739 1071 mfence();
never@739 1072 } /* [jk] not needed currently: else if (order_constraint & LoadLoad) {
never@739 1073 lfence();
never@739 1074 } */
never@739 1075 }
never@739 1076
never@739 1077 void mfence();
never@739 1078
never@739 1079 // Moves
never@739 1080
never@739 1081 void mov64(Register dst, int64_t imm64);
never@739 1082
never@739 1083 void movb(Address dst, Register src);
never@739 1084 void movb(Address dst, int imm8);
never@739 1085 void movb(Register dst, Address src);
never@739 1086
never@739 1087 void movdl(XMMRegister dst, Register src);
never@739 1088 void movdl(Register dst, XMMRegister src);
never@739 1089
never@739 1090 // Move Double Quadword
never@739 1091 void movdq(XMMRegister dst, Register src);
never@739 1092 void movdq(Register dst, XMMRegister src);
never@739 1093
never@739 1094 // Move Aligned Double Quadword
never@739 1095 void movdqa(Address dst, XMMRegister src);
never@739 1096 void movdqa(XMMRegister dst, Address src);
never@739 1097 void movdqa(XMMRegister dst, XMMRegister src);
never@739 1098
kvn@840 1099 // Move Unaligned Double Quadword
kvn@840 1100 void movdqu(Address dst, XMMRegister src);
kvn@840 1101 void movdqu(XMMRegister dst, Address src);
kvn@840 1102 void movdqu(XMMRegister dst, XMMRegister src);
kvn@840 1103
never@739 1104 void movl(Register dst, int32_t imm32);
never@739 1105 void movl(Address dst, int32_t imm32);
never@739 1106 void movl(Register dst, Register src);
never@739 1107 void movl(Register dst, Address src);
never@739 1108 void movl(Address dst, Register src);
never@739 1109
never@739 1110 // These dummies prevent using movl from converting a zero (like NULL) into Register
never@739 1111 // by giving the compiler two choices it can't resolve
never@739 1112
never@739 1113 void movl(Address dst, void* junk);
never@739 1114 void movl(Register dst, void* junk);
never@739 1115
never@739 1116 #ifdef _LP64
never@739 1117 void movq(Register dst, Register src);
never@739 1118 void movq(Register dst, Address src);
never@739 1119 void movq(Address dst, Register src);
never@739 1120 #endif
never@739 1121
never@739 1122 void movq(Address dst, MMXRegister src );
never@739 1123 void movq(MMXRegister dst, Address src );
never@739 1124
never@739 1125 #ifdef _LP64
never@739 1126 // These dummies prevent using movq from converting a zero (like NULL) into Register
never@739 1127 // by giving the compiler two choices it can't resolve
never@739 1128
never@739 1129 void movq(Address dst, void* dummy);
never@739 1130 void movq(Register dst, void* dummy);
never@739 1131 #endif
never@739 1132
never@739 1133 // Move Quadword
never@739 1134 void movq(Address dst, XMMRegister src);
never@739 1135 void movq(XMMRegister dst, Address src);
never@739 1136
never@739 1137 void movsbl(Register dst, Address src);
never@739 1138 void movsbl(Register dst, Register src);
never@739 1139
never@739 1140 #ifdef _LP64
twisti@1059 1141 void movsbq(Register dst, Address src);
twisti@1059 1142 void movsbq(Register dst, Register src);
twisti@1059 1143
never@739 1144 // Move signed 32bit immediate to 64bit extending sign
never@739 1145 void movslq(Address dst, int32_t imm64);
never@739 1146 void movslq(Register dst, int32_t imm64);
never@739 1147
never@739 1148 void movslq(Register dst, Address src);
never@739 1149 void movslq(Register dst, Register src);
never@739 1150 void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
never@739 1151 #endif
never@739 1152
never@739 1153 void movswl(Register dst, Address src);
never@739 1154 void movswl(Register dst, Register src);
never@739 1155
twisti@1059 1156 #ifdef _LP64
twisti@1059 1157 void movswq(Register dst, Address src);
twisti@1059 1158 void movswq(Register dst, Register src);
twisti@1059 1159 #endif
twisti@1059 1160
never@739 1161 void movw(Address dst, int imm16);
never@739 1162 void movw(Register dst, Address src);
never@739 1163 void movw(Address dst, Register src);
never@739 1164
never@739 1165 void movzbl(Register dst, Address src);
never@739 1166 void movzbl(Register dst, Register src);
never@739 1167
twisti@1059 1168 #ifdef _LP64
twisti@1059 1169 void movzbq(Register dst, Address src);
twisti@1059 1170 void movzbq(Register dst, Register src);
twisti@1059 1171 #endif
twisti@1059 1172
never@739 1173 void movzwl(Register dst, Address src);
never@739 1174 void movzwl(Register dst, Register src);
never@739 1175
twisti@1059 1176 #ifdef _LP64
twisti@1059 1177 void movzwq(Register dst, Address src);
twisti@1059 1178 void movzwq(Register dst, Register src);
twisti@1059 1179 #endif
twisti@1059 1180
never@739 1181 void mull(Address src);
never@739 1182 void mull(Register src);
never@739 1183
never@739 1184 // Multiply Scalar Double-Precision Floating-Point Values
never@739 1185 void mulsd(XMMRegister dst, Address src);
never@739 1186 void mulsd(XMMRegister dst, XMMRegister src);
never@739 1187
never@739 1188 // Multiply Scalar Single-Precision Floating-Point Values
never@739 1189 void mulss(XMMRegister dst, Address src);
never@739 1190 void mulss(XMMRegister dst, XMMRegister src);
never@739 1191
never@739 1192 void negl(Register dst);
never@739 1193
never@739 1194 #ifdef _LP64
never@739 1195 void negq(Register dst);
never@739 1196 #endif
never@739 1197
never@739 1198 void nop(int i = 1);
never@739 1199
never@739 1200 void notl(Register dst);
never@739 1201
never@739 1202 #ifdef _LP64
never@739 1203 void notq(Register dst);
never@739 1204 #endif
never@739 1205
never@739 1206 void orl(Address dst, int32_t imm32);
never@739 1207 void orl(Register dst, int32_t imm32);
never@739 1208 void orl(Register dst, Address src);
never@739 1209 void orl(Register dst, Register src);
never@739 1210
never@739 1211 void orq(Address dst, int32_t imm32);
never@739 1212 void orq(Register dst, int32_t imm32);
never@739 1213 void orq(Register dst, Address src);
never@739 1214 void orq(Register dst, Register src);
never@739 1215
never@739 1216 void popl(Address dst);
never@739 1217
never@739 1218 #ifdef _LP64
never@739 1219 void popq(Address dst);
never@739 1220 #endif
never@739 1221
never@739 1222 // Prefetches (SSE, SSE2, 3DNOW only)
never@739 1223
never@739 1224 void prefetchnta(Address src);
never@739 1225 void prefetchr(Address src);
never@739 1226 void prefetcht0(Address src);
never@739 1227 void prefetcht1(Address src);
never@739 1228 void prefetcht2(Address src);
never@739 1229 void prefetchw(Address src);
never@739 1230
never@739 1231 // Shuffle Packed Doublewords
never@739 1232 void pshufd(XMMRegister dst, XMMRegister src, int mode);
never@739 1233 void pshufd(XMMRegister dst, Address src, int mode);
never@739 1234
never@739 1235 // Shuffle Packed Low Words
never@739 1236 void pshuflw(XMMRegister dst, XMMRegister src, int mode);
never@739 1237 void pshuflw(XMMRegister dst, Address src, int mode);
never@739 1238
never@739 1239 // Shift Right Logical Quadword Immediate
never@739 1240 void psrlq(XMMRegister dst, int shift);
never@739 1241
never@739 1242 // Interleave Low Bytes
never@739 1243 void punpcklbw(XMMRegister dst, XMMRegister src);
never@739 1244
never@739 1245 void pushl(Address src);
never@739 1246
never@739 1247 void pushq(Address src);
never@739 1248
never@739 1249 // Xor Packed Byte Integer Values
never@739 1250 void pxor(XMMRegister dst, Address src);
never@739 1251 void pxor(XMMRegister dst, XMMRegister src);
never@739 1252
never@739 1253 void rcll(Register dst, int imm8);
never@739 1254
never@739 1255 void rclq(Register dst, int imm8);
never@739 1256
never@739 1257 void ret(int imm16);
duke@435 1258
duke@435 1259 void sahf();
duke@435 1260
never@739 1261 void sarl(Register dst, int imm8);
never@739 1262 void sarl(Register dst);
never@739 1263
never@739 1264 void sarq(Register dst, int imm8);
never@739 1265 void sarq(Register dst);
never@739 1266
never@739 1267 void sbbl(Address dst, int32_t imm32);
never@739 1268 void sbbl(Register dst, int32_t imm32);
never@739 1269 void sbbl(Register dst, Address src);
never@739 1270 void sbbl(Register dst, Register src);
never@739 1271
never@739 1272 void sbbq(Address dst, int32_t imm32);
never@739 1273 void sbbq(Register dst, int32_t imm32);
never@739 1274 void sbbq(Register dst, Address src);
never@739 1275 void sbbq(Register dst, Register src);
never@739 1276
never@739 1277 void setb(Condition cc, Register dst);
never@739 1278
never@739 1279 void shldl(Register dst, Register src);
never@739 1280
never@739 1281 void shll(Register dst, int imm8);
never@739 1282 void shll(Register dst);
never@739 1283
never@739 1284 void shlq(Register dst, int imm8);
never@739 1285 void shlq(Register dst);
never@739 1286
never@739 1287 void shrdl(Register dst, Register src);
never@739 1288
never@739 1289 void shrl(Register dst, int imm8);
never@739 1290 void shrl(Register dst);
never@739 1291
never@739 1292 void shrq(Register dst, int imm8);
never@739 1293 void shrq(Register dst);
never@739 1294
never@739 1295 void smovl(); // QQQ generic?
never@739 1296
never@739 1297 // Compute Square Root of Scalar Double-Precision Floating-Point Value
never@739 1298 void sqrtsd(XMMRegister dst, Address src);
never@739 1299 void sqrtsd(XMMRegister dst, XMMRegister src);
never@739 1300
never@739 1301 void std() { emit_byte(0xfd); }
never@739 1302
never@739 1303 void stmxcsr( Address dst );
never@739 1304
never@739 1305 void subl(Address dst, int32_t imm32);
never@739 1306 void subl(Address dst, Register src);
never@739 1307 void subl(Register dst, int32_t imm32);
never@739 1308 void subl(Register dst, Address src);
never@739 1309 void subl(Register dst, Register src);
never@739 1310
never@739 1311 void subq(Address dst, int32_t imm32);
never@739 1312 void subq(Address dst, Register src);
never@739 1313 void subq(Register dst, int32_t imm32);
never@739 1314 void subq(Register dst, Address src);
never@739 1315 void subq(Register dst, Register src);
never@739 1316
never@739 1317
never@739 1318 // Subtract Scalar Double-Precision Floating-Point Values
never@739 1319 void subsd(XMMRegister dst, Address src);
never@739 1320 void subsd(XMMRegister dst, XMMRegister src);
never@739 1321
never@739 1322 // Subtract Scalar Single-Precision Floating-Point Values
never@739 1323 void subss(XMMRegister dst, Address src);
duke@435 1324 void subss(XMMRegister dst, XMMRegister src);
never@739 1325
never@739 1326 void testb(Register dst, int imm8);
never@739 1327
never@739 1328 void testl(Register dst, int32_t imm32);
never@739 1329 void testl(Register dst, Register src);
never@739 1330 void testl(Register dst, Address src);
never@739 1331
never@739 1332 void testq(Register dst, int32_t imm32);
never@739 1333 void testq(Register dst, Register src);
never@739 1334
never@739 1335
never@739 1336 // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
never@739 1337 void ucomisd(XMMRegister dst, Address src);
never@739 1338 void ucomisd(XMMRegister dst, XMMRegister src);
never@739 1339
never@739 1340 // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
never@739 1341 void ucomiss(XMMRegister dst, Address src);
duke@435 1342 void ucomiss(XMMRegister dst, XMMRegister src);
never@739 1343
never@739 1344 void xaddl(Address dst, Register src);
never@739 1345
never@739 1346 void xaddq(Address dst, Register src);
never@739 1347
never@739 1348 void xchgl(Register reg, Address adr);
never@739 1349 void xchgl(Register dst, Register src);
never@739 1350
never@739 1351 void xchgq(Register reg, Address adr);
never@739 1352 void xchgq(Register dst, Register src);
never@739 1353
never@739 1354 void xorl(Register dst, int32_t imm32);
never@739 1355 void xorl(Register dst, Address src);
never@739 1356 void xorl(Register dst, Register src);
never@739 1357
never@739 1358 void xorq(Register dst, Address src);
never@739 1359 void xorq(Register dst, Register src);
never@739 1360
never@739 1361 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
never@739 1362 void xorpd(XMMRegister dst, Address src);
never@739 1363 void xorpd(XMMRegister dst, XMMRegister src);
never@739 1364
never@739 1365 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
never@739 1366 void xorps(XMMRegister dst, Address src);
duke@435 1367 void xorps(XMMRegister dst, XMMRegister src);
never@739 1368
never@739 1369 void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
duke@435 1370 };
duke@435 1371
duke@435 1372
duke@435 1373 // MacroAssembler extends Assembler by frequently used macros.
duke@435 1374 //
duke@435 1375 // Instructions for which a 'better' code sequence exists depending
duke@435 1376 // on arguments should also go in here.
duke@435 1377
duke@435 1378 class MacroAssembler: public Assembler {
ysr@777 1379 friend class LIR_Assembler;
ysr@777 1380 friend class Runtime1; // as_Address()
duke@435 1381 protected:
duke@435 1382
duke@435 1383 Address as_Address(AddressLiteral adr);
duke@435 1384 Address as_Address(ArrayAddress adr);
duke@435 1385
duke@435 1386 // Support for VM calls
duke@435 1387 //
duke@435 1388 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
duke@435 1389 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1390 // additional registers when doing a VM call).
duke@435 1391 #ifdef CC_INTERP
duke@435 1392 // c++ interpreter never wants to use interp_masm version of call_VM
duke@435 1393 #define VIRTUAL
duke@435 1394 #else
duke@435 1395 #define VIRTUAL virtual
duke@435 1396 #endif
duke@435 1397
duke@435 1398 VIRTUAL void call_VM_leaf_base(
duke@435 1399 address entry_point, // the entry point
duke@435 1400 int number_of_arguments // the number of arguments to pop after the call
duke@435 1401 );
duke@435 1402
duke@435 1403 // This is the base routine called by the different versions of call_VM. The interpreter
duke@435 1404 // may customize this version by overriding it for its purposes (e.g., to save/restore
duke@435 1405 // additional registers when doing a VM call).
duke@435 1406 //
duke@435 1407 // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
duke@435 1408 // returns the register which contains the thread upon return. If a thread register has been
duke@435 1409 // specified, the return value will correspond to that register. If no last_java_sp is specified
duke@435 1410 // (noreg) than rsp will be used instead.
duke@435 1411 VIRTUAL void call_VM_base( // returns the register containing the thread upon return
duke@435 1412 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
duke@435 1413 Register java_thread, // the thread if computed before ; use noreg otherwise
duke@435 1414 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
duke@435 1415 address entry_point, // the entry point
duke@435 1416 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
duke@435 1417 bool check_exceptions // whether to check for pending exceptions after return
duke@435 1418 );
duke@435 1419
duke@435 1420 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
duke@435 1421 // The implementation is only non-empty for the InterpreterMacroAssembler,
duke@435 1422 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
duke@435 1423 virtual void check_and_handle_popframe(Register java_thread);
duke@435 1424 virtual void check_and_handle_earlyret(Register java_thread);
duke@435 1425
duke@435 1426 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
duke@435 1427
duke@435 1428 // helpers for FPU flag access
duke@435 1429 // tmp is a temporary register, if none is available use noreg
duke@435 1430 void save_rax (Register tmp);
duke@435 1431 void restore_rax(Register tmp);
duke@435 1432
duke@435 1433 public:
duke@435 1434 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
duke@435 1435
duke@435 1436 // Support for NULL-checks
duke@435 1437 //
duke@435 1438 // Generates code that causes a NULL OS exception if the content of reg is NULL.
duke@435 1439 // If the accessed location is M[reg + offset] and the offset is known, provide the
duke@435 1440 // offset. No explicit code generation is needed if the offset is within a certain
duke@435 1441 // range (0 <= offset <= page_size).
duke@435 1442
duke@435 1443 void null_check(Register reg, int offset = -1);
kvn@603 1444 static bool needs_explicit_null_check(intptr_t offset);
duke@435 1445
duke@435 1446 // Required platform-specific helpers for Label::patch_instructions.
duke@435 1447 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
duke@435 1448 void pd_patch_instruction(address branch, address target);
duke@435 1449 #ifndef PRODUCT
duke@435 1450 static void pd_print_patched_instruction(address branch);
duke@435 1451 #endif
duke@435 1452
duke@435 1453 // The following 4 methods return the offset of the appropriate move instruction
duke@435 1454
jrose@1057 1455 // Support for fast byte/short loading with zero extension (depending on particular CPU)
duke@435 1456 int load_unsigned_byte(Register dst, Address src);
jrose@1057 1457 int load_unsigned_short(Register dst, Address src);
jrose@1057 1458
jrose@1057 1459 // Support for fast byte/short loading with sign extension (depending on particular CPU)
duke@435 1460 int load_signed_byte(Register dst, Address src);
jrose@1057 1461 int load_signed_short(Register dst, Address src);
duke@435 1462
duke@435 1463 // Support for sign-extension (hi:lo = extend_sign(lo))
duke@435 1464 void extend_sign(Register hi, Register lo);
duke@435 1465
jrose@1057 1466 // Loading values by size and signed-ness
jrose@1057 1467 void load_sized_value(Register dst, Address src, int size_in_bytes, bool is_signed);
jrose@1057 1468
duke@435 1469 // Support for inc/dec with optimal instruction selection depending on value
never@739 1470
never@739 1471 void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
never@739 1472 void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
never@739 1473
never@739 1474 void decrementl(Address dst, int value = 1);
never@739 1475 void decrementl(Register reg, int value = 1);
never@739 1476
never@739 1477 void decrementq(Register reg, int value = 1);
never@739 1478 void decrementq(Address dst, int value = 1);
never@739 1479
never@739 1480 void incrementl(Address dst, int value = 1);
never@739 1481 void incrementl(Register reg, int value = 1);
never@739 1482
never@739 1483 void incrementq(Register reg, int value = 1);
never@739 1484 void incrementq(Address dst, int value = 1);
never@739 1485
duke@435 1486
duke@435 1487 // Support optimal SSE move instructions.
duke@435 1488 void movflt(XMMRegister dst, XMMRegister src) {
duke@435 1489 if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
duke@435 1490 else { movss (dst, src); return; }
duke@435 1491 }
duke@435 1492 void movflt(XMMRegister dst, Address src) { movss(dst, src); }
duke@435 1493 void movflt(XMMRegister dst, AddressLiteral src);
duke@435 1494 void movflt(Address dst, XMMRegister src) { movss(dst, src); }
duke@435 1495
duke@435 1496 void movdbl(XMMRegister dst, XMMRegister src) {
duke@435 1497 if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
duke@435 1498 else { movsd (dst, src); return; }
duke@435 1499 }
duke@435 1500
duke@435 1501 void movdbl(XMMRegister dst, AddressLiteral src);
duke@435 1502
duke@435 1503 void movdbl(XMMRegister dst, Address src) {
duke@435 1504 if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
duke@435 1505 else { movlpd(dst, src); return; }
duke@435 1506 }
duke@435 1507 void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
duke@435 1508
never@739 1509 void incrementl(AddressLiteral dst);
never@739 1510 void incrementl(ArrayAddress dst);
duke@435 1511
duke@435 1512 // Alignment
duke@435 1513 void align(int modulus);
duke@435 1514
duke@435 1515 // Misc
duke@435 1516 void fat_nop(); // 5 byte nop
duke@435 1517
duke@435 1518 // Stack frame creation/removal
duke@435 1519 void enter();
duke@435 1520 void leave();
duke@435 1521
duke@435 1522 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
duke@435 1523 // The pointer will be loaded into the thread register.
duke@435 1524 void get_thread(Register thread);
duke@435 1525
apetrusenko@797 1526
duke@435 1527 // Support for VM calls
duke@435 1528 //
duke@435 1529 // It is imperative that all calls into the VM are handled via the call_VM macros.
duke@435 1530 // They make sure that the stack linkage is setup correctly. call_VM's correspond
duke@435 1531 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
duke@435 1532
never@739 1533
never@739 1534 void call_VM(Register oop_result,
never@739 1535 address entry_point,
never@739 1536 bool check_exceptions = true);
never@739 1537 void call_VM(Register oop_result,
never@739 1538 address entry_point,
never@739 1539 Register arg_1,
never@739 1540 bool check_exceptions = true);
never@739 1541 void call_VM(Register oop_result,
never@739 1542 address entry_point,
never@739 1543 Register arg_1, Register arg_2,
never@739 1544 bool check_exceptions = true);
never@739 1545 void call_VM(Register oop_result,
never@739 1546 address entry_point,
never@739 1547 Register arg_1, Register arg_2, Register arg_3,
never@739 1548 bool check_exceptions = true);
never@739 1549
never@739 1550 // Overloadings with last_Java_sp
never@739 1551 void call_VM(Register oop_result,
never@739 1552 Register last_java_sp,
never@739 1553 address entry_point,
never@739 1554 int number_of_arguments = 0,
never@739 1555 bool check_exceptions = true);
never@739 1556 void call_VM(Register oop_result,
never@739 1557 Register last_java_sp,
never@739 1558 address entry_point,
never@739 1559 Register arg_1, bool
never@739 1560 check_exceptions = true);
never@739 1561 void call_VM(Register oop_result,
never@739 1562 Register last_java_sp,
never@739 1563 address entry_point,
never@739 1564 Register arg_1, Register arg_2,
never@739 1565 bool check_exceptions = true);
never@739 1566 void call_VM(Register oop_result,
never@739 1567 Register last_java_sp,
never@739 1568 address entry_point,
never@739 1569 Register arg_1, Register arg_2, Register arg_3,
never@739 1570 bool check_exceptions = true);
never@739 1571
never@739 1572 void call_VM_leaf(address entry_point,
never@739 1573 int number_of_arguments = 0);
never@739 1574 void call_VM_leaf(address entry_point,
never@739 1575 Register arg_1);
never@739 1576 void call_VM_leaf(address entry_point,
never@739 1577 Register arg_1, Register arg_2);
never@739 1578 void call_VM_leaf(address entry_point,
never@739 1579 Register arg_1, Register arg_2, Register arg_3);
duke@435 1580
duke@435 1581 // last Java Frame (fills frame anchor)
never@739 1582 void set_last_Java_frame(Register thread,
never@739 1583 Register last_java_sp,
never@739 1584 Register last_java_fp,
never@739 1585 address last_java_pc);
never@739 1586
never@739 1587 // thread in the default location (r15_thread on 64bit)
never@739 1588 void set_last_Java_frame(Register last_java_sp,
never@739 1589 Register last_java_fp,
never@739 1590 address last_java_pc);
never@739 1591
duke@435 1592 void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
duke@435 1593
never@739 1594 // thread in the default location (r15_thread on 64bit)
never@739 1595 void reset_last_Java_frame(bool clear_fp, bool clear_pc);
never@739 1596
duke@435 1597 // Stores
duke@435 1598 void store_check(Register obj); // store check for obj - register is destroyed afterwards
duke@435 1599 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
duke@435 1600
apetrusenko@797 1601 void g1_write_barrier_pre(Register obj,
apetrusenko@797 1602 #ifndef _LP64
apetrusenko@797 1603 Register thread,
apetrusenko@797 1604 #endif
apetrusenko@797 1605 Register tmp,
apetrusenko@797 1606 Register tmp2,
apetrusenko@797 1607 bool tosca_live);
apetrusenko@797 1608 void g1_write_barrier_post(Register store_addr,
apetrusenko@797 1609 Register new_val,
apetrusenko@797 1610 #ifndef _LP64
apetrusenko@797 1611 Register thread,
apetrusenko@797 1612 #endif
apetrusenko@797 1613 Register tmp,
apetrusenko@797 1614 Register tmp2);
ysr@777 1615
ysr@777 1616
duke@435 1617 // split store_check(Register obj) to enhance instruction interleaving
duke@435 1618 void store_check_part_1(Register obj);
duke@435 1619 void store_check_part_2(Register obj);
duke@435 1620
duke@435 1621 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
duke@435 1622 void c2bool(Register x);
duke@435 1623
duke@435 1624 // C++ bool manipulation
duke@435 1625
duke@435 1626 void movbool(Register dst, Address src);
duke@435 1627 void movbool(Address dst, bool boolconst);
duke@435 1628 void movbool(Address dst, Register src);
duke@435 1629 void testbool(Register dst);
duke@435 1630
never@739 1631 // oop manipulations
never@739 1632 void load_klass(Register dst, Register src);
never@739 1633 void store_klass(Register dst, Register src);
never@739 1634
never@739 1635 void load_prototype_header(Register dst, Register src);
never@739 1636
never@739 1637 #ifdef _LP64
never@739 1638 void store_klass_gap(Register dst, Register src);
never@739 1639
never@739 1640 void load_heap_oop(Register dst, Address src);
never@739 1641 void store_heap_oop(Address dst, Register src);
never@739 1642 void encode_heap_oop(Register r);
never@739 1643 void decode_heap_oop(Register r);
never@739 1644 void encode_heap_oop_not_null(Register r);
never@739 1645 void decode_heap_oop_not_null(Register r);
never@739 1646 void encode_heap_oop_not_null(Register dst, Register src);
never@739 1647 void decode_heap_oop_not_null(Register dst, Register src);
never@739 1648
never@739 1649 void set_narrow_oop(Register dst, jobject obj);
never@739 1650
never@739 1651 // if heap base register is used - reinit it with the correct value
never@739 1652 void reinit_heapbase();
never@739 1653 #endif // _LP64
never@739 1654
never@739 1655 // Int division/remainder for Java
duke@435 1656 // (as idivl, but checks for special case as described in JVM spec.)
duke@435 1657 // returns idivl instruction offset for implicit exception handling
duke@435 1658 int corrected_idivl(Register reg);
duke@435 1659
never@739 1660 // Long division/remainder for Java
never@739 1661 // (as idivq, but checks for special case as described in JVM spec.)
never@739 1662 // returns idivq instruction offset for implicit exception handling
never@739 1663 int corrected_idivq(Register reg);
never@739 1664
duke@435 1665 void int3();
duke@435 1666
never@739 1667 // Long operation macros for a 32bit cpu
duke@435 1668 // Long negation for Java
duke@435 1669 void lneg(Register hi, Register lo);
duke@435 1670
duke@435 1671 // Long multiplication for Java
never@739 1672 // (destroys contents of eax, ebx, ecx and edx)
duke@435 1673 void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
duke@435 1674
duke@435 1675 // Long shifts for Java
duke@435 1676 // (semantics as described in JVM spec.)
duke@435 1677 void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
duke@435 1678 void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
duke@435 1679
duke@435 1680 // Long compare for Java
duke@435 1681 // (semantics as described in JVM spec.)
duke@435 1682 void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
duke@435 1683
never@739 1684
never@739 1685 // misc
never@739 1686
never@739 1687 // Sign extension
never@739 1688 void sign_extend_short(Register reg);
never@739 1689 void sign_extend_byte(Register reg);
never@739 1690
never@739 1691 // Division by power of 2, rounding towards 0
never@739 1692 void division_with_shift(Register reg, int shift_value);
never@739 1693
duke@435 1694 // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
duke@435 1695 //
duke@435 1696 // CF (corresponds to C0) if x < y
duke@435 1697 // PF (corresponds to C2) if unordered
duke@435 1698 // ZF (corresponds to C3) if x = y
duke@435 1699 //
duke@435 1700 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1701 // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
duke@435 1702 void fcmp(Register tmp);
duke@435 1703 // Variant of the above which allows y to be further down the stack
duke@435 1704 // and which only pops x and y if specified. If pop_right is
duke@435 1705 // specified then pop_left must also be specified.
duke@435 1706 void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
duke@435 1707
duke@435 1708 // Floating-point comparison for Java
duke@435 1709 // Compares the top-most stack entries on the FPU stack and stores the result in dst.
duke@435 1710 // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
duke@435 1711 // (semantics as described in JVM spec.)
duke@435 1712 void fcmp2int(Register dst, bool unordered_is_less);
duke@435 1713 // Variant of the above which allows y to be further down the stack
duke@435 1714 // and which only pops x and y if specified. If pop_right is
duke@435 1715 // specified then pop_left must also be specified.
duke@435 1716 void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
duke@435 1717
duke@435 1718 // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
duke@435 1719 // tmp is a temporary register, if none is available use noreg
duke@435 1720 void fremr(Register tmp);
duke@435 1721
duke@435 1722
duke@435 1723 // same as fcmp2int, but using SSE2
duke@435 1724 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1725 void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
duke@435 1726
duke@435 1727 // Inlined sin/cos generator for Java; must not use CPU instruction
duke@435 1728 // directly on Intel as it does not have high enough precision
duke@435 1729 // outside of the range [-pi/4, pi/4]. Extra argument indicate the
duke@435 1730 // number of FPU stack slots in use; all but the topmost will
duke@435 1731 // require saving if a slow case is necessary. Assumes argument is
duke@435 1732 // on FP TOS; result is on FP TOS. No cpu registers are changed by
duke@435 1733 // this code.
duke@435 1734 void trigfunc(char trig, int num_fpu_regs_in_use = 1);
duke@435 1735
duke@435 1736 // branch to L if FPU flag C2 is set/not set
duke@435 1737 // tmp is a temporary register, if none is available use noreg
duke@435 1738 void jC2 (Register tmp, Label& L);
duke@435 1739 void jnC2(Register tmp, Label& L);
duke@435 1740
duke@435 1741 // Pop ST (ffree & fincstp combined)
duke@435 1742 void fpop();
duke@435 1743
duke@435 1744 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1745 void push_fTOS();
duke@435 1746
duke@435 1747 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1748 void pop_fTOS();
duke@435 1749
duke@435 1750 void empty_FPU_stack();
duke@435 1751
duke@435 1752 void push_IU_state();
duke@435 1753 void pop_IU_state();
duke@435 1754
duke@435 1755 void push_FPU_state();
duke@435 1756 void pop_FPU_state();
duke@435 1757
duke@435 1758 void push_CPU_state();
duke@435 1759 void pop_CPU_state();
duke@435 1760
duke@435 1761 // Round up to a power of two
duke@435 1762 void round_to(Register reg, int modulus);
duke@435 1763
duke@435 1764 // Callee saved registers handling
duke@435 1765 void push_callee_saved_registers();
duke@435 1766 void pop_callee_saved_registers();
duke@435 1767
duke@435 1768 // allocation
duke@435 1769 void eden_allocate(
duke@435 1770 Register obj, // result: pointer to object after successful allocation
duke@435 1771 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1772 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1773 Register t1, // temp register
duke@435 1774 Label& slow_case // continuation point if fast allocation fails
duke@435 1775 );
duke@435 1776 void tlab_allocate(
duke@435 1777 Register obj, // result: pointer to object after successful allocation
duke@435 1778 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 1779 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 1780 Register t1, // temp register
duke@435 1781 Register t2, // temp register
duke@435 1782 Label& slow_case // continuation point if fast allocation fails
duke@435 1783 );
duke@435 1784 void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
duke@435 1785
jrose@1058 1786 // interface method calling
jrose@1058 1787 void lookup_interface_method(Register recv_klass,
jrose@1058 1788 Register intf_klass,
jrose@1058 1789 RegisterConstant itable_index,
jrose@1058 1790 Register method_result,
jrose@1058 1791 Register scan_temp,
jrose@1058 1792 Label& no_such_interface);
jrose@1058 1793
duke@435 1794 //----
duke@435 1795 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
duke@435 1796
duke@435 1797 // Debugging
never@739 1798
never@739 1799 // only if +VerifyOops
never@739 1800 void verify_oop(Register reg, const char* s = "broken oop");
duke@435 1801 void verify_oop_addr(Address addr, const char * s = "broken oop addr");
duke@435 1802
never@739 1803 // only if +VerifyFPU
never@739 1804 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
never@739 1805
never@739 1806 // prints msg, dumps registers and stops execution
never@739 1807 void stop(const char* msg);
never@739 1808
never@739 1809 // prints msg and continues
never@739 1810 void warn(const char* msg);
never@739 1811
never@739 1812 static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
never@739 1813 static void debug64(char* msg, int64_t pc, int64_t regs[]);
never@739 1814
duke@435 1815 void os_breakpoint();
never@739 1816
duke@435 1817 void untested() { stop("untested"); }
never@739 1818
duke@435 1819 void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
never@739 1820
duke@435 1821 void should_not_reach_here() { stop("should not reach here"); }
never@739 1822
duke@435 1823 void print_CPU_state();
duke@435 1824
duke@435 1825 // Stack overflow checking
duke@435 1826 void bang_stack_with_offset(int offset) {
duke@435 1827 // stack grows down, caller passes positive offset
duke@435 1828 assert(offset > 0, "must bang with negative offset");
duke@435 1829 movl(Address(rsp, (-offset)), rax);
duke@435 1830 }
duke@435 1831
duke@435 1832 // Writes to stack successive pages until offset reached to check for
duke@435 1833 // stack overflow + shadow pages. Also, clobbers tmp
duke@435 1834 void bang_stack_size(Register size, Register tmp);
duke@435 1835
jrose@1057 1836 virtual RegisterConstant delayed_value(intptr_t* delayed_value_addr,
jrose@1057 1837 Register tmp,
jrose@1057 1838 int offset);
jrose@1057 1839
duke@435 1840 // Support for serializing memory accesses between threads
duke@435 1841 void serialize_memory(Register thread, Register tmp);
duke@435 1842
duke@435 1843 void verify_tlab();
duke@435 1844
duke@435 1845 // Biased locking support
duke@435 1846 // lock_reg and obj_reg must be loaded up with the appropriate values.
duke@435 1847 // swap_reg must be rax, and is killed.
duke@435 1848 // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
duke@435 1849 // be killed; if not supplied, push/pop will be used internally to
duke@435 1850 // allocate a temporary (inefficient, avoid if possible).
duke@435 1851 // Optional slow case is for implementations (interpreter and C1) which branch to
duke@435 1852 // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
duke@435 1853 // Returns offset of first potentially-faulting instruction for null
duke@435 1854 // check info (currently consumed only by C1). If
duke@435 1855 // swap_reg_contains_mark is true then returns -1 as it is assumed
duke@435 1856 // the calling code has already passed any potential faults.
kvn@855 1857 int biased_locking_enter(Register lock_reg, Register obj_reg,
kvn@855 1858 Register swap_reg, Register tmp_reg,
duke@435 1859 bool swap_reg_contains_mark,
duke@435 1860 Label& done, Label* slow_case = NULL,
duke@435 1861 BiasedLockingCounters* counters = NULL);
duke@435 1862 void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
duke@435 1863
duke@435 1864
duke@435 1865 Condition negate_condition(Condition cond);
duke@435 1866
duke@435 1867 // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
duke@435 1868 // operands. In general the names are modified to avoid hiding the instruction in Assembler
duke@435 1869 // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
duke@435 1870 // here in MacroAssembler. The major exception to this rule is call
duke@435 1871
duke@435 1872 // Arithmetics
duke@435 1873
never@739 1874
never@739 1875 void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
never@739 1876 void addptr(Address dst, Register src);
never@739 1877
never@739 1878 void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
never@739 1879 void addptr(Register dst, int32_t src);
never@739 1880 void addptr(Register dst, Register src);
never@739 1881
never@739 1882 void andptr(Register dst, int32_t src);
never@739 1883 void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
never@739 1884
never@739 1885 void cmp8(AddressLiteral src1, int imm);
never@739 1886
never@739 1887 // renamed to drag out the casting of address to int32_t/intptr_t
duke@435 1888 void cmp32(Register src1, int32_t imm);
duke@435 1889
duke@435 1890 void cmp32(AddressLiteral src1, int32_t imm);
duke@435 1891 // compare reg - mem, or reg - &mem
duke@435 1892 void cmp32(Register src1, AddressLiteral src2);
duke@435 1893
duke@435 1894 void cmp32(Register src1, Address src2);
duke@435 1895
never@739 1896 #ifndef _LP64
never@739 1897 void cmpoop(Address dst, jobject obj);
never@739 1898 void cmpoop(Register dst, jobject obj);
never@739 1899 #endif // _LP64
never@739 1900
duke@435 1901 // NOTE src2 must be the lval. This is NOT an mem-mem compare
duke@435 1902 void cmpptr(Address src1, AddressLiteral src2);
duke@435 1903
duke@435 1904 void cmpptr(Register src1, AddressLiteral src2);
duke@435 1905
never@739 1906 void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1907 void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1908 // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1909
never@739 1910 void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1911 void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
never@739 1912
never@739 1913 // cmp64 to avoild hiding cmpq
never@739 1914 void cmp64(Register src1, AddressLiteral src);
never@739 1915
never@739 1916 void cmpxchgptr(Register reg, Address adr);
never@739 1917
never@739 1918 void locked_cmpxchgptr(Register reg, AddressLiteral adr);
never@739 1919
never@739 1920
never@739 1921 void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
never@739 1922
never@739 1923
never@739 1924 void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
never@739 1925
never@739 1926 void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
never@739 1927
never@739 1928 void shlptr(Register dst, int32_t shift);
never@739 1929 void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
never@739 1930
never@739 1931 void shrptr(Register dst, int32_t shift);
never@739 1932 void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
never@739 1933
never@739 1934 void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
never@739 1935 void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
never@739 1936
never@739 1937 void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 1938
never@739 1939 void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
never@739 1940 void subptr(Register dst, int32_t src);
never@739 1941 void subptr(Register dst, Register src);
never@739 1942
never@739 1943
never@739 1944 void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 1945 void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
never@739 1946
never@739 1947 void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 1948 void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
never@739 1949
never@739 1950 void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
never@739 1951
never@739 1952
duke@435 1953
duke@435 1954 // Helper functions for statistics gathering.
duke@435 1955 // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
duke@435 1956 void cond_inc32(Condition cond, AddressLiteral counter_addr);
duke@435 1957 // Unconditional atomic increment.
duke@435 1958 void atomic_incl(AddressLiteral counter_addr);
duke@435 1959
duke@435 1960 void lea(Register dst, AddressLiteral adr);
duke@435 1961 void lea(Address dst, AddressLiteral adr);
never@739 1962 void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
never@739 1963
never@739 1964 void leal32(Register dst, Address src) { leal(dst, src); }
never@739 1965
never@739 1966 void test32(Register src1, AddressLiteral src2);
never@739 1967
never@739 1968 void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 1969 void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 1970 void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
never@739 1971
never@739 1972 void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
never@739 1973 void testptr(Register src1, Register src2);
never@739 1974
never@739 1975 void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
never@739 1976 void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
duke@435 1977
duke@435 1978 // Calls
duke@435 1979
duke@435 1980 void call(Label& L, relocInfo::relocType rtype);
duke@435 1981 void call(Register entry);
duke@435 1982
duke@435 1983 // NOTE: this call tranfers to the effective address of entry NOT
duke@435 1984 // the address contained by entry. This is because this is more natural
duke@435 1985 // for jumps/calls.
duke@435 1986 void call(AddressLiteral entry);
duke@435 1987
duke@435 1988 // Jumps
duke@435 1989
duke@435 1990 // NOTE: these jumps tranfer to the effective address of dst NOT
duke@435 1991 // the address contained by dst. This is because this is more natural
duke@435 1992 // for jumps/calls.
duke@435 1993 void jump(AddressLiteral dst);
duke@435 1994 void jump_cc(Condition cc, AddressLiteral dst);
duke@435 1995
duke@435 1996 // 32bit can do a case table jump in one instruction but we no longer allow the base
duke@435 1997 // to be installed in the Address class. This jump will tranfers to the address
duke@435 1998 // contained in the location described by entry (not the address of entry)
duke@435 1999 void jump(ArrayAddress entry);
duke@435 2000
duke@435 2001 // Floating
duke@435 2002
duke@435 2003 void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
duke@435 2004 void andpd(XMMRegister dst, AddressLiteral src);
duke@435 2005
duke@435 2006 void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
duke@435 2007 void comiss(XMMRegister dst, AddressLiteral src);
duke@435 2008
duke@435 2009 void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
duke@435 2010 void comisd(XMMRegister dst, AddressLiteral src);
duke@435 2011
duke@435 2012 void fldcw(Address src) { Assembler::fldcw(src); }
duke@435 2013 void fldcw(AddressLiteral src);
duke@435 2014
duke@435 2015 void fld_s(int index) { Assembler::fld_s(index); }
duke@435 2016 void fld_s(Address src) { Assembler::fld_s(src); }
duke@435 2017 void fld_s(AddressLiteral src);
duke@435 2018
duke@435 2019 void fld_d(Address src) { Assembler::fld_d(src); }
duke@435 2020 void fld_d(AddressLiteral src);
duke@435 2021
duke@435 2022 void fld_x(Address src) { Assembler::fld_x(src); }
duke@435 2023 void fld_x(AddressLiteral src);
duke@435 2024
duke@435 2025 void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
duke@435 2026 void ldmxcsr(AddressLiteral src);
duke@435 2027
never@739 2028 private:
never@739 2029 // these are private because users should be doing movflt/movdbl
never@739 2030
duke@435 2031 void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2032 void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
duke@435 2033 void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
duke@435 2034 void movss(XMMRegister dst, AddressLiteral src);
duke@435 2035
never@739 2036 void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
never@739 2037 void movlpd(XMMRegister dst, AddressLiteral src);
never@739 2038
never@739 2039 public:
never@739 2040
duke@435 2041 void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 2042 void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
duke@435 2043 void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
duke@435 2044 void movsd(XMMRegister dst, AddressLiteral src);
duke@435 2045
duke@435 2046 void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
duke@435 2047 void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
duke@435 2048 void ucomiss(XMMRegister dst, AddressLiteral src);
duke@435 2049
duke@435 2050 void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
duke@435 2051 void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
duke@435 2052 void ucomisd(XMMRegister dst, AddressLiteral src);
duke@435 2053
duke@435 2054 // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
duke@435 2055 void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
duke@435 2056 void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
duke@435 2057 void xorpd(XMMRegister dst, AddressLiteral src);
duke@435 2058
duke@435 2059 // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
duke@435 2060 void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
duke@435 2061 void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
duke@435 2062 void xorps(XMMRegister dst, AddressLiteral src);
duke@435 2063
duke@435 2064 // Data
duke@435 2065
never@739 2066 void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2067
never@739 2068 void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2069 void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
never@739 2070
duke@435 2071 void movoop(Register dst, jobject obj);
duke@435 2072 void movoop(Address dst, jobject obj);
duke@435 2073
duke@435 2074 void movptr(ArrayAddress dst, Register src);
duke@435 2075 // can this do an lea?
duke@435 2076 void movptr(Register dst, ArrayAddress src);
duke@435 2077
never@739 2078 void movptr(Register dst, Address src);
never@739 2079
duke@435 2080 void movptr(Register dst, AddressLiteral src);
duke@435 2081
never@739 2082 void movptr(Register dst, intptr_t src);
never@739 2083 void movptr(Register dst, Register src);
never@739 2084 void movptr(Address dst, intptr_t src);
never@739 2085
never@739 2086 void movptr(Address dst, Register src);
never@739 2087
never@739 2088 #ifdef _LP64
never@739 2089 // Generally the next two are only used for moving NULL
never@739 2090 // Although there are situations in initializing the mark word where
never@739 2091 // they could be used. They are dangerous.
never@739 2092
never@739 2093 // They only exist on LP64 so that int32_t and intptr_t are not the same
never@739 2094 // and we have ambiguous declarations.
never@739 2095
never@739 2096 void movptr(Address dst, int32_t imm32);
never@739 2097 void movptr(Register dst, int32_t imm32);
never@739 2098 #endif // _LP64
never@739 2099
duke@435 2100 // to avoid hiding movl
duke@435 2101 void mov32(AddressLiteral dst, Register src);
duke@435 2102 void mov32(Register dst, AddressLiteral src);
never@739 2103
duke@435 2104 // to avoid hiding movb
duke@435 2105 void movbyte(ArrayAddress dst, int src);
duke@435 2106
duke@435 2107 // Can push value or effective address
duke@435 2108 void pushptr(AddressLiteral src);
duke@435 2109
never@739 2110 void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
never@739 2111 void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
never@739 2112
never@739 2113 void pushoop(jobject obj);
never@739 2114
never@739 2115 // sign extend as need a l to ptr sized element
never@739 2116 void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
never@739 2117 void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
never@739 2118
never@739 2119
duke@435 2120 #undef VIRTUAL
duke@435 2121
duke@435 2122 };
duke@435 2123
duke@435 2124 /**
duke@435 2125 * class SkipIfEqual:
duke@435 2126 *
duke@435 2127 * Instantiating this class will result in assembly code being output that will
duke@435 2128 * jump around any code emitted between the creation of the instance and it's
duke@435 2129 * automatic destruction at the end of a scope block, depending on the value of
duke@435 2130 * the flag passed to the constructor, which will be checked at run-time.
duke@435 2131 */
duke@435 2132 class SkipIfEqual {
duke@435 2133 private:
duke@435 2134 MacroAssembler* _masm;
duke@435 2135 Label _label;
duke@435 2136
duke@435 2137 public:
duke@435 2138 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
duke@435 2139 ~SkipIfEqual();
duke@435 2140 };
duke@435 2141
duke@435 2142 #ifdef ASSERT
duke@435 2143 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
duke@435 2144 #endif

mercurial